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Thermal Hall effect and neutral spinons in a doped Mott insulator
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In the pseudogap phase of the cuprate, a thermal Hall response of neutral objects has been recently detected
experimentally, which continuously persists into the antiferromagnetic insulating phase. In this paper, we study
the transport properties of neutral spinons as the elementary excitation of a doped Mott insulator, which is
governed by a mutual Chern-Simons topological gauge structure. We show that such a chiral spinon as a
composite of an S = 1/2 spin sitting at the core of a supercurrent vortex, can contribute to the thermal Hall
effect, thermopower, and Hall effect due to its intrinsic transverse (cyclotron) motion under internal fictitious
fluxes. In particular, the magnitudes of the transport coefficients are phenomenologically determined by two
basic parameters: the doping concentration and Tc, quantitatively consistent with the experimental measurements
including the signs and qualitative temperature and magnetic-field dependence. Combined with the predictions
of the spinon longitudinal transport properties, including the Nernst and spin Hall effects, a phenomenological
description of the pseudogap phase is established as characterized by the neutral spinon excitations, which
eventually become “confined” with an intrinsic superconducting transition at Tc. Finally, within this theoretical
framework, the “order to order” phase transition between the superconducting and antiferromagnetic insulating
phases are briefly discussed, with the thermal Hall monotonically increasing into the latter.
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I. INTRODUCTION

Transport measurements serve as a powerful tool to gain
insight into the nature of elementary excitations in the
cuprates [1,2]. The anomalous signals detected in these mea-
surements are crucial for a systematic understanding at the
microscopic level. For instance, the Hall number in the
cuprates indicates a discontinuity at a doping p∗, which cor-
responds to the doping concentration at which the pseudogap
(PG) phase terminates [3,4]. Within the PG phase, when p <

p∗, the Hall number aligns with the doping density p, which
seemingly contrasts with free systems where the large Fermi
surface encloses an area of 1 + p as indicated experimentally
at p > p∗. Previous studies have hypothesized that this dis-
crepancy might stem from Fermi surface reconstruction due
to antiferromagnetic (AFM) order with Q = (π, π ) [5] or in
the absence of the explicit translation symmetry breaking due
to strong correlations [6,7].

Furthermore, a linear magnetic-field-dependent thermal
Hall signal [8–10] in the family of the cuprate compounds
has been recently observed at p < p∗, extending to the AFM
insulating phase. It is important to underscore that the exper-
imental signal exhibits no effect for the magnetic field that is
aligned parallel to the copper-oxide plane [9], which implies
that the thermal Hall effect originates from an orbit effect.
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Prior theoretical studies [11,12] suggest that in the case of
the cuprates, magnons on a square lattice will fail to yield a
nonzero thermal Hall conductivity when subjected to either
the Dzyaloshinskii-Moriya spin interaction or the localized
formation of skyrmion defects. Additionally, the phenomeno-
logical descriptions involve neutral excitations like spinons
[12–15] and phonons [16–18] have been proposed. Phe-
nomenologically a universal behavior with a scaling law was
proposed [19]. Besides the cuprates, the sizable thermal Hall
effect has been also found in spin-ice Tb2Ti2O7 [20] and spin
liquid RuCl3 [21] as well as the Kitaev materials [22]. More-
over, both integer [23,24] and fractional [25] quantum Hall
systems (QHE and FQHE) offer a unique perspective, where
the thermal Hall effect finds its explanation in the conformal
field theory (CFT) of chiral edge modes [26].

The transport measurements provide a direct probe into the
contribution of the excitations that dominate the PG phase.
The neutral spinon in the PG phase is an essential elemen-
tary excitation in the strongly correlated theories of doped
Mott insulators. Thus, if and how the neutral spinon par-
ticipates in the thermal Hall and other transport phenomena
become important issues that should be addressed very se-
riously. In this paper, we shall make a self-consistent study
of spinon transport within the framework of the phase-string
theory [27,28]. The spinon predicted in this theory is differ-
ent from either the slave-boson or slave-fermion approaches
[1,29–32] due to the so-called phase-string effect [33–35]
hidden in the t-J model upon doping, which is a topological
Berry phase replacing the usual Fermi sign structure in the
restricted Hilbert space. Specifically:

(1) Each spinon undergoes a cyclotron motion due to an
intrinsic Berry curvature caused by the phase-string effect
[cf. Fig. 1(a)]. The time-reversal symmetry is retained in the
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FIG. 1. (a) A schematic illustration of a chiral spinon with a
mutual Chern-Simons gauge structure: A neutral S = 1/2 spin (black
arrow) sitting at the core of an induced supercurrent vortex (red
ring), which itself sees an intrinsic magnetic field Bh to undergo a
cyclotron motion (purple circle) self-consistently. (b) The semiclas-
sical behavior of the chiral spinons under a uniform Bh in the bulk
and edges of the sample, and (c) the resultant vortex edge currents
with opposite chiralities. Note that in the equilibrium state no time-
reversal symmetry is broken as the opposite spins see the opposite
sign of Bh with the compensation of the opposite cyclotron motion
and edge currents (red and purple with arrows). (d) Temperature
gradient ∇T breaks the equilibrium between the opposite edges,
causing net vortex current Jvor and electric field in the sample, which
contributes to a thermopower effect. (e) External perpendicular mag-
netic field Be (blue arrow) and the in-plane temperature gradient ∇T
break the balance of the chirality of spinon-vortices to generate a net
thermal current JQ, which contributes to a thermal Hall effect. (f) An
applied charge current Je induces a force Evor on the spinon vortex,
which generates a vortex current Jvor in the presence of an external
magnetic field Be to produce a net electric field Ee. The resulting
Hall effect gives rise to the Hall number precisely equal to the doping
concentration δ at low temperature.

absence of external magnetic fields as the opposite spins see
the opposite fictitious fluxes with the opposite chiral edge
currents [cf. Figs. 1(b) and 1(c)]. The system is distinct from
the usual topological insulator [36,37] in that all the spinons
with opposite chiralities are RVB-paired in the ground state.

(2) Each spinon is always locked with a charge-current
vortex. Since an external perpendicular magnetic field must be
balanced by the net (polarized) vortices, then unpaired (free)
chiral spinons must be generated from the RVB condensate,
which contributes to the novel transport in the PG phase.

(3) The cyclotron motion of the spinon and its locking
with the charge vortex [cf. Fig. 1(a)] are mathematically char-
acterized by a mutual Chern-Simons gauge structure, which
will contribute to unconventional transport phenomena, in-
cluding the thermopower effect [cf. Fig. 1(d)], thermal Hall
[cf. Fig. 1(e)], and Hall effect [cf. Fig. 1(f)].

We shall investigate the above spinon transport by using
a semiclassical approach based on the mutual Chern-Simons
gauge theory. The calculated results are essentially deter-
mined by the basic parameters of doping concentration as well
as Tc, with the magnitudes comparable with the experimental
measurements [3,4,8–10,38,39]. Also more physical impli-
cations arising from such neutral spinons as the elementary

excitations will be briefly discussed in Sec. IV D, which can
explain the Nernst effect [40–42] and the scaling relationship
between Tc and the spin resonance energy as observed in neu-
tron measurements [43–46]. Especially an “order-to-order”
phase transition between the superconducting and AFM in-
sulating phases can also naturally emerge within the same
theoretical framework.

Finally, some general remarks on the microscopic theoret-
ical description of the cuprate may be in order. The present
fractionalization is based on a unified scenario [27,28], in
which the close relationship between the AFM, superconduct-
ing, and PG phases, is realized via the phase-string effect
induced by holons that effectively reduces the AFM long-
range order into a short-range AFM ordered state at finite
doping. The latter is superconducting in the ground state,
while the phase coherence is destroyed by the proliferation of
the free spinon vortices as the elementary excitations above Tc

to give rise to a lower PG phase [27,28]. Consequently, the ex-
perimental transport measurements in such a lower PG regime
will serve as a crucial test of the unique behavior of the spinon
vortices as the building blocks of the fractionalization de-
scribed by a mutual Chern-Simons gauge theory (see below).
How those transport phenomena may be explained by distinct
excitations in different theories with or without fractionaliza-
tion can be highly revealing. As such, the essential role played
by the spinon-vortex composite as to be explored in this paper
will effectively distinguish the underlying fractionalization
scheme from other approaches including the Fermi-liquid-like
frameworks. For example, a recent Fermi-liquid Hartree-Fock
calculation [47] also suggests a systematic phase diagram
for the cuprate. Whether the transport properties contributed
by the Landau quasiparticles may be comparable with the
experiments, like the aforementioned thermal Hall effect, etc.,
would be intriguing. In general, given the mounting exper-
imental data in the cuprate, a comparative and systematic
theoretical investigation within any self-consistent scheme
can be very useful to advance our understanding of the high-Tc

mechanism.

