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Nuclear deformation effects in the spectra of highly charged ions
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With the increasing precision of spectroscopic measurements, there is a growing demand for more accurate
theoretical predictions, which requires the estimation of various higher-order effects, such as the nuclear
deformation effect. Here, we present the results for nuclear deformation correction for the widest range of nuclei.
The effects are investigated in terms of electronic transition energies, g factors, and hyperfine splitting constants,
by implementing the deformed Fermi nuclear model to the Dirac equation. Based on the improved methodology
and appropriate data classification, we present the results for over 1100 nuclei on figures, showing the general
trends and anomalies. Moreover, it can serve as a simple tool providing estimations for specific planned research.
In addition, we examine the connections and significance of deformation effects in the search of new physics
with singly charged ions.
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I. INTRODUCTION

For highly charged ions (HCIs), the strong electron-
nucleus interaction makes it an ideal probe to examine a
variety of bound electron and nuclear properties, as well as
providing a wide scope for fundamental theoretical [1–3] and
experimental research [4–8]. Since the experimental precision
is rapidly advancing [9], e.g., the measurements on transi-
tion energies [10–13] and g factor [14–20], there is a timely
interest in the correspondingly accurate theoretical calcula-
tions. For such calculations, one should include not only the
leading-order effect, but also various subleading atomic and
nuclear contributions, e.g., few-loop quantum electrodynamic,
nuclear deformation, and polarization effects. Among these,
the nuclear deformation (ND) effect, arising from the distorted
nuclear shapes, is one of the largest [21,22]. However, atomic
theory predictions are almost exclusively based on a spherical
model of nuclei. Therefore, when the required precision is
high, or when the nuclear effects are expected to be sizable,
it is important to understand to what extent the ND effects
come into play for different observables and nuclei.

The inclusion of ND effects can also potentially change
some atomic data, since the data determination requires com-
bined efforts from experimental and theoretical sides, and
theoretical models normally disregard ND effects. For exam-
ple, the extraction of the relative change in root-mean-square
(rms) radii from King’s linearity has been commonly per-
formed with significant simplifications of ND effects [23–25].
More recently, nonlinearity in the King plot garnered renewed
research attention, aiming to search for new physics [26–28].
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However, some mechanisms within the standard model (SM)
can also create similar nonlinearities, e.g., ND effects [29]
and a quadratic field shift [30]. Detailed investigations of
ND effects can therefore illuminate the frontier of SM, and
provide potential falsifiable evidence for the existence of the
new physics as well as insights into the study of isotope shift.

In this paper, we focus on hydrogenlike HCIs and probe
the ND effects for the widest possible range of nuclei by the-
oretical calculations on observables such as the binding and
transition energies, g factor, and hyperfine splitting constant.
Furthermore, the results can be proportionally generalized to
more complex systems [31], since even for many-electron
systems, the nuclear effects are almost exclusively determined
by the interaction with innermost electrons. We employ an
exact method to characterize the nuclear shape model by
the rms charge radius and the intrinsic quadrupole moment
Q0, and analyze the importance of nuclear shapes (prolate or
oblate types). With the figures presenting the results for over
1100 HCIs, the general trend and some intriguing anomalies
are easily visualizable, which hold value for future inves-
tigations. Finally, we discuss the ND contribution in the
spectra of singly charged Yb+ ions as a source of King’s plot
nonlinearities.

Relativistic units (c = me = h̄ = ε0 = 1) are used through-
out the paper, unless explicitly given.

II. HAMILTONIAN WITH DEFORMED NUCLEI

The relativistic Hamiltonian obtained from Dirac equa-
tion is

H = α · p + β + V (r), (1)

where α and β are the Dirac matrices, and p is the momentum
operator of the electron, and the potential is defined as [32]

V (r) = −Zα

r

[∫ r

0
r′2ρ(r′)dr′ + r

∫ ∞

r
r′ρ(r′)dr′

]
, (2)
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TABLE I. Calculated deformed Fermi model parameters for selected nuclei, compared with literature values.

a (fm) Rrms
a (fm) cb (fm) β2

b β2
c

24Mg 0.45855 3.0570(16) 3.0283 0.5604 0.6092(62)
40Ca 0.52164 3.4776(19) 3.7132 0.1195 0.1196(44)
86Sr 0.5234 4.2307(20) 4.82118 0.1490 0.1439(41)
132Ba 0.5234 4.8303(47) 5.6533 0.1871 0.1844(62)
142Nd 0.5234 4.9123(25) 5.8087 0.0958 0.0917(23)
168Yb 0.5234 5.2702(56) 6.1485 0.3186 0.324(3)
238U 0.5234 5.8521(33) 6.97678 0.2811 0.2741(36)

aThe rms nuclear charge radii from Ref. [25].
bNumerically calculated from Eqs. (4) and (5).
cQuadrupole deformation parameters from Ref. [33].

where Z is the nuclear charge number, α is the fine-structure
constant, and ρ(r) is a spherical charge density.

