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Role of tissue fluidization and topological defects in epithelial tubulogenesis
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Cellular rearrangements, as primary sources of tissue fluidization, facilitate topological transitions during
tissue morphogenesis. We study the role of intrinsic cell properties such as cell polarity and cell-cell adhesion
in shaping epithelial tissues using a minimal model of interacting polarized cells. The presence of a vortex in
the cell polarization poses the topological constraint that induces an inwards migration with the formation of a
conical shape. Local rearrangements at the tip of the cone lead to the onset of tube formation. Switching between
collective migration and structural rearrangements is key for balancing the contrasting tendencies, such as the
tissue rigidity needed to preserve shape and the tissue fluidity allowing for topological transitions during tissue
morphogenesis.
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I. INTRODUCTION

Collective structural arrangements and migration of cells
within epithelial tissues are important physical processes
that underlie various phenomena such as embryonic or tis-
sue development, wound healing, homeostasis, and cancer
metastasis. Understanding the complexity of cellular interac-
tions and the resulting emergent collective behaviors presents
formidable challenges both experimentally and theoretically.
Epithelial tissues are a ubiquitous type of biological tissue
found throughout the body of multicellular organisms. Ep-
ithelia are organized as mono- or multilayered cell sheets that
function as protective layers covering internal organs, line
body cavities, and form the outer skin layer.

On the structural level, epithelial monolayers can exhibit
two distinct types of cell polarity: (i) the apical-basal (AB)
polarity, which provides the surface orientation, and (ii) the
planar cell polarity (PCP), orthogonal to the AB polarity axis,
that refers to the structural arrangement of cells within the
tissue surface [1,2]. Apical-basal polarity represents the main
polarity axis, defining the “top” (apical surface) and “bottom”
(basal surface) of the epithelial layer. Typically, the apical
side faces the lumen or the outer surface of the monolayer,
while the basal side is in contact with the basal membrane,
which faces the underlying connective tissue [3]. Planar cell
polarity, on the other hand, is specified by a group of pro-
teins (including Frizzled, Vang, Prickle, Diego, Flamingo, and
Dishevelled) specifically localized to the “front” and “back”
(or “left” and “right”) of each cell, leading to the structural
alignment of cells within the monolayer [4]. The functional
role of PCP is evident in fully developed skin tissues, where
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PCP helps align hair follicles [5,6]. In addition, PCP proteins
may also play a role in dynamic processes during tissue de-
velopment [7–11]. Epithelial monolayers can also undergo
spontaneous polarization and collective migration in a manner
that seems to be independent of PCP proteins. This process
typically involves structural rearrangements of actin filaments,
forming protrusions, called lamellopodia, at the leading edge
of the cell. Such a spontaneous transition is fundamental to
the epithelial-to-mesenchymal transition (EMT), which plays
a crucial role in wound healing, development, and tumor pro-
gression [12].

Another characteristics of epithelial monolayers is their
ability to maintain tight intercellular connections through
cell-cell adhesion. This is essential for their barrier function
and for their ability to control transport across the tissue.
However, under specific conditions involving dynamic tissue
remodeling, these epithelial sheets exhibit an ability to mod-
ulate cell-cell adhesion. By temporarily loosening cell-cell
adhesion, they facilitate increased neighbor exchange and re-
arrangement, enabling necessary tissue movements. Examples
of this kind of epithelial fluidization occur during wound clo-
sure [13] and tissue morphogenesis and development [14–16].

Epithelial monolayers have the ability to form intricate
three-dimensional morphological structures such as folds,
tubes, and branching networks [7,8]. During morphogenesis,
topological defects with full-integer charges emerge as key
organizational centers for morphological events guiding topo-
logical transformation in evolving shapes. This is evidenced
by experimental studies in the model organism Hydra, where
long-lived +1 topological defects are formed through the
nematic ordering of actin filaments and facilitate epithelial
morphogenesis [17]. In addition, a growing body of empirical
evidence from various tissue systems suggests that similar
topological defects also appear in the velocity patterns or
structural alignment of cells within epithelial tissues during
development and homeostasis. One prominent example is
found in the small intestinal epithelium, characterized by the
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presence of crypts and villi. During homeostasis, epithelial
cells within the crypt converge outwards and form a +1 defect
in their structural arrangement. Similarly, at the villi tips,
cells migrate radially before shedding, effectively forming
+1 defects by cells inwardly migrating towards the defect
core [18–20]. Furthermore, many epithelial tissues, such as
those in the kidney, lung, and glands, exhibit branching and
tubular morphologies. The initiation of these structures is
thought to involve the formation of buds that extend orthogo-
nally from the parent tissue, potentially creating a +1 defect
within the velocity field at the budding site [21]. In addition,
endothelial tissue, a specialized epithelium lining the vascular
system, also exhibits similar branching morphology, indicat-
ing a potential role of +1 defects in sprouting and blood vessel
generation during angiogenesis [21,22]. Finally, the role of
+1 defects in shaping epithelial morphogenesis is supported
by studies showing that epithelial monolayers cultured on
flat surfaces spontaneously form vortices and swirls, signi-
fying flow patterns that generate +1 defects in the velocity
field [23–27].

