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Machine learning guided discovery of stable, spin-resolved topological insulators

Alexander C. Tyner
Nordita, KTH Royal Institute of Technology and Stockholm University 106 91 Stockholm, Sweden

and Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA

(Received 20 February 2024; revised 3 May 2024; accepted 31 May 2024; published 24 June 2024)

Identification of a nontrivial Z2 index in a spinful two-dimensional insulator indicates the presence of an odd,
quantized (pseudo)spin-resolved Chern number, Cs = (C↑ − C↓)/2. However, the statement is not biconditional.
An odd spin-Chern number can survive when the familiar Z2 index vanishes. Identification of solid-state systems
hosting an odd, quantized Cs and trivial Z2 index is a pressing issue due to the potential for such insulators to
admit band gaps optimal for experiments and quantum devices. Nevertheless, they have proven elusive due to
the computational expense associated with their discovery. In this work, a neural network capable of identifying
the spin-Chern number is developed and used to identify the first solid-state systems hosting a trivial Z2 index
and odd Cs. We demonstrate the potential of one such system, Ti2CO2, to support Majorana corner modes via
the superconducting proximity effect.
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I. INTRODUCTION

The comprehensive cataloguing of materials supporting
nontrivial band topology, as diagnosed via elementary band
representations (EBRs) and other efficient protocols relying
on analysis of symmetry eigenvalues, represents a remarkable
milestone [1–5]. However, it is now clear that these works
cannot represent a comprehensive analysis of bulk topology.
This is due to the existence of symmetry nonindicative phases
(SNIPs) [6–15]. Importantly, it has been demonstrated that
there exist a number of two-dimensional (2D) higher-order in-
sulators which fall in this category for which the ground-state
bulk invariant is a nonzero spin-Chern number, as defined by
Prodan [6].

The spin-Chern number, Cs = (C↑ − C↓)/2, has been
shown to be robust in both the presence of impurity effects
and the absence of spin-rotation symmetry. It is protected by
both the energetic bulk gap as well as the spin gap. The spin
gap is identified by constructing the projected spin operator
(PSO), PSO = PŝP, where P is the projector over occupied
states and ŝ is the preferred spin direction. In the presence
of spin-rotation symmetry, the eigenvalues of the PSO are
fixed to be ±1. When spin-rotation symmetry is broken, the
eigenvalues adiabatically deviate, but as long as the spectra of
the PSO remains gapped the spin-Chern number is robust. It is
further shown by Lin et al. [16] that for an odd, ground-state
spin-Chern number, only the bulk gap need be maintained
to protect the band topology. Under this formulation, the Z2

index and mirror Chern number both represent special cases of
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the spin-Chern number, however this statement is not bicondi-
tional. A finite spin-Chern number need not imply a finite Z2

index or mirror Chern number.
Identification of a nontrivial spin-Chern number in systems

lacking enhanced symmetry has proven computationally de-
manding, particularly in the context of ab initio simulations of
many-band systems [15–17]. While density-functional-theory
software exists for efficient symmetry analysis of the wave
functions and computation of Wannier center spectra [18–21],
these systems often fall under the category of higher-order
topological insulators (HOTIs) and can thus be “invisible” to
the Z2 index. In correspondence with a trivialized Z2 index,
the surface spectra does not support gapless modes which
can be used to diagnose topology. In certain cases, corner
localized states can be used to diagnose topology [22–26],
however corner modes are notoriously difficult to identify as
their presence depends on the geometry of the sample and in
the absence of chiral symmetry they are not pinned to zero
energy, often becoming hidden among bulk states.

Alternatively, in a recent work by Tyner and Goswami
[17], the proposal of Qi and Zhang [27] and Ran et al. [28]
to utilize magnetic flux tubes (π -flux vortices) as real-space
probes of both Chern and spin-Chern number was expanded
to ab initio simulations. It was shown to be robust in both
symmetry indicative and nonindicative phases. An automated
workflow was developed to scan 141 two-dimensional, spin-
ful (T 2 = −1) insulators. The result was identification of 21
quantum spin-Hall insulators, falling under the category of
SNIPs, but supporting a nontrivial, even spin-Chern num-
ber. While automated and basis agnostic, this work remained
computationally demanding. Furthermore, a two-dimensional
insulator supporting odd spin-Chern number and trivial Z2

index remained elusive.
This situation motivates a different search strategy relying