II. MUTUAL CHERN-SIMONS GAUGE THEORY
OF THE DOPED MOTT INSULATOR

A. Topological gauge structure

Phase-string theory of the doped Mott insulator is based
on a nontrivial sign structure identified in both the t-J model
[33–35] and the Hubbard model [48,49], in which the con-
ventional Fermi statistics of the electrons are replaced by the
phase-string sign structure in the restricted Hilbert space of the
lower (upper) Hubbard band. In the phase-string theory, such
a sign structure is further precisely mapped to a topological
gauge structure. The corresponding low-energy description
involves the mutual Chern-Simons (MCS) gauge interaction
between the spin and charge degrees of freedom [50–55],
governed by the lattice Euclidean Lagrangian L = Lh + Ls +
LMCS as follows:

Lh =
∑

I

h†
I

[
∂τ − iAs

0(I ) − iAe
0(I ) + μh

]
hI

− th
∑

iα

[
h†

I hI+αeiAs
α (I )+iAe

α (I ) + H.c.
]
, (1)
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Ls =
∑

iσ

b†
iσ

[
∂τ − iσAh

0(i) + λb + 1

2
gμBBeσ

]
biσ

− Js

∑
iασ

[
b†

iσ b†
i+α,σ̄ eiσAh

α (i) + H.c.
]
, (2)

LMCS = i

π

∑
i

εμνλAs
μ(I )∂νAh

λ(i), (3)

in which Lh and Ls describe the dynamics of the matter
fields-bosonic spinless holon hI , and bosonic neutral spinon
biσ (with σ̄ ≡ −σ ), respectively. The indices α and β denote
only the spatial components: x, y, and the indices μ = (τ, r)
label the full time-space vector, with the indices i, I repre-
senting the two-dimensional (2D) square lattice site and its
dual lattice site, respectively. λb and μh are the chemical
potentials for the spinon b and holon h, whose numbers are
conserved, respectively. The hole doping concentration δ will
be introduced via μh. The renormalized hopping strength th
and effective spin antiferromagnetic (AFM) coupling Js are
determined at a generalized mean-field level in Ref. [28]. The
external magnetic vector potential Ae with the field strength
Be perpendicular to the 2D plane, interacts with the charge
(holon) degree of freedom through the orbit effect (setting the
charge equal to one) in Eq. (1), and the spin degree of freedom
via a Zeeman effect in Eq. (2).

Here the holon field h and spinon field b minimally couple
to the gauge fields, As

μ and Ah
μ, respectively, with the MCS

topological structure given in Eq. (3). It implies that the
holon (spinon) number nh

I (nb
i ) will determine the gauge-field

strength of Ah
μ (As

μ) as if each matter particle (holon or spinon)
is attached to a fictitious π flux tube visible only by a different
species. This can be directly seen by considering the following
equations of motion for As

0 and Ah
0, respectively,

∂L

∂As
0(I )

= 0 ⇒ πnh
I = εαβ∂αAh

β (i) ≡ Bh, (4)

∂L

∂Ah
0(i)

= 0 ⇒ π
∑

σ

σnb
iσ = εαβ∂αAs

β (I ) ≡ Bs. (5)

Similarly, by using the charge (holon) current Jh
α (I ) ≡

∂Lh/∂As
α (I ) and spin current associated with the b spinon:

Jspin
α (i) ≡ ∂Ls/∂Ah

α (i), one has the following equations of mo-
tion for As

α (I ) and Ah
α (i), respectively:

∂L

∂Ah
α (i)

= 0 ⇒ πJspin
α (i) = εαβEs

β (i), (6)

∂L

∂As
α (I )

= 0 ⇒ πJh
α (I ) = εαβEh

β (I ), (7)

where Es/h
α = ∂0As/h

α − ∂αAs/h
0 . Therefore, due to the U (1) ×

U (1) mutual Chern-Simons gauge structure, the conserved
charge (holon) and spin density-currents are constrained to
the internal gauge field strengths by the equations of motion
in Eqs. (4)–(7).

B. Low-temperature pseudogap phase.

At half-filling with nh
I = 0, one has Ah

β (i) = 0, and L → Ls

reduces to the Schwinger-boson mean-field state Lagrangian
[31] that well describes the AFM phase. On the other hand, at

finite doping, the Bose condensation of the bosonic holon field
will define a low-temperature PG phase [52,53]. As the holons
are condensed, the total gauge fluctuations in Lh of Eq. (1) will
be suppressed due to the Higgs mechanism, leading to

As
α (I ) + Ae

α (I ) − 2πmα (I ) = 0, (8)

where mα ∈ Z comes from the compactness of the spatial
components in Eq. (1). By using Eq. (8), the equations of
motion Eqs. (5) and (6) can be reformulated as

π
∑

σ

σnb
iσ − 2πJ2π

0 (i) + �e(i) = 0, (9)

πJspin
α (i) − 2πJ2π

α (i) + εαβEe
β (i) = 0, (10)

where �e = εαβαAe
β and Ee

α = ∂0Ae
α − ∂αAe

0 represent the
external magnetic flux and external electric field strength,
respectively. Here, J2π

0 ≡ εαβαmβ ∈ Z denotes the num-
ber of 2π vortices in the holon condensate, and J2π

α ≡
−εαβ∂0mβrepresents the current of the 2π vortices. In other
words, Eq. (9) corresponds to the fact that in the original holon
language, each vortex with J2π

0 = ±1 has a phase winding
±2π , while each spinon carries a half-vortex with a phase
winding ±π , known as the spinon vortex [52,53].

In the ground state, when all vortices are in the confined
phase [56], the superconducting phase coherence is realized
with �e = 0 in Eq. (9) (i.e., the Meissner effect). Here the b
spinons are in the RVB pairing state according to Eq. (2) and
the 2π vortices of Jvor

0 = ±1 are also “confined” in vortex-
antivortex pairs. In such an SC phase, a single spinon cannot
be present in the bulk, but an S = 1 excitation (totally with
±2π vortex due to the double spinons) can be made since
a ∓2π vortex of Jvor

0 can be always bound to the S = 1
excitation to make the total �e = 0 in Eq. (9). A minimal
flux quantization condition of �e = π (= hc/2e ≡ φ0 if the
full units are restored) can be realized in Eq. (9) with a single
b spinon trapped at the magnetic vortex core. The thermally
excited free (unpaired) b spinons can eventually destroy the
Meissner effect with a uniform magnetic field penetrating
the bulk according to Eq. (9), which disorders the SC phase
coherence and leads to a Kosterlitz-Thouless (KT) like phase
transition at (cf. more details in Appendix B and Ref. [56])

Tc ≈ Es/3kB, (11)

where Es is the lowest excited energy of the b spinons, to be
elaborated below.

