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Coevolutionary dynamics of collective cooperation and dilemma strength in a collective-risk game
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Human behavioral decision-making influences the gaming environment. In turn, changes in the gaming envi-
ronmental impact individual strategic choices. However, there is scant exploration into how human behavioral
decision-making coevolves with dilemma strength. Here, we propose a coevolutionary game model based on
collective-risk social dilemma, where an increase in cooperators within the game group reduces the dilemma
strength, and vice versa. Upon examining this coupled system, we find that the system is capable of achieving
a relatively optimal state, wherein the population sustains a high level of cooperation and the dilemma strength
remains at the lowest level. In addition, we have identified the conditions for the emergence of tristability and
bistability in the coupled system and numerically validated our theoretical results. Furthermore, we find that the
incorporation of institutional rewards not only promotes the appearance of the system’s optimal state, where
all individuals choose to cooperate and the dilemma strength is at its lowest level, but it also effectively averts
the manifestation of the system’s worst state, where all individuals resort to defection and the dilemma strength
reaches its highest level. These findings illuminate how cooperation can be sustained when a dynamical coupling
exists between individual decision-making and dilemma strength.
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I. INTRODUCTION

In the current global landscape, humanity is faced with
an array of daunting challenges that necessitate a cooperative
approach. These challenges range from the escalating severity
of climate change to the uncontrolled spread of infectious
diseases, each presenting a complex problem that surpasses
the capacity of any single entity to resolve [1–3]. The im-
perative for collective action is clear. Yet, within the context
of natural selection, the dynamics are not always conducive
to cooperation. Individuals who opt to cooperate often find
themselves disadvantaged relative to those who choose not
to cooperate. This paradox, known as the “tragedy of the
commons,” is a fundamental problem in different disciplines
[4–7]. It describes a scenario in which individual actions,
while rational from a personal standpoint, collectively lead to
a situation that is suboptimal for the group.

Evolutionary game theory provides a theoretical frame-
work for examining the aforementioned issues [8–12]. Over
the past few decades, various game models have been pro-
posed to depict real-world scenarios, including the Prisoner’s
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Dilemma [13–15], stag hunt [16,17], and public goods games
[18–22]. The collective-risk social dilemma (CRD), also
known as the threshold public goods game, has drawn consid-
erable attention due to its implications in areas such as climate
negotiations and infectious disease transmission [23–30]. In
this type of game, a group of individuals must collectively
decide whether to contribute resources towards a common
goal. If the total contribution from the group surpasses a
predetermined threshold, all individuals reap the benefits.
However, if the total contribution falls short of this threshold,
all individuals lose all their endowment with a probability r,
which is referred to as the risk of collective task failure.

Prior theoretical research has delved into the evolution
of cooperation in collective-risk social dilemma games from
various perspectives, such as asset heterogeneity [28,31–33],
population structure [34], incentives [35–37], and repeated
group interactions [38]. However, most of these studies con-
template a static game environment, where an individual’s
behavioral decisions do not impact the game environment.
This assumption is evidently at odds with reality. The co-
evolutionary game theory proposed in recent years offers a
fresh perspective for studying this inconsistency [39–43]. For
instance, Weitz et al. [39] introduced a feedback-evolving
game model, where an individual’s behavioral decisions alter
the state of the environment, which in turn influences the
individual’s payoffs. Arefin and Tanimoto [44] constructed
feedback-evolving game models that consider replicator dy-
namics and aspiration dynamics, respectively. Liu et al. [45]
constructed a feedback-evolving game model based on CRD,
capturing the coupled dynamics of cooperation and risk. They
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FIG. 1. Illustration of the coevolutionary process of strategies
and dilemma strength in the collective-risk social dilemma. The
increase of cooperators within a group diminishes the dilemma
strength, facilitating the propensity for individual cooperation. Con-
versely, an increase in the number of defectors incrementally elevates
the dilemma strength, thereby inhibiting the inclination towards co-
operative behavior among individuals.

revealed that the bidirectional feedback between collective
behavior and risk is beneficial for avoiding the tragedy of the
commons. Despite previous research that shed light on various
aspects of CRD, a crucial reciprocal relationship has remained
largely unexplored. This involves the dynamic interplay where
collective behaviors shape the dilemma strength, which in turn
affects individual behaviors. Indeed, the dilemma strength
has recently been explored in various 2 × 2 games [46–50],
but they usually assume that the dilemma strength does not
change with the state of the population. Hence, the nature of
the coevolutionary dynamics resulting from the unidirectional
feedback between collective behavior and dilemma strength
remains an enigma. Moreover, previous studies have affirmed
an institutional reward as the optimal mechanism to foster
cooperation, outperforming punishments or mixed approaches
[35,51]. Yet, its role in a game model where there is a feedback
relationship between population status and dilemma strength
is still undetermined.