on development of a neural network capable of diagnosing the
presence of bulk topological order in T -preserving systems
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with T 2 = −1. While a machine learning based approach
does not eliminate the need for density functional theory
computations as they are necessary to validate the results,
this approach allows for creation of an optimal list of can-
didate materials that can be validated within a reasonable
timescale. Furthermore, prior intuition or knowledge of the
electronic properties of a given material is not necessary to
determine whether it is an optimal candidate for nontrivial
topology, allowing for a more diverse material landscape to be
considered. This neural network should posses the capability
to identify topological order of multiple types, including (a)
first-order insulators supporting a nontrivial Fu-Kane index,
(b) topological crystalline insulators admitting finite mirror
Chern numbers, and (c) higher-order or generalized quantum
spin-Hall insulators (QSHIs). Such broad capabilities are cru-
cial, as any system supporting a nontrivial Fu-Kane index or
mirror Chern number also supports a nontrivial (pseudo)spin-
resolved Chern number. Therefore, in the above list, systems
belonging to sets (a) and (b) are subsets of (c).

In this work we construct two convolutional neural net-
works (CNNs), both relying on voxel encoding of the crystal
structure [29,30]. The first produces a binary classification,
dictating whether the spin-Chern number is zero or finite. The
second produces a multiclass classification, dictating whether
the spin-Chern number is zero, odd, or nonzero and even.
These CNNs are then applied to a set of experimentally
synthesized, two-dimensional insulators in the computational
two-dimensional materials database (C2DB) [31,32]. Materi-
als of interest predicted to support nontrivial, odd ground-state
spin-Chern number are subsequently selected and analyzed in
depth, leading to identification of the first two-dimensional in-
sulator supporting |Cs,G| = 1 and a trivial Z2 index. This work
serves as a proof that the apparent computational expense
present in identification of spin-resolved band topology can
be overcome through the use of machine learning techniques.

There is a particular need for such efficient tools to diag-
nose (pseudo)spin topology given the ongoing experimental
interest in two-dimensional heterostructures and twisted ma-
terials. In these systems additional degrees of freedom such as
valley can give rise to pseudospin-resolved topology [33,34].

II. CONSTRUCTION OF TRAINING DATASET

The training dataset consists of spinful (T 2 = −1), two-
dimensional insulators. The corresponding ground-state spin-
Chern number is labeled as zero, odd, or finite and even. This
dataset is made distinct from existing databases by enhanced
criteria for labeling a system as topologically trivial. Fol-
lowing Ref. [17], a compound is labeled topologically trivial
only if it is demonstrated that an inserted magnetic flux tube
(vortex) admits no midgap bound modes.

It has been shown that for a spin-Hall insulator supporting
|Cs,G| = N , when flux is tuned to φ = hc/(2e) (π -flux) there
exist 2N midgap vortex bound modes (VBMs) [15,16,27,28].
The spin-Chern number can then be determined by comput-
ing quantized induced charge on the vortex. If the VBMs
are half-filled, the vortex acquires induced spin but no in-
duced charge. If we dope by Ne ∈ [−N,+N] electrons away
from half-filling, occupying all VBMs, the vortex acquires

induced charge δQ = Ne × e. If this condition is satisfied, the
spin-Chern number can be directly calculated by fixing Ne =
N such that δQ = |Cs,G| × e. While the introduction of spin-
orbit coupling causes the spin bound to the vortex to become
finite but nonquantized, the quantization of bound charge re-
mains robust. For this reason, quantization of bound charge
was used in Ref. [17] as the criteria for topological classifica-
tion. We choose to follow this procedure for construction of
the training dataset in this work, screening all materials in the
database of Mounet et al. [35] with less than ten atoms in the
unit cell which have not previously been labeled as topological
via existing symmetry based methods.

All first-principles calculations based on density-functional
theory (DFT) are carried out using the QUANTUM ESPRESSO

software package [36–38]. Exchange-correlation potentials
use the Perdew-Burke-Ernzerhof (PBE) parametrization of
the generalized gradient approximation (GGA) [39]. We
utilize norm-conserving pseudopotentials [40] as obtained
on the Pseudo-Dojo site [41]. Spin-orbit coupling is con-
sidered in all calculations. The WANNIER90 [19], Z2PACK

[20], and BERRYEASY [42] software packages were utilized
in calculation of all topological invariants. In order to fa-
cilitate automated analysis of the bulk topology, Wannier
tight-binding (WTB) models are constructed through use of
the selected columns of the density matrix (SCDM) method
introduced by Vitale et al. [43]. Manipulation of Wannier
tight-binding models for vortex insertion is done with a cus-
tom PYTHON program which will be made publicly available
upon being developed into a stand-alone package. The result
is a database of 246 symmetry nonindicative compounds with
the full results available at Ref. [44]. Despite this expanded
search, in each system analyzed the bulk invariant is found
to be either zero or an even spin-Chern number. A two-
dimensional insulator supporting odd spin-Chern number and
trivial Z2 index remained elusive.