Despite strong evidence suggesting a role for +1 defects
in epithelial morphogenesis, several key questions remain
unanswered, in particular what types of collective behaviors
induce the formation of these defects and their feedback on
morphological changes and tissue flows.

In this paper, we study the role of topological constraints
and tissue dynamics on the tissue morphology. We approach
this problem using a theoretical model of a tissue mono-
layer formed by polarized cells interacting with each other
through cell-cell adhesion forces. We predict that during mor-
phogenesis, the epithelial tissue evolves towards balancing
competing tendencies, namely, tissue rigidity needed for its
functional integrity and sustaining shapes, and tissue fluidity
enabled by structural rearrangements and needed for shape
transformations. Tissue rigidity, as the ability to sustain elastic
distortions, is intrinsically rendered by the collective ordering
of planar cell polarities within our model, whereas in biolog-
ical tissues, there might also be environmental factors such
as the extracellular matrix or neighboring cells which may
contribute to the same effect. We find that a vortex in the
tissue polarization induces a relaxational dynamics towards
a conical shape. However, since the cone harbors a singular
point, it is a source of structural rearrangements and thus local
fluidization which triggers the onset of tube formation. The
straight tube is sustained by the concentric pattern in the pla-
nar cell polarities with a fixed vortex. Fluctuations can break
this radial symmetry and induce the formation of a flaplike
structure instead.

The rest of the paper is structured as follows. In Sec. II,
we introduce a minimal model of polarized cells with ad-
hesive interactions and discuss the finite-size effects of the
disk geometry. The cell migration patterns emerging around
isolated full-integer defects in the orientation of PCPs within
a flat tissue are studied in Sec. III. We show that asters
and vortices induce transient outward and inward migration,
respectively, whereas spirals sustain persistent spiraling mi-
gration. In Sec. IV, we discuss the role of localized tissue
fluidization in the transition from a cone to tubular struc-
tures. Concluding remarks and a summary are presented in
Sec. V.

II. MINIMAL MODEL OF POLARIZED EPITHELIUM

To explore the interplay between tissue polarization and
fluidization, we introduce a minimal model of polarized cells
that interact with their neighbors through adhesion forces
modulated by the cell polarities [28,29]. The AB polarity p
is a unit vector which is along the up-down axis of a cell
and represents the cell elongation out of the tissue surface.
Hence, p tends to point in the same direction as the outward
normal of the tissue surface. Orthogonal to this is the PCP
represented by the unit vector q which lies within the tissue
surface. The cells interact with their nearest neighbors (n.n.)
through a potential energy that contains two contributions:
(i) an isotropic interaction V (0)

i j that depends only on the pair
separation distance, ri j = |ri − r j |, and (ii) an anisotropic part
V (1)

i j that accounts for soft repulsion and attraction forces
modulated by the local orientation of the cell polarities rel-
ative to each other and to their pair separation vector. Hence,
Vi j = V (0)

i j + V (1)
i j , where [28]

V (0)
i j = λ0(e−ri j − e−ri j/a0 ), (1)

with a0 > 1, which is minimal at the pair distance r0 =
a0

a0−1 ln a0. Adhesion forces mediated by polarities are
anisotropic and described by the second contribution,

V (1)
i j = e−ri j − (λ1S1 + λ2S2 + λ3S3)e−ri j/a0 , (2)

which is minimal at the same distance when λ1 + λ2 + λ3 = 1
corresponding to neighboring cells having perfectly aligned
polarities relative to each other, i.e., pi ‖ p j , qi ‖ q j , and per-
pendicular to the pair distance vector, i.e., pi, j ⊥ ri j , qi, j ⊥
ri j . The strength of the attraction is modulated by the orienta-
tion of polarities relative to each other and the pair separation
vector,

S1 = (pi × ri j ) · (p j × ri j ), (3)

S2 = (pi × qi ) · (p j × q j ), (4)

S3 = (qi × ri j ) · (q j × ri j ), (5)

such that S1 = S2 = S3 = 1 for equilibrium configurations.
We may notice that S1 couples the surface normal with the
cell positions and maintains cells within the tissue surface,
whereby the AB polarities align along the normal to the tissue
surface. On the other hand, the S3 coupling the cell positions
with the planar cell polarities may contribute to the normal mi-
gration of the cells. The S2 term is important for maintaining
orthogonality between the AB polarity and PCP, i.e., having
two distinct polarities, which is needed for curved surfaces.
The coefficient corresponding to S1 needs to be greater than
that of S3 in order to identity the AB polarity with the surface
orientation, as discussed later.