In the general case of a nonspherical nucleus, the nuclear
charge is described by the deformed Fermi distribution

ρcβ2 (r, θ ) = ρ0

1 + exp
(

r−c[1+β2Y 0
2 (θ )]

a

) , (3)

where c, β2, and a are the parameters for the model, Y m
l

denotes the spherical harmonics, and ρ0 is the correspond-
ing normalization factor. The spherically symmetric ρ(r) in
Eq. (2) can be obtained by averaging ρcβ2 (r, θ ) on the θ

coordinate.
The nuclear charge distribution can be characterized by

the rms nuclear charge radius Rrms and the intrinsic nuclear
quadrupole moment Q0. Therefore, the parameters c and
β2 are determined such that Rrms and Q0 calculated from
ρcβ2 (r, θ ) match the tabulated nuclear data:

R2
rms =

∫
ρcβ2 (r, θ )r2 d3r, (4)

Q0 = Ze
∫

(3 cos2 θ − 1)ρcβ2 (r, θ )r2 d3r. (5)

The commonly adopted value for parameter a is 0.5234 fm
[32]. It should be noted that for light nuclei, this value is com-
parable with their Rrms, which is clearly too large to deliver a
reasonable description. Therefore, we artificially decrease the
parameter as a = 0.15Rrms for the cases when Rrms < 3.5 fm.
When parameter a is determined, parameters c and β2 can be
numerically calculated using Eqs. (4) and (5).

Some examples of the calculated parameters and the com-
parison with existing values are tabulated in Table I. The
comparison of our results with the corresponding β2 from
Ref. [33] shows overall good agreement. Since Ref. [33] uses
a simplified analytic equation to calculate β2, whereas we use
an exact numerical method, there are still small discrepancies,
in particular for the light nuclei.

III. NUCLEAR DEFORMATION CORRECTIONS

In this paper, we investigate the ND effects in terms of
transition energy δEtran,ND, and g factor �gND. By numerically
solving the Dirac equation

H	nκm(r) = Enκ	nκm(r), (6)

we obtain the energies Enκ and the wave functions 	nκm, with

	nκm(r) = 1

r

(
Gnκ (r)�κm(θ, ϕ)

iFnκ (r)�−κm(θ, ϕ)

)
, (7)

where n is the principal quantum number, κ is the relativis-
tic angular momentum number, and m is the total magnetic
number.

The correction δEtran,ND is the relative difference between
the transition energies of deformed E (cβ2 )

tran and nondeformed
E (c0)

tran Fermi nuclear models (β2 = 0),

δEtran,ND = E (cβ2 )
tran − E (c0)

tran

E (c0)
tran

. (8)

In our paper, we focus on the transition energy between 1s1/2

and 2p1/2 states.
The g factor is calculated theoretically from the radial wave

functions,

g = 2κ

j( j + 1)

∫ ∞

0
Gnκ (r)Fnκ (r)r dr, (9)

where j = |κ| − 1/2 is the total angular momentum number.
The �gND is the ND correction to the ground-state electron g
factor, defined as

�gND = g(cβ2 )
1s − g(c0)

1s . (10)

Additionally, the ND correction to the hyperfine splitting
constant δAND is

δAND = A(cβ2 )
1s − A(c0)

1s

A(c0)
1s

, (11)

where A is defined as

A ∝
∫ ∞

0
Gnκ (r)Fnκ (r)

1

r2
dr. (12)

Here, we omit the angular prefactor, since this equation of
proportionality is sufficient for the analysis.