To expand the dataset, all insulators supporting a nontrivial
mirror Chern number or Z2 index identified in Refs. [45–47]
are incorporated into the training set. This is possible due to
the fact that a nontrivial Z2 index or mirror Chern number
can be considered as a special case of the (pseudo)spin-Chern
number. We remark that we cannot include any materials
labeled trivial from Refs. [45–47] in the training data as this
may cause mislabeling of SNIPs. The resulting aggregate
dataset consists of 443 two-dimensional materials. Further
information regarding the composition of the dataset is visible
in Fig. 1.

III. DATA AUGMENTATION AND PROCESSING

A number of strategies for presentation of lattice structure
to CNNs have been developed and tested in recent years
[48–53]. In this work, we utilize the strategy of forming a
continuous representation by autoencoding voxel images of
the crystal structure to create a 2D crystal graph. We account
for the possibility of 79 different elements in the crystal struc-
ture, specifically atomic numbers 1–84 removing the noble
gases. Details of the training set are shown in Fig. 2. As a
result, regardless of the number of elements in a single-crystal
structure, 80 voxel images will be produced. An autoencoder
then translates each image into a vector. A similar process
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FIG. 1. Statistics of training dataset: Statistics of compounds contained within the training dataset. The periodic table is color coded
according to the number of times each element occurs in the dataset on a log scale. Elements in white do not appear in the dataset. The circular
plot details the breakdown of how many compounds support |Cs| = 2, 1, 0, and how many of the nontrivial materials are further identified by
a Z2 index or mirror Chern number. The breakdown of space groups present and their occurrences is further provided.

is done to form a voxel image of the lattice, which again
is translated into a one-dimensional array through use of an
autoencoder. These one-dimensional arrays are then reshaped
into 2D crystal images which can be presented to the CNN.
In this way the crystal structure obtains a continuous and
reversible representation.

Importantly, this process allows for implementation of a
data-augmentation strategy, expanding the dataset to include
∼103 data points such that the convolutional neural network
may achieve a level of accuracy sufficient to benefit our
materials search [48]. Namely, we permute the primitive lat-
tice vectors, altering the atomic positions accordingly and

FIG. 2. Construction of crystal graphs: Schematic detailing the construction of two-dimensional crystal graphs for each compound in the
training set. This process ensures a continuous representation of the structure that can be presented to the neural network.
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FIG. 3. Convolutional neural network architecture: Architecture of convolutional neural network for binary and multiclass classification.
The binary and multiclass classification utilize a sigmoid and softmax activation function, respectively, for the final dense layer. The leakyReLu
function is fixed to α = 0.2 in each case.

generating new 2D crystal images. This process allows for
training data to be augmented by a factor of two if only the
a and b primitive vectors are permuted, and up to a factor
of six if all are permuted. For further details of voxel image
production and autoencoding please consult the Supplemental
Material [54]. Details of the CNNs architecture for binary and
multiclass classification are visible in Fig. 3.

IV. NEURAL NETWORK PERFORMANCE

We begin with the CNN for binary classification; given the
limited training data available, it is expected that this model
will achieve higher accuracy. The dataset is randomized and
an 80%-10%-10% train-validate-test split is utilized. Early
stopping based on validation loss is implemented and the
batch size is set to 128. The CNN reaches a train-validation-
test accuracy of 96%-88.7%-88.5%. While extraordinary
accuracy for neural networks has become commonplace, we
note that these values are quite high given the limited training
dataset. For context, we compare these values with those
produced utilizing a convolutional crystal graph neural net-
work (CGCNN) in the Supplemental Material [48,54,55]. The
CGCNN architecture is commonly regarded as state of the art
for machine learning based property prediction in computa-
tional materials science. It is important to note that CGCNN
has not been selected as the primary approach in this work
as it disallows the use of the data-augmentation technique
of exchanging lattice parameters. This limits the size of the
total training dataset. For a larger dataset, the CGCNN method
could be advantageous. Other common machine learning ar-
chitectures for performing topological classification of crystal
structures rely primarily on generation of an input vector
constructed from features of the constituent atoms as well
properties of the nearest neighbors rather than a direct con-
tinuous image of the crystal structure [56–58]. In models
of this type, details of the crystal structure have also been
incorporated by dividing the training dataset such that all
constituent compounds correspond to a selected prototypical
crystal structure [59]. This approach is again problematic for
the purposes of this work as it would result in severely limiting
the size of the training dataset. We place emphasis on the use

of a continuous and reversible image of the crystal structure
as input to lay a foundation for the future incorporation of the
model in a generative artificial intelligence architecture [30].