Cells migrate and reorient their polarities due to these
interactions, following the overdamped dynamics,

ṙi = −
∑

j=n.n. of i

∂Vi j

∂ri
+ η

(1)
i , (6)

ṗi = −
∑

j=n.n. of i

∂Vi j

∂pi
+ η

(2)
i , (7)

q̇i = −
∑

j=n.n. of i

∂Vi j

∂qi
+ η

(3)
i , (8)
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(a) (b)

FIG. 1. (a) Two neighboring cells i and j, since for all other third
cells k, ri j < rk−k , and thus r2

i j < r2
ik + r2

jk and the angle ∠IKJ <

π/2. (b) Two cells that are not neighbors, since there exists a third
cell k, where the angle ∠IKJ > π/2 (λ0 = 2).

with small random fluctuations η(α) from the environment,
modeled as uncorrelated Gaussian noise of zero mean and
small standard deviation,〈

η
(α)
i (t )η(β )

j (t ′)
〉 = 2σδ(t − t ′)δi jδαβ. (9)

By construction, the deterministic evolution preserves the
unit norm of the polarities, which is the typical micro-
scopic description of order parameters. This was specifically
achieved by following the simulation methods described in
Ref. [29]. However, due to noise, the norms can fluctuate.
Therefore, we normalize the polarity vectors after each time
step.

Cell rearrangements. We use an Euclidean metric to con-
struct the connectivity network of cell neighbors. Cells i and
j are considered neighbors if and only if they are closest in
distance to their midpoint than any other third cell. This geo-
metric rule is achieved when the distances between cells i and
j and any other cell k satisfy the cosine rule r2

i j < r2
ik + r2

jk , as
illustrated in Fig. 1. This condition is similar to the Voronoi
construction, with the advantages that it is computationally
more efficient and can be generalized to three dimensions, and
beyond single surfaces.

We distinguish two different dynamical regimes: (i) cells
remain in contact with their initial neighbors, thus rendering
tissue rigidity, and (ii) cells can undergo neighbor exchanges
to maintain the minimum neighbor distance, resulting in tissue
fluidization. Numerically, it suffices to update the cell neigh-
bor list at regular time intervals which may be longer than the
discretization time step. This is consistent with the numerical
observation that the rate of neighbor exchanges is slow on the
discretization time dt . Checking for neighbor updates more
frequently than the neighbor exchange rate does not change
the results, but it is computationally expensive, as the neighbor
update step is the most time-consuming step in the algorithm.

The evolution equations from (6)–(8) with fixed cell-cell
connectivity represent a relaxational dynamics towards min-
imizing the total potential energy stored by surface bending
(curvature) or orientational distortions in the alignment of
PCP vectors. In this regime, the collective cell migration
tends to get arrested in metastable configurations due to frus-
trations in the cell connectivity network. This is, however,

circumvented by relative migration corresponding to local
rearrangements to preserve the minimum neighbor distance.

In this computational study, we set the parameters asso-
ciated with the anisotropic interactions to fixed values given
by λ1 = 5/11, λ2 = 4/11, and λ3 = 2/11 such that they sum
up to one. The relative values of λ1 and λ3 determine which
of the polarities point out of the surface and which remain
in the surface. For λ1 > λ3, we ensure that the p’s represent
the AB polarities pointing out of the surface. When λ1 and λ3

are similar in magnitude, monolayers are not preferentially
formed. We have included the specific value of λ0 for the
isotropic interactions in each figure caption. The value of λ0

determines the strength of the isotropic interactions in com-
parison to the polar forces. Since we keep λ1 + λ2 + λ3 = 1,
a value λ0 � 1 means that isotropic adhesion is negligible,
while λ0 � 1 leads to clumping. The isotropic interactions
are important for maintaining the tissue as a simply connected
surface under outwards migration, such as the one induced by
an aster (no holes).

We simulate the dynamical equations using as initial condi-
tion a disk geometry with hexagonal packing of the cells. The
cell positions and polarities have free boundary conditions.
For a flat tissue, we fixed the AB polarities along the z axis,
i.e., p = (0, 0, 1). This suffices to maintain the evolution of
the cells within the (x, y) plane. The different configurations
of cell polarities are discussed separately in the next sections.

