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Phonon-photon conversion as mechanism for cooling and coherence transfer
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The dynamical Casimir effect is the physical phenomenon where the mechanical energy of a movable wall of a
cavity confining a quantum field can be converted into quanta of the field itself. This effect has been recognized as
one of the most astonishing predictions of quantum field theory. At the quantum scale, the energy conversion can
also occur incoherently, namely, without a physical motion of the wall. By means of quantum thermodynamics,
we show that this phenomenon can be employed as a tool to cool down the wall when there is a nonvanishing
temperature gradient between the wall and the cavity. At the same time, the mechanism responsible for the heat
transfer enables sharing the coherence from one cavity mode, driven by a laser, to the wall, thereby forcing its
coherent oscillation. Finally, we show how to employ one laser drive to cool the entire system, including the case
when it is composed of other subsystems.
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I. INTRODUCTION

Quantum thermodynamics is the modern branch of physics
that extends and adapts the principles and main concepts
of thermodynamics to the quantum scale [1–4]. In contrast
to its classical counterpart, one of the revolutionary accom-
plishments in quantum thermodynamics is the realization of
thermal machines based on single quantum systems instead of
large ensembles of particles [5–10]. In general, it is expected
that the employment of such systems will lead to both the
miniaturization of the working substance and the optimization
of the work extraction [11–16].

All quantum systems interact with their own environment,
and exchange energy with it. The mathematical formalism that
best tackles problems in this context, and therefore allows one
to quantify the heat flows between the system and the heat
baths, is the theory of open quantum systems [17–19]. Among
the successful applications in this direction can be found the
studies of quantum heat engines and quantum refrigerators
based on continuous devices via master equations [17,20,21].
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In fact, with the thermodynamic equivalence between con-
tinuous and discrete-strokes devices proven [22], the master
equation approach is largely used because it offers a detailed
description of the dynamics in reaching the steady state, and
its regime of validity is also extended to out-of-equilibrium
scenarios.

The presence of quantum features in mesoscopic objects,
along with the possibility to control the interaction with the
environment, makes cavity optomechanical systems an inter-
esting platform for the study of quantum thermodynamics
[23–25], as well as valid candidates for the realization of
quantum heat engines [26–32]. Cavity optomechanics studies
the quantum interactions occurring in cavity systems between
the confined electromagnetic field and the cavity walls (also
called mechanical resonators) by means of radiation pressure
[33–36]. The wall can, in principle, oscillate and, when the
amplitude of oscillations is sufficiently small, the displace-
ment from the mean position can be represented by a bosonic
degree of freedom [36]. Mechanical oscillators interacting
with the cavity mode in the quantum regime are systems with
great potential in many field of research, such as quantum
metrology and sensing [37], offering a route towards funda-
mental tests of quantum mechanics in a hitherto inaccessible
parameter regime of size and mass [38]. Furthermore, they
have been widely used to study quantum protocols for the
creation and control of mechanical quantum superpositions of
macroscopic objects [39–43].

In general, the standard assumption in optomechanics is
that the electromagnetic field can be described by a single
optical mode, which is highly populated by photons prepared
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in a coherent state (i.e., the quantum state of a laser beam).
This approach permits one to focus the attention on the fluc-
tuation of the number of excitations only, thereby linearizing
the Hamiltonian and drastically reducing the complexity of
the interaction [36]. However, in the last decade, the interest
in optomechanical Hamiltonians beyond the linear regime
has increased [44] and nonlinear effects such as the radia-
tion pressure on the movable wall [45,46] and the so-called
Casimir terms [33,47–50] are often taken into account. The
name of the latter stems from the interpretation of the dynam-
ical Casimir effect in optomechanical frameworks [51,52], in
which the squeezing of the quantum vacuum derives from
the energy conversion between the mechanical and the optical
quantum degrees of freedom.

This work explores the quantum thermodynamics of cavity
optomechanical systems in which the Casimir terms, i.e., the
phonon-photon conversion, can be seen as enabling a quan-
tum channel for the propagation of heat between subsystems.
The setup under consideration consists of a cavity character-
ized by a movable mirror, whose position fluctuates, and it
is described as a bosonic degree of freedom, namely, as a
quantum harmonic oscillator. The cavity confines a quantum
field and we assume that only two modes participate to the
dynamics. The wall and the cavity as a whole are coupled to
two different baths, each at different temperatures: the cavity
is coupled to a cold bath at temperature Tc � 0, whereas the
wall exchanges heat with a hot bath at temperature Tw > 0.
Finally, we assume that the first cavity mode is driven by
an external laser characterized by the same frequency of the
cavity mode.

The frequency of the mirror is tuned to be twice the
frequency of the lower cavity mode, thereby activating a res-
onance that enables the flow of excitations between the two
subsystems. The presence of a second cavity mode allows us
to investigate the effects of the interactions on the dynamics of
higher-order resonant modes. We see that the flows of particle
between the wall and the cavity mode induce the cooling of
the cavity wall as well as the motion of the wall, the latter
a consequence of the up-conversion of coherent photons into
coherent phonons.

The paper is structured as follows: in Sec. II, we introduce
the system and the Hamiltonian, emphasizing the role of every
interaction term. In Sec. III, we present both the formalism
for the study of the dynamics, namely, the master equation in
the dressed picture, and the quantities of interest for the com-
prehension of both the dynamics and the thermodynamics. In
Sec. IV, we expose and discuss our numerical results. We
conclude in Sec. V. Some details are left for the Appendix,
where we analyze the coherence transfer processes, showing
analytically the origin of the oscillation frequency of both the
wall and the second mode.

II. THEORETICAL MODEL

The system consists of a cavity confining a (1+1)-
dimensional uncharged massless scalar field. This approxi-
mation well describes the transverse electric (TE) modes of
the electromagnetic field confined in a three-dimensional box
when the parameters of the system are opportunely tuned
[32,53]. Importantly, we assume that the cavity possesses

FIG. 1. Pictorial representation of the system: a cavity with a
free-moving mirror confines a quantum scalar field (the first two
modes are depicted here). The field is in contact with a cold bath
at temperature Tc � 0, whereas the movable wall of the cavity is
coupled to a bath at Tw > 0. A laser at the same frequency of the
first cavity mode coherently excites it.

a movable wall that interacts with the field via a position-
dependent interaction. The system is depicted in Fig. 1.

