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Thermally induced localization of dopants in a magnetic spin ladder
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I unveil an emergent localization phenomenon pertaining to the motion of a dopant in a thermal spin lattice.
This is rendered localized by thermal spin fluctuations, whereby it is in stark constrast to the intrinsic origin of
Anderson localization for quenched disorder. The system of interest consists of spin-1/2 particles organized in
a two-leg ladder with nearest-neighbor Ising interactions J . The motion of a hole—the dopant—is initialized
by suddenly removing a spin from the thermal spin ensemble, which then moves along the ladder via nearest-
neighbor hopping t . I find that the hole remains localized for all values of J/t and for all nonzero temperatures.
The origin is an effective disorder potential seen by the hole and induced by thermal spin fluctuations. Its length
scale is found to match with the underlying spin-spin correlation length at low temperatures. For ferromagnetic
couplings (J < 0), the associated localization length of the hole increases with decreasing temperature and
becomes proportional to the correlation length at low temperatures, asymptotically delocalizing at low tempera-
tures. For antiferromagnetic couplings (J > 0), there is a smooth crossover between thermal localization at high
temperatures to localization driven by the antiferromagnetic order at low temperatures. At infinite temperatures,
the dynamics becomes independent of the sign of the spin coupling, whereby the localization length is a
universal function of |J|/t , diverging as (t/J )2 for |J| � t . Finally, I analyze a setup with Rydberg-dressed
atoms, which naturally realizes finite-range Ising interactions, accessible in current experimental setups. I show
that the discovered localization phenomenon can be probed on experimentally accessible length- and timescales,
providing a strong testing ground for my predictions.
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I. INTRODUCTION

The motion of dopants in magnetic spin lattices is crucial
to our understanding of strongly correlated materials. The pos-
sible formation of polaronic quasiparticles and their induced
interactions are believed [1–3] to be deeply connected to
high-temperature superconductivity [4]. Indeed, the behavior
of such magnetic polarons in antiferromagnetic lattices [5] has
been shown to compare very well with exact-diagonalization
studies at zero temperature [6–8]. Furthermore, exciting new
experiments have enabled the direct observation of dopant
motion [9], made possible by the quantum simulation of
Fermi-Hubbard-type models [10–26] combined with single-
site resolution techniques [27–30]. The observed dynamics
was successfully explained [31] by the correlated forma-
tion and propagation of magnetic polarons [32], in which
the dopant eventually slows down and moves with a greatly
reduced propagation speed. Despite these recent successes,
there is still debate about the accuracy of this quasiparticle
description [33–38].

The observation of such propagation dynamics [9], as well
as the measurement of the spatial structures appearing around
dopants [19], is a major new vantage point for our microscopic
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understanding of these systems. Indeed, previous work has
mainly focused either on macroscopic observables such as
currents driven by extrinsic force fields, spectroscopic mea-
surements [39–42], or Ramsey interferometry [43–47]. While
the measurement of currents gives invaluable insights into,
e.g., the physics of topological systems [48,49], and spec-
tral analyses give access to some aspects of the appearing
quasiparticles, it does not offer us detailed knowledge about
their propagation. In particular, it does not provide a deep and
microscopic understanding of the impact of the order—or lack
thereof—of the environment. Recently, theoretical studies of
dopant motion in thermal spin lattices [50–52] has ventured
into this new paradigm. While some evidence of delocaliza-
tion above the Néel temperature in a spin Ising environment
[52] and hints of diffusive behavior at intermediate timescales
at infinite temperatures have been seen for a more generic
Fermi-Hubbard setup [50], these studies were limited to fairly
short evolution times and/or system sizes. As a result, the na-
ture of the propagation on long timescales remains unsettled.

Intrigued by these investigations, I study the motion of a
dopant in a thermal Ising spin ensemble. In particular, I con-
sider a mixed-dimensional model in a two-leg ladder [53–55].
Here, the doped hole is allowed to move only along the ladder
with nearest-neighbor hopping t , while the spin-1/2 parti-
cles are assumed to couple with Ising-type nearest-neighbor
spin couplings J [Fig. 1(a)]. I investigate both ferro- (J < 0)
and antiferromagnetic (J > 0) couplings. The nonequilibrium
motion of a hole at zero temperature in these two scenarios
features highly distinct behaviors. Indeed, while the hole for
antiferromagnetic couplings is localized due to a confining
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FIG. 1. (a) Motion of a single hole (green circle) along a spin
ladder consisting of spin-↑ (red balls) and spin-↓ (blue balls), with
hopping t . The spins are assumed to feature Ising-type nearest-
neighbor spin couplings J . (b) The hole experiences an emergent
disorder potential V due to the thermal spin fluctuations. (b) 50 real-
izations of this potential at infinite temperatures shown as a function
of the distance x of the hole to its origin (gray lines), of which
three are highlighted in color (red, blue, green). The variance of the
potential grows as |J|√x (black lines). As a result, no matter the
realization, the hole will eventually backscatter and become localized
(colored lines with arrows). Here, this is shown for a hole with initial
kinetic energy of t = 4J .

string potential [55], it moves completely freely in the fer-
romagnetic phase. However, at any nonzero temperatures, I
find that the hole experiences an emergent disorder potential,
which localizes the hole at any value of J/t and at any nonzero
temperature. This emergent type of localization manifests due
to thermal disorder of the spins and is, in the general sense
of localization in disordered media [56], very reminiscent
of Anderson localization [57,58] in the presence of strong
disorder. In particular, it is the inevitable backscattering of
the hole on the disorder potential [Fig. 1(b)] that leads to its
localization. There are two characteristics, however, that set
it apart from regular Anderson localization. The first is that
the origin of the localization is not quenched disorder from,
e.g., a random distribution of on-site energies [57], but is an
emergent property of the system itself [59]. The second is that
this thermally induced localization effect is strongest at high
temperatures, for which there are heavy thermal spin fluctua-
tions. Finally, I stress that the localization effect in the present
setup does not seem to be due to destructive interference
effects, present for Anderson localization for weak disorder.
However, a subsequent study of a fully two-dimensional Ising
spin lattice with one-dimensional hole motion [60] shows that
at lower temperatures in the ferromagnetically ordered phase,
there is a regime in which this is the dominant effect.

The present studies, hereby, establish rare insights into how
the disorder in the underlying spin lattice crucially impacts the
motion of dopants. Moreover, it describes an abrupt change
in their qualitative characteristics. Indeed, for ferromagnetic
spin couplings, the dopant behaves as a free particle at zero
temperature, but as soon as the phase transition at T = 0 is
crossed, it completely loses its quasiparticle character and its
motion becomes localized. In this connection, it is interesting

to note that the absence of ballistic motion has been seen
in similar systems with impurities and/or spin excitations
[61–64]. While such behavior can arise due to a quasiparti-
cle breakdown [63,64] of the impurities, such systems still
support slow, subdiffusive transport. In this regard, the total
absence of transport found in the current model in and of itself
also seems to be a rare effect, which strongly hinges on the
correlated motion of the dopant with the underlying physical
spins.

Finally, to showcase the possibility of detecting this lo-
calization phenomenon experimentally, I analyze a setup
with Rydberg-dressed atoms in a two-leg optical lattice that
supports finite-range Ising-type interactions [65], already
demonstrated experimentally [12]. Here, I find that the local-
ization can be probed on realistic timescales and system sizes,
providing a strong testing ground for the predicted results.

The currently discovered localization effect would, strictly
speaking, occur simultaneously with regular Anderson lo-
calization in one dimension for any realistic medium that
would feature a nonzero disorder strength. In this context, I
stress that the localization length due to thermal spin fluc-
tuations found in the present analysis should very easily be
orders of magnitude smaller than the one arising due to An-
derson localization, and, therefore, completely dominate the
phenomenology. The computation of these results rests on a
combination of two precise approaches. First, for a specific
spin realization, I determine numerically exactly the nonequi-
librium hole motion. Second, using large-scale Monte Carlo
sampling of the thermal ensemble, I determine the appropriate
thermal average of these pure state evolutions.