At T slightly above Tc, i.e., the lower PG regime, the
conventional 2π vortices may remain well confined (vortex-
antivortex paired) as their unpaired configuration would cost
more free energy than that of the free π -spinon vortices. To
the leading order of approximation, one may then only focus
on the spinon-vortex composites without considering the free
2π vortices in Eqs. (9) and (10) unless the temperature is
much higher than Tc [53]. Note that a conventional 2π vortex
can be still bound to a spinon to merely change the vorticity
sign of the associated vortex as mentioned above. Namely,
the low-energy elementary excitations consist of four types of
excited (unpaired) b spinons trapped in the vortex cores with
quantum numbers of σ = ±1 and ν = ±1, where σ is the spin
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FIG. 2. Schematic illustration of the spinon vortex motion from
one side of the sample [(a)] to the other [(b)]. This traverse along
the horizontal direction results in a phase difference between the
two opposite sides (indicated by grays) along the vertical direction
changes by a ±2π continuously, leading to an electric field given in
Eq. (15). Here the vortex core is denoted by a red “+” symbol, while
the background local phases are represented by blue arrows. (c) The
currents flowing along the two sides of a spinning entity, represented
by a red disk (the arrow within the disk marks the direction of
rotation). Here the red current exhibits a higher velocity compared
to its blue counterpart, leading to a “Magnus” force F exerting on
the spinning entity (yellow arrow) as a fluid-dynamic interpretation
of Eq. (16).

FIG. 3. (a) The spinon energy levels Ẽm (at δ = 0.2). The lowest
excitations have an energy gap Es indicated by the red arrow. (b) The
energy splitting of the lowest excitation level in the presence of
a perpendicular magnetic field Be. This corresponding window is
marked by the gray region in (a). Each energy level in (b) is labeled
with the quantum number (σν ), with a corresponding diagram, i.e., a
spinon trapped in the charge vortex core, illustrated on the right-hand
side. Here the Chern number C and the splitting energy are also
indicated. (c) The distribution of the vortex current jvor

α (i) along the
y direction in the ground state, which is calculated on a sample with
a periodic boundary condition along the y direction and an open
boundary condition along the x direction. The length of the sample
in the x direction is Nx = 50.

index and ν denotes the chirality of the vortex [illustrated on
the right-hand side of Fig. 3(b)],

∑
σ

σnb
iσ − 2J2π

0 (i) ⇒
∑

ν

νnb
iσν, (12)

Jspin
α (i) − 2J2π

α (i) ⇒
∑

ν

νJν
α (i) ≡ Jvor

α (i), (13)

where nb
iσν denotes the number of excited free spinons with

spin index σ and vorticity ν, and Jvor
α denotes the currents

of the spinon vortices, with Jν=±
α representing the spinon

current with ± chirality. Correspondingly, the equations of
motion Eqs. (9) and (10) of the mutual Chern-Simons gauge
description reduce to the following forms:

∑
ν

νnb
iσν = −π−1�e

i , (14)

Jvor
α (i) = −π−1εαβEe

β (i). (15)

Here, Eq. (14) is actually the “chirality-neutral” condition,
and Eq. (15) indicates that the current of the spinon vortices
Jvor

α along one direction is induced by an external electric field
along the perpendicular direction. Physically, the latter case
can be interpreted as the steady vortex motion resulting in
a 2π “phase slip” of the charge field between the opposite
sides of perpendicular to the motion direction [cf. Figs. 2(a)
and 2(b)], and thereby generating an electric field, namely the
Nernst effect (see in Sec. IV D 1).

Finally, the holon current Jh corresponds to the charge
current, which can be denoted by Je in the following. A spinon
perceives the gauge field σAh

μ in Eq. (1), which results in
Eq. (7) where Eh is an effective “electric” field acting on the
spinon of spin σ = 1, which also denotes the vorticity of the
original spinon-vortex composite. Note that a spinon vortex
of σ = −1 should experience an opposite force for the same
direction of Je. Now such a spinon vortex can be bound to a
±2π vortex to change its vorticity to ν = ±, which becomes
independent of σ as given in Eq. (14). The force acting on the
spinon vortex of ν = + may then denoted by Evor such that
Eq. (7) is rewritten as

Je
α = π−1εαβEvor

β . (16)

Physically, such force acting on the vortex induced by
the charge current along a direction perpendicular to it
can be understood by drawing an analogy with the well-
known “Magnus effect” [57] in fluid dynamics, illustrated in
Fig. 2(c). In this semiclassical picture, a spinning object (anal-
ogous to the vortex) moving through a fluid (representative
of the charge current) experiences a lateral force. This force
arises from the differential fluid velocity on opposite sides of
the spinning object, pushing it in a direction perpendicular to
its motion.

Lastly, it is important to emphasize that the relationships
given by Eqs. (15) and (16) reflect the well-established con-
cept of boson-vortex duality [58,59]. Within this framework,
the charge and vortex degrees of freedom can be interchanged,
highlighting their mutual duality in the described context.
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III. SPINON TRANSPORT

In the mutual Chern-Simions gauge description outlined
above, the holon condensation will define the so-called lower
PG phase, which is also known as the spontaneous vortex
phase (SVP) as the free b spinons carry ±π vortices. It reaches
an intrinsic superconducting phase coherence at a lower crit-
ical temperature Tc. As the basic elementary excitation, the
b spinon will dictate the lower PG or the SVP phase as
well as the superconducting instability at Tc. The main task
in this section is to explore the transport of the b spinons,
which can expose the physical consequences of the underlying
mutual Chern-Simons gauge structure that the b spinon is
subjected to.

A. Spinon excitation spectrum

At the mean-field level, according to Eq. (4), the b spinons
in Ls experience a uniform static gauge flux δπ flux per
plaquette as the holons are condensed with 〈nh

I 〉 = δ, which
gives rise to a Landau-level-like energy spectrum Em(k), with
the lowest excited sector (LES) at Es, as illustrated in Fig. 3(a)
in the case of δ = 0.2 (with δ ≡ 2p/q and p, q ∈ Z such that
p = 1 and q = 10).

In the presence of a perpendicular external magnetic field
Be, the spinon energy spectrum becomes (cf. more details in
Appendix B)

Ẽmσν (k) ≡ Em(k) + σ 1
2 gμBBe + νĀh

0 (17)

where the second term on the right is the usual Zeeman
splitting for a spin-1/2 with the g-factor (usually taken as 2).
The third term originates from the temporal gauge Ah

0, which
results in iAh

0 → Āh
0 in Eq. (2) following a Wick rotation to

enforce the constraint Eq. (14) at Be �= 0.
The mean-field effective Hamiltonian for the spinon-vortex

composite may be written as H̃s = ∑
mσνk Ẽmσν (k)ñb

mσν (k) +
E0 with ñb

mσν (k) denoting the number of the spinon vortices as
the elementary excitations and E0 as the ground-state energy.
As the external magnetic field Be is much weaker than the
internal fictitious field Bh = δπ/a2 (with a = 3.8 Å as the
lattice constant), its effect mainly introduces a minor splitting
via the last two terms in Ẽmσν . When the temperature is not
too high above Tc [note that Es can be related to Tc in Eq. (11)
explicitly], it is reasonable to project the Hilbert space into the
LES around Em(k) = Es, which is split as shown in Fig. 3(b)
[60]. The mean-field parameter Āh

0 can be explicitly deter-
mined by enforcing the constraint Eq. (14) at Be �= 0, which
is illustrated in Fig. 4(a), and the corresponding low-energy
excited spinon number

∑
σ nb

σν=− in the LES is displayed in
Fig. 4(b). Both figures indicate the existence of two distinct
temperature regions, separated by the yellow lines in Fig. 4.
In the high-temperature region, the effect of Āh

0 on the free
spinon number is relatively small due to its small energy
compared to Es. On the other hand, at low temperatures, Āh

0
dominates the lowest-energy excited level, causing the particle
number of spinons to correlate linearly with the magnitude
of the external field, but remain independent of temperature.
The excited spinons will play a significant role in the transport
behavior of the lower PG phase.

FIG. 4. (a) The evolution of Āh
0 with respect to temperature T and

magnetic field Be. (b) The corresponding particle number of excited
spinons,

∑
σ nb

σ,v=−, vs T and Be for a given chirality at lower energy.
Here the two distinct temperature regions with different behavior are
separated by the yellow line.