The setup considered here provides a well-known math-
ematical model for optomechanical systems, wherein the
motion of the light-massive vibrating wall is associated to
the zero-point fluctuation of a quantum harmonic oscilla-
tor [36]. The presence of a movable wall therefore leads to
the existence of an additional quantum degree of freedom
representing the small quantized vibration of the wall. The
Hamiltonian of such system can be derived from first prin-
ciples following different procedures [33,49], and, to each
harmonic oscillator, one associates a fundamental frequency
ω and annihilation operators â and â† that satisfy the canon-
ical commutation relations [â, â†] = 1. Operators of different
modes commute. It is well known that the spectrum of the field
is discrete, where each level is labeled by the quantum number
n, which is a positive natural number. Exciting mode n to its
mth energy level requires mh̄ωn quanta of energy. Therefore,
any action performed on the cavity has a probability, albeit
perhaps small, to excite any mode. Nevertheless, for the sake
of simplicity and for the scope of this work, we assume that we
will effectively be able to truncate the spectrum of our system
to the first two modes only, thereby ignoring the remaining
modes of the quantum scalar field. The description of the
system by means of two optical modes rather than a single
mode, as often considered in standard optomechanics [35,36],
is motivated by the different roles these two modes play in
the dynamics: while the first one interacts resonantly with
the mechanical degree of freedom (the specifics of which
will be clarified later), the presence of a second cavity mode
allows us to evaluate second-order interactions between the
resonant and any off-resonant cavity modes. Therefore, this
choice offers us an exhaustive description of the dynamics of
the entire cavity.

Combining all together, it can be shown that the Hamilto-
nian of the system reads Ĥs = Ĥ0 + ĤI, where

Ĥ0 = h̄ω1â†
1â1 + h̄ω2â†

2â2 + h̄�b̂†b̂ (1)
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is the noninteracting (free) Hamiltonian and

ĤI = h̄ε

√
ω1ω2

2
(â1 + â†

1)(â2 + â†
2)(b̂ + b̂†)

+ h̄ε
∑
j=1,2

ω j

2
(â j + â†

j )
2(b̂ + b̂†) (2)

is the interaction Hamiltonian. In the expressions above, we
have that ω j , â j , and â†

j are the frequency and the operators

of the cavity mode labeled by j = 1, 2; whereas �, b̂, and b̂†

are the frequency and the operators of the movable wall. From
here on, Latin subscripts such as i, j will always label the cav-
ity modes and therefore take values 1,2. Finally, ε := dL/L is
the dimensionless oscillation amplitude of the wall. For later
convenience, we also define the dimensional coupling param-
eters, g11 = ε ω1/2, g22 = ε ω2/2, and g12 = ε

√
ω1ω2/2.

The Hamiltonian in Eq. (2) expresses the interactions be-
tween the movable wall and the cavity modes that arise in
optomechanics. Among all possible contributions we recog-
nize the following:

(i) the radiation pressure terms â†
j â j (b̂ + b̂†), which are

largely studied in quantum optomechanics, namely, in a
regime wherein � � ω j and the cavity contains a large num-
ber of photons [36,54].

Note that three types of phonon-photon conversion terms
are present and can become relevant in the following appro-
priate regimes:

(ii) the single-mode photon up- and down-conversion terms
â†2

j b + â2
j b̂

†;
(iii) the two-mode photon up- and down-conversion term

â†
1â†

2b̂ + â1â2b̂†;
(iv) the Raman scattering term âiâ

†
j (b̂ + b̂†).

Any of these terms can become dominant whenever spe-
cific frequency resonances between the cavity mode and the
movable wall are activated [47,48,50,55–57]. For instance, the
up- and down-conversion mechanism occurs if � = ωi + ω j ,
namely, when the frequency of the wall is equal to either twice
ω j (single mode) or the sum of the two cavity frequencies
(two mode), whereas the Raman scattering process occurs
if � = ω2 − ω1. The interaction Hamiltonian in Eq. (2) also
contains the following:

(v) the counter-rotating terms âiâ j b̂ + â†
i â†

j b̂
†. Beyond their

contribution to the energy shift related to fluctuations of the
quantum vacuum [47], their presence becomes crucial for the
observation of higher-order processes [50,58].

We stress that the Hamiltonian describing the interaction
between the field modes and the wall emerges after the
quantization of the boundary conditions confining the field
[33,49]. In cavity QED, the activation of up- and down-
conversion terms in (ii) and (iii) via the resonance conditions
described above corresponds to the stimulation of resonant
modes, leading to the squeezing mechanism known as the
dynamical Casimir effect (DCE) [52]. From a mathematical
point of view, this becomes more evident by preparing the
mechanical mode in a coherent state b̂|β〉 = β|β〉, with
β = |β|eiθ being the coherent parameter, imposing a resonant
condition (for instance, � = 2ω1) and deriving the effective
Hamiltonian for the quantum field after applying the rotating
wave approximation (RWA) and substituting the mechanical
ladder operators with the coherent parameter β. One

obtains Ĥ eff
I = h̄ε|β|�/4[â2

1eiθ + (â†
1)2e−iθ ], which strongly

resembles the effective Hamiltonian of the DCE achieved via
standard techniques [59–61]. One of the numerous advantages
stemming from the quantization of the mechanical degree
of freedom is the possibility to activate the DCE via an
incoherent (e.g., thermal) motion of the wall [24,49].

III. THE MASTER EQUATION IN THE DRESSED PICTURE

The three subsystems, i.e., the two cavity modes and the
wall, interact in a strong regime. Therefore, it is convenient
to study its dynamics by means of the master equation in
the dressed picture [62,63]. Before doing this, we introduce
the transition amplitudes for the canonical position oper-
ators evaluated on the dressed basis: u(n)

i j = 〈i|(ân + â†
n)| j〉

and wi j = 〈i|(b̂ + b̂†)| j〉, where |i〉 is the ith eigenstate of
the Hamiltonian Ĥs with eigenenergy Ei, and n = 1, 2. To
calculate the quantities of interest, we establish a set of
dressed annihilation operators for all subsystems, namely,
Ân = ∑

j,i> j u(n)
i j P̂i j, B̂ = ∑

j,i> j wi j P̂i j , as well as the tran-

sition operators P̂i j = |i〉〈 j|. Note that the operators P̂i j are
not projectors since P̂2

i j = 0, but the diagonal operators P̂j j =
P†

i j P̂i j = PjiP̂
†
ji = | j〉〈 j| are.

We add an additional term Ĥd(t ) in the Hamiltonian that
has the effect of coherently exciting the lowest cavity mode
j = 1. This external drive term is time dependent and its
oscillation frequency is chosen to match the frequency ω1 of
this mode. It represents the presence of a laser entering into
the cavity and transferring coherence to the corresponding
mode. This additional term can be written in terms of the
dressed operators and it reads

Ĥd(t ) = F (e−iω̃1t Â1 + eiω̃1t Â†
1), (3)

where F describes the intensity of the laser. As soon as the
laser intensity is much less than the damping rates of both
cavity and wall, we can claim that the laser does not alter
the eigenstates of the Hamiltonian Ĥs, and therefore it can be
treated perturbatively. We can now write the total Hamiltonian
of the system as

Ĥtot(t ) = Ĥs + Ĥd(t ), (4)

with the system Hamiltonian expressed with respect to its
own eigenbasis, Ĥs = ∑

i EiP̂ii. To compact the nomenclature,
henceforth we will simply write Ĥtot, having made clear that
it is time dependent.