The article is organized as follows. In Sec. II, I describe the
overall setup, including a description of the system Hamilto-
nian, as well as the thermal initial state of the spin ensemble,
and, finally, the exact computation of the nonequilibrium hole
motion for a specific spin realization. In Sec. III, I describe
the universal regime of infinite temperatures. In Sec. IV, I go
away from this universal limit and give a detailed analysis
of the propagation across a wide range of temperatures. In
Sec. V, I give qualitative arguments for the dependencies on
spin coupling and temperature seen in Secs. III and IV. In
Sec. VI, I finally analyze the Rydberg-dressed atoms setup,
before I conclude in Sec. VII. Throughout the article, I work
in units where the reduced Planck constant h̄ and the lattice
spacing is set to 1.

II. SETUP

I consider a system of spin-1/2 particles placed along
a two-leg ladder, described by a t-J model with nearest-
neighbor Ising interactions,

Ĥ = −t
∑

〈i,j〉‖,σ
[c̃†

iσ c̃jσ + c̃†
jσ c̃iσ ] + J

∑
〈i,j〉

Ŝ(z)
i Ŝ(z)

j . (1)

The hopping is constrained through the operator c̃†
iσ =

ĉ†
iσ (1 − n̂i), such that at most, a single spin resides on each

site. I, furthermore, assume a mixed-dimensional setup in
which the spins are only allowed to hop along the ladder. I will
analyze both antiferromagnetic (J > 0) and ferromagnetic
(J < 0) spin-coupling cases. To have an efficient description
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of the hole and spin excitation degrees of freedom, I employ
a Holstein-Primakoff transformation on top of the ferromag-
netic ground state |FM〉 = |.. ↑↑↑ ..〉, with all spins pointing
up. As a result, the Hamiltonian Ĥ = Ĥt + ĤJ may be written
in terms of the hopping,

Ĥt = t
∑
〈i,j〉‖

[ĥ†
j F (ĥi, ŝi)F (ĥj, ŝj)ĥi

+ ĥ†
j ŝ†

i F (ĥi, ŝi)F (ĥj, ŝj)ŝjĥi] + H.c., (2)

and the spin coupling

ĤJ = J
∑
〈i,j〉

[
1

2
− ŝ†

i ŝi

][
1

2
− ŝ†

j ŝj

]
[1 − ĥ†

i ĥi][1 − ĥ†
j ĥj]. (3)

Here, the spin excitation operator ŝ†
i is bosonic and creates

a spin-↓ on site i. Also, the hole is created by the operator
ĥ†

i and inherits the statistics of the underlying spins, be it
fermionic or bosonic [55]. In the hopping Hamiltonian Ĥt ,

the operator F (ĥ, ŝ) =
√

1 − ŝ†ŝ − ĥ†ĥ ensures the single-
occupancy constraint. The two terms in the bracket of Ĥt

describe distinct hopping events. The first term describes a
hole hopping from site i to j in the absence of a spin excitation
on site j. The second term, on the contrary, describes this
hopping in the presence of a spin excitation, whereby the
hole and spin excitation swap places. While the Holstein-
Primakoff transformation slightly complicates the expression
for the Hamiltonian, it makes it much easier to write concise
expressions for the nonequilibrium wave functions to come.

I assume that the system is closed and initially thermalized
in the Gibbs state of the spins ρ̂J = e−βĤJ /ZJ , i.e., in the
absence of holes. Note, however, that I make no assumptions
about how thermal equilibrium is established. One particular
scenario would be via a controllable coupling to an external
heat bath. Once the system has reached thermal equilibrium
in the steady state, the coupling to the bath could be shut off.
The resulting partition function ZJ = tr[e−βĤJ ] along with the
spin-spin correlator,

Cz(d ) = 4
〈
Ŝ(z)

i Ŝ(z)
i+dx̂

〉
0

= C(1)
z e−d/ξ1(βJ ) + C(2)

z e−d/ξ2(βJ ), (4)

is derived analytically in Appendix A, where explicit expres-
sions for the coefficients C(i)

z are also given. Here, I use the
transfer matrix formalism [66] originally used for the Ising
chain [67] to the present two-leg ladder. As required by the
one-dimensional geometry, the system is disordered at any
temperature T = (kBβ )−1. While there are two correlation
lengths, I find that ξ1(βJ ) > ξ2(βJ ) for any temperature. This
correlation length,

ξ1(βJ ) =
{

−β|J|
4

+ ln

[
coth

1

2
β|J| cosh

1

4
β|J|

+
√(

coth
1

2
β|J| cosh

1

4
β|J|

)2

− 1

]}−1

, (5)

therefore, sets an essential length scale in the system at finite
temperatures. In Eq. (5), cosh(x) and coth(x) are the hyper-
bolic cosine and cotangent, respectively. The nonequilibrium
quench dynamics is now initialized by suddenly removing the

spin at the origin i = 0, leading to the initial density matrix

ρ̂(τ = 0) =
∑
σ0

ĉ0σ0 ρ̂J ĉ†
0σ0

= ĥ†
0ρ̂J ĥ0 + ĥ†

0 ŝ0ρ̂J ŝ†
0ĥ0, (6)

where σ0 =↑,↓ designates the spin configurations at the ori-
gin, and the latter expression rephrases it in terms of hole
and spin-excitation operators. This setup is analogous to the
situation studied in Ref. [52] in the two-dimensional Ising
antiferromagnet. I stress, however, that while they find some
evidence that the hole deconfines from its initial position
somewhat above the Néel temperature, I, on the contrary, find
that the hole is localized even in such a disordered phase,
and both for ferro- and antiferromagnetic spin couplings. A
plausible reason for this discrepancy is that Ref. [52] consid-
ers quite strong hopping amplitudes, t � J , and system sizes
of about 10 × 10, which is likely too small to distinguish
delocalization from a localized though highly spread out hole
at these high hopping amplitudes. It is, however, also possible
that a hole moving in two dimensions will undergo diffusive
or subdiffusive propagation on long timescales, and further
studies should be carried out to settle this question.

Since the system is assumed to be closed, the ensuing
dynamics is unitary, i.e., ρ̂(τ ) = e−iĤτ ρ̂(τ = 0)e+iĤτ . Ex-
pressing the density operator in the Ising basis with spin
configurations σ, this, hereby, allows us to write the time-
evolved density matrix as the Boltzmann-weighted sum of
pure-state time evolutions,

ρ̂(τ ) =
∑
σ0,σ

e−βEJ (σ0,σ )

ZJ
|�σ (τ )〉〈�σ (τ )|, (7)

where EJ (σ0, σ ) is the magnetic energy of the spin realization
σ0, σ before the hole is introduced. With the hole and spin
excitation operators at hand, we may express the nonequilib-
rium pure states |�σ (τ )〉 quite concisely. For a spin realization
σ, subsets S1

σ, S2
σ of the sites in the first and second leg will

have spins pointing down. Writing i = l, j in terms of the
legs l = 1, 2 and site number along the leg j, the initial wave
function can be expressed as

|�σ (τ = 0)〉 = ĥ†
1,0

∏
j∈S1

σ

ŝ†
1, j

∏
j∈S2

σ

ŝ†
2, j |FM〉. (8)

As the hole starts to move along the ladder, the spins in leg
1 can be moved by a single lattice, while the spins in leg 2
remain stationary. Therefore, the state at any later time τ is

|�σ (τ )〉 =
[ ∑

x�0

Cσ (x, τ )ĥ†
1,x

∏
j∈S1

σ
0� j�x

ŝ†
1, j−1

∏
j∈S1

σ
j>x

ŝ†
1, j

+
∑
x<0

Cσ (x, τ )ĥ†
1,x

∏
j∈S1

σ
x� j<0

ŝ†
1, j+1

∏
j∈S1

σ
j<x

ŝ†
1, j

] ∏
j∈S2

σ

ŝ†
2, j |FM〉.