B. Transverse transport coefficients

Importantly, due to the gauge field Bh, the b-spinon spec-
trum Ẽmσν carries nontrivial Berry curvatures �mσν (k) =
i∇k × 〈umσν,k|∇k|umσν,k〉, with |umσν,k〉 being the periodic
part of the Bloch waves corresponding to the energy Ẽmσν (k).
The nonzero Chern number Cmσν = 2π

∑
k �z

mσν (k) for each
band within the LES is shown in Fig. 3(b), indicating that the
sign of the Chern number depends solely on the chirality of
the b spinons, leading to

∑
m∈LES Cmσν = 2ν [61]. The factor

of 2 in this expression arises from the doubled density of states
associated with the Bogoliubov quasiparticles of b spinons..
Physically, this is because the direction of the intrinsic mag-
netic field Bh perceived by the spinons is solely determined by
their vorticity sign.

To study the transport properties for b spinons, we base
our approach on the semiclassical theory, analogous to the
quantum Hall effect in electron systems [62]. We consider
the b-spinon wave packet with a relatively determined center
and momentum (r, k) with an intrinsic size, determined by the
“cyclotron length” ac = a/

√
πδ [56]. The dynamics of such

a wave packet is described by the semiclassical equation of
motion, which includes the topological Berry phase term [62],

ṙ = 1

h̄

∂Ẽmσν (k)

∂k
− k̇ × �mσν (k) (18)

where h̄k̇ = −∇U (r), and U (r) is a confining potential that
exists only near the boundary of the sample, which prevents
the spinon wave packet from exiting the sample. On the
edge along the x direction, for example, the nontrivial Berry
curvature produces an anomalous velocity k̇ × �mσν (k) =
−h̄−1∂yU (r)�z

mσν (k)x̂ in Eq. (18). Physically, this anomalous
velocity arises from the fact that b spinon perceives an intrin-
sic “Lorentz force” due to the uniform gauge field Bh from the
holons, the sign of which depends on the vorticity. Therefore,
b spinon undergoes a cyclotron motion in the bulk and a
skipping orbit along the edge of the sample, as illustrated
in Fig. 1(b). It is crucial to note that both spinons carrying
opposite chirality flow along the boundary. This scenario is
reminiscent of the quantum spin Hall effect [36,37], where
the electrons at the boundary form the currents with oppo-
site chiralities for opposite spins. Also, in contrast to the
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chiral spin liquid with chiral edge modes [63,64], our effective
description [as referenced in Eqs. (1)–(3)] maintains time-
reversal symmetry. Here, to draw parallels and distinctions
from previously observed phenomena, the behavior of the
neutral spin within our framework may be termed the bosonic
“anomalous vortex Hall” effect, which underscores the vortex
edge current arising from the internal fictitious magnetic field.
On the other hand, in the case of equilibrium, all the edge cur-
rent in the sample cancels between one edge and the opposite
edge shown in Fig. 1(c), resulting in no net current.

In the presence of either a spatially varying chemical po-
tential μ or temperature T , a net edge current is contributed
by the anomalous velocity of b spinon, as shown in Figs. 1(b)–
1(d). For instance, when there is a temperature gradient and a
chemical potential gradient in the y direction, the linear re-
sponse of the chiral spinon current Jν and the heat current Jν

Q,
with their respective chirality ν, can be expressed as [65–68][

Jν
x(

Jν
Q

)
x

]
= Lxy,ν

[−∇yμ

T ∇y
1
T

]
. (19)

Here, Lxy,ν signifies a 2 × 2 matrix that represents the
transverse transport coefficients. The parameter ν = ± distin-
guishes between the different chiralities of spinon. The matrix
elements are given by

Lxy,ν
i j ≈ − 1

h̄V βq

∑
m∈LES

∑
σk

cq
(
nb

mσν

)
�z

mσν (k)

= − ν

h̄βqπ

∑
σ

cq
(
nb

σν

)
(20)

where i, j = 1, 2, cq(x) ≡ ∫ x
0 (log 1+t

t )qdt , q = i + j − 2, and

nb
mσν = 1/(eβẼmσν − 1) is the bosonic distribution function for

b spinons, which is independent of momentum, because Ẽmσν

is the flat Landau-level band in our case. Note that in Eq. (20),
as an approximation, we only sum over within the LES and
use the relation

∑
m∈LES Cmσν = 2π

∑
k �z

mσν (k) = 2ν. In the
following, we will investigate various transport measurements
associated with the transverse transport coefficients Lxy

i j in
Eq. (20) (for simplicity we shall drop the superscript xy in
the following such that Lxy,ν

i j → Lν
i j).

IV. EXPERIMENTALLY TESTABLE CONSEQUENCES

A. Thermopower

As illustrated in Fig. 1(c), due to the internal flux Bh, the b
spinons with opposite vorticities will propagate in opposite di-
rections along the edges of the sample, such that there is a net
vortex current at each edge along the x direction, which would
be canceled out by the opposite edge current at ∇yT = 0.
Now let us consider a temperature gradient ∇yT applied
along the y direction. As depicted in Fig. 1(d), the vortex
current on one side of the boundary will be larger than on the
higher-T side, which will result in a finite total vortex current
along the x direction. Noting that Jvor

x = Jν=+
x − Jν=−

x , where
Jν=±

x represents the spinon current with ± chirality [53]
as given by Jν=±

x = Lν=±
12 (T ∂y

1
T ) according to Eq. (20).

Furthermore, according to Eq. (15), the net vortex current
Jvor

x along the x direction can induce an electric field Ee
y along

the y direction (similar to the contribution to the Nernst effect

FIG. 5. The evolution of the Seebeck coefficient with respect to
temperature is depicted in (a), without the influence of a magnetic
field, and in (b), at a doping density δ = 0.18 and a critical tem-
perature Tc = 40 K . Blue and red lines depict theoretical results
under zero magnetic field and 10 T, respectively, while dots show
experimental data [39]. Theoretical values are on the left axis, and
experimental values on the right.

as to be discussed later), which will contribute to a finite
thermopower, with the Seebeck coefficient given by

S ≡ Ee
y

∇yT
= −kBφ0

π h̄

∑
σν

c1
(
nb

σν

)
(21)

where c1(x) ≡ (1 + x) ln(1 + x) − x ln x. Thus such a
contribution of the b spinon to the Seebeck coefficient is
determined by the number of the excited b spinons nb

σν , which
in turn is essentially governed by the lowest excited energy
scale Es in Eq. (17) at low temperatures. Note that Es also
determines Tc according to Eq. (11), which means that the
sole free parameter in Eq. (21) is effectively decided by Tc.

A typical quantitative temperature dependence of the
Seebeck coefficient S calculated using Eq. (21) is shown
in Fig. 5 at zero magnetic fields (a) and at finite B’s (b) in
the overdoped regime. The overall T and B dependence and
magnitude here, including the negative sign, are in agreement
with the experimental measurements in the optimal and
overdoped cuprates [38,39].

It is worth noting that while the present manuscript fo-
cus on thermopower in the pseudogap regime, a previous
research [69] also addressed thermopower in the lightly
doped region, where the thermopower mainly arises from the
entropy associated with energetically degenerate hole config-
urations in real-space distribution (the Heikes-like formula
[69]), consistent with the experimental findings [70–72]. In
the optimal- and over-doped PG regime, however, this large
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positive Seebeck effect should be substantially reduced with
the condensation of the holons and is neglected in Fig. 5.

B. Thermal Hall

Similarly, with a temperature gradient along the y direc-
tion, we can also evaluate the net thermal current (JQ)x =
(Jν=+

Q )x + (Jν=−
Q )x along the x direction, as illustrated in

Fig. 1(e). Here, Jν=±
Q represents the thermal current con-

tributed by spinons with ± chirality, expressed as (Jν=±
Q )x =

Lν=±
22 (T ∂y

1
T ), according to Eq. (20). The thermal Hall conduc-

tivity is then given by [65–68]

κxy ≡ − JQ

∇yT
= −k2

BT

π h̄

∑
νσ

νc2
(
nb

νσ

)
(22)

where c2(x) = (x + 1)(ln 1+x
x )2 − (ln x)2 − 2 Li2(−x) − c,

with Li2(z) being the polylogarithm function, and c = π2/3
is a constant ensuring that κxy does not diverge as T → ∞.