Finite-size effects. We use free boundary conditions for the
dynamical variables. To quantify the boundary effect on the
PCPs, we consider a metastable configuration where the q
polarities uniformly point in the same direction for the bulk
cells and rotate in different directions for the cells within a
boundary layer to ensure that there is a net +2π rotation
imposed by disk geometry through its Euler characteristic
χ = 1. This is also illustrated in Fig. 2(a). We measure the
local deviation in the orientation of the q polarities from their
uniform (bulk) orientation qb, i.e., 1 − qb · qn, as a function
of the radial distance from the center of the disk domain. In
Fig. 2(b), the envelope of this deviation is plotted as func-
tion of the radial distance r/R (relative to the radius R). The
deviation decreases exponentially e−(R−r)/ξ with the distance
from the boundary and its corresponding characteristic length
ξ ≈ 0.2R is independent of model parameters. The hexagonal
packing of cells introduces a ragged edge of the disk which
also influences the perpendicular orientation of the polarity at
the disk edge. However, this effect is much more localized
and negligible compared to the one introduced by the free
boundary conditions.

III. MIGRATION PATTERNS IN A FLAT TISSUE

Through cell-cell adhesion forces described by Eqs. (6)–
(8), the PCPs qi tend to align along a preferred orientation
to form polar order. Since the disk geometry has the Euler
characteristic χ = 1, there will be a net +2π rotation of the
qi. This can be achieved as an edge effect (see Fig. 2) or
through a structural arrangement induced by the presence of
a topological defect of +1 charge at the center of the disk.
Topological defects locally melt the orientational order and
induce long-range deformations which feed into both collec-
tive and relative migration.
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(a)

(b)

FIG. 2. (a) Metastable orientation of q. (b) Envelope of the de-
viation of q orientation from the uniform bulk for different system
sizes. Semilogarithmic inset shows the exponential relaxation with
the characteristic length scale fitted to ξ ≈ 0.2R.

We first consider a flat tissue with fixed AB polarities along
the normal to the tissue plane, i.e., pn = (0, 0, 1), and allow
cells to migrate following Eqs. (6) with or without neighbor
exchanges.

As proof of concept and to bridge with hydrodynamic
models, we consider the setup of a single defect embedded in
a uniform polarity orientation. From classical XY spin mod-
els [30] as well as more recent hydrodynamic models of polar
active matter [31], we know that topological defects induce
long-range orientational distortions and flows that decay alge-
braically with the radial distance to the defect core. Further-
more, same-charge defects repel each other, while oppositely
charged defects attract and eventually annihilate each other.
We show below that the same effects are also predicted by our
discrete cell model for isolated defects and pairs of defects.

The profile of the PCPs qi induced by an isolated defect is
fixed instantaneously to the imposed orientational structure of
an isolated defect. Alternatively, one may include an energy
contribution due to deviations from the pi polarities from the
imposed profile, resulting in a linear restoring force to the
desired polarity configuration. The isolated defect inserted at

(a)

(b) (c)

FIG. 3. (a) Radial dependence of the average cell density at a late
time t = 1000 for different types of defects. (b),(c) Instantaneous cell
migration profile (blue) for (b) an aster and (c) a vortex. Averages
are taken over the transient time, 10 initial configurations, and noise
seeds. The corresponding polarity profiles (values for q) are plotted
in red (λ0 = 2).

the center of the disk imposes a polar orientational field θ

given by [31]

θ = θ0 + m arctan (y/x), (10)

where m = ±1 is the topological charge picked up by an
arbitrary contour integral

∮
C dθ = 2πm enclosing the defect.

The constant phase θ0 gives the baseline of the defect. For a
defect with m = −1, the baseline phase can be set to θ0 = 0
by a reorientation of the defect. However, this baseline phase
θ0 is an intrinsic phase for the m = +1 defect, and its value
distinguishes three types of defects: θ0 = 0 corresponds to an
aster, θ0 = π/2 for a vortex, and θ0 ∈ (0, π/2) gives a spiral
defect [31]. Due to their migrations, cells acquire different
orientations of their PCP depending on their distance from
the defect. Thus, while the polar orientation θ is quenched,
the actual qi polarities are obtained by evaluating θi = θ (ri)
at their current cell position ri, i.e., qi = [cos(θi), sin(θi), 0].