(9)

The upper (lower) line describes that the spin excitations are
moved by one site to the left (right), if the hole has passed
it, and otherwise it remains where it was. Crucially, the prob-
ability amplitude to find the hole at site x and time τ for a
given spin realization σ only depends on these three variables,
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FIG. 2. As the hole moves through the ladder (top to bottom), it
breaks up spin bonds across (dark blue) and along (light blue) the
ladder. In the same manner, new spin bonds are created across (dark
red) and along (light red) the ladder. The effective magnetic potential
experienced by the hole, hereby, arises by subtracting the energy of
the broken spin bonds and adding the energy of the newly formed.

since the spin background is static. Moreover, the probability
to observe the hole at position x after time τ is simply the
thermal average of the probabilities |Cσ (x, τ )|2,

P(x, τ ) = tr[ĥ†
1,xĥ1,xρ̂(τ )] =

∑
σ0,σ

e−βEJ (σ0,σ )

ZJ
|Cσ (x, τ )|2. (10)

In this manner, the problem of describing the motion of
the hole has now been reduced to finding the probability
amplitudes Cσ (x, τ ) for a given spin realization σ and then
performing the sum in Eq. (10). While this is hardly feasible
to do exactly, I employ a standard Metropolis-Hastings algo-
rithm [68,69] to perform accurate sampling of the sum, from
which the root-mean-square distance is calculated,

xrms(τ ) =
[∑

x

x2P(x, τ )

]1/2

. (11)

Determining the probability amplitudes

In this section, I describe how the probability amplitudes
Cσ (x, τ ) are determined numerically exactly, by which we can
accurately describe the motion of the hole at essentially any
temperature. The key insight is that the structure of the states
in Eq. (9) leads to a very simplistic set of equations of motion,

i∂τCσ (x, τ ) = Vσ (x)Cσ (x, τ )

+ t[Cσ (x − 1, τ ) + Cσ (x + 1, τ )]. (12)

Here, Vσ (x) designates the magnetic potential experiences by
the hole as it moves through the lattice. This arises because
motion of the hole changes the magnetic energy of the under-
lying spin lattice. Put another way, as the hole moves through
the ladder, it breaks up a series of spin bonds and creates
new ones, as illustrated in Fig. 2. The effective potential,
Vσ (x) = Vσ,‖(x) + Vσ,⊥(x), can be decomposed in terms of an
intra-leg potential,

Vσ,‖(x) = J[σ1,1σ1,−1 − σ1,xσ1,x+1], x > 0,

Vσ,‖(x) = J[σ1,1σ1,−1 − σ1,xσ1,x−1], x < 0, (13)

and a trans-leg potential,

Vσ,⊥(x) = J
x∑

j=+1

σ1, j[σ2, j−1 − σ2, j], x > 0,

Vσ,⊥(x) = J
x∑

j=−1

σ1, j[σ2, j+1 − σ2, j], x < 0. (14)

Here, the index of the spins σ = ±1/2 ≡↑,↓ refers to their
positions before the hole has started to move. In Eq. (13), the
term Jσ1,1σ1,−1 refers to the spin-bond energy arising around
the origin as the hole has moved, while the term Jσ1,xσ1,x+1

for x > 0 is the energy of the bond broken up by the hole once
it has moved to position x. These are shown in light red and
light blue in Fig. 2. Similarly, the two terms in the summand
of Eq. (14) correspond to the energies Jσ1, jσ2, j−1, Jσ1, jσ2, j of
the newly established and broken bonds every time the hole
hops, shown in dark red and dark blue in Fig. 2.

The equations of motion in Eq. (12) may actually be solved
exactly by a Fourier transform (see Appendix C). However,
the accompanying Fourier transform back to the time domain
makes this computation less efficient than applying an exact-
diagonalization method. To set this up, we use Eq. (12) to
define the effective Hamiltonian Hσ for a given spin realiza-
tion σ with the matrix elements,

Hσ (x, x) = Vσ (x), Hσ (x ± 1, x) = Hσ (x, x ± 1) = t .
(15)

By vectorizing the components Cσ (x, τ ) into Cσ (τ ), I obtain
the time evolution of the probability amplitudes by computing

Cσ (τ ) = e−iHστ Cσ (0), (16)

with the initial condition that the hole starts out at x = 0:
Cσ (x = 0, τ = 0) = 1. I compute this using the PYTHON func-
tion expm_multiply in the scipy.sparse.linalg package. By
taking into account the sparseness of Hσ and the fact that
its size is only quadratic in the system size, this approach is
highly efficient and allows system sizes of at least 20 000 sites
long.

III. INFINITE-TEMPERATURE LIMIT

In the limit of infinite temperature, βJ = J/kBT → 0, the
partition function simply becomes the number of spin config-
urations, ZJ = 22N , where N is the number of sites in each leg.
Furthermore, the terms in Eq. (10) all have the same statistical
weight,

P(x, τ ) → 1

22N−1

∑
σ

|Cσ (x, τ )|2. (17)

As a result, we need to describe how the hole moves in a
completely random spin ensemble. As was previously noticed
in the context of Bethe lattices [32], the resulting potential
experienced by the hole, Vσ (x), becomes a disordered poten-
tial. In fact, in any hop, the potential changes at random by
an amount |J|/2. This is detailed in Fig. 3. The equations of
motion in Eq. (12) now become very reminiscent of the one-
dimensional (1D) Anderson model for Anderson localization
[57]. However, contrary to the original model, the potential
is correlated from site to site, as is also apparent from Fig. 3,
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FIG. 3. At infinite temperature, the magnetic potential is random.
(a) In each hop (arrows), the potential across the ladder remains
unchanged with probability P = 1/2 (left), or goes down (middle) or
up (right) by J/2 with probability P = 1/4. A purple ball indicates
that it does not matter whether that spin is ↑ or ↓. (b) The potential
along the ladder, V‖(x), can only take the values 0, ±J/2, and the
change depends on whether V‖(x) = 0 (left), V‖(x) = −J/2 (middle),
or V‖(x) = J/2 (right).

and the trans-leg potential Vσ,⊥(x) becomes arbitrarily large at
large x. This is in contrast to the usual case studied in Ander-
son localization, where some constant width of the disordered
potential is usually assumed. In fact, the potential performs a
classical random walk in its allowed values. As a result, its
variance,

Var[Vσ (x)] = J2

8
[|x| + 1], (18)

scales linearly in |x|, as explicitly shown in Appendix B.
This result alone shows that the hole must localize at infi-
nite temperatures because the potential energy will inevitably
fluctuate to values that are much larger than the initial kinetic
energy of the hole, as described by Fig. 1(b). Moreover, by
closer inspection of the probabilistic behavior of the potential
sketched in Fig. 3, it becomes clear that the behavior at infinite
temperature does not depend on the sign of the spin coupling
J and the motion of the hole becomes universal in this limit.

The only remaining parameter in the system is |J|/t . For a
given value of this ratio, I, thus, generate Nσ = 2000 samples
by using the probabilistic update rules for the potential shown
in Fig. 3. For each of the generated realizations, I compute
Cσ (x, τ ) up to very large times and, from there, the rms dis-
tance [Eq. (11)]. An example of the rms distance dynamics
is given in Fig. 4(a) for three indicated values of the spin
coupling. For all of these, we clearly see that the hole remains
localized, stalling at a finite distance to its origin. This is
further backed up by the underlying hole density distribution
P(x, τ ) shown in Fig. 4(b) for indicated times. This explic-
itly shows that the hole remains exponentially localized. I,
thus, define the localization length as the long-time asymptote
of the rms distance. This is plotted in Fig. 4(c) for a wide
range of spin couplings. In the limit of small spin couplings
of |J|/t � 1, I find very good agreement with a power-law
behavior,

lloc → 16

[
t

J

]2

. (19)

FIG. 4. (a) The rms distance of the hole vs time for indicated
values of the spin coupling on a log-log scale. This shows an initial
ballistic behavior with expansion speed

√
2t (black line), before

being localized on long timescales (dashed lines). (b) Hole density
P(x, τ ) at indicated times for the same values of |J|/t as in (a),
showing exponential localization of the hole. (c) Extracted local-
ization length lloc as the long-time asymptote of the rms distance
as a function of |J|/t at infinite temperature (red dots) compared
to finite temperature (blue squares). For large spin couplings, lloc

approaches a nonzero value, whereas small spin couplings leads
to distinct power-law behaviors at infinite [∝ (t/J )2] and finite
[∝ t/|J|] temperatures. The estimated statistical errors on the sam-
pling are smaller than the linewidth/point size and are omitted.

This power-law behavior strongly suggests that the hole will
remain localized at any value of |J|/t , analogous to the fact
that a particle moving in a one-dimensional random potential
is localized for any disorder strength W and only asymptoti-
cally moves ballistically in the extreme limit of |J|/t → 0. It
is worth noting that the scaling behavior is the same as in the
usual 1D Anderson model [56]. This should be regarded as a
nontrivial result for two reasons. First, the disorder potential
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in this case is correlated between nearest neighbors since the
potential changes, at most, by |J|/2 from site to site. Second,
the variance of the disorder potential grows linearly with |x|
in this model, whereas it is constant in the usual Anderson
model. Third, Fig. 4(c) also reveals that the behavior at any
finite temperature is qualitatively different, scaling asymptot-
ically as t/|J|. In Sec. V, I will return to these peculiarities.