It is crucial to note that, in the absence of an external
magnetic field, the vanishing of both Be and Āh

0 leads to the
degeneracy of Ẽmσν with respect to chirality ν, resulting in a
zero value for κxy in Eq. (22) due to the summation over ν.
Essentially, this outcome stems from the fact that the thermal
current with opposite chirality flows in opposite directions
along a boundary. Therefore, the preservation of total chirality
to zero in a sample without an external magnetic field results
in complete cancellations for the thermal current. Conversely,
in the presence of an external magnetic field Be, according
to Eq. (14), the total chirality for b spinons becomes finite,
leading to a net thermal current along the boundary.

As a result, the evolution of thermal Hall conductivity
κxy obtained by Eq. (22) with respect to temperature is
depicted in Fig. 6(a). This evolution aligns with experimen-
tal results in terms of magnitude [8–10], and it exhibits
distinct behaviors across different temperature regions. In
the high-temperature region, following the discussion about
Eq. (17), nb

νσ is not sensitive to Ā0
h, leading to κxy/T =

− Bek2
B

h̄πφ0δ
( 3Tc

T )2 [Eq. (11) is used here]. On the other hand, in
the low-temperature region where spontaneous (thermally ex-
cited) vortices are absent, Eq. (14) reduces to

∑
σ nb

σν=− ≈
Bea2/φ0δ. Here, all other energy levels remain unoccupied,
leading to κxy/T → −2k2

Bc2(Bea2/4φ0δ)/h̄π as T approaches
0. The doping evolution of κxy/T near zero temperature is
presented in Fig. 6(b). This evolution reveals enhanced signals
in the underdoped regimes, corroborating the experimental
measurements [8–10]. Physically, this is because, under low
doping conditions, the degeneracy of the lowest Landau level
of the spinons is reduced due to the small intrinsic magnetic
field strength δπ . This reduction in degeneracy increases the
average Berry curvature, denoted as �mσν , experienced by
each spinon, which enhances the anomalous velocity at the
boundary, as indicated by Eq. (18). Therefore, the thermal
Hall effect becomes more pronounced under low doping.
However, κxy/T will not truly diverge at δ → 0, due to the
fact that the uniform holon condensation will either be broken
down or form smaller domain structures when it is deeply in
the AFM long-range ordered phase [10]. Our results for the
thermal Hall conductivity differ from the bosonic scaling law

FIG. 6. (a) The temperature evolution of the thermal-Hall coef-
ficient when B = 15 T. The blue and red lines depict theoretical
results for the overdoped and underdoped regimes, respectively.
Corresponding experimental data points, colored accordingly, are
sourced from [10]. Theoretical values are shown on the left axis,
while experimental values are on the right. (b) The doping evolution
of the thermal-Hall coefficient as the temperature approaches zero.
The thermal-Hall effect is predicted to revert to conventional Fermi
liquid behaviors when the doping density δ is greater than the critical
density δ∗, as indicated by the yellow region.

in Ref. [19], where Zhang et al. utilized the gapless bosons
with a power-law Berry curvature. Here we emphasize that the
intrinsic flux Bh leads to the Landau-level structure, with the
gap of the spinon-vortices constrained by Eq. (14), resulting
in a decreasing gap as the temperature drops as illustrated
in Fig. 4. Notably, within the pseudogap regime, the role of
the spinon vortex is to neutralize the external magnetic field.
Consequently, its Hall response is in the opposite direction
compared to the charged quasiparticles manifesting in the
Fermi liquid regime. This elucidates the observed sign change
of the thermal Hall as the doping transitions into the pseudo-
gap phase [10].

It is important to note that our case does not involve the
spontaneous breaking of time-reversal symmetry, a necessary
condition to avoid the emergence of a hysteretic behavior not
observed experimentally. Furthermore, according to Eq. (14),
the total chirality carried by b spinons is induced linearly
with the applied magnetic field. This results in the linear-B
dependence of κxy in both distinct temperature regions, which
aligns with the experimental measurement [8–10].

C. Hall effect

According to Eq. (16), driving a charge current Je
x along

the x direction induces an electric field Evor
y applied to the
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vortex along the y direction. This electric field acts as the
chemical potential gradient Evor

y = −∇yμ in Eq. (19). Since
the ± vortices perceives the Evor

y in opposite directions, the
response spinon current Jν=±

x = Lν=±
11 Evor

y leads to the vortex
current Jvor

x = ∑
ν νLν=±

11 Evor
y . From Eq. (15), this induced

vortex current further generates an electric field Ee
y along the

y direction, culminating in the Hall effects as illustrated in
Fig. 1(f). Therefore, the obtained Hall coefficient RH is given
by

RH ≡ Ee
yd

Je
xBe

= a2d

eδ
, (23)

where d denotes the lattice constants along the z axis. We also
employ the relation c0(x) = x and Eq. (14).

Therefore, the Hall number calculated by Eq. (23) is given
by nH = a2d/eRH = δ, which is consistent with the experi-
mental results [3,4]. Significantly, there exists a long-standing
experimental puzzle wherein the charge carrier, as measured
by the Hall number, correlates with the doped hole density δ

in the PG. This contrasts with the 1 + δ measurement derived
from the Fermi surface area observed through angle-resolved
photoemission spectroscopy (ARPES) [73–75], seemingly de-
viating from the Luttinger sum rule. Our results offer a
compelling explanation: chiral spinons primarily contribute
to the Hall effects. In contrast, the entities forming the Fermi
surface—Landau quasiparticles—display a negligible Hall ef-
fect signal due to their partially diminished weight (Fermi
arcs) in the PG phase.

Note that the Hall effect in this framework is primarily
attributed by the edge states of chiral spinons. At elevated
temperatures, the local phase coherence of holons can become
further disrupted, rendering them incapable of sustaining
condensation when the distance between spinon vortices
becomes comparable to that of the doped holes. In such a
scenario, chiral spinons no longer experience the uniform
static gauge flux emitted by holons, and thus cannot sustain
their complete edge states. Consequently, the contribution
of such channels to the Hall effect would diminish as the
temperature rises, consistent with experimental measurements
[3,4] and numerical results [76].

D. Other properties of spinon-vortices

In the above subsections, the effects produced by the
transverse motion of the chiral spinons with the MCS gauge
structure have been explored. It is noted that the effects of
the longitudinal motion of the same chiral spinons have been
already studied previously [52,53,77]. Since the b spinons are
the elementary excitations that dictate the lower PG phase, for
the sake of completeness, in the following we briefly discuss
additional phenomena associated with the b spinons.

1. Nernst effect

When a temperature gradient is applied along the y di-
rection, our attention shifts from the transverse transport
motion, detailed in Eq. (19), to the longitudinal drift motion
of spinons. To explore this, we introduce a viscosity constant
ηs, which allows us to determine the drift velocity vb of
chiral spinons using the equation sφ∇T = −ηsv

b, where sφ

denotes the transport entropy carried by a spinon vortex. It is
important to note that spinons of both chiralities are driven by
a temperature gradient in the same direction along the x axis,
with the velocity being the same vb.