A. Transient migration

With or without neighbor exchanges, both an aster (θ0 = 0)
and a vortex (θ0 = π/2) give rise to a transient radial mi-
gration corresponding to an outward motion for an aster
(regardless of whether the aster arrangement of cell polarities
is inward or outward) and an inward motion for a vortex. This
divergent or convergent migration leads to the depletion or
accumulation of cell density around an aster or a vortex, re-
spectively, as shown in Fig. 3(a). We also compute the typical
patterns of cell migration by averaging over different initial
conditions, time, and noise seeds. These average profiles are
illustrated for an aster [Fig. 3(b)] and a vortex [Fig. 3(c)].
The divergent migration from an aster is balanced out by the

023315-4



ROLE OF TISSUE FLUIDIZATION AND TOPOLOGICAL … PHYSICAL REVIEW RESEARCH 6, 023315 (2024)

(a) (b)

FIG. 4. (a) Transient cell migration induced by −1 defect de-
forms the disk into an X shape. These are velocities shown in blue.
Averages are taken over the transient time, initial conditions, and
noise seeds. The structure of the polarities is shown in red (values
for q). (b) Snapshot of the tissue configuration at t = 5000 induced
by the −1 defect (λ0 = 2).

isotropic attraction forces (tuned by λ0 parameter) preventing
ruptures, such that the cells tend to stagnate into simply con-
nected configurations.

Notice that for an aster, the outward migration pattern
aligns with the divergent polarity profile, while for the vor-
tex, there is a reversal of motion from inward in the bulk
to outward on the rim of the disk. This reversal effect is
characteristic to +1 defects as predicted from a hydrodynamic
model in Ref. [31]. Interestingly, we find that it is also present
for a spiral defect, as discussed later.

For the −1 defect, the cell polarity alignment has a fourfold
saddle structure. This induces an eightfold saddle structure in
the migration pattern, as shown in Fig. 4(b), and is consistent
with the theoretical prediction from a hydrodynamic model
of polar active matter [31]. The saddle point introduces large
frustrations in the cell-cell connectivity, which are removed by
local neighbor exchanges. These spontaneous rearrangements
occur along the principal axes oriented at π/4 degrees with
respect to the saddle point axes and lead to the transient
fluidization with the formation of an X-shaped tissue.

B. Persistent migration

The only configuration with persistent cell migration corre-
sponds to a spiral, θ0 ∈ (0, π/2). Under neighbor exchanges,
cells sustain a chiral flow, as shown in Fig. 4(a). The flow
chirality is determined by that of the spiral in the center of the
disk and changes sign near the boundary of the disk. This is
similar to the reversal of transient divergent migration induced
by a vortex and the flow reversal predicted in Ref. [31]. To
further bridge to the hydrodynamic models, we compute the
azimuthal speed (angular velocity) for this vortical flow as a
function of the radial distance to the spiral defect. In Fig. 5,
we see that it exhibits the 1/r scaling at intermediate scales
away from the defect core (discrete nature) and the finite
boundary. Notice that the azimuthal speed reverses its sign
near the boundary layer, i.e., at 1 − ξ , which implies that ξ is
the relevant length scale for this flow reversal.

In Fig. 6, we illustrate the typical orientational flow fields
(normalized vector field) induced by one pair of defects (two
vortices, one vortex and one −1 defect and two −1 defects).
The cell migration pattern changes nontrivially in the presence

(a)

(b)

(c)

FIG. 5. (a),(b) Average azimuthal flow velocity as a function of
the radial distance from a spiral (m = 1, θ0 = π/4) for different disk
radius R. The dashed line shows the 1/r scaling. The finite-size effect
is determined by the thickness of the boundary layer ξ . (c) Persistent
flow for a spiral defect. Motion of the particles in blue, embedded
defect in orange (values for q). The polarities of the cells are updated
based on their global position to ensure a fixed defect type (λ0 = 2).

of multiple defects due to the long-range interactions between
defects.

C. Defect density field

To further characterize the polar order within the tissue and
its topological defects, we coarse grain the qn polarities to
obtain a smooth polarization field,

�(r′) = 1

N

N∑
i=1

Pi · qiδ(r′ − r′
i ), (11)

corresponding to an O(2) vector order parameter of the tissue
polarization. r′ = Pi · r is the in-plane coordinate and Pi =
(I − pipi ) is the in-plane projection operator for the ith cell.
While the qi are unit vectors, the corresponding polarization
field can vary smoothly in magnitude to represent distortions
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FIG. 6. Time snapshots of the evolving qi polarities for two
topological defects: (a) two initial vortices turning into spirals while
repelling each other, (b) one vortex turning into a spiral as it ap-
proaches the m = −1 defect, and (c) two m = −1 defects repelling
each other. The background field shows the defect density charge ρ

field (λ0 = 1.5). Color bar indicates the value of m.