IV. FINITE-TEMPERATURE BEHAVIOR

For finite temperatures, I employ a standard Metropolis-
Hastings Monte Carlo algorithm [68,69] to generate a total of
Nσ = 2000 samples for every investigated value of kBT/|J|.
This sampling, in particular, uses single spin-flip dynamics.
An important question is how to appropriately perform this
sampling, as a Monte Carlo algorithm inherently leads to
autocorrelation between the samples [70]. This is addressed in
Appendix D, in which I show that by increasing the sampling
interval, i.e., the number of generated samples for every kept
sample, the estimated statistical errors dramatically decrease
and convergence is observed for sampling intervals above 104

or so, even at very low temperatures. To avoid any sensitivity
to this effect, I, therefore, stay well above this threshold and
generally use sampling intervals of 106, keeping one in every
one million generated samples.

In Fig. 5(a), I compare the hereby obtained rms distance
dynamics for |J|/t = 2.5 at |J|/kBT = 2 to the infinite-
temperature limit. Although the hole spreads out significantly
more on the ferromagnetic side, it remains localized at this
intermediate temperature. I support this further by showing
the hole density distribution in Fig. 5(b), which again shows
exponential localization of the hole to its origin. In fact,
in Fig. 5(c), I show the localization length across a broad
range of temperatures and values of |J|/t , revealing that the
hole remains localized for all investigated temperatures and
interactions. This shows that the localization phenomenon
discovered in the previous section at infinite temperatures is a
robust effect and seems to happen as long as the temperature is
nonzero. The underlying reason for this robustness, I believe,
is that the system, due to its one-dimensional geometry, is
always disordered. Therefore, on length scales longer than
the spin-spin correlation length ξ1(βJ ) [see Eq. (5)], the hole
still sees a randomized potential V (x). To check this intuition,
I compare the extracted localization length to the correla-
tion length in Fig. 5(c). Indeed, we see that the correlation
length follows the trend of localization length on the ferro-
magnetic side. Moreover, the effect of decreasing temperature
is also seen to accelerate when the correlation length starts to
exceed 1.

To get a better understanding of the above effects, I next
replot the localization length as a function of the correlation
length. This is shown in Fig. 6(a). This reveals that at low
temperatures, corresponding to ξ1(βJ ) � 1, the localization
length becomes linear in the correlation length for ferromag-
netic couplings,

lloc(βJ ) = γ × ξ1(βJ ). (20)

The analysis additionally unveils that the prefactor γ in-
creases with decreasing |J|/t . In this manner, the hole motion
only delocalizes in the asymptotic limit of zero temperature.

FIG. 5. (a) The rms distance of the hole vs time for indicated
values of the temperature for |J|/t = 2.5. The black line again shows
ballistic behavior with expansion speed

√
2t , and dashed lines shows

the asymptotic flat behavior. (b) Hole density P(x, τ ) at indicated
times for the same values of J/kBT as in (a), again showing expo-
nential localization of the hole. (c) Localization length lloc vs J/kBT
for indicated values of |J|/t . On the antiferromagnetic side, J/kBT >

0, lloc decreases and eventually approaches the zero-temperature
value indicated by the lines to the right. The asymptotic value for
|J|/t = 20 is below the scale of the plot. On the ferromagnetic side,
J/kBT < 0, lloc increases, but remains finite for any temperature on a
length scale that is larger than the spin-spin correlation length (black
line). The estimated statistical errors on the Monte Carlo sampling
are smaller than the linewidth/point size and are omitted.

Here, all spins align at T = 0 and the magnetic potential
obtained in Eqs. (13) and (14) vanishes identically, whereby
the hole is free to move ballistically through the system.

On the antiferromagnetic side, the localization length is
conversely seen to decrease. The reason is that at zero tem-
perature, the accompanying magnetic potential defined in
Eqs. (13) and (14) increases linearly with distance, V (x) =
J/2[|x| + 1], as also obtained previously [55], which localizes
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FIG. 6. (a) Localization length plotted as a function of the spin-
spin correlation length ξ1(kBT/J ) for indicated values of the spin
coupling. Inset: The same plot on a bigger scale. For ferromagnetic
couplings (FM, J < 0), I multiply ξ1 by −1. In this regime, the
localization length is linear in ξ1 at low temperatures. For antiferro-
magnetic couplings (AFM, J > 0), the localization length decreases
and reaches a plateau at low temperatures as in Fig. 5. The localiza-
tion across all temperatures is traced back to an emergent disorder
potential V (x) experienced by the hole, whose variance shown in
(b) is linear for all temperatures T = 1/kBβ. (c) The associated
length scale of the potential xfl is plotted as a function of ξ1, showing
a linear dependency at large ξ1.

the hole more strongly than in the disordered case. More-
over, the decrease in localization length is seen to be very
rapid at low ξ1, but quickly saturates as ξ1 � lloc. This is
also intuitively clear since the correlation length that sets the
typical length scale over the system is ordered. Therefore, if
the localization length is much smaller than the correlation
length, it does not see the long-range disorder.

V. SEMICLASSICAL ANALYSIS OF LOCALIZATION

To qualitatively understand the dependency on spin cou-
pling and temperature seen in the previous two sections, I
analyze these dependencies using a semiclassical energy ar-
gument. First, for large values of |J|/t and for ferromagnetic
spin couplings, J < 0, the hole meets a potential wall of the
order of ∼|J| that it cannot pass with its minuscule kinetic
energy ∼t , as soon as its effective potential Vσ (x) deviates
from zero. The length scale for this to happen is set by the
size of the ferromagnetic clusters, which in turn is given by
the spin-spin correlation length ξ1 [Eq. (5)]. This explains the
low-temperature behavior shown in Fig. 6(a) in the limiting
case of |J| � t in terms of an immediate backscattering of the
hole as soon as the potential changes away from 0.

Second, keeping this backscattering in mind, for interme-
diate to low values of |J|/t , we may instead ask at what
length scale the initial kinetic energy will typically match the
potential energy. To understand this, we first have to realize
that the effective potential has both a positive mean value
〈Vσ,⊥(x)〉 > 0 and nonzero fluctuations Var[Vσ (x)] > 0, given
by

〈Vσ (x)〉 = |J|
2

|x|
xave

+ bave, Var[Vσ (x)] = J2

8

|x|
xfl

+ bfl,

(21)

both of which scale linearly in the distance |x|. The mean
value is calculated analytically from Eq. (14), leading to the
length scale

xave = 2

C(1) − C(
√

2)
, (22)

defining the nearest- and next-nearest-neighbor correlators
C(1) = 4〈σ1,0σ2,0〉, C(

√
2) = 4〈σ1,0σ2,1〉 across the ladder.

Importantly, xave scales as exp(3β|J|/2) ∝ ξ
3/2
1 at low

temperatures.
Moreover, the linearity of the variance is found to be true

not only at infinite temperatures [Eq. (18) with xfl = 1], but
also at any finite temperature. This is established numerically
in Fig. 6(b), and the temperature-dependent length scale is
found to be closely tied to the spin-spin correlation length
[Fig. 6(c)],

xfl(βJ ) = 1 + [ξ1(βJ )]2, ξ1(βJ ) � 1,

xfl(βJ ) = 1 + ξ1(βJ ), ξ1(βJ ) � 1. (23)

The crossover between the two behaviors is very rapid and
happens around ξ1(βJ ) = 1, corresponding to kBT � −J .
Importantly, this shows a linear dependency on ξ1 at low tem-
peratures. A physically intuitive way to understand this is to
imagine a typical state at very low temperatures in the ladder.
This will consist of domains of size ξ1. As a result, every time
the hole has traversed a distance of ξ1 it will at random go up
or down by |J|/2, performing a classical random walk with
length scale xfl � ξ1 instead of xfl = 1 in Eq. (18).