Usually, the three subsystems would be coupled to different
baths. In several works, it was demonstrated that quantum
systems can interact with a non-Markovian (possibly colored
[64,65]) common bath displaying revival of entanglement
[66–68], which can be enhanced by the presence of mea-
surement protocols [69,70], and revealing nontrivial dynamics
[71,72]. From now on, we will always consider the two modes
of the cavity sharing a common bath at Tc � 0 (unless explic-
itly stated in particular cases), with damping rate κ , while the
movable mirror will be coupled to a different bath with damp-
ing rate γ and temperature Tw > 0. Under these assumptions,
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the master equation in the dressed picture reads

d ρ̂

dt
= −i[Ĥtot, ρ̂] + L̂c(ρ̂) + L̂w(ρ̂), (5)

where we have defined the differential generators

L̂c(ρ̂) = κ

4

∑
j,i> j

∣∣u(1)
i j + u(2)

i j

∣∣2
D̂i j[ρ̂],

L̂w(ρ̂) = γ

2

∑
j,i> j

|wi j |2 D̂i j[ρ̂], (6)

with the meaning of D̂i j[ρ̂] = ni j (T )D[P̂i j]ρ̂ + [1 +
ni j (T )]D[P̂ji]ρ̂. These terms contain the thermal excitation
numbers ni j (T ) = (e(Ei−Ej )/kBT − 1)−1, with T = Tc, Tw the
temperature of the cavity bath and the wall bath, respectively,
and the superoperators

D[P̂i j]ρ̂ = 1
2 (2P̂i j ρ̂P̂†

i j − ρ̂P̂†
i j P̂i j − P̂†

i j P̂i j ρ̂ ). (7)

By employing these operators and numerically solving the
dressed master equation in the Schrödinger picture, we can
explore the driven-dissipative system dynamics. In particular,
we are interested in the time evolution of both the population
and the quadrature position of all subsystems. The former
is achieved by evaluating the average value of the parti-
cle number for both the optical and the mechanical modes,
Nn(t ) = Tr[Â†

nÂnρ̂(t )] and Nw(t ) = Tr[B̂†B̂ρ̂(t )], respectively.
On the other hand, the quadrature position operators allow
one to describe (i) the actual motion of the wall via Xw(t ) =
Tr[(B̂† + B̂)ρ(t )], and (ii) the amplitude of the field modes via
Xj (t ) = Tr[(Â†

j + Â j )ρ(t )].
In order to investigate the quantum thermodynamic fea-

tures of the system, we first introduce the differential
generators applied to the total Hamiltonian,

L̂∗
c (Ĥtot ) = κ

4

∑
j,i> j

∣∣u(1)
i j + u(2)

i j

∣∣2
D̂i j[Ĥtot],

L̂∗
w(Ĥtot ) = γ

2

∑
j,i> j

|wi j |2 D̂i j[Ĥtot], (8)

with the simplified notation D̂i j[Ĥtot] = ni j (T )D[P̂i j]Ĥtot +
[1 + ni j (T )]D[P̂ji]Ĥtot for this superoperator. Starting from
Eq. (8), we define the heat flow from the cold bath to the
cavity, composed of the two optical modes, by means of the
expression Jc(t ) = Tr[L̂∗

c (Ĥtot )ρ(t )], and the heat flows from
the hot bath to the wall by means of the expression Jw(t ) =
Tr[L̂∗

w(Ĥtot )ρ(t )] [19,21]. The power produced is given by the

expression P (t ) = Tr[ ˆ̇Hd(t )ρ(t )] [2].

IV. NUMERICAL RESULTS

Here we investigate the thermodynamic features of the
system. To obtain our goal, we look at the heat flows Jc(t )
and Jw(t ), as well as at the laser power P (t ). We stress that
while the cavity consists of two optical modes, the heat propa-
gation mediated by Jc(t ) involves the whole cavity. Note that
the positive sign of both the heat rates and the laser power
indicates the energy absorption from the source: a positive
heat rate (laser power) means that the relative subsystem is
absorbing heat (coherence), or thermal (coherent) excitations

from its own bath (the laser), whereas a negative sign is a
signature of the release of energy. Concerning the dynamics,
we focus our attention on both the population of the cavity
modes Nj (t ) and the movable mirror Nw(t ), as well as their
coherent modulation. The latter is calculated by averaging the
position quadratures Xj (t ) and Xw(t ).

A main role in our discussion is played by the resonance
condition � = 2ω1. Except when specified, we will always
assume that this resonance is active throughout the dynam-
ics. The main goal of this work is, in fact, to show that
this resonance, which leads to the phonon-photon conversion
mechanism, allows for the existence of a valid channel for
both the heat and the coherence transfer through the various
subsystems. Another important element of our analysis is the
strong-coupling regime, which is determined by the coupling
constants gi j . These parameters are tuned in such a way that
they are large enough to guarantee an efficient interaction
between the subsystems, while simultaneously being smaller
than any mode frequencies [73]. For this reason, the hierarchy
between the various parameters will be ω j,� � g j j > γ >

κ � F , with the exception of Sec. IV C.
Finally, we stress that henceforth we will distinguish the

bare from the dressed frequency of the first cavity mode, ω̃1.
The correction follows the fact that the resonant terms of the
interaction Hamiltonian ĤI in (2) lead to both shift and splits
of the eigenvalues of the total Hamiltonian. Therefore, the
energy shift slightly alters the bare frequencies ω1, ω2, and �.
The correction of the bare energies can be done numerically
by calculating the eigenvalues of the total Hamiltonian and
minimizing the energy splitting Ei − Ej near the resonant
frequency ω1 = �/2 as a function of ω1, where the avoided-
level crossing is found. The minimum of the energy splitting
corresponds to the dressed frequency ω̃1. Including this small
energy shift in the numerical calculation means optimizing the
resonant exchange of excitation between the subsystem [32].

Note that in all plots below, the following applies: frequen-
cies and temperatures are normalized using ω2; the time is
normalized using the parameter κ0, which in almost all cases
coincides with the cavity loss constant κ (as explained in the
relevant captions); and heat flows and power are normalized
using the quantity h̄ω2κ0.

A. Resonant and off-resonant heat and coherence transfer

In order to demonstrate that the phonon-photon conversion
is a valid mechanism for heat transfer between the mechanical
and optical modes, we first look at the heat flows and coher-
ence flows between the cavity and the wall, both when the
resonance condition � = 2ω1 is set and when the frequency
of the wall is off-resonant, � < 2ω1. We remind the reader
that the wall is coupled to a bath at Tw > 0, whereas the cavity
modes share a common bath at Tc � 0. Both cavity and wall
are initialized in the ground state.