in the collective alignment of polarities on the tissue scale
due to random orientations of the individual PCPs. In regions
where the PCPs point in the same direction, the polariza-
tion field saturates in magnitude to |�| = 1, whereas when
the PCPs point in random and uncorrelated directions, they
average out to zero net polarization, i.e., |�| = 0. Thus, the
polarization field represents a vector order parameter for the
polar order on the tissue scale and takes a value in the unit
disk. This is similar to the magnetization field in the XY model
and is also related to the condensate wave function within the
Gross-Pitaevskii theory of weakly interacting Bose-Einstein
condensates [32]. Topological defects are singular points in
the orientation field, θ (r) = arctan(�y/�x ), corresponding to
θ becoming multivalued at these points. Since the order pa-
rameter is a smooth field everywhere, these singular points
are regularized by having finite cores, where the magnitude
|�| smoothly approaches zero. Thus, topological defects are
phase singularities with a finite core in the O(2) order param-
eter. The phase singularity defines the topological charge, as
discussed in Sec. III, while the vanishing magnitude controls
the defect core. Using both ingredients, we can formulate
a nonsingular field theory of defects as zeros of the order
parameter based on the framework proposed by Halperin and
Mazenko and further developed in Ref. [33]. Thus, we can
represent a topological defect of charge m positioned at the
origin of our 2D coordinate system by the signed Dirac δ

function locating the phase singularity with charge m. By a
change of variables, this is equivalent to the Dirac δ locating
the zeros of �, namely,

mδ(r) = det

(
∂�

∂r

)
δ(�), (12)

where the sign of the Jacobi determinant is equal to m. In
Ref. [33], we have shown that this Jacobi determinant is a
smooth field which is zero everywhere, except at the core
region of a defect or a localized, nonlinear excitation. Around
topological defects, this field also defines the topological
charge. By normalizing it with respect to the uniform state,
we can then define the defect density ρ as follows:

ρ = 1

π�2
0

[(∂x�x )(∂y�y) − (∂x�y)(∂y�x )], (13)

where �0 is the constant magnitude of the uniform polariza-
tion. Topological defects are initially embedded in the phase
of the polarization field as singularities,

θ = θ0 +
∑

i

mi arctan

(
y − y0,i

x − x0,i

)
, (14)

with topological charges mi = ±1. For two defects, we use the
initial position coordinates (x0,i, y0,i ) = (0,±15) and evolve
the cell positions and the qi polarities according to Eqs. (6)
and (8), where cells are allowed to exchange neighbors in
order to preserve the minimum neighbor distance.

As shown in Fig. 6, the defect density field ρ tracks very
well with the topological charges of the moving defects. The
defect core size is about two cell units for the parameter values
that we have used, and typically it is the smallest length scale
on the tissue scale, as also illustrated in Fig. 6 for pairs of
well-separated defects. By tracking the defects in space and
in time, we observe that the cell-based model reproduces the
behavior of topological defects predicted by hydrodynamic
models, namely, that same-sign defects repel while opposites
attract. It would be interesting to further explore and apply
this nonsingular defect field approach to better quantify the
topological features observed in cell tissues experiments, for
instance, in the recent experiments demonstrating polar order-
ing of collective cell migration guided by defects [34].

IV. CONE VERSUS TUBE

We now relax the zero curvature constraint by allowing
the AB polarities to evolve according to Eq. (7), which will
induce cell migration normal to the surface. We study the
morphological response of the tissue due to the presence of a
vortex in the qi polarities and see how cell neighbor exchanges
induce the formation of a tubular structure.

To induce a morphological change, we perturb the disk
with a Gaussian bump of small height h = 3 cell units, as
illustrated in Fig. 7(a). Using the radial symmetry of the
vortex, we can extend the method of embedding a vortex in
the configuration of the qi polarities from Sec. III by fixing
the orientation of the qi along concentric rings centered at the
vortex position. The cell migration and the evolution of tissue
curvature are governed by the dynamics of the ri’s and pi’s. At
each time step, we evaluate the orientation of the qi polarities
along concentric rings at a distance r from the vortex using
the static orientational profile of θ . Embedding other types of
full-integer defects for curved tissues is more challenging and
remains to be studied separately.