Our calculations mainly consist of two parts. The first
part is the calculation of parameters c and β2 based on
the experimentally measured ground-state nuclear rms radius
and quadrupole moment. The radii Rrms are obtained from
Ref. [25]. Additionally, when the data are not available, we
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FIG. 1. Nuclear chart for ND correction δEtran,ND in 2p1/2 → 1s1/2 transition energy. The gray grid lines refer to the magic numbers on the
periodic table (20, 28, 50, 82, and 126). The marker styles indicate the properties of Q values used to calculate the ND correction, i.e., square:
Q is positive; circle: Q is negative; up triangle: the sign of Q is unknown but we take it as positive; cross: Q obtained from a nuclear excited
state instead of nuclear ground state; down triangle: Q0 value is estimated from B(E2) ↑ transition rate (see more explanation in Sec. IV).

use the following empirical equation,

Rrms =
√

3

5
R0 =

√
3

5
(1.2A1/3) fm, (13)

where R0 would correspond to the radius of a homogeneously
charged sphere, and A is the nuclear mass number. The
intrinsic quadrupole moment Q0 values are retrieved from
Refs. [33–35]. References [34,35] report the spectroscopic
nuclear quadrupole moment Q, which is related to Q0 via

Q0 = (I + 1)(2I + 3)

I (2I − 1)
Q, (14)

where I is the nuclear spin quantum number. Reference [33]
provides adopted reduced quadrupole transition rates B(E2) ↑
for spinless nuclei from the nuclear ground state to the first
excited 2+ state, and Q0 is obtained from

Q0(b) =
√

16πB(E2) ↑ (e2 b2)

5e2
. (15)

As for the second part, we numerically solve Eq. (6) within
the dual-kinetic-balance approach [36] and calculate the ND
corrections defined by Eqs. (8) and (10).

IV. RESULTS AND DISCUSSION

As mentioned in Sec. III, the nuclear Q0 data used to
calculate ND corrections are taken from Refs. [33–35]. The
Q values reported in Ref. [35] are experimentally measured
by methods such as atomic spectroscopy, nuclear magnetic
resonance, etc. Most of the Q values have well-defined signs
indicating the shape of the corresponding nuclear charge
distributions. If the sign is not determined, we assume it
is positive, since positively deformed nuclei are the major-
ity. In addition, some nuclei in Ref. [35] do not have Q
data measured from the nuclear ground states (277 nuclei).
The corresponding ND corrections are then calculated using
the Q from the lowest available nuclear excited state. The
Q0 values obtained from the second data source [33] are
calculated from experimentally measured B(E2) ↑ transition
rates, using Eq. (15), which implicitly assume positive Q0.
The data calculated from Q0 with different signs and differ-
ent references are separated on the plot by different marker
styles (see Fig. 1).

In Figs. 1–3, we present the ND corrections for δEtran,ND,
�gND, and δAND, respectively, for 1155 nuclei. The overall
trend is that all three ND corrections are positively correlated
with the Z number. However, some isotopes appear to be
significantly different compared with their neighboring ones.
For example, the nuclei on the shell closure feature smaller
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FIG. 2. Nuclear chart for the ND g-factor correction �gND in the 1s state. See Fig. 1 for the legend.

deformations, whereas the edges of the isotope sequences are
more likely to possess a higher degree of shape distortion
and the corresponding ND effects. More importantly, for the
nuclei with negative Q0 values, the ND corrections are sys-
tematically higher up to three orders of magnitude than for
other similar nuclei, highlighting the critical importance of
the measured Q sign. Therefore, we conclude that the ND
corrections based on the Q values with unspecified signs are
less reliable.

There are tens of special nuclei in Ref. [35] that have
either two measured Q values or two nuclear spins I , and
correspondingly, two values of ND effects, whereas the fig-
ures only present the greater value. For some of these nuclei,
the differences between the two values are not compatible, in
particular, for the cases where the two Q values have opposite
signs, i.e., 94

42Mo, 96
42Mo, 134

56Ba, and 136
56Ba.

For the spinless nuclei, the hyperfine splitting constants
turn into zero, such that the ND corrections to it are not tangi-
ble. However, we keep the corresponding δAND data on Fig. 3,
defined by Eq. (11) for the electronic part exclusively, for
the sake of completeness and since the excited nuclear states
can have nonzero spin. Although the ND effects appear to be
significant for δAND, for a relative change of ∼10−4 in heavy
ions, it could be difficult to factorize this ND correction from
the uncertainties of finite-nuclear-size and Bohr-Weisskopf
effects [37].

The figures only show the results for the 1s electronic state
or the 2p1/2 → 1s1/2 transition, since the effect is maximized

at the ground states. For excited states, our estimations show
that ND corrections lose up to one order of magnitude by
every principal, orbital momentum, and total angular momen-
tum quantum numbers.