1. Heat flows

First, we focus the analysis on the heat transfer between
the mechanical and the optical modes. The time evolution of
the heat flows is plotted in Fig. 2. The contribution of the
laser to the heat balance is extremely poor and, only in this
circumstance, it is not reported. The figure shows how the
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FIG. 2. Time evolution of the heat flows and the laser power,
using κ0 = 0.003 as the timescale. By setting � = 2ω1 = 1 and
ω̃1 = 0.502, we plot the heat flows of the mirror (red curve) and of
the cavity (blue curve). By setting � = 0.9 and ω̃1 = 0.498, we also
plot the heat flows of the mirror (cyan curve) and the cavity (green
curve). Finally, we plot the heat flows of the mirror (magenta curve)
and of the cavity (brown curve) by setting � = 0.8 and ω̃1 = 0.499.
Other parameters are ω̃1 = 0.502, ω2 = 1, ε = 0.05, γ = 0.009, κ =
0.003, and F = 0.02γ . Frequencies and temperatures are normalized
with respect to ω2.

heat exchange between the two subsystems (cavity and wall)
depends on the direct activation of the resonance. The red and
the blue curves indicate the dynamics of the heat rate of the
wall and the cavity, respectively, when the resonance condi-
tion � = 2ω1 is fixed. Indeed, when this condition applies,
the wall absorbs phonons from its own bath. At the same
time, however, due to the resonant coupling with the cavity,
part of these hot phonons is converted into photons and are
then finally released to the cavity bath at Tc � 0. The graph in
Fig. 2 shows that the heat flow of the wall is always positive,
indicating a continuous absorption of heat from its own bath.
At the same time, the heat flow of the cavity is negative,
meaning that it releases heat to its own cold bath. Since the
only source of thermal excitations is the bath coupled to
the wall, this dynamics describes a heat flow between the
two baths promoted by the resonant interaction between the
mechanical and the first optical modes. Physically, this per-
manent heat flow maintains the entire system out of thermal
equilibrium.

We now look at the other curves of Fig. 2. These show the
trend of the heat flows for both the wall and the cavity when
the oscillation frequency of the wall is off-resonance, namely,
� < 2ω1. The plots unambiguously demonstrate that the heat
flows drastically reduce the farther � is from the resonance
condition, proving the univocal interpretation of the phonon-
photon conversion as the mechanism to transfer heat from the
wall to the cavity and cooling down the former.

Since we omitted the power of the laser in Fig. 2, we now
want to conclude this section by analyzing the contribution
of the laser to the heat balance. To do this, we compared
the heat flows when the first optical mode is pumped by
the laser, i.e., when F > 0, and when the laser is switched
off, i.e., F = 0. The results are plotted in Fig. 3. This graph
demonstrates that the heat exchanges between the subsystems

FIG. 3. Time evolution of the heat flows and the laser power,
using κ0 = 0.003 as the timescale. By setting F = 0, we plot heat
flows of the mirror (cyan solid curve) and of the cavity (green solid
curve). By setting F = 0.02γ , we also plot heat flows of the mirror
(red dashed curve), the cavity (blue dashed curve), and the laser
power (black dashed curve). Other parameters are ω̃1 = 0.502, � =
ω2 = 1, Tc = 10−6, Tw = 0.3, ε = 0.05, γ = 0.009, and κ = 0.003.
Frequencies and temperatures are normalized with respect to ω2.

are weakly influenced by the laser, and this is due to its low
intensity. We also observe that the slight variation on the heat
flow mostly concerns the cavity, being the first optical mode
directly pumped by the laser.

2. Coherence

So far we have discussed the purely thermodynamic as-
pects of the system. However, the presence of the laser driving
the first mode offers further perspectives which can be taken
into account. In fact, we now want to explore the possibility
of employing the same quantum channel, namely, the channel
enabled by the resonant terms of the Hamiltonian, thereby
inducing the wall to move coherently. To show that the same
mechanism can be exploited to transfer coherence from the
optical mode to the mechanical one, we now analyze the
average value of the quadrature operator of the wall 〈Xw(t )〉,
comparing the resonant scenario, where � = 2ω1, with the
off-resonant case, where � < 2ω1. This is plotted in Fig. 4.
The graph shows that 〈Xw(t )〉 oscillates in time, meaning that
the mechanical mode not only absorbs heat from the hot bath,
but also receives coherence from a coherent source. Clearly,
this behavior is a consequence of the input energy from the
laser that drives the first cavity mode since this is the only
source of coherence in the system.

The fact that the wall oscillates does not come as a surprise:
the wall is directly resonant with the pumped mode; therefore
the coherence transfer between the two modes must be related
to the up-conversion of coherent photons into phonons. The
interesting fact is that it oscillates with its own frequency,
namely, twice the frequency of the laser. This is due to
the fact that the frequency of the laser and frequency of
the pumped mode coincide, thereby activating the resonant
phonon-photon conversion between the laser and the wall. An
off-resonant laser would induce the wall to oscillate at twice
the frequency of the laser, namely, 2ωL, but with an expected
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FIG. 4. (a) Time evolution of the position quadrature operator of
the mirror, using κ0 = 0.003 as the timescale. (b) An enlarged view
of the latter in the range κ0 · t ∈ {11, 11.14} is provided. We plot the
average value of the quadrature operator by setting � = 2ω1 = 1 and
ω̃1 = 0.502 (black curve), � = 0.9 and ω̃1 = 0.498 (cyan curve),
and � = 0.8 and ω̃1 = 0.499 (cyan curve). Other parameters are
ω2 = 1, ε = 0.05, γ = 0.009, κ = 0.003, and F = 0.02γ . Frequen-
cies and temperatures are normalized with respect to ω2.

much lower amplitude. More details about these aspects are
discussed in Appendix.

As a second proof that the coherent oscillation of the wall
occurs as a consequence of the resonant excitation transfer
with the pumped optical mode, in Fig. 4 we also plot the
coherence of the wall by tuning the mechanical frequency
to two off-resonant values. The graph clearly shows a drastic
reduction of the oscillation amplitude in the proximity of the
resonant condition. Finally, by tuning � farther, the coherent
transfer is drastically suppressed.

B. Dynamics in presence of thermal gradient
and thermal equilibrium

1. Heat flows

We now study the influence of the thermal gradient be-
tween the bath of the cavity and the bath of the wall on
the dynamics of our system. To do this, we analyze two
different scenarios. In the first case, we assume that the tem-
perature of the two baths is the same, Tc = Tw > 0. Note
that the two cavity modes share a common bath. In the
second case, we set a thermal gradient between the two

FIG. 5. Time evolution of the heat flows and the laser power,
using κ0 = 0.003 as the timescale. By setting Tc = Th = 0.3, we plot
the heat flows of the mirror (cyan solid curve), the cavity (purple
solid curve), and the laser power (green solid curve). By setting
Tc = 10−6 and Tw = 0.3, we also plot the heat flows of the mirror (red
dashed curve), the cavity (blue dashed curve), and the laser power
(black dashed curve). Other parameters are ω̃1 = 0.502, � = ω2 =
1, ε = 0.05, γ = 0.009, κ = 0.003, and F = 0.02γ . Frequencies
and temperatures are normalized with respect to ω2.

baths by setting Tw > 0 and Tc � 0. The results are plotted
in Fig. 5.