The vortex is a source of inward migration and accumula-
tion of cells towards the Gaussian bump and this leads to a
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(a)

(b)

(c)

(d)

FIG. 7. Morphological response to an imprinted vortex in the ab-
sence of neighbor exchanges. (a) Initial Gaussian bump perturbation
(with height exaggerated for visualization purposes). (b) Formation
of a conical shape. (c) Profile of the instantaneous cell velocity along
the (x, z) cross section for different times. (d) Relaxation to the
asymptotic conical shape (λ0 = 2).

normal migration. From energetic considerations, the vortex
localizes the energy associated with large orientational dis-
tortions. In the absence of neighbor exchanges, the collective
migration is towards minimizing this total energy and thus at-
taining an equilibrium shape. Subsequently, the normal migra-
tion is seeded at the vortex center by the “leading” cells that
pull the rest of the tissue into a conical shape. The relaxation
towards the cone is shown in Figs. 7(a)–7(d). The overdamped
dynamics slows down as the conical shape is approached
asymptotically. This equilibrium shape is also attained when
we allow the PCPs to evolve unconstrained. By allowing the
local neighbor rule to change the cell neighbor connectivity,
we enable localized fluidization and this fundamentally alters
the normal migration path. For the vortex configuration, where
the inward migrations within the tissue lead to normal mi-
gration, the local fluidization induces a topological transition

(a)

(b)

(c)

FIG. 8. Morphological response induced by a fixed vortex in the
presence of cell rearrangements. Tubular growth at (a) t = 500 and
(b) t = 1500. (c) Profile of the instantaneous cell velocity along the
(x, z) cross section for different times. The color map shows the den-
sity of neighbor exchanges per cell, indicating localized fluidization
around the evolving tube (λ0 = 2).

from a conical shape to a tubular structure, as shown in Fig. 8.
The ability to form this tube is related to the coupling strength
between the two polarities, which is determined by the relative
value of λ2. With very low values of λ2, we find that the
interaction of the two polarities does not greatly affect the
curvature. With very high values of λ2, we find that the sheet
adopts a conelike shape, as in Fig. 7. It is only at intermediate
values of λ2 that we achieve this spouting behavior.

We introduce a scalar field defined by the cumulative
number of neighbor exchanges per cell to better quantify the
fluidization at the onset of tube formation and show that it is
highly localized in space. This is shown in the color map of
Fig. 8. The density of rearrangements is zero in the begin-
ning as the tissue responds by collective relaxation towards
the conical shape. Eventually, the curvature at the tip of the
cone is sufficiently high to trigger a local cell neighbor ex-
change which blunts the tip by opening a small hole and
marks the onset of tube formation, as shown in Fig. 8. The
continuous cell rearrangements at the top and on the side of
the tube maintain the normal growth. Most of the cells away
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FIG. 9. Time snapshots during the formation of a flap under
vortex dynamics and cell rearrangements: (a) t = 575, (b) t = 625,
(c) t = 675, (d) t = 1500. The color map shows the density of neigh-
bor exchanges per cell and indicates that structural reconfiguration is
localized around the evolving flap (λ0 = 2).

from the tube remain fixated by their neighbors and migrate
collectively. However, the fluidization initiated by the normal
growth permeates through the in-tissue migration on localized
streaks or shear zones.

Interestingly, the unconstrained evolution of the qi’s po-
larities renders a morphological transition from a tube to flap
structure, as shown in Fig. 9. At the base of the bump and in
the far field, the concentric ordering of the polarities induced
by a vortex is still maintained, but the vortex center may move
its position due to noise. These fluctuations are enough to
spontaneously break the rotationally symmetric shape by in-
ducing a bend. This leads to a difference in curvature between
the inside edge of the bending tube (higher curvature) and the
outside edge of the tube (lower curvature). As a consequence,
the side of the tube with higher curvature stores more energy

FIG. 10. Onset of out-of-plane growth. The fraction of cells that
is more than two cell widths above the flat surface as a function
of time in semilogarithmic scale: flap, tube, cone I (rigid, moving
defect), and cone II (rigid, fixed defect) (λ0 = 2).

and stagnates in the growth, while the side of the tube with
lower curvature continues to grow, rendering a flaplike shape.
Interestingly, the ordering of the polarities on the flap retains
the vortexlike structure. This indicates that the tissue would
rather change its shape than alter its topological ordering,
pointing to the robustness of the topological constraint. The
density of structural rearrangements remains localized on the
growing flap and along narrow steaks in the far field that are
akin to shear zones in granular matter (see Fig. 9).