We are now ready to estimate the localization length. First,
if the bias of the potential dominates over its fluctuations at the
relevant length scale, 〈Vσ〉 > (Var[Vσ])1/2, then we may sim-
ply equate the initial kinetic energy to the bias: t = 〈Vσ (lave)〉.
This gives the length scale

lave = 4

C(1) − C(
√

2)

t

|J| . (24)

Second, if the fluctuations of the potential dominate
(Var[Vσ])1/2 > 〈Vσ〉, the backscattering happens on a length
scale set by t = (Var[Vσ])1/2. This gives a fluctuation-induced
localization length scale,

lfl = 8xfl(βJ )

[
t

J

]2

. (25)

From Eqs. (24) and (25), we are now ready to understand
the intricate dependencies of the localization on spin coupling
and temperature. At infinite temperatures, the correlators C(1)
and C(

√
2) both vanish and the localization length set by

the average potential in Eq. (24) diverges. Moreover, in this
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limit, xfl(βJ ) → 1 and so the localization becomes solely
determined by the fluctuations given in Eq. (25) and goes
as lfl ∼ [t/J]2, in agreement with Eq. (19) and Fig. 4(c). For
any fixed finite temperature and decreasing values of |J|/t , on
the other hand, the fluctuation length scale lfl will eventually
surpass the bias length scale lave. As a result, the localization
will eventually be set by the bias following Eq. (24), as evident
in Fig. 4(c).

Finally, the bias and fluctuation length scales in the
low-temperature limit go as lave ∼ ξ

3/2
1 t/|J| and lfl ∼ [1 +

ξ1][t/J]2. Therefore, at fixed spin couplings |J|/t and de-
creasing temperatures βJ → −∞, eventually the fluctuation
length scale becomes the shortest, lfl < lave, and the localiza-
tion length is once again set by the fluctuations. This explains
the simple proportionality with the correlation length ξ1 ob-
served not only at strong spin couplings |J|/t � 1, but also at
intermediate and weak values.

Moreover, this competition of two effects, i.e., localization
due to the fluctuations and due to a biased potential, also
explains the nonmonotonic dependency of the localization
length on the temperature at a low value of |J|/t = 0.5 seen
in Figs. 5(c) and 6(a) in the following sense. At infinite tem-
peratures, the localization length scales as (t/J )2, but as soon
as the temperature drops, the bias of the potential becomes
nonzero and the localization length now scales as t/|J|, hereby
contracting the hole cloud. This leads to a drop in lloc until
temperatures are so low that the bias decreases again and the
localization length scales as ξ1 × (t/J )2.

VI. DETECTION IN OPTICAL LATTICES
WITH RYDBERG-DRESSED ATOMS

In this section, I describe how the discovered localization
phenomenon can be detected using current experimental se-
tups with Rydberg-dressed atoms [12]. Such a setup natively
implements finite-range density-density interactions,

ĤJ = 1

2

∑
i �=j

J (|i − j|)n̂i↑n̂j↑, (26)

of the internal atomic state |↑〉 that is being dressed by a
higher-lying Rydberg state via an optical light field. Here,
J (r) = J0/(1 + (r/rc)6) takes on a soft-core shape, with rc

the soft-core size [65]. The |↓〉 state remains uncoupled from
the light field and does not experience the interaction. Fur-
thermore, an interstate Feshbach resonance may be used to
drive the system into the Mott-insulating phase, such that there
is, at most, a single spin on each site. Crucially important,
the associated on-site interaction U between |↓〉 and |↑〉 can
be increased independently of the light-induced interaction
J (|i − j|). As a result, low-energy spin-exchange interactions
∝ 4t2/U [3] can be made negligible compared to the interac-
tions of Eq. (26) on the investigated timescales.

The density-density interaction in Eq. (26) can equivalently
be thought of as asymmetric finite-range Ising interactions.
Doping the system with holes and allowing the spins to tunnel
along the ladder with rate t , hereby, realizes a modified Ising
t-J model that can be used to test the predictions made in this
article. In particular, we can express Eq. (26) in terms of spin

excitation and hole operators as

ĤJ = 1

2

∑
i �=j

J (|i − j|)[1 − ŝ†
i ŝi][1 − ŝ†

j ŝj][1 − ĥ†
i ĥi][1 − ĥ†

j ĥj],

(27)
and I will then analyze the motion of a hole starting out at
i = 0. While precise experimental control of the temperature
is generally difficult, we can take an alternative route to inves-
tigate the propagation of the hole in an effectively disordered
medium. In particular, the system can be initialized with a
hole at i = 0 by applying a strong repulsive light field to that
site [9]. Moreover, I assume that the spins are initially all
polarized into the noninteracting |↓〉 state, such that |�π/2〉 =∏

i �=0 ĉ†
i↓|0〉. Then, a depolarizing field can be applied to mix

the |↑〉 and |↓〉 states on each site with a specified mixing
angle θ ,

|�θ 〉 =
∏
i �=0

[cos(θ )ĉ†
i↑ + sin(θ )ĉ†

i↓]|0〉. (28)

With this as the initial state for a given mixing angle θ , the
light field on site i = 0 can be turned off such that the hole is
now allowed to tunnel along the ladder, as described by Ĥt

in Eq. (2). The ability to turn off hopping between the legs
relies on an additional energy offset between the legs [54].
Although this at face value is different from the nonzero tem-
peratures previously considered in the article, the dynamics of
the hole can be described in a completely equivalent manner.
In particular, the probability of finding the hole at site x at
time τ ,

P(x, τ ) = 〈�θ |e+iĤτ ĥ†
1,xĥ1,xe−iĤτ |�θ 〉

=
∑

σ

pσ (θ )|Cσ (x, τ )|2, (29)

takes on exactly the same form as Eq. (10) for the nonzero-
temperature case. The probabilities pσ (θ ) are now, however,
not given by the thermal statistics, but a binomial distribution
depending on the number of spin-↓ atoms, N↓(σ), in the spin
realization σ,

pσ (θ ) = [sin2 θ ]N↓(σ)[cos2 θ ]N−N↓(σ). (30)

As a result, such an experimental setup simulates the ther-
mally induced localization phenomenon described in the
previous sections. Here, the ferromagnetic states correspond
to θ = 0, π/2, whereas the infinite-temperature limit corre-
sponds to θ = π/4. Note that this defines another way of
effectively achieving an initial infinite-temperature thermal
ensemble. For other value of θ , there is, strictly speaking, no
one-to-one correspondence with a specific temperature, but
the variation of θ in the interval [0, π/2] qualitatively de-
scribes the same behavior as a varying temperature. Moreover,
as the hole hops through the system, it experiences a magnetic
potential akin to Eqs. (13) and (14). Specifically, for a given
initial spin realization σ, a certain subset of the sites S↑(σ, 0)
contains spin-↑ atoms. This leads to the overall energy offset,

V0 = 1

2

∑
i,j∈S↑(σ,0)

J (|i − j|). (31)
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FIG. 7. (a) The rms distance vs time for J0 = 10t and indicated
mixing angles shown on the Bloch sphere (inset), corresponding to
θ = π/2, 0.7π/2, 0.6π/2, 0.4π/2 for black, red, green, and blue,
respectively. For θ = π/2 (black), the hole is free to propagate and
only attains an oscillatory behavior due to the finite size of the system
(total length of N = 41). (b) Long-time average of rms distance for
indicated values of J0 as a function of the mixing angle θ , following
the black line on the Bloch sphere in (a). This shows a minimum
between θ = π/8 and θ = π/4 due to localization. The estimated
standard errors are smaller than the dot size and are omitted for
clarity. I use a soft-core size of rc = 1.

As the hole hops, the surpassed spin hops one site in the
opposite direction. As a result, the subset of sites S↑(σ, x)
with spin-↑ depends on the position of the hole x. The re-
sulting magnetic potential is then simply the magnetic energy
differences,

Vσ (x) = 1

2

∑
i,j∈S↑(σ,x)

J (|i − j|) − V0, (32)

experienced as the hole moves through the system. With this
at hand, the computation of the hole dynamics now follows
the same recipe as in Sec. IV. In this case, I assume a fi-
nite size of the system with hard-wall boundary conditions
and a total length N = 41 to properly describe a feasible
experimental setup. The Metropolis-Hastings algorithm again
uses Nσ = 2000 samples and is benchmarked by comparing
the achieved magnetization per spin to the exact value of
[cos2 θ − sin2 θ ]/2. I find agreement within 1% for any value
of θ .