For the multiclass classification model, we adjust the CNN
architecture to the form seen in Fig. 2. We again employ the
same split for training, test, and validation data and find a
train-validation-test categorical accuracy of 95%-89.5%-88%.
This represents a significant step toward isolating optimal
candidate SNIPs.

At this point it is important to discuss potential sources of
bias in the neural network. The most prominent source of bias
is likely to be the limited quantity of training data available.
This bias is expected as not all elements in the training data
set will appear with the same frequency. Those which appear
sparsely have the potential to have a significant impact on
the model, particularly if all compounds in which the ele-
ment is found have the same topological classification. Such
biases and trends are explored in detail in the Supplemental
Material [54].

V. APPLICATION OF CNN

We begin by selecting candidate compounds from the
C2DB [31,32] with the criteria that a compound must not
be included in the training database or previously identified
as topological via symmetry-based methods. Each compound
must also admit a bulk band gap greater than 0.1 eV and
be dynamically stable. Two-dimensional crystal graphs are
then constructed and analyzed using the binary classification
CNN. Compounds labeled as nontrivial are isolated and sub-
sequently fed to the multiclass CNN. We filter this final list
by number of atoms in the unit cell, selecting two compounds
with less than ten atoms in the unit cell predicted to support
|Cs| = 1, Os2Te4 and Ti2CO2.

Plots of the crystal structure and band structure for both
compounds are visible in Fig. 4. In order to perform topo-
logical analysis of the structures, a Wannier tight-binding
model is produced [19], exactly replicating only the Kramers-
degenerate bands nearest to the Fermi energy using carefully
selected orbitals. As these bands are significantly energeti-
cally separated from all other bands, the TB model reproduces
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(a) (b) (c) (d)

(e) (f) (g) (h)

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 4. Analysis of spin-resolved topological insulator candidates: Structure of (a) Os2Te4 and (e) Ti2CO2 as given via the C2DB database
[31,32]. The computed band structure along a high-symmetry path in the Brillouin zone detailing the bands nearest to the Fermi energy can be
seen in (b) and (f) for Os2Te4 and Ti2CO2, respectively. The gapped Wannier center spectra of both compounds, seen in (c) and (g), indicates
these systems are trivial under the Z2 index. The ground-state spin-Chern number is computed via spin-resolved Wilson loop, detailing a single
winding for both compounds, confirming |Cs| = 1.

the DFT data precisely. For more computational details please
see the Supplemental Material [54]. The spin-Chern number is
then computed directly via the method established by Prodan
[6,42]. This procedure requires defining the PSO, P(k)ŝP(k),
where P(k) is the projector onto occupied bands and ŝ is
the preferred spin axis. We identify the preferred spin axis
supporting a spin gap through a computationally expensive
trial-and-error procedure. However, once identified, we are
able to produce the results shown in Fig. 4, displaying calcula-
tion of the spin-Chern number via a spin-resolved Wilson loop
as detailed in Lin et al. [16]. Remarkably, both compounds
demonstrate proper labeling by the neural network and sup-
port of |Cs| = 1.

These results are of significance due to the robust nature
of the bulk invariant. Unlike other SNIPs which require the
preservation of the bulk spin gap, a challenging task ex-
perimentally, the bulk topological invariant of these systems
requires only preservation of the bulk energetic gap to re-
main intact. As a result, the bulk invariant is robust to the
influence of disorder [6] and other perturbations, much like
traditional Z2 topological insulators. Unlike existing topolog-
ical insulators, both systems support sizable bulk energetic
gaps, 0.325 eV and 0.713 eV for Ti2CO2 and Os2Te4, re-
spectively. These large energetic gaps make both materials
primary candidates for experiments and quantum devices, as
we explore in the following section. Furthermore, synthesis
of Ti2CO2 has been reported in the literature [60] as well
as single-crystal Os2Te4 [61]. In the case of Ti2CO2, synthesis
is accelerated by the commercial availability of TiC.