This topological robustness is also reflected in the global
properties of the growing shape and the total number of neigh-
bor exchanges, as shown in Figs. 10 and 11. At the onset
of normal growth, we see that the density of cells inside the
growing shape tends to increase logarithmically ∼ ln t for dif-
ferent classes of shapes with or without neighbor exchanges.
We attribute this logarithmic growth to the presence of the vor-
tex guiding the growth through the inward migration pattern,

FIG. 11. The number of neighbor exchanges, Nc, as a function of
time for the tube and the flap shapes. Inset: The dependence in the
log-log scale after the initial elastic response (λ0 = 2).
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FIG. 12. Morphological changes of two initial Gaussian bumps
due to two interacting vortices. (a) Conical shapes in the solid limit;
(b) flaplike shapes during tissue fluidization (λ0 = 2).

but this requires further theoretical study. On the other hand,
the total number of the neighbor exchanges tends to increase
algebraically with time as t3/2 in the asymptotic limit. This
exponent is the same for both the tube and flap and indicates
that it is determined by the topological constraint imposed
by the vortex. It also implies that the rate of rearrangements,
representing the flux of cells into the fluidized (shear) zones,
scales as ∼t1/2, from the time derivative of the density of
neighbor exchanges.

To further emphasize the topological robustness, we con-
sider the morphological change induced by two vortices. For
an intact tissue rigidity, we find that the two vortices lead to
collective normal migration with the formation of two con-
ical shapes, as shown in Fig. 12(a). By contrast, two flaps
are formed under tissue fluidization and when vortices are
allowed to move away from each other due to their repelling
interaction, as shown in Fig. 12(b). We notice that as the
vortices turn into spirals, as in Fig. 6, the flaps also develop the
same chirality as that of the corresponding spiral at the base.

V. DISCUSSION AND CONCLUSIONS

In summary, we have studied the interplay of topological
defects and tissue fluidization on the morphological trans-
formations of a tissue monolayer using a minimal discrete
model of interacting polarized cells. Topological defects in
the ordering of planar cell polarities pose robust topologi-
cal constraints on tissue shape. However, we find that the
collective migration, which is preferred by epithelial cells,
gets fragmented by the localized tissue fluidization during
shape dynamics. In particular, we have shown that under the
topological constraint imposed by a vortex, the inward mi-

gration within the tissue leads to a normal migration in the
region of high curvature. We find that the onset of tube for-
mation from a conical shape is attributed to the onset of tissue
fluidization occurring at the tip of the cone. Local rearrange-
ments may trigger each other, similar to shear transformation
zones in amorphous materials, leading to the formation of
shear zones where the tissue yields and flows.

The observed flap structures, extending from the tubular
protrusion of the epithelial surface, suggest a mechanism by
which cells at the tip can be displaced from the contiguous
monolayer plane. This results in a cohort of cells at the
protrusion with both sides exposed to the extracellular en-
vironment, potentially facilitating enhanced interaction with
their surroundings. A similar phenomenon occurs during an-
giogenesis, the formation of new blood vessels. Specialized
tip cells, known as endothelial sprouts, breach the contiguous
endothelial monolayer through a process called sprouting.
Subsequent cell division and pulling by neighboring cells lead
to the formation of a collective of specialized endothelial cells
at the sprout tip. These tip cells exhibit invasive properties,
enabling the growth of the new blood vessel [21,22,35].

While several studies have shown the ability of developing
tissues to regulate their cellular fluidity during morphogene-
sis, the role of fluidization in epithelial tubulogenesis remains
largely unexplored. Interestingly, a recent work highlights
the potential role of regulating tissue fluidity in the spiraling
alignment of endothelial cells within the tubular structure of
blood vessels [36]. Thus, our computational model, which
demonstrates an increased propensity for local fluidity dur-
ing epithelial tube formation, suggests that the regulation of
tissue fluidity might be a general and critical process during
epithelial tube morphogenesis.

Currently, the model does not integrate the influence of
the microenvironment, which comprises essential extrinsic
factors such as the extracellular matrix (ECM), signaling
molecules, and mechanical cues. Additionally, the model does
not consider cellular processes such as cell division, extru-
sion, and apoptosis, which could be vital for remodeling and
homeostasis of the epithelial in vivo. Yet, we have shown that
this minimal model offers a valuable advantage by capturing
the essential, intrinsic mechanisms governing epithelial cell
sheets, such as polarity and intercellular adhesions. This sug-
gests that intrinsic cell properties, combined with topological
constraints (which may also be posed by the microenviron-
ment) which trigger the tissue response to converge towards
a +1 defect core, might be sufficient for building epithelial
tubes. Thus, the present study highlights the importance of
fundamental cell-intrinsic principles in shaping complex tis-
sues. Further investigations could explore how these intrinsic
properties of epithelial monolayers cooperate with extrinsic
factors, such as mechanical cues and biochemical signaling,
to facilitate the formation of complex organ structures. These
provide many future directions of research for this model, with
the present work serving as a basis.
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