Figure 7(a) shows the resulting dynamics of the rms dis-
tance for indicated points on the Bloch sphere. Here, the north
and south poles correspond to all spins pointing up and down,
respectively, such that the mixing angle θ is simply half of the
polar angle on the Bloch sphere. The dynamics is qualitatively
similar to the cases shown in Figs. 4(a) and 5(a). The only
major difference is that the free motion of the hole at θ = π/2

now becomes oscillatory due to the finite size of the system.
We see that as the mixing angle goes away from θ = π/2,
the hole starts to localize. This is shown in more detail in
Fig. 7(b), where the long-time average of the rms distance
is plotted as a function of the mixing angle. At θ = 0, π/2,
the average rms distance of the hole settles around half the
distance to the edge of the system. However, as the 50-50
spin mixing at θ = π/4 is approached, this dramatically de-
creases and reaches a minimum around θ = 0.75π/4. This
is a direct signature of localization of the hole. Indeed, the
observed localization length around the minimum is no longer
sensitive to the system size. One may reasonably wonder why
the minimum is not located exactly at θ = π/4. The reason
is that the spin interactions in Eq. (26) are not symmetric
in spin-↑ and -↓, and indeed vanish identically for the latter
states. Moreover, the limiting values at the top and bottom
of the Bloch sphere, θ = 0, π/2, respectively, do not per-
fectly coincide. This is because the repulsive interactions of
the spin-↑ atoms in the case of θ = 0 favor the hole not to
move all the way out to the edge of the system. This is a
very minor effect that only shows up at the sites just before
the edge.

Crucially, this analysis directly shows that the localization
can be probed on reasonably short timescales of just τ =
5/t . This is highly important for the considered experimental
protocol because the Rydberg-dressed spin-↑ atoms inherit
some of the decay of the high-lying Rydberg state. Here, it is
also beneficial that the localization can be probed on the side
where there is a majority of spin-↓ atoms (π/4 < θ < π/2),
making this inherent decay less severe. This analysis, thus,
establishes that the thermally induced localization discovered
in the present article may be realistically probed in current
experimental platforms using Rydberg-dressed atoms.

Moreover, I emphasize that this phenomenon should show
up in any system that has polarized interactions, such as
the Ising cases considered here, and short-range hopping of
a dopant. This suggests that one could also come up with
a protocol using dipolar gases in optical lattices [71,72]
or trapped ions [73], in which a similar localization could
happen.

VII. CONCLUSIONS AND OUTLOOK

In this article, I have described a localization phenomenon
of dopants in Ising-type magnetic spin ladders. The effect
arises not due to inherent disorder in the system Hamiltonian,
but as an emergent phenomenon [59] due to thermal spin fluc-
tuations. In particular, since the system is one dimensional, it
is disordered at any nonzero temperature. Therefore, even for
ferromagnetic spin couplings for which one might expect the
hole to completely delocalize, I show that it remains localized
across a huge range of spin couplings J/t and temperatures
kBT/J . The effect is traced back to a disorder potential expe-
rienced by the hole, whose strength increases towards infinite
temperatures. In this infinite-temperature limit, the dynam-
ics no longer depends on the sign of the spin interactions
and becomes a universal function of |J|/t . Moreover, I have
showcased that the localization phenomenon may be explored
using current experimental platforms with Rydberg-dressed
atoms in optical lattices.
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The results strongly suggest that in general Ising envi-
ronments in the disordered phase, dopants moving in one
spatial direction will remain localized. As a result, the system
will be an insulator provided that the interdopant spacing
is large compared to the localization length. This suggests
the possibility of a reversed metal-insulator transition—or
at least crossover—around the Curie temperature TC , such
that dopants are localized above TC and delocalized below
TC . In the current one-dimensional setup, TC = 0 and it is,
therefore, interesting to further the studies to higher spatial
dimensions, for which the Curie temperature is nonzero. After
the submission of the present article, I have conducted such
studies for two-dimensional Ising environments, but still with
one-dimensional motion of the dopant [60]. These studies
show that there is no sharp delocalization transition at the
Curie temperature, but rather that the hole delocalizes asymp-
totically at low temperatures, realizing the aforementioned
reversed metal-insulator crossover.

Additionally, it is important to analyze the robustness of
the localization phenomenon going away from the idealized
models considered in the present article. For example, does
the same phenomenology arise when the dopants are allowed
to move in two or three dimensions? Here, studies of dopant
motion in a noninteracting two-dimensional spin lattice at
infinite temperatures [50,51] show that there are crucial quali-
tative differences. In particular, these results suggest diffusive
motion of the dopant due to the lack of path interferences in
the disordered medium, which is in contrast to the ballistic be-
havior obtained for the one-dimensional motion in the present
setup in this limit of J/t → 0. Turning on spin interactions
in such a two-dimensional setup [52] and carefully analyzing
the long-time dynamics for a broad range of spin interactions
could help to answer this question. Along the same lines,
one could also analyze what happens in the presence of spin-
exchange processes, whose analysis should be amenable to
matrix product state approaches. Naïvely, the presented results
suggest that the spin and charge degrees of freedom become
bound in such a disordered phase, only allowing the hole to
move with the slow copropagation of the trailing spin. For
this reason, there could be very intriguing behaviors in a
similar two-leg ladder setup in, e.g., an XXZ model [35,36],
as one tunes the anisotropy of the spin couplings towards the
isotropic Heisenberg model. In a similar spirit, it would also
be interesting to investigate what happens in the presence of
an external heat bath that drives the spins back to thermal
equilibrium. One could imagine that the hole can now dif-
fuse through the system depending on the coupling with the
external bath. Finally, it would be intriguing to understand
whether two dopants can actually copropagate in the ladder,
establishing a novel pairing by the disorder mechanism.
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APPENDIX A: THERMODYNAMICS IN THE ABSENCE
OF DOPANTS

The thermodynamics of the system at half filling can be
studied using a transfer matrix technique closely related to the
analysis of a single chain. The Hamiltonian of the system is
simply the nearest-neighbor Ising Hamiltonian,

ĤJ = J
∑
〈i,j〉

Ŝ(z)
i Ŝ(z)

j → |J|
∑
〈i,j〉

Ŝ(z)
i Ŝ(z)

j . (A1)

In the last expression, I perform a local rotation on ev-
ery second site Ŝ(z)

j → −Ŝ(z)
j for ferromagnetic couplings,

J < 0. This shows that the thermodynamics is equivalent for
antiferro- and ferromagnetic couplings. Denoting the spin
configurations in legs 1 and 2, respectively, σ1 and σ2, we get
the partition function in the canonical ensemble,

ZJ = tr[e−βĤJ ]

=
∑
σ1,σ2

eβ|J|σ1,1σ1,2 eβ|J|σ2,1σ2,2 eβ|J|σ1,1σ2,1 eβ|J|σ1,2σ2,2

× · · · × eβ|J|σ1,N σ1,1 eβ|J|σ2,N σ2,1 , (A2)

for a system of length N with periodic boundary conditions.
Defining the 4 × 4 transfer matrix

V σ2,1,σ2,2
σ1,1,σ1,2

= eβ|J|[σ1,1σ1,2+σ2,1σ2,2+σ1,1σ2,1/2+σ1,2σ2,2/2], (A3)

we can then write the partition function much more concisely
as

ZJ = tr[e−βĤJ ] =
∑
σ1,σ2

V σ2,1,σ2,2
σ1,1,σ1,2

× · · · × V σ2,N ,σ2,1
σ1,N ,σ1,1

=
∑

{ηl }N
l=1

Vη1,η2Vη2,η3 × · · · × VηN ,η1 = tr[V N ]. (A4)

In the second line, I used the states |σ1, σ2〉 in the ordered
basis {|↑↑〉, |↓↑〉, |↑↓〉, |↓↓〉}, such that η = 1, 2, 3, 4 refers
to these elements, respectively. The rows and columns of V
correspond to different values of (σ1,1, σ2,1) and (σ1,2, σ2,2),
respectively. Hence,

V =

⎡
⎢⎢⎢⎢⎢⎣

e+3β|J|/4 1 1 e−β|J|/4

1 e+β|J|/4 e−3β|J|/4 1

1 e−3β|J|/4 e+β|J|/4 1

e−β|J|/4 1 1 e+3β|J|/4

⎤
⎥⎥⎥⎥⎥⎦. (A5)

The problem has now been reduced to finding the four eigen-
values, v1, . . . , v4, of the transfer matrix V . In fact, letting v1

be the largest eigenvalue, we get

ZJ = tr[V N ] =
∑

j

〈v j |V N |v j〉 =
∑

j

vN
j → vN

1 , (A6)

as N → ∞. So we only need the largest eigenvalue v1. From
here, the free energy per spin is (there are 2N spins)