In the presence of an external magnetic field Be, a vortex
current Jvor

y is induced along the y axis. As discussed in
the thermopower section, the vortex current can be further
expressed as Jvor = ρLES(nb

σν=+ − nb
σν=−)vb, with ρLES = δ

denoting the number of states for lowest energy sector besides
spin and vorticity quantum number, where the amplitude is
proportional to the external magnetic field as per the chiral-
ity “neutrality” condition Eq. (14). This vortex current Jvor

y
induces an electric field Ee

x along the x axis, as dictated by
Eq. (15). This corresponds to the Nernst effects, with the
signal defined by [52]

eN = Ey

|∇xT | = Be sφ

ηs
. (24)

To eliminate the viscosity ηs in Eq. (24), let us con-
sider the longitudinal resistivity ρe resulting from the drift
motion of chiral spinons. According to Eq. (16), driv-
ing a charge current Je

x along the x direction induces an
“electric field” Evor

y on the vortex. In contrast to the tem-
perature gradient, Evor

y prompts spinons of both chiralities to
drift in opposite directions along the y axis, in accordance
with the relation Evor

y = ±ηs/h̄cvb
y. This results in a vortex

current Jvor = ρLESnb
σν=+vb − ρLESnb

σν=−(−vb) = ρLESnbvb,
where nb = ρLES

∑
σν nb

σν is the total number of free b
spinons. Next, as derived from Eq. (15), such vortex current
Jvor

y induces the electric field Ee
x along the x direction, leading

to the longitudinal resistivity

ρe = φ2
0nb/ηs, (25)

where the contribution from quasiparticles is not included in
this analysis. Lastly, the challenging-to-calculate viscosity ηs

is eliminated, yielding [52]

αxy ≡ eN

ρ
= Bea2sφ

φ2
0nb

, (26)

where αxy is the quantity introduced in Ref. [40]. Within
our framework, a unique aspect that sets it apart from a
conventional BCS superconductor is the presence of a free
S = 1/2 moment locked with the vortex core, which gives rise
to the “transport entropy” [41] sφ = kB{ln[2 cosh(βμBBe)] −
βμBBe tanh(βμBBe)}. The temperature and magnetic-field
dependence of αxy is illustrated in Fig. 7(a). Its magnitude
aligns quantitatively with experimental data [40–42], suggest-
ing that the transport entropy due to the free moment in a
spinon vortex can accurately replicate the Nernst signal ob-
served experimentally.

2. Spin Hall effect

In the presence of a magnetic field, both the chiral-
ity and spin degrees of freedom become polarized through
the orbit and Zeeman effects, respectively. In this sce-
nario, a charge current Je

x along the x direction not only
induces a vortex current Jvor

y along the y direction—as pre-
viously discussed—but also generates a spin current. The
latter can be expressed as Js

α = ρLES(nb
↑+ − nb

↓+)vα + ρLES
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FIG. 7. The temperature and magnetic field contour plot of αxy ≡
eN/ρ (a) and the spin Hall coefficient σ s

H (b).

(nb
↑− − nb

↓−)(−vα ) = ρLES
∑

σν σνnb
σvvα . This results in the

generation of a vortex current that accompanies a spin current,
with the ratio defined as ζ ≡ Js

α/Jvor
α = ρLES

∑
σν σνnb

σν/nb.
As a consequence, the PG phase is predicted to exhibit a spin
Hall effect, with the coefficient given by [52,77]

σ s
H ≡ Js

α

Ee
α

= e

φ0
ζ , (27)

of which the calculated magnitude is shown in Fig. 7(b).

3. Order-to-order phase transition

At the units h̄ = c = e = 1, Eq. (25) can be recast into a
dual form

σeσs = 1

π2
, (28)

where σe = 1/ρe represents the electrical conductance, while
σs ≡ Jvor

α /Evor
α = nb/ηs denotes the spinon conductance. Es-

sentially, Eq. (28) parallels the boson-vortex duality [58,59],
in which both the Cooper pair and the superconductivity vor-
tex perceive each other as vortices. As such, when one is in a
superfluid state, the other resides in an insulating state.

Within the context of our paper, the spinon (holon) carries
the holon (spinon) vortex, thereby uniquely associating all
vortices with quantum numbers. Based on Eq. (28), the su-
perconductivity phase characterized by σe → ∞, corresponds
to an insulating phase for the spinon with σs → 0. More-
over, when spinon condenses with σs → ∞, indicating the
establishment of antiferromagnetic long-range order, it trig-
gers the proliferation of holon vortices, thereby resulting in
an insulating phase in charge, i.e., σe → 0. This sequence
represents a novel type of “order-to-order” phase transition,
widely investigated under the rubric of “deconfined quantum
critical point” (DQCP) [78–80].

4. Relation between Tc and resonance energy in INS

The dynamic spin susceptibility, as observed via inelas-
tic neutron scattering (INS), reveals the transition of the
gapless spin wave [81,82] at the antiferromagnetic (AFM)
wave vector (π, π ) to a gapped state upon disruption of the
AFM long-range order. This spin excitation also manifests
a resonance-like mode [45,83–88] characterized by energy

Eg, demonstrating a peak in the spin spectrum weight. When
deviating slightly from the momentum (π, π ), the resonance
mode bifurcates and spans both higher and lower energies,
resulting in the well-documented hourglass-shaped spectrum
[89–94].

Within our proposed framework, the predominant low-
lying spin spectrum weight originates from the LES of chiral
spinons characterized by energy Es. Furthermore, the S = 1
spin excitation detected by INS is in fact a composite of two
S = 1/2 spinons, resulting in the resonance spin mode energy
Eg = 2Es. A careful analysis [95] further validates that the
spinon excitation discussed in our study is consistent with the
observed hourglass spin spectrum.

A key insight is the established relation between the res-
onance energy Eg observed in INS and the superconducting
critical temperature Tc. The relation (detailed derivation in
Appendix B and Ref. [56]) is expressed as

κ ≡ Eg

kBTc
≈ 6.45, (29)

which aligns closely with the experimental measurement
[43–46] κexp ≈ 6.

V. DISCUSSION

One of the key hypotheses on the high-Tc cuprate in a
doped Mott insulator approach [1] is that the PG phase is
a fractionalized novel state beyond the Landau Fermi-liquid
description. In other words, it is the spinon and holon instead
of the Landau quasiparticle that dictate the physics of the PG
phase. The transport properties can provide a very powerful
test of distinct hypotheses of the elementary excitations and
thus the underlying states of matter.

In this paper, we have specifically explored the transverse
transport of the spinons in the phase-string formulation of the
t-J model. As the elementary excitations, here the spinon and
holon are subjected to the mutual Chern-Simons gauge struc-
ture due to the phase-string effect in a doped Mott insulator,
which preserves the time-reversal and parity symmetries in
the absence of the external magnetic field. In the so-called
lower PG phase, the holons remain Bose-condensed but the
superconducting phase coherence is disordered by free spinon
excitations until the “confinement” of the spinons below Tc.
The time-reversal symmetry is retained because the oppo-
site spins see the opposite directions of the fluxes and form
the RVB pairing in the superconducting ground state. Here
the transverse transport refers to the rotational motion of the
spinons as the edge chiral currents under the internal statis-
tical fictitious fluxes, which may be regarded as the bosonic
“anomalous vortex Hall” effect.

Both the neutral and electric Hall effects are exhibited in
the presence of a perpendicular magnetic field. In contrast to
the conventional Boltzmann transport of the Landau quasi-
particles, the thermopower, thermal Hall, and the Hall effect
studied here are all contributed by the chiral spinons, which
are further locked with a vortex supercurrent via the mutual
Chern-Simons gauge field in generating a transverse electric
voltage. The magnitudes of the calculated transverse transport
coefficients are intrinsically linked to the resonance-like en-
ergy scale of the chiral spinons, which can further determine
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[56,95,96] the SC transition temperature Tc, and be detected
by the inelastic neutron scattering experiments [45,83,86–88].
Previously the longitudinal transport of such chiral spinons
has been shown to give rise to the Nernst effect [53], the
spin Hall effect [77] as briefly mentioned in Sec. IV D. Ad-
ditionally, in such a framework, an “order-to-order” phase
transition between AFM insulating phase and SC phase is
expected in the cuprates, which is worth further investigation
in the future to establish a possible relationship with the
DQCP [78–80].

It is further noted that the origin of the thermal Hall
effect in different studies [12–14], starting from the π -flux
fermionic spinons, has been also attributed to the Berry cur-
vatures of the spinon bands. However, without the external
magnetic fields, the normal state of spinons [14] is usually
conventional or topologically trivial. By contrast, here the
external magnetic field merely shifts the balance number of
the excited spinons with opposite chirality without chang-
ing the internal strong Berry curvatures introduced by the
nontrivial topological (mutual Chern-Simons) gauge struc-
ture. The latter is intrinsically embedded in the pseudogap
regime, describing the long-range entanglement between spin
and charge degrees of freedom due to the phase-string ef-
fect in the doped Mott insulator. Additionally, some other
studies attribute the enhancement of the thermal Hall signal
to phonons through some extrinsic mechanisms [16–18]. It
should be pointed out that bare phonons are not sensitive to the
direction of external magnetic fields, but the experimentally
observed thermal Hall coefficient in cuprates depends on the
magnetic field component perpendicular to the copper oxide
plane [9].