In the first scenario, the system is initialized in its ground
state, observing heat absorption from the environment during
the dynamics. However, since there is no temperature gra-
dient, the heat flows drastically lessen during the evolution
until they reach zero, indicating that the entire system is ther-
malized with the two baths. Once the system approaches the
steady state, we observe that both heat flows become negative.
This is due to the presence of the laser, which is able to cool
down the two subsystems while performing some work on
the first mode, despite its modest intensity. To amplify this
effect, we performed a further simulation with a higher laser
intensity, as shown in Fig. 6. We see that while absorbing
power from the laser, the system releases heat to the two
environments, therefore cooling all subsystems down at the
same time.

Now we simulate the case in which a temperature gradient
between the two baths is different from zero. This case was
largely analyzed in Sec. IV A 1: we observed that the heat
flow reaches a nonvanishing stationary state, wherein the me-
chanical mode constantly absorbs heat from its own bath and
transfers its hot mechanical excitations to the wall, which in
turn releases these excitations to its cold bath.

2. Populations

We now compare the time evolution of the vibrational and
optical populations for the two scenarios, namely, thermal
equilibrium and thermal gradient. Our results are plotted in
Fig. 7. The graph shows that all modes become populated as
soon as the two subsystems, namely, the cavity and the wall,
are coupled to two different baths at the same temperature.
Since we fixed ω2 = �, it does not come as a surprise that
the second cavity mode and the mechanical mode are very
similarly populated once the system reaches the steady state.
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FIG. 6. Time evolution of the heat flows and the laser power
in thermal equilibrium, Tc = Th = 0.3, using κ0 = 0.003 as the
timescale. By setting F = 0.02γ , we plot the heat flows of the mirror
(cyan solid curve), the cavity (purple solid curve), and the laser power
(green solid curve). For F = 0.1γ , we also report the heat flows of
the mirror (red dashed curve), the cavity (blue dashed curve), and the
laser power (black dashed curve). Other parameters are ω̃1 = 0.502,
� = ω2 = 1, ε = 0.05, Tc = Th = 0.3, γ = 0.009, and κ = 0.003.
Frequencies and temperatures are normalized with respect to ω2.

Indeed, the population of each subsystem at the end of the dy-
namics is close to what is expected by Bose-Einstein statistics.
For instance, Nw(tf ) = 0.038 and N (BE)

w = (eh̄ω/(kBT ) − 1)−1 =
0.037, with tf the time during which the system has reached
the steady state. The small discrepancy stems from the fact
that we are dealing with an interacting resonant system; there-
fore, the eigenenergies of the Hamiltonian do not correspond
to the bare energies of the single quantum harmonic oscillators
due to the presence of energy dressing [32,47].

FIG. 7. Time evolution of the populations, using κ0 = 0.003 as
the timescale. By setting Tc = Th = 0.3, we plot the populations of
the mirror (green dashed curve), the cavity mode 1 (purple dashed
curve), and the cavity mode 2 (cyan dashed curve). By setting Tc =
10−6 and Tw = 0.3, we also plot the populations of the mirror (black),
the cavity mode 1 (blue), and the cavity mode 2 (red). Other parame-
ters are ω̃1 = 0.502, � = ω2 = 1, ε = 0.05, γ = 0.009, κ = 0.003,
and F = 0.02γ . Frequencies and temperatures are normalized with
respect to ω2.

Once we impose the gradient between the cavity and wall,
namely, by tuning the temperature of the bath coupled to the
cavity at Tc � 0, the resonant particle exchange between the
wall and cavity automatically sets the system out of equilib-
rium. As we can see from Fig. 7, in this scenario the phononic
degree of freedom is still populated thanks to the absorption
of particles from its own bath at finite temperature. However,
a significant part of these excitations is converted into photon
pairs populating the resonant cavity mode, whereas a smaller
fraction of phonons is responsible for the excitation of the
second cavity mode due to higher-order resonances [24]. In-
deed, assuming that the second mode and the wall have the
same frequency, the excitation of the second mode is related
to a second-order effective Hamiltonian of the form Ĥ eff

I ∝
ε2[â†

1â1(â†
2)2b̂2 + H.c.], responsible for the induced phonon-

photon conversion.
We see that the resonant interactions between the wall and

the two cavity modes affect the population of the phononic
mode at the steady state, which turns out to be smaller than
what we observed in thermal equilibrium scenario. Indeed,
according to our numerical analysis, the phononic popula-
tion in the out-of-equilibrium scenario amounts to Nw(tf ) =
0.028, namely, the 26% less than what is observed in ther-
mal equilibrium. To this population, we can approximately
associate an effective temperature T eff

w given by inverting the
Bose-Einstein statistics, thus obtaining T eff

w � 0.277, which is
slightly less than the temperature of the bath. Although this
effective temperature is close to the temperature Tw = 0.3 of
the bath, in the next section we will show that it is possible
to further cool down the wall by appropriately manipulating
specific cavity parameters.

3. Coherences

The results comparing the dynamics of the quadrature po-
sition operators for the wall and the second mode in both
thermal equilibrium and the out-of-equilibrium scenarios are
plotted in Fig. 8. Since the first cavity mode is directly excited
by the laser, the oscillation amplitude of X1(t ) is always much
higher than the oscillation amplitudes of both Xw(t ) and X2(t ),
and is therefore of no interest for this work.

The graph shows the time evolution of 〈X2(t )〉 and 〈Xw(t )〉.
Note that we already discussed the presence of coherence in
the mechanical mode in Sec. IV A 2. A fundamental clue for
the explanation of the coherence in the second cavity mode is
provided by zooming in the oscillation of the two modes. In-
deed, we observe that they oscillate at different wavelengths,
although they are set at the same frequency. From Fig. 8(b), it
is evident that the optical mode oscillates twice as slow as the
mechanical mode, namely, at the same frequency of the laser.
In order to investigate this aspect, we studied the dynamics of
the quadrature operators analytically, assuming, for simplicity,
a unitary evolution (see Appendix). This analysis shows that
the presence of coherence on the second mode is a conse-
quence of the structure of the Hamiltonian. In particular, it
is due to a mixture between the resonant photon-phonon con-
version term (cavity mode 1 and the wall) and the three-boson
coupling, namely, the first line of Eq. (2). Interestingly, we
observe that the oscillation frequency of the second mode does
not depend on its own frequency, suggesting that the presence
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FIG. 8. (a) Time evolution of the position quadrature operator of
the mirror and mode 2, using κ0 = 0.003 as the timescale. (b) An
enlarged view of the latter in the range κ0 · t ∈ {11, 11.14} is pro-
vided. By setting Tc = Tw = 0.3, one sees coherence of the mirror
(green curve) and the cavity mode 2 (cyan curve), while, by setting
Tc = 10−6 and Tw = 0.3, one sees coherence of the mirror (black
curve) and the cavity mode 2 (red curve). Other parameters are ω̃1 =
0.502, � = ω2 = 1, Tc = 10−6, Tw = 0.3, ε = 0.05, γ = 0.009, and
F = 0.02γ . Frequencies and temperatures are normalized with re-
spect to ω2.

of the wall induces all cavity modes to oscillate at the same
frequency of the driven mode (with lower amplitude for higher
mode numbers). Once the temperature gradient is introduced,
we observe an increase of the oscillation amplitude in both
the wall and second cavity mode 2. This amplification of
the oscillations reveals that the system partially cleans up the
motion from the thermal fluctuations and slightly improves its
coherence.