Previous theoretical analyses [2,3] of the ND correction to
the g factor were based on strictly positive Q0 values calcu-
lated from B(E2) ↑ transition rates with Eq. (15). To avoid
ambiguity in the sign of Q0 we adopt the values in Ref. [35]
instead, together with the measured signs, if available. This
causes a slight discrepancy between our results and the corre-
sponding data in Refs. [2,3], which can be removed by using
the same β2 as reported in Refs. [2,3].

We take 238U, a highly deformed heavy isotope, as an
example to perform an uncertainty analysis. For 238U, the
measured values and corresponding uncertainties are Rrms =
5.8521(33) fm [25] and Q0 = 11.07(28) b [33]. We calculate
the absolute ND energy correction for 1s state, �E1s,ND, at
the vicinity of the measured Rrms and Q0 values. For every 1%
deviation of Rrms and Q0, the corresponding energy correction
changes by 2.2% and 1.9%, respectively. However, since the
measurement uncertainties of Rrms and Q0 have every different
magnitude, the relative uncertainty of energy correction is
0.1% and 5%, propagated from Rrms and Q0, respectively.
It shows that the uncertainties mainly come from the mea-
sured quadrupole moment Q0, and the radius uncertainties
are impactless. Since the measurement uncertainties for other
isotopes do not differ by orders of magnitude, this conclusion
can also be generalized to other isotopes.
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FIG. 3. Nuclear chart for the ND hyperfine splitting constant correction δAND in the 1s state. See Fig. 1 for the legend.

V. THE SEARCH FOR NEW PHYSICS

Recently, experimentally observed nonlinearity in the
King plot of Yb+ ions [28,30] led to a discussion on the
existence of a new boson particle acting as a force car-
rier between electrons and neutrons. This is attributed to
the observed nonlinearity being three times the experimen-
tal uncertainty, 3σ [30]. However, to claim the existence
of new particles, one has to analyze nonlinearities from
the existing physics, i.e., quadratic field shifts and ND
effects [29,30].

The five isotopes 168,170,172,174,176Yb+ and two transitions
6 2S1/2 → 5 2D3/2, 5 2D5/2 have been chosen to generate the
King plot [30]. Both transition energies have a measurement
precision of ∼300 Hz. To estimate the ND energy corrections,
we use perturbation theory with a perturbing potential �V =
V (cβ2 ) − V (c0), defined by Eqs. (2) and (3). The unperturbed
many-electron wave functions of Yb+ are calculated using
the relativistic Hartree-Fock method, implemented with the
GRASP2018 package [38]. Since both transitions involve only
one valence electron, we use

�EA
diff,ND = 〈

	A
d3

∣∣�V
∣∣	A

d3

〉 − 〈
	A

d5

∣∣�V
∣∣	A

d5

〉
(16)

to evaluate the ND correction to the difference between the
two transition energies, where |	A

d3〉 and |	A
d5〉 are wave

functions of the single valence electron in 5d3/2 and 5d5/2

configurations for isotope A. We would like to stress that

this is a simplified estimation, which fully ignores the core
relaxation effects.

Unfortunately, the available Q values measured from
nuclear ground states only cover 158,160,162,164,166,168Yb+ iso-
topes [33]. Among these isotopes, our calculations predict
the ND effect monotonically increases with the mass number
A up to �E168

diff,ND = 312 Hz. The increase between isotopes
(�EA+2

diff,ND − �EA
diff,ND) is ∼30–50 Hz, which quantifies the

King plot nonlinearity. Even though our results suggest that
ND effects are not monotonic with respect to A in general
(see Fig. 1), it is believed that the five observed [30] isotopes
have the same nuclear ground state deformation β2 ≈ 0.3 [29]
as 166,168Yb+ examined above. Therefore we expect the ND
contribution to the King plot nonlinearity to be at least on
the same level of ∼30–50 Hz. Summarizing, our estimation
implies the ND effect alone is most probably not sufficient to
explain the observed King plot nonlinearity [30]. However, it
is well known that some underlying higher-order contributions
can be a few orders of magnitude larger than the leading-order
effect when highly localized potentials are involved [39–41].
In this case, it means that with the core relaxation effects
included, the resulting ND effect can be significantly larger
than the value obtained from Eq. (16). Further improvement
requires knowledge of the nuclear quadrupole moments for
the nuclei under consideration, more accurate calculations
with fully correlated many-electron wave functions, and more
realistic and sophisticated nuclear models.
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VI. CONCLUSION