In this present study, we thus construct a feedback-evolving
game model based on the collective-risk social dilemma game
to encapsulate the coupled relationship between strategies and
the dilemma strength (see Fig. 1). In a scenario similar to the
previously discussed stochastic game [52], we consider that
an increase in the proportion of cooperators within the game
group will mitigate the dilemma strength, while an increase
in defectors will exacerbate it. Through the analysis of the
coevolutionary dynamics of this coupled system, we uncover
some intriguing dynamical phenomena, such as tristability
and bistability. However, the system’s optimal state, where

all individuals choose to cooperate and the dilemma strength
remains at its lowest, is unattainable. Additionally, the worst
state of the system, where all individuals choose to defect
and the dilemma strength persists at its highest, is invariably
stable. By introducing institutional rewards, we observe that
not only is the system’s optimal state attainable, but the worst
state can also be effectively circumvented.

II. THEORETICAL MODEL AND METHODS

A. Collective-risk social dilemmas

In a collective-risk social dilemma game, each individual
starts with a constant initial endowment b, and it has two
strategies available for selection: cooperation (C), which in-
volves contributing c to the public pool, and defection (D),
which involves no contribution to the public pool. If the
number of individuals opting to contribute falls short of the
collective target (npg), a disaster will occur with a probability
r, resulting in all individuals losing their entire endowment.
However, if the collective target is met, all individuals are
able to retain their initial endowment. Here, npg represents the
minimal number of collective investors to ensure the initial
endowment of each individual. Therefore, the payoffs for
cooperators and defectors in a collective-risk social dilemma
game can be expressed as

PC = −c + bθ (NC + 1 − npg)

+ (1 − r)b[1 − θ (NC + 1 − npg)], (1)

PD = bθ (NC − npg) + (1 − r)b[1 − θ (NC − npg)], (2)

where NC denotes the number of cooperators in the group,
and θ (k) = 1 when k � 0, otherwise it equals 0. Equation (1)
represents the payoff for a cooperator, where the first term
signifies the cost associated with cooperative behavior, the
second term indicates the preservation of the initial endow-
ment if the number of cooperators meets or exceeds the
collective target, and the third term reflects that if the number
of cooperators does not meet the collective target, the initial
endowment will be retained with probability 1 − r. Similarly,
Eq. (2) depicts the payoff for a defector, with the first term
denoting the retention of the initial endowment if the number
of cooperators meets or exceeds the collective target, and the
second term indicating that if the number of cooperators fails
to meet the collective target, the initial endowment will be
retained with probability 1 − r.

In an infinite well-mixed population, N individuals are
randomly drawn to participate in the collective-risk social
dilemma game. A replicator equation can be used to depict the
evolution of individual strategy choices over time. Based on
previous studies [24,45], the specific replicator equation can
be written as

ẋ = x(1 − x)

[(
N − 1

npg − 1

)
xnpg−1(1 − x)N−npgrb − c

]
, (3)

where x(t ) represents the proportion of individuals employing
a cooperative strategy at time t , while ẋ denotes the time
derivative of x(t ), capturing the dynamical changes in the
proportion of cooperators in the population over time.
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Here, we define the dilemma strength in the collective-risk
social dilemma game as a = c/b, which represents the ratio
of the initial budget each cooperator contributes to the initial
endowment, also called the “cost-endowment ratio.” We know
that a higher strength of the dilemma necessitates a larger
contribution from each cooperator, given a constant initial
endowment. In prior theoretical research, the strength of the
dilemma was invariably constant, not subject to change with
alterations in individual behavior decision-making within the
group [24].

B. Feedback-evolving games

We assume that the strength of the dilemma is influenced
by the state of the population. Specifically, an increase in
the proportion of cooperators within the population gradually
diminishes the dilemma strength, whereas an increase in the
proportion of defectors progressively escalates the strength
of the dilemma (see Fig. 1). For convenience, we consider a
linear feedback form in which the strength of the dilemma
decreases linearly with the rise in the proportion of coopera-
tors within the group, and increases linearly with the rise in
the proportion of defectors. Correspondingly, the dynamical
equation for the dilemma strength can be written as

ȧ = (a − α)(β − a)[(1 − x)u − x], (4)

where α and β are the upper and lower limits of the dilemma
strength, with 0 < α, β < 1, and u(1 − x) − x represents the
rate at which the dilemma strength is enhanced by the defec-
tion strategy at a rate u, and weakened by cooperation at a
relative rate of 1.

Combining Eqs. (3) and (4), we are able to obtain the
system equations as

εẋ = x(1 − x)

[(
N − 1

npg − 1

)
xnpg−1(1 − x)N−npgrb − ba

]
,

ȧ = (a − α)(β − a)[(1 − x)u − x], (5)

where ε � 1 signifies that the change in the strength of the
dilemma is relatively slow compared to the change in indi-
vidual behavior decisions since the dilemma strength as an
environmental index often varies relatively slowly [39,45].
For the sake of convenience, we define Eq. (5) as system I.
In Appendix A, we thoroughly analyze the equilibrium points
of the system and examine the stability of these equilibrium
points.

C. Institutional reward