Importantly, all the transport results obtained in this paper
hinge on the robustness of the chiral spinon excitation, which
is protected by the underlying bosonic RVB pairing. However,
as the doping further increases beyond a critical point, i.e.,
δ > δ∗, the AFM correlation becomes too weak to preserve
such an RVB pairing, leading to the breakdown of the pseu-
dogap phase and the restoration of a Fermi liquid with a large
Fermi surface [97], as has been suggested experimentally
[73–75,98,99]. As a result, apparently, the present transport
results should collapse with the contribution dominated by the
quasiparticle excitations with the full Fermi surface restored
in the overdoped regime at low temperatures. For instance,
as indicated by experiments, the Hall number should change
from δ to 1 + δ [3,4] and the thermal Hall coefficient should
restore the behavior of the Wiedemann-Franz law [10].

Finally, we note that certain experiments have recently
detected a signal of the thermal Hall effect along the z axis in
cuprates [8]. Our current study has been focused on the pure
2D and does not offer a quantitative explanation. We spec-
ulate that since the phase-string sign structure underlies the
intrinsic Berry curvatures leading to the thermal Hall effect, its
existence in any dimensions of a doped Mott insulator, which
has been rigorously proven [34] before, may be also responsi-
ble for the above-mentioned experimental observation beyond
2D. Technically, in realistic materials—stacked copper oxide
layers—the interlayer coupling may cause the edge state of
the spinons, as described in this paper, to undergo tunneling
between different layers. A further study along this line will
be worth proceeding elsewhere.

ACKNOWLEDGMENTS

We acknowledge stimulating discussions with Long
Zhang, Binghai Yan, Yuanming Lu, and Gang Li. Z.-J.S.,
J.-X.Z., and Z.-Y.W. are supported by MOST of China
(Grant No. 2021YFA1402101) and NSF of China (Grant No.
12347107).

APPENDIX A: EFFECTIVE LAGRANGIAN
OF CHIRAL SPINONS

Upon the condensation of holons and following the decom-

position hI =
√

nh
I eiθI up to the second order of δnh

I = nh
I − n̄h

I

and θI , one can integrate out the amplitude fluctuation δnh
I . To

account for the interaction between holons, we introduce an
additional term, u(nh

I )2/2. With this, the Lagrangian Eq. (1)
can be recast as

Lh =
∑

I

1

2u

[
∂τ θI − As

0(I ) − eAe
0(I )

]2

− in̄h
[
As

0(I ) + Ae
0(I )

]
+ thn̄h

[
αθI − As

α (I ) − e

h̄
Ae

α (I ) + 2πmα (I )
]2

,

(A1)

in which the Villian expansion

eγ cos αθI �
∑

{mα∈Z}
e− γ

2 [αθI +2πmα (I )]2
(A2)

is applied. Proceeding further, integrating out the As
0 and As

α

fields yields

Lh + LCS = u

2π2
[Bh(i) − π n̄h]2 + 1

4thn̄hπ2
(Eh(i) · z)2

α

− ie

π

∑
i

eμνλAe
μ∂vAh

λ − i

π
Ah

λε
λνμ2π∂vmμ.

(A3)

In conjunction with the Ls term in Eq. (2), integrating out the
Ah

0 produces a logarithmic attraction,

−πnhth
2

∑
i �= j

qi ln

( |ri − r j |
a

)
q j (A4)

where qi ≡ ∑
σ nb

i,σ + 2J2π
0 + �e

π
represents the local total

chirality. It is noteworthy that the logarithmic interaction can
result in a divergent energy over long distances. Therefore,
the condition for finite energy leads to the subsequent neutral
condition ∑

σ

nb
i,σ − 2J2π

0 + �e

π
= 0, (A5)

which aligns with Eq. (9) in the main text. Subsequently, let us
introduce the vortex operator �

†
i ≡ ei

∑
l �=i nh

l θi (l ). This operator
satisfies the commutation relations [�†

i , J2π
0 ( j)] = �

†
i δi, j and

[�i,�
†
j ] = 0 with �

†
i �i = 1. Consequently, we can construct
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the four lowest energy vortex excitations, b†
iσν , with winding

numbers ±, as follows:

b†
i↑+ ≡ b†

i↑+, b†
i↑− ≡ b†

i↑+�i, (A6)

b†
i↓− ≡ b†

i↓+, b†
i↓+ ≡ b†

i↓+�
†
i . (A7)

These excitations adhere to the bosonic commutation rela-
tions. Hence, in conjunction with Eq. (A3), the Lagrangian
characterizing the physical behavior of these low-lying exci-
tations is denoted by L̃ = L̃b + L̃MCS, which is expressed as

L̃s =
∑
iσν

b†
iσν

[
∂τ − iνAh

0(i) + λb + 1

2
gμBBeσ

]
biσν

− Js

∑
iασν

[b†
iσνb†

i+α,σ̄ ν̄eiνAh
α (i) + H.c. ] (A8)

L̃MCS =
∑

i

u

2π2
[Bh(i) − π n̄h]2 + 1

4thn̄hπ2
(Eh(i) · z)2

α

− ie

π

∑
i

εμνλAh
μ∂νAe

λ. (A9)

APPENDIX B: DETERMINATION OF Tc

Utilizing the saddle point approximation for L̃h, we have

Bh(i) → B̄h = π n̄h, Eh(i) → E
h = 0. (B1)

Under this approximation, b spinons encounter a uniform
gauge field imparting a δπ flux per plaquette. Drawing par-
allels with the standard diagonalization approach found in the
Hofstadter system, the Lagrangian Eq. (A8) can be reformu-
lated as

L̃s =
∑
iσν

b†
iσν

[
∂τ − iνAh

0(i)
]
biσν +

∑
mσν

Emγ †
mσνγmσν (B2)

with the b-spinons spectrum

Eb
m =

√
λ2

b − (
ξ b

m

)2
(B3)

via introducing the following Bogoliubov transformation:

biσν =
∑

m

ωmσν (ri )(umγmσν − vmγ
†
mσ̄ ν̄ ), (B4)

where the coherent factors are given by

um =
√

1

2

(
1 + λb

Eb
m

)

vm = sgn
(
ξ b

m

)√1

2

(
−1 + λb

Eb
m

)
. (B5)

Here, ξ b
m as well as wm(ri ) ≡ wmσν=+(ri ) = w∗

mσ ν̄ (ri ) in
Eq. (B4) are the eigenfunctions and eigenvalues of the fol-
lowing equation:

ξ b
mωm(ri ) = −Js

2

∑
j=NN(i)

eiAh
i j ωm(r j ). (B6)

The derived b-spinon dispersion Eb
m in Eq. (B3) is depicted

in Fig. 3(a), showcasing dispersionless, “Landau-level-like”
discrete energy levels [96,97] with a gap Es (indicated by the

FIG. 8. (a) The von Neumann lattice with the lattice constants ξ0

is depicted with black lines. And the original lattice is illustrated with
gray lines and has lattice constants a. The b-spinon wave packets,
labeled by red disks, are positioned at the center Rm of the von
Neumann lattice, marked by black points. (b) Illustration of the
RG flow corresponding to Eq. (B12) and Eq. (B13). Orange arrows
indicate the separatrix, while the red point marks the fixed point
(K∗)−1 = π/8 and y∗ = 0.

red arrow). Our subsequent discussions focus primarily on the
lowest Landau level (LLL) where Em = Es. Based on prior
research [56,100], within the LLL, the wm’s are termed as
local modes (LM). These have an intrinsic size on the scale of
the “cyclotron length”, given by ac = 1/

√
πδ. For simplicity,

we consider the lattice constant to be a = 1.
These spinon wave packets, represented by magnetic Wan-

nier wave function wm(r), have an amplitude defined as

Om(ri ) ≡ |wm(ri )|2 � a2

2πa2
c

exp

[
−|ri − Rm|2

2a2
c

]
. (B7)

This peaks at the centers of a von Neumann lattice, with a
lattice constant ξ0 = √

2πac and the lattice site Rm, illustrated
in Fig. 8(a).