C. Different cavity losses

We have demonstrated that the phonon-photon conversion
mechanism can work as a channel that enable the heat flows
between cavities and wall. Now, we want to check whether
it is possible to further cool down the wall by controlling
the damping rate of the cavity, rather than directly tuning
the parameters of the wall. We recall that the dynamics are
occurring in the strong-coupling regime; therefore, internal
interactions between the subsystems are more favorable than
the exchanges with the baths. By improving both the damping
rate of the cavity and taking advantage of the strong coupling,

FIG. 9. Time evolution of the heat flows and the laser power,
using κ0 = 0.003 as the timescale. By setting κ = 0.03, we plot
heat flows of the mirror (cyan solid curve), the cavity (purple solid
curve), and the laser power (green solid curve). By setting κ = 0.003,
we also plot heat flows of the mirror (red dashed curve), the cavity
(blue dashed curve), and the laser power (black dashed curve). Other
parameters are ω̃1 = 0.502, � = ω2 = 1, Tc = 10−6, Tw = 0.3, ε =
0.05, γ = 0.009, and F = 0.02γ . Frequencies and temperatures are
normalized with respect to ω2.

we can expect that the wall effectively interacts more with
the cavity bath than with its own bath. To test this claim,
we now work in the regime with a different hierarchy of
the parameters, g j j > κ > γ � F , namely, a strong-coupling
regime with higher cavity losses.

Heat flows, populations, and coherences

We start by looking at the heat flows as done before. The
time evolution plotted in Fig. 9 evidently shows a drastic
enhancement of the heat flows between the two subsystems.
Indeed, due to the higher damping, the wall releases excita-
tions to the cavity bath more efficiently, forcing the wall to
absorb heat from its own bath faster.

Having increased only the damping rate of the cavity,
which is coupled to a cold bath, and not the damping rate
of the wall, we expect that the system will generally contain
less excitations. This is expected because they are released to
the cold bath more easily. This is exactly what we observe in
Fig. 10, where the population of both the cavity modes and the
wall are plotted. Interestingly, this graph shows a net reduction
of the phonon number, now amounting to Nw(tf ) = 0.0086,
namely, about the 77% less than what expected in thermal
equilibrium. Furthermore, assuming again that the steady state
of the wall approximately corresponds to the state of a quan-
tum harmonic oscillator prepared in thermal equilibrium, we
can attribute an effective temperature T eff

w by inverting the
Bose-Einstein statistics, and obtain T eff

w � 0.21. This value is
30% less than the temperature of the bath, confirming that the
wall is cooled down. Despite the improvements in cooling
down the wall, a modification of the cavity damping rate
negatively affects the coherence for the total system, as can
be seen in Fig. 11. Indeed, the cavity mode tends to interact
more with its own bath, losing coherence.
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FIG. 10. Time evolution of the populations, using κ0 = 0.003
as the timescale. By setting κ = 0.03, we plot the populations of
the mirror (green dashed curve), the cavity mode 1 (purple dashed
curve), and the cavity mode 2 (cyan dashed curve). By setting κ =
0.003, we also plot populations of the mirror (black solid curve), the
cavity mode 1 (blue solid curve), and the cavity mode 2 (red solid
curve). Other parameters are ω̃1 = 0.502, � = ω2 = 1, γ = 0.009,
ε = 0.05, Tc = 10−6, Tw = 0.3, and F = 0.02γ . Frequencies and
temperatures are normalized with respect to ω2.

D. Different couplings

As a last scenario, we want to analyze the driven-
dissipative system dynamics by tuning the coupling constant
ε. We first look at the heat flows, showing the results in
Fig. 12. The graphs show that the enhancement of the internal
interactions would lead the wall to cool down. To balance this
effect, the wall absorbs more heat from the hot bath. This
means that the hot bath provides excitations to the wall, these
excitations are converted faster into photons, and, finally, they
are released to the cold bath with the usual rate.

Since the damping rates do not change, for higher cou-
plings we should expect a general increase of the population
within the cavity. Indeed, in Fig. 13, we observe a general
enhancement of the optical excitations, whereas the phonon
population does not undergo any relevant variation. This is a
consequence of the strong-coupling regime: the wall absorbs
phonons from its own bath until it reaches the phonon number
in accord with the temperature of the bath. At the same time,
the system up- and down-converts these thermal excitations
more efficiently. Therefore, we achieve a higher population
of the modes with lower temperature at the price of the same
damping rates.

Although we generally observe an enhancement of the
optical populations, the higher coupling and therefore the
enhancement of the conversion rate stimulate the first cavity
to effectively interact more with the baths and less with the
laser. This leads the mode ω1 to absorb less coherence from
the laser and, consequently, less coherence is also observed
in the wall. However, as one can see in Fig. 14, the coherence
in the second mode does not change remarkably, but only
slightly increases. This is due to the higher variability of X2(t )
as a function of the parameter ε: in Appendix, we employ a
unitary evolution and therefore do not include the coupling
with the baths; nevertheless, we can analytically estimate

FIG. 11. (a) Time evolution of the quadrature position operator
of the mirror and mode 2 using κ0 = 0.003 as the timescale. (b) A
large view of of the latter in the range κ0 · t ∈ {11, 11.14}. By setting
κ = 0.03, we show coherence of the mirror (green curve) and the
cavity mode 2 (cyan curve). By setting κ = 0.003, we also show
coherence of the mirror (black curve) and the cavity mode 2 (red
curve). Other parameters are ω̃1 = 0.502, � = ω2 = 1, Tc = 10−6,
Tw = 0.3, ε = 0.05, γ = 0.009, and F = 0.02γ . Frequencies and
temperatures are normalized with respect to ω2.

that X2(t ) does not linearly depend on ε [see Eq. (A20)],
in contrast to what is expected for Xw(t ) [see Eq. (A5)]. It
is therefore reasonable to think that Xw(t ) is, in fact, more
sensitive to the enhancement of the coupling constant, and
that it can increase its amplitude by slightly bypassing the loss
effects due to the interactions with the cold bath.

V. CONCLUSIONS

In this paper, we have explored the phonon-photon con-
version mechanism as a possible quantum channel for both
the propagation of heat and coherence between the movable
wall and the confined electromagnetic quantum field. We have
shown that the presence of the Casimir terms in the Hamilto-
nian allows for heat flows from a hot bath (coupled to the wall)
to a cold bath (coupled to the cavity), thereby cooling down
the wall. To amplify the cooling effect, we manipulated the
cavity losses and therefore strengthened the interaction with
the cold bath as well as supported the heat flow.