Based on the extensive analysis of available nuclear data,
we present the most complete picture of ND corrections
for different observables in hydrogenlike HCI. We provide
pictures allowing order-of-magnitude estimations of the ND
effects and the corresponding relevance for planned exper-
iments. Although nuclei with higher Z numbers tend to be
more deformed, the nuclear charts of ND corrections also
show significant nonmonotonicity and case-by-case particu-
larity. For example, the unstable nuclei at the edge of isotope
sequences are normally more deformed than the stable ones,
but some isotope sequences have the opposite features, e.g.,
Cu, Se, and In. Moreover, there are some individual outliers
that appear to be significantly different from neighboring nu-
clei, e.g., 78Cu, 90Nb, 123Sn, and 133,135,137Cs. If these are not

attributed to measurement deficiency, it leads to intriguing
possibilities for future studies.

There is a noticeable portion of nuclei with negative Q0

values that tend to have much higher deformation effects.
We find that a sign flip in Q0 can result in a difference of
up to three orders of magnitude. This means that the ND
contribution differs significantly for oblate and prolate types
of nuclear deformation.

With our simple approach, we find that the nonlin-
earity observed from the King plot of singly charged
ions cannot be adequately explained by the ND effects
alone. However, since the required accuracy is high, re-
liable nuclear data, customized nuclear models, and more
sophisticated atomic structure calculations are required
to rule out ND effects completely as a source of the
observed nonlinearity.
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H. F. Beyer, F. Bosch, S. Hagmann, C. Kozhuharov, D. Liesen
et al., Quantum electrodynamics in strong electric fields: The
ground-state Lamb shift in hydrogenlike uranium, Phys. Rev.
Lett. 94, 223001 (2005).

[6] J. Gunst, A. Surzhykov, A. Artemyev, S. Fritzsche, S.
Tashenov, A. Maiorova, V. M. Shabaev, and T. Stöhlker, Parity-
nonconservation effects on the radiative recombination of heavy
hydrogenlike ions, Phys. Rev. A 87, 032714 (2013).

[7] H. Jörg, Z. Hu, H. Bekker, M. A. Blessenohl, D. Hollain, S.
Fritzsche, A. Surzhykov, J. R. Crespo López-Urrutia, and S.
Tashenov, Linear polarization of x-ray transitions due to dielec-
tronic recombination in highly charged ions, Phys. Rev. A 91,
042705 (2015).

[8] J. Morgner, B. Tu, C. M. König, T. Sailer, F. Heiße, H. Bekker,
B. Sikora, C. Lyu, V. A. Yerokhin, Z. Harman, J. R. Crespo
López-Urrutia, C. H. Keitel, S. Sturm, and K. Blaum, Stringent
test of QED with hydrogen-like tin, Nature (London) 622, 53
(2023).

[9] M. G. Kozlov, M. S. Safronova, J. R. Crespo López-Urrutia,
and P. O. Schmidt, Highly charged ions: Optical clocks and ap-
plications in fundamental physics, Rev. Mod. Phys. 90, 045005
(2018).

[10] T. P. Heavner, E. A. Donley, F. Levi, G. Costanzo, T. E.
Parker, J. H. Shirley, N. Ashby, S. Barlow, and S. R. Jefferts,

First accuracy evaluation of NIST-F2, Metrologia 51, 174
(2014).

[11] F. Gebert, Y. Wan, F. Wolf, C. N. Angstmann, J. C. Berengut,
and P. O. Schmidt, Precision isotope shift measurements in cal-
cium ions using quantum logic detection schemes, Phys. Rev.
Lett. 115, 053003 (2015).

[12] J. Ullmann, Z. Andelkovic, C. Brandau, A. Dax, W. Geithner,
C. Geppert, C. Gorges, M. Hammen, V. Hannen, S. Kaufmann
et al., High precision hyperfine measurements in Bismuth chal-
lenge bound-state strong-field QED, Nat. Commun. 8, 15484
(2017).

[13] T. Leopold, S. A. King, P. Micke, A. Bautista-Salvador, J. C.
Heip, C. Ospelkaus, J. R. Crespo López-Urrutia, and P. O.
Schmidt, A cryogenic radio-frequency ion trap for quantum
logic spectroscopy of highly charged ions, Rev. Sci. Instrum.
90, 073201 (2019).

[14] H. Häffner, T. Beier, N. Hermanspahn, H.-J. Kluge, W. Quint,
S. Stahl, J. Verdú, and G. Werth, High-accuracy measurement
of the magnetic moment anomaly of the electron bound in
hydrogenlike carbon, Phys. Rev. Lett. 85, 5308 (2000).
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