F0 = − 1

2βN
ln ZJ = − 1

2β
ln v1. (A7)
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Diagonalizing a 4 × 4 matrix is not trivial, however, since it in general means that we have to solve a fourth-order characteristic
polynomial. However, we may use that the Hamiltonian does not couple the triplet {|↑↑〉, |↓↓〉, (|↑↓〉 + |↓↑〉)/

√
2} and singlet

{(|↑↓〉 − |↓↑〉)/
√

2} subspaces. Transforming from the former to the latter basis is done via

U =

⎡
⎢⎢⎣

1 0 0 0
0 0 2−1/2 2−1/2

0 0 2−1/2 −2−1/2

0 1 0 0

⎤
⎥⎥⎦. (A8)

Expressing the transfer matrix in the triplet-singlet basis yields

Ṽ = U †VU =

⎡
⎢⎢⎣

e+3β|J|/4 e−β|J|/4
√

2 0
e−β|J|/4 e+3β|J|/4

√
2 0√

2
√

2 e+β|J|/4 + e−3β|J|/4 0
0 0 0 e+β|J|/4 − e−3β|J|/4

⎤
⎥⎥⎦. (A9)

Diagonalizing the remaining 3 × 3 matrix, the eigenvectors are

|vi〉 = 1√
Ai

⎡
⎢⎢⎢⎢⎣

vi−(eβ|J|/4+e−3β|J|/4 )
2
√

2
vi−(eβ|J|/4+e−3β|J|/4 )

2
√

2
1
0

⎤
⎥⎥⎥⎥⎦, i = 1, 2, |v3〉 = 1√

2

⎡
⎢⎢⎣

1
−1

0
0

⎤
⎥⎥⎦, |v4〉 =

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦, (A10)

with Ai = {[vi − (eβ|J|/4 + e−3β|J|/4)]2 + 4}/4. The eigenvalues are

v1 = 2 cosh
1

2
β|J| cosh

1

4
β|J| + 2

√(
cosh

1

2
β|J| cosh

1

4
β|J|

)2

− sinh2 1

2
β|J|,

v2 = 2 cosh
1

2
β|J| cosh

1

4
β|J| − 2

√(
cosh

1

2
β|J| cosh

1

4
β|J|

)2

− sinh2 1

2
β|J|,

v3 = 2eβ|J|/4 sinh
1

2
β|J|, v4 = 2e−β|J|/4 sinh

1

2
β|J|. (A11)

I find that v1 is the largest eigenvalue for any value of βJ . The free energy of the system F0 = − 1
2β

ln v1, hereby, correctly
approaches the ground-state energy −3|J|/8, at zero temperature: β|J| → ∞. Finally, we need the spin-spin correlation function,

Cz(d ) = 4
〈
Ŝ(z)

1,1Ŝ(z)
1,1+d

〉
, (A12)

to compare with the localization length of the hole. I use a similar method to the above to find an analytic solution. First, note
that

ZJCz(d ) = tr
[
4Ŝ(z)

1,1Ŝ(z)
1,1+d e−βĤJ

] = tr

⎡
⎣4Ŝ(z)

1,1

d−1∏
j=1

4
(
Ŝ(z)

1,1+ j

)2
Ŝ(z)

1,1+d e−βĤJ

⎤
⎦ = tr

⎡
⎣ d∏

j=1

(
4Ŝ(z)

1, j Ŝ
(z)
1, j+1

)
e−βĤJ

⎤
⎦. (A13)

Here, I use that (Ŝ(z)
1,1+ j )

2 = 1/4 for all the Ising eigenstates. Expressing the above equation in terms of these eigenstates |σ1, σ2〉,
thus, yields

ZCz(d ) =
∑
σ1,σ2

(4σ1,1σ1,2)V σ2,1,σ2,2
σ1,1,σ1,2

× · · · × (4σ1,dσ1,d+1)V σ2,d ,σ2,d+1
σ1,d ,σ1,d+1

× V σ2,d+1,σ2,d+2
σ1,d+1,σ1,d+2

× · · · × V σ2,N ,σ2,1
σ1,N ,σ1,1

= tr[CdV N−d ]. (A14)

In the last equality, I let Cσ2,1,σ2,2
σ1,1,σ1,2 = (4σ1,1σ1,2)V σ2,1,σ2,2

σ1,1,σ1,2 . The correlator matrix

C =

⎡
⎢⎢⎣

e+3β|J|/4 −1 1 −e−β|J|/4

−1 e+β|J|/4 −e−3β|J|/4 1
1 −e−3β|J|/4 e+β|J|/4 −1

−e−β|J|/4 1 −1 e+3β|J|/4

⎤
⎥⎥⎦ (A15)

is very similar to the transfer matrix and simply attains sign flip with respect to V , whenever σ1,1 and σ1,2 differ in sign. I also
transform this matrix to the singlet-triplet basis,

C̃ = U †CU =

⎡
⎢⎢⎣

e+3β|J|/4 −e−β|J|/4 0 −√
2

−e−β|J|/4 e+3β|J|/4 0
√

2
0 0 e+β|J|/4 − e−3β|J|/4 0

−√
2

√
2 0 e+β|J|/4 + e−3β|J|/4

⎤
⎥⎥⎦. (A16)
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The eigenvectors of C̃ are closely tied to those of Ṽ . I get

|ci〉 = 1√
Ai

⎡
⎢⎢⎢⎣

vi−(eβ|J|/4+e−3β|J|/4 )
2
√

2

− vi−(eβ|J|/4+e−3β|J|/4 )
2
√

2
0

−1

⎤
⎥⎥⎥⎦, i = 1, 2, (A17)

|c3〉 = 1√
2

⎡
⎢⎢⎣

1
1
0
0

⎤
⎥⎥⎦, |c4〉 =

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦. (A18)

The corresponding eigenvalues are the same as for the transfer
matrix: ci = vi for i = 1, 2, 3, 4. I am now ready to calculate
the spin-spin correlation function. I get

ZJCz(d ) = tr[CdV N−d ] = tr[C̃dṼ N−d ]

=
∑

i

〈vi|C̃dṼ N−d |vi〉

=
∑
i, j

〈vi|C̃d |c j〉〈c j |Ṽ N−d |vi〉

=
∑
i, j

cd
j v

N−d
i |〈vi|c j〉|2 → vN−d

1

∑
j

cd
j |〈v1|c j〉|2.

(A19)

In the last expression, I use that for d � N , the largest eigen-
value of V , i.e., v1, will completely dominate. Now, we simply
need to get the overlaps, |〈v1|c j〉|2. It turns out that only
〈v1|c3〉 and 〈v1|c4〉 are nonzero. These yield

C(1)
z = |〈v1|c3〉|2 = [v1 − (eβ|J|/4 + e−3β|J|/4)]2

[v1 − (eβ|J|/4 + e−3β|J|/4)]2 + 4
,

C(2)
z = |〈v1|c4〉|2 = 4

[v1 − (eβ|J|/4 + e−3β|J|/4)]2 + 4
. (A20)

Since ZJ = vN
1 , we finally get

Cz(d ) = v−d
1

∑
j

cd
j |〈v1|c j〉|2

= [v1 − (eβ|J|/4 + e−3β|J|/4)]2

[v1 − (eβ|J|/4 + e−3β|J|/4)]2 + 4

[
v3

v1

]d

+ 4

[v1 − (eβ|J|/4 + e−3β|J|/4)]2 + 4

[
v4

v1

]d

= C(1)
z e−d/ξ1(βJ ) + C(2)

z e−d/ξ2(βJ ), (A21)

giving a sum of two exponentially decaying terms. The corre-
lation lengths are

ξ1(βJ ) =
[

ln

(
v1

v3

)]−1

, ξ2(βJ ) =
[

ln

(
v1

v4

)]−1

. (A22)

I note that ξ1 > ξ2 for any temperature. Inserting v1, v3 in the
upper line leads to the expression in Eq. (5) of the main text.