Interestingly, we observe that the wall starts to oscillate at
its own frequency, namely, twice the frequency of the laser-
driven first cavity mode, whereas the second cavity mode
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FIG. 12. Time evolution of the heat flows and the laser power,
using κ0 = 0.003 as the timescale. By setting ε = 0.05, we show
heat flows of the mirror (red dashed curve), the cavity (blue dashed
curve), and the laser power (black dotted curve). By setting ε = 0.1,
we also show heat flows of the mirror (cyan solid curve), the cavity
(purple solid curve), and the laser power (green solid curve). Other
parameters are ω̃1 = 0.502, � = ω2 = 1, Tc = 10−6, Tw = 0.3, γ =
0.009, κ = 0.003, and F = 0.02γ . Frequencies and temperatures are
normalized with respect to ω2.

follows the first one (i.e., same oscillating frequency), with
an amplitude that is comparable to the oscillation amplitude of
the wall. We showed that the time evolution of the second cav-
ity mode does not oscillate with its own frequency, suggesting
that all modes of the cavity fields oscillate at the frequency
of the driven mode. Beyond the coherence transfer, we found
that a stronger drive of one cavity mode can also cool down
the entire system by releasing heat to both environments.

FIG. 13. Time evolution of the populations, using κ0 = 0.003 as
the timescale. By setting ε = 0.1, we show populations of the mirror
(green dashed curve), the cavity mode 1 (purple dashed curve), and
the cavity mode 2 (cyan dashed curve). By setting ε = 0.05, we also
show populations of the mirror (black solid curve), the cavity mode
1 (blue solid curve), and the cavity mode 2 (red solid curve). Other
parameters are ω̃1 = 0.502, � = ω2 = 1, Tc = 10−6, Tw = 0.3, γ =
0.009, κ = 0.003, and F = 0.02γ . Frequencies and temperatures are
normalized with respect to ω2.

FIG. 14. (a) Time evolution of the quadrature position operator
of the mirror and mode 2, using κ0 = 0.003 as the timescale. (b) In a
large view in the range κ0 · t ∈ {11, 11.14}, by setting ε = 0.1, we
show coherence of the mirror (green curve) and the cavity mode
2 (cyan curve). By setting ε = 0.05, we also show coherence of
the mirror (black curve) and the cavity mode 2 (red curve). Other
parameters are ω̃1 = 0.502, � = ω2 = 1, Tc = 10−6, Tw = 0.3, γ =
0.009, κ = 0.003, and F = 0.02γ . Frequencies and temperatures are
normalized with respect to ω2.

This work brings to light, as one result, the fact that the
Hamiltonian description of optomechanical systems beyond
the linearization can have multiple uses in quantum ther-
modynamics. A natural extension of this work includes the
possibility to explore phenomena emerging from additional
resources, such as further potential resonances due to the
presence of more interacting optical and mechanical modes.
This can help model more refined experiments that will be
able to probe higher-order interaction terms, and therefore
richer dynamics.

To conclude, we believe that our results can be of support
for the realization of future quantum thermal machines based
on cavity optomechanics.
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APPENDIX: DEMONSTRATION
OF COHERENCE TRANSFER

In this Appendix, we want to analyze the origin of the os-
cillation frequency of both the wall and the cavity mode 2. For
the sake of simplicity, we will work on the bare basis of the
free Hamiltonian (see Sec. II), namely, the eigenstates of Ĥ0,
assuming a unitary evolution of the dynamics. Mathematical
techniques employed in this Appendix can be found in [49].

1. Oscillation frequency of Xw(t )

As first, we focus on the coherence transfer from mode 1
to the wall. To do this, we consider only the part of the inter-
action Hamiltonian involving the cavity mode 1 and the wall.
Indeed, interacting terms containing the second cavity mode
play no role in the dynamics of X̂w. We consider, therefore,
the following Hamiltonian of interaction:

ĤI = h̄ω1ε

2
(â1 + â†

1)2(b̂ + b̂†). (A1)

Now, we exploit the resonance condition � = 2ω1 and per-
form the rotating wave approximation. This choice reduces
Eq. (A1) to

ĤI = h̄ω1ε

2
[(â1)2b̂† + (â†

1)2b̂]. (A2)

We remind the reader that the cavity mode 1 is pumped in
resonance, ωL = ω1. However, rather than adding a further
Hamiltonian term for the laser, it is reasonable to assume
that the laser gets the mode in a coherent state |α〉, with
â1|α〉 = α|α〉. This choice allows us to simplify the Hamil-
tonian in Eq. (A2) by replacing the annihilation and creation
operators â1 and â†

1 with the coherent parameters α = Fe−iω1t

and α∗ = Feiω1t , respectively. At the resonance condition,
Eq. (A2) becomes

ĤI(t ) = h̄ω1ε F 2

2
(e−i�t b̂† + ei�t b̂). (A3)

In this form, Eq. (A3) describes a laser powering the me-
chanical mode; therefore it already witnesses the presence of
coherence on the wall. We now work in the Heisenberg picture

and we write the unitary operator as Û (t ) = Û0(t )UDw(t ),
where Û0 = exp{−iĤ0t/h̄}, and

ÛDw(t ) =
←
T exp

[
− i

h̄

∫ t

0
dt ′Û0(t ′)ĤIÛ

†
0 (t ′)

]
= e

iβt
2 X̂w ,

(A4)

with β = −εF 2ω1 at the resonance condition. At this point,
we estimate the average value of the wall’s quadrature position
operator,

Xw(t ) = Tr[Û †(t )X̂wÛ (t )ρi]

= Tr[Û †
Dw(t )Û †

0 (t )(b̂† + b̂)Û0(t )ÛDw(t )ρi]

= βt sin(�t ), (A5)

where ρ is the initial state of the system. This result shows
that the wall oscillates with its own frequency due to the
presence of the coherence state of the cavity mode 1. More-
over, we want to stress the importance of taking the action
of the laser not detuned. If the laser was detuned, having a
generic frequency ωL, the action of the unitary operator on
the Hamiltonian interaction term Û0(t )ĤIÛ

†
0 (t ) would bring

a phase factor ei(�−2ωL )t b̂ + H.c., making Xw(t ) oscillate with
frequency 2ωL, but with an expected much lower intensity,
proportional to 1/(2ωL − �).

This analytical approach never aimed to provide a rea-
sonable estimation of the oscillation amplitude of Xw(t ). An
oscillation amplitude proportional to both t and ε cannot re-
flect the actual modulation of the quadrature operator, given
that the presence of losses would limit its linear growth. This
is evident, for example, from Fig. 8, wherein the real oscilla-
tion amplitudes of the quadratures Xw(t ) and X2(t ), accounting
for losses in both the cavity and the wall, are numerically esti-
mated for different values of the coupling constant. Increasing
ε, the quadrature Xw(t ) drastically decreases, demonstrating
that the linear dependence of Xw(t ) on ε actually competes
with the loss mechanism.