VI. ACCESSING MAJORANA CORNER MODES VIA
SUPERCONDUCTING PROXIMITY EFFECT

Prior works have explored the superconducting proxim-
ity effect in topological insulators [62–69]. In particular,
such proposals have focused on use of the superconducting
proximity effect to realize Majorana bound states (MBSs)
by layering a two-dimensional topological insulator on the
surface of a superconductor. The experimental realization of
MBSs is important due to their proposed utilization as a
platform for topological quantum computing [70]. A common
issue in the proposed platforms for realizing MBSs via the
superconducting proximity effect in topological insulators is
an extremely small topological gap. Experimental realizations
generally rely on known two-dimensional topological insula-
tors [68,69] such as 1T’-WTe2 [71] and PbTe [72,73] which
support normal state topological band gaps on the order of
tens of meV.

Similarly, proposals of platforms for the realization of
Majorana corner states generally rely on an induced d-wave
pairing. Experimental estimates for the induced pairing gap
are on the order of several meV [74–76]. Control of this small
topological gap poses a significant experimental challenge,
particularly as it requires extremely small levels of disorder
to be present in a given sample.

In this section we briefly investigate the superconducting
proximity effect in one of the proposed spin-resolved topo-
logical insulators listed above, Ti2CO2. In order to investigate
the superconducting proximity effect, we consider a device
constructed from a two-dimensional slab of Ti2CO2 placed on
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(a) (b)

(c) (d)

FIG. 5. Majorana corner modes via superconducting proximity
effect. (a) Schematic of setup for generating superconducting prox-
imity effect in Ti2CO2. (b) Band structure of BdG Hamiltonian Heff .
(c) States nearest zero energy for slab of Heff shown in (d) im-
plementing open boundary conditions along both principal axes.
(d) Localization of zero energy states shown in (c), demonstrating
that they are corner bound. Local density of states on a given site is
displayed as a function of color and site size for clarity. A larger site
size indicates increased local density of states.

top of a superconductor as shown schematically in Fig. 5(a).
To model the system, we construct an effective Bouligobov–
de Gennes (BdG) Hamiltonian Heff of the form

Heff (k) =
[

HWTB(k) �

�† −H∗
WTB(−k),

]
, (1)

where HWTB is the Wannier tight-binding model constructed
in the previous section for analysis of Ti2CO2. Following
Ref. [66], we include the superconducting proximity effect by
introducing a simplistic nondissipative pairing term �, which
we fix as a constant. The resulting band structure of Heff is
shown in Fig. 5(b).

We investigate the presence of MBSs by performing exact
diagonalization of Heff for a system of 49 × 37 unit cells, and
� = 180 µeV. Fascinatingly, examining the states nearest to
zero energy, the results in Fig. 5(c) demonstrate the presence
of two zero-energy MBSs. Investigating the localization of the
MBSs, we find the results in Fig. 5(d) demonstrating that these
states are corner bound and exist on opposite sides of the sam-
ple. Importantly, as seen in Fig. 5(b), the bulk energetic gap

�Egap is on the order of ∼0.45 eV. This is significantly larger
than the typical value for known alternatives and underscores
the implications of identifying large band-gap SNIPs. Beyond
the intriguing properties which they support on a theoretical
level, SNIPs provide a viable route to overcome current prac-
tical experimental issues in the identification of MBSs.

Furthermore, we highlight that in this setup, Majorana
corner modes survive when the pairing term is suppressed.
Such pairing is crucial for the existence of corner modes
in alternative proposals based on the proximity effect in
two-dimensional first-order topological insulators (FOTIs)
[68,69,73]. This result underscores the potential utility
of spin-resolved topological insulators in experimental
platforms.

VII. SUMMARY

In this work, machine learning guided discovery of sym-
metry nonindicative topological phases in two dimensions
has been shown to be a promising route to the identification
of large band-gap quantum spin-Hall insulators. Further-
more, the resulting network can leverage a limited amount of
training data through augmentation techniques. In the past,
machine learning techniques for identification of nontrivial
topology were dismissed due to the computational efficiency
of directly calculating the bulk invariant using symmetry
indicator techniques. The immense computational expense
associated with direct calculation of band topology in SNIPs
warrants the use of a different machine learning approach.
By limiting the associated computational expense, it is now
possible to go beyond analysis of known compounds that
have been successfully synthesized and explore large datasets
such as the virtual two-dimensional material database (V2DB)
[77]. The neural network produced in this work can also serve
as a building block in the future development of generative
artificial intelligence models for inverse design of topolog-
ical materials. Finally, we expect that such a network can
find extensive use in analyzing the growing number of two-
dimensional heterostructures and twisted architectures which
have attracted experimental interest but where the normal
state band topology is unknown due to the complexity of a
many-atom unit cell, which will be explored in a future work.
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