Combined with Eqs. (B2) and (A9), the saddle point effec-
tive Lagrangian becomes

L̃eff = 1

4thn̄hπ2

(∇Ah
0

)2− iAh
0

∑
i

∑
νσ

νnb
iσν+ Es

∑
m∈LL

∑
σν

nb
mσν,

(B8)

where the term b†
iσν∂τ biσν is disregarded under the assumption

of a temperature high enough to preclude quantum fluctua-
tions. Further, from Eq. (B4), we obtain∑

σν

νnb
iσν =

∑
m∈LL

Om(ri )
∑
σν

νnmσν. (B9)

After integrating out Ah
0, the effective action is described as

Seff � −
∫ β

0
dτ

π n̄hth
2

∑
m �=n

q(Rm) ln

( |Rm − Rn|
ξ0

)
q(Rn)

+
∫ β

0
dτEs

∑
m

|q(Rm)|2 (B10)

= −π

4

ρs

kBT

∑
m �=n

q(Rm) ln

( |Rm − Rn|
ξ0

)
q(Rn)

+ Es

kBT

∑
m

|q(Rm)|2, (B11)
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where th = h̄2

2mh
, the spin stiffness is denoted by ρs ≡ n̄h/mh.

In this context, Eq. (B11) represents a two-dimensional neu-
tral Coulomb plasma with unit charge q = ±1 situated on
the von Neumann lattice. Following this, we can employ a
standard approach to address the conventional KT transition.
We introduce the reduced stiffness as K = ρs/kBT and define
the effective fugacity of each vortex as y ≡ e−Es/kBT .

The differential renormalization group (RG) equations are
then expressed as

dK−1

dl
= g2π3y2 + O(y4), (B12)

dy

dl
=

(
2 − π

4
K

)
y + O(y3), (B13)

where g = 4 accounts for the degeneracy at each site Rm

on the von Neumann lattice, arising from time-reversal and
bipartite lattice symmetries. An observation is that these RG
equations remain valid even if we substitute (K, y) with
(K4, gy) in the conventional KT transition’s RG equations.
This substitution is attributed to the unit vorticity of each
spinon vortex being π instead of 2π of a conventional vortex,
and y is replaced by gy because of the g degeneracy for each
site Rm on the von Neumann lattice.

The RG flow is illustrated in Fig. 8(b), which displays
a separatrix, indicated by orange arrows, traversing the crit-
ical point (K∗)−1 = π/8 and y∗ = 0. Points located above
this separatrix tend toward larger values of both K−1 and y,
signifying a transition to the phase with unbound vortices
corresponding to the SC disordered phase. Conversely, points
below this separatrix are towards to the line y = 0. This
indicates a prohibition on free vortex excitation at low tem-
peratures and corresponds to the chiral spinon confinement in
the SC phase. The separatrix flow intrinsically determines the
SC critical temperature Tc, which can be found by solving

K−1
c − π/8 = −π2yc. (B14)

Given the relationship kBTc/ρs � π/8, we deduce

Es

kBTc
� 3.22, (B15)

which is consistent with Eq. (11) in the main text. Moreover,
by recognizing that Eg = 2Es, we can derive Eq. (29).

APPENDIX C: DERIVATION OF SEMI-CLASSICAL
TRANSPORT COEFFICIENT

The velocity of a wave packet is characterized by the semi-
classical equation of motion, incorporating the topological
Berry phase term

v ≡ ṙ = 1

h̄

∂εn(k)

∂k
− k̇ × �n(k) (C1)

where n denotes the band index, εn(k) represents the energy
dispersion of the nth band, and the Berry curvature in momen-
tum space is given by �n(k) = i∇k × 〈un(k)|∇k|un(k)〉. It is
worth noting that h̄k̇ = −∇U (r), where U (r) is a confining
potential present only near the boundary of the sample. This
potential ensures that the wave packet of particles remains
within the sample, and its gradient applies a force on the
particles.

FIG. 9. Depiction of a sample characterized by a width w, uti-
lized in the determination of the edge current. The potential U (r)
acts as a confining mechanism within the sample.

Let us consider a sample delineated by a boundary, with
a coordinate system as depicted in Fig. 9. Here, w signifies
the system’s width in the y direction, and b1, b2 represent the
y axis coordinates of the boundary where U (b1) = U (b2) =
∞. From the second term of Eq. (C1), close to the sample’s
boundary, there emerges an edge current directed along the x
axis. The current density is obtained by summing up the local
velocity vx(y) and dividing it by the width,

Jx = 1

w

∫ b2

b1

1

V
vx(y)dy (C2)

= 1

w

∫ b2

b1

1

h̄V

∑
k,m

n(εm(k) + U (y); T (y))

× [∂yU (y)]�m(k)dy (C3)

� − 1

w

∑
k,m

∫ ∞

εm (k)

1

h̄V
n
(
ε; T

(
−w

2

))
�m(k)dε

+ 1

w

∑
k,m

∫ ∞

εm (k)

1

h̄V
n
(
ε; T

(w

2

))
�m(k)dε (C4)

= 1

w

∫
∂y

⎡
⎣ 1

h̄V

∑
k,m

∫ ∞

εm (k)
n(ε; T (y))�m(k)dε

⎤
⎦dy

(C5)

where the current here means the current of the particle num-
ber, V is the area of the sample, and n(ε; T ) = [e(ε−μ)/kBT −
1]−1 is the bosonic distribution. Analogously, the energy cur-
rent derived from the edge current density is expressed as

(JE )∇T
x = 1

w

∫
∂y

[
1

h̄V

∑
k,m

∫ ∞

εn(k)
ε × n(ε; T (y))�m(k)dε

]
dy.

(C6)

Given a temperature gradient along the y direction, the
gradient in particle distribution is formulated as

∂yn(ε; T (y)) = (ε − μ)
∂n

∂ε
T

∂β

∂y
, (C7)

which leads to the edge current density as well as the energy
current,

(J )∇T
x = 1

w

∫ ⎡
⎣ 1

h̄V

∑
k,m

∫ ∞

εm (k)
(ε − μ)

∂n

∂ε
T

∂β

∂y
�m(k)dε

⎤
⎦dy,

(C8)
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(JE )∇T
x = 1

w

∫ ⎡
⎣ 1

h̄V

∑
k,m

∫ ∞

εm (k)
ε(ε − μ)

∂n

∂ε
T

∂β

∂y
�m(k)dε

⎤
⎦dy.

(C9)

Similarly, the chemical potential gradient along the y direction
can give the particle distribution gradient as follows:

∂yn(ε(y); T ) = −∂n(ε; T )

∂ε

∂μ

∂y
, (C10)

which results in the edge current density and the energy
current,

(J )∇μ
x = − 1

w

∫ ⎡
⎣ 1

h̄V

∑
k,m

∫ ∞

εm (k)

∂n(ε; T )

∂ε

∂μ

∂y
�n(k)dε

⎤
⎦dy,

(C11)

(JE )∇μ
x = − 1

w

∫
dy

⎡
⎣ 1

h̄V

∑
k,m

∫ ∞

εm (k)
ε
∂n(ε; T )

∂ε

× ∂μ

∂y
�n(k)dε

]
dy. (C12)

Now we define a heat current as JQ ≡ JE − μJ and write
down the linear response of the current Jx and heat current
(JE )x by combining Eqs. (C8), (C9), (C11), and (C12),

[
Jν

x(
Jν

Q

)
x

]
= Lxy

[−∇yμ

T ∇y
1
T

]
. (C13)

Here, Lxy,ν signifies a 2 × 2 matrix that represents the
transverse transport coefficients. The parameter ν = ± distin-
guishes between the different chiralities of spinon. The matrix
elements are given by

Lxy
i j = − 1

h̄V βq

∑
m

∑
k

cq[n(εm(k); T )]�m(k) (C14)

where i, j = 1, 2 and

cq[x] ≡
∫ x

0

(
log

1 + t

t

)q

dt, (C15)

which is consistent with Eq. (20) in the main text.
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