2. Oscillation frequency of X2(t )

We now want to discuss the coherence transfer from the
mode 1 to the mode 2. For this purpose, we start from the
Hamiltonian

ĤI = h̄
√

ω1ω2ε

2
(â1 + â†

1)(â2 + â†
2)(b̂ + b̂†)

+ h̄ω1ε

2
(â1 + â†

1)2(b̂ + b̂†), (A6)

namely, from Eq. (2) without the quadratic term for ω2.
Indeed, this term would merely cause the squeezing of the
second mode, without affecting the oscillation frequency, thus
the parameter we are interested in. As done before, we use the
condition resonance � = 2ω1 and get rid of all fast oscillat-
ing terms by means of the rotating wave approximation. The
Hamiltonian in Eq. (A6) reduces to

ĤI(t ) = h̄ω1ε

2
[(â1)2b̂† + (â†

1)2b̂]

+ h̄
√

ω1ω2ε

2
(â1b̂† + â†

1b̂)(â2 + â†
2). (A7)
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We adopt the same strategy proposed above: we apply a
laser to the cavity mode 1 with frequency ω1, thereby sub-
stituting the relative annihilation and creation operator with
α = Fe−iω1t and α∗ = Feiω1t , respectively, to get

ĤI(t ) = h̄ω1εF 2

2
(e−i�t b̂† + ei�t b̂)

+ h̄
√

ω1ω2εF

2
(e−iω1t b̂† + eiω1t b̂)(â2 + â†

2), (A8)

where the first line is identical to Eq. (A3), whereas the second
line describes the displacement of the second mode due to
the presence of displacement in the wall. The time evolution
operator has three components, Û (t ) = Û0(t )ÛDw(t )ÛD2(t ):
(i) the free evolution Û0 = exp{−iĤ0t/h̄}, (ii) the term ÛDw(t )
corresponding to Eq. (A4), and, finally, (iii)

ÛD2(t ) =
←
T exp − i

h̄

∫ t

0
dt ′Û †

DwÛ †
0 ĤD2(t ′)Û0ÛDw, (A9)

where ĤD2(t ) corresponds to the second line of Eq. (A8).
Therefore, the unitary operator in Eq. (A9) is

ÛD2(t ) =
←
T exp − i

h̄

∫ t

0
dt ′ ˆ̃HD2(t ′), (A10)

with

ˆ̃HD2(t ′) = h̄
√

ω1ω2εF

2
(e−iω2t ′

â2 + eiω2t ′
â†

2)

×
[

e−iω1t ′
(

b̂ − iω1εF 2t ′

2

)
+ H.c.

]
. (A11)

This Hamiltonian still contains terms proportional to the
wall’s operators. Since we are interested in the oscillation
frequency of the quadrature position operator of the second
cavity mode, we can account for the time evolution of the
system for large time, namely, t � 2/(ω1εF 2), and reason-
ably ignore these terms. Hence, the Hamiltonian in Eq. (A11)
reduces to

ˆ̃HD2(t ′) = h̄ξ t ′

2
sin(ω1t ′)(e−iω2t ′

â2 + eiω2t ′
â†

2), (A12)

where we introduced ξ = −ω1
√

ω1ω2ε
2F 3.

The time evolution of the quadrature operator of the second
mode can be estimated in the Heisenberg picture,

X2(t ) =Tr
[
X̂ H

2 (t )ρi
]
, (A13)

with X̂ H
2 (t ) = Û †(t )X̂2Û (t ) and X̂2 = â2 + â†

2. For our pur-
pose, we estimate the unitary operator in Eq. (A10) as

ÛD2(t ) = exp

{
ξ

4
[K (ω2 − ω1, t ) − K (ω2 + ω1, t )]â†

2 − H.c.

}

(A14)

modulo an overall complex phase that has no physical signif-
icance, and

K (ω, t ) =
∫ t

0
dt ′t ′e−iωt ′ = e−iωt (1 + iωt ) − 1

ω2
. (A15)

Finally, one obtains

X̂ H
2 (t ) = Û †

D2(t )Û †
Dw(t )Û0(t )X̂ †

2 Û0(t )ÛDw(t )ÛD2(t )

= e−iω2t itξ

4

[
â2 + ei(ω2−ω1 )t

ω2 − ω1
− ei(ω2+ω1 )t

ω2 + ω1

+ ei(ω2−ω1 )t/2 sinc[(ω2 − ω1)t/2]

ω2 − ω1

− ei(ω2+ω1 )t/2 sinc[(ω2 + ω1)t/2]

ω2 + ω1

]
+ H.c., (A16)

and, from Eq. (A13),

X2(t ) = ξ t

2

{(
1

ω2 + ω1
− 1

ω2 − ω1

)
sin(ω1t )

+ sin [(ω2 + ω1)t/2]sinc[(ω2 − ω1)t/2]

ω2 − ω1

− sin [(ω2 − ω1)t/2]sinc[(ω2 + ω1)t/2]

ω2 + ω1

}
. (A17)

Notice that the last line contains the function sinc(x) =
sin(x)/x, and therefore its contribution is negligible as soon
as t � 1/(ω2 − ω1). Note that the oscillation frequency of
X2(t ) does not depend on ω2. This means that every cavity
mode oscillates with frequency ω1 and amplitude proportional
to

√
ωn/(ωn − ω1).

3. Dependence of X2(t ) on ε

So far, we were interested in the oscillation frequency of
the position quadrature operator of mode 2. For this scope, the
unitary evolution employed so far was sufficient. This is due to
the fact that at least in the regime this analysis is based on, the
presence of losses does not affect the oscillation frequency of
the quadrature operator, but only its amplitude. Nevertheless,
we can still ask what the expected dependence of X2(t ) on
ε is, in order to make a comparison with Xw(t ). According
to our findings in Fig. 14, this dependence must generally
play a stronger role. This was already seen in Eq. (A17),
where the oscillation amplitude increases quadratically with
respect to ε.

For a further hint, we now account for the whole
Hamiltonian in Eq. (2), namely, we includes the up- and
down-conversion terms between cavity mode 2 and the wall.
Following the same procedure employed so far, after some
calculations we find that up- and down-conversion terms
contribute to the time evolution of X2(t ) with a further net
displacement,

Û2w =
←
T exp − i

h̄

∫ t

0
dt ′Û †

DwÛ †
D2Û

†
0 Ĥ2w(t ′)Û0ÛD2ÛDw

� exp

{
ξ 2t2

8
â†

2

[
ei(ω2−ω1 )t

ω2 − ω1
− ei(ω2+ω1 )t

ω2 + ω1

]
− H.c.

}
,

(A18)

where

Ĥ2w(t ) = h̄ε
ω2

2
(â2 + â†

2)2(b̂ + b̂†). (A19)
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Letting the unitary operator in Eq. (A18) act on Eq. (A17), we obtain

X2(t ) = 〈Û †
2wÛ †

D2Û
†
DwÛ †

0 X̂2Û0ÛDwÛD2Û2w〉 � ξ 3t3

16

(
1

ω2 + ω1
− 1

ω2 − ω1

)
sin(ω1t ) + O(ξ t ). (A20)

Although the scope of this analysis is not to accomplish a real estimation of the oscillation amplitude of X2(t ), it roughly provides
a benchmark for the comparison with Xw(t ), showing a strong dependence of X2(t ) on ε.
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