APPENDIX B: DISORDERED POTENTIAL AT INFINITE
TEMPERATURE

Here, I derive the probability distribution of the magnetic
potential V (x). After |x| hops, the possible values of the

trans-leg potential are

V⊥(x) = n
J

2
, n ∈ {−|x|,−|x| + 1, . . . , |x|}. (B1)

I want to calculate what the probabilities P(V⊥(x) = nJ/2)
are. To do so, the change in the potential may be described
by the transition operator,

T =
∑

n

[
1

2
|n〉〈n| + 1

4
|n + 1〉〈n| + 1

4
|n − 1〉〈n|

]
. (B2)

Here, |n〉 denotes the outcome nJ/2. The probability of nJ/2
after |x| hops is, therefore,

P

(
V⊥(x) = n

J

2

)
= 〈n|T |x|

⊥ |0〉. (B3)

To calculate this transition element, it is beneficial to use the
eigenvectors of T . In particular, we let

|n〉 = 1√
N

∑
k

eikn|k〉. (B4)

Here, k ∈ (−π, π ]. The transition operator is diagonal in
these vectors,

T⊥ =
∑

k

tk|k〉〈k|, (B5)

with tk = [1 + cos(k)]/2 = cos2(k/2). Now,

P

[
V⊥(x) = n

J

2

]
= 〈n|T |x|

⊥ |0〉

=
∑
k,q

〈n|q〉〈q|T |x||k〉〈k|0〉

=
∑

k

〈n|k〉t |x|
k 〈k|0〉 = 1

N

∑
k

e−iknt |x|
k . (B6)

We may turn this into an integral, yielding

P

[
V⊥(x) = n

J

2

]
= 1

N

∑
k

e−iknt |x|
k

→
∫ π

−π

dk

2π
e−iknt |x|

k =
∫ π

0

dk

π
cos(kn)t |x|

k . (B7)

For any value of n and x, this allows us to get the probabilities.
Furthermore, we also compute the variance of the potential.
Explicitly,

Var[V⊥(x)] =
|x|∑

−|x|
P

[
V⊥(x) = n

J

2

](
n

J

2

)2

= J2

4

∫ π

0

dk

π

⎡
⎣ |x|∑

−|x|
n2 cos(kn)

⎤
⎦t |x|

k . (B8)

The sum may be evaluated using WOLFRAM ALPHA to yield

|x|∑
−|x|

n2 cos(kn) = |x| cos(k|x|)[cot2(k/2) + x + 1]

− 1

2
cot(k/2) sin(k|x|)[cot2(k/2)

− 2x2 + 1]. (B9)
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Inserting this above gives the very simple result

Var[V⊥(x)] = J2

8
|x|. (B10)

Since the frustration potential performs a (classical) random
walk, the variance scales linearly in |x|.

Let us, equivalently, determine the probability distribution
for the intra-leg potential V‖(x). I note that the change in this
potential from site to site is equivalent to the transfer matrix

T‖ = 1

4
[|+1〉〈0| + |−1〉〈0|] + 1

2

+1∑
n=−1

|n〉〈n|. (B11)

To determine the probability distribution in this case, given by
〈n|T |x|

‖ |0〉, we note that

T |x|
‖ |0〉 = 1

2 |0〉 + 1
4 [|+1〉 + |−1〉], (B12)

for any integer x �= 0. So, P[V‖(x) = 0] = 1/2 and P[V‖(x) =
±J/2] = 1/4 for any x �= 0, whereby the variance is

Var[V‖(x)] =
+1∑

n=−1

P

[
V‖(x) = n

J

2

](
n

J

2

)2

= J2

8
. (B13)

Since the trans- and intraleg potentials are uncorrelated, their
variances add

Var[V (x)] = J2

8
[|x| + 1]. (B14)

This shows very explicitly that V⊥(x) dominates the distribu-
tion for large |x|.

APPENDIX C: EXACT RECURSIVE SOLUTION

In the main text, I set up an effective Hamiltonian for a
given spin realization and use an exact-diagonalization (ED)
package in PYTHON to compute the dynamics from there.
Here, I show that by going to the frequency domain, the equa-
tions of motion may be exactly solved. The required Fourier
transformation to get the associated dynamics is, however,
numerically heavier than actually using the ED package in
PYTHON.

By expressing the nonequilibrium wave function in terms
of the retarded and advanced states [31,74], |�σ (τ )〉 =
|�R

σ (τ )〉 + |�A
σ (τ )〉 = e−η|τ |[θ (τ )|�σ (τ )〉 + θ (−τ )|�σ (τ )〉],

I express the Schrödinger equation i∂τ |�σ (τ )〉 = Ĥ |�σ (τ )〉
in frequency space,

(ω + iη)
∣∣�R

σ (ω)
〉 = +i|�σ (τ = 0)〉 + Ĥ

∣∣�R
σ (ω)

〉
. (C1)

Here, η is a positive infinitesimal. Denoting the probability
amplitudes of |�R

σ (ω)〉 as Rσ (x, ω) and using that the ad-
vanced state simply has the complex conjugated terms of
the retarded state, |�A

σ (ω)〉 = [|�R
σ (ω)〉]∗, then shows that

Cσ (x, τ ) can be retrieved as the Fourier transform,

Cσ (x, τ ) =
∫

dω

2π
e−i(ω+iη)τ × 2Re[Rσ (x, ω)]. (C2)

Crucially, the amplitudes Rσ (x, ω) satisfy a set of equations of
motion,

[ω + iη]Rσ (x, ω) = iδx,0 + Vσ (x)Rσ (x, ω)

+ t[Rσ (x − 1, ω) + Rσ (x + 1, ω)],

(C3)

which may be solved recursively, as has been recently de-
tailed in similar contexts [55,74,75]. Here, Vσ (x) designates
the magnetic potential experiences by the hole as it moves
through the lattice. Finally defining the recursion function
fσ (x, ω) through the relations

Rσ (x + 1, ω) = t fσ (x + 1, ω) Rσ (x, ω), x � 0,

Rσ (x − 1, ω) = t fσ (x − 1, ω) Rσ (x, ω), x � 0, (C4)

leads to the recursive solutions

fσ (x, ω) = 1

ω + iη − Vσ (x) − t2 fσ (x + 1, ω)
, x > 0,

fσ (x, ω) = 1

ω + iη − Vσ (x) − t2 fσ (x − 1, ω)
, x < 0.

(C5)

FIG. 8. Obtained localization length for |J|/t = 2.5 as a function
of the sampling interval for (a) βJ = −1 and (b) βJ = −3 and
compared to the value used in the main text (lines). The error bars
show the estimated standard errors. In the high-temperature case
(a), there is no perceived sensitivity to the sampling interval. In the
low-temperature regime (b), however, an overly rapid sampling leads
to an overestimation of the localization length. For sampling intervals
above 104, all points lie within 1σ from the value used in the main
text (blue line). (c) The underlying rms dynamics for βJ = −3, for
varying sampling intervals (s.i.) is shown as a function of time τ

in units of the hopping amplitude t . The shaded areas indicate the
estimated standard error.
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Inserting this into the equations of motion for x = 0 yields the
lowest-order amplitude,

Rσ (0, ω) = i

ω + iη − Vσ (0) − t2[ f (−1, ω) + f (1, ω)]
,

(C6)

which may be simply identified as the retarded hole Green’s
function for the spin realization σ. The higher-order ampli-
tudes,

Rσ (x, ω) = t x
x∏

j=+1

fσ (x, ω) × Rσ (0, ω), x > 0,

Rσ (x, ω) = t |x|
x∏

j=−1

fσ (x, ω) × Rσ (0, ω), x < 0, (C7)

are found by using the recursive structure in Eq. (C4). Finally,
by using the Fourier transform in Eq. (C2), Cσ (x, τ ) is found.

APPENDIX D: APPROPRIATE SAMPLING INTERVALS
IN THE METROPOLIS-HASTINGS ALGORITHM

In this Appendix, I briefly investigate the sensitivity of the
hole dynamics on how the sampling in the applied Metropolis-
Hasting Monte Carlo algorithm is performed. To assess this,
I compute the hole dynamics and the associated localization
length for varying sampling intervals, i.e., the number of gen-
erated samples for every kept sample. This analysis is shown
in Fig. 8. At high temperatures in Fig. 8(a), no perceived
sensitivity to the sampling interval is seen. This is presum-
ably because the autocorrelation time is much shorter than
the investigated intervals. At low temperatures in Fig. 8(b),
however, it is clearly seen that at too low intervals, the local-
ization length is greatly overestimated. Finally, in Fig. 8(c),
I plot the underlying rms dynamics for the low-temperature
case for varying sampling intervals. This explicitly shows the
dramatic decrease in the estimated statistical errors, as well as
a convergence to a single well-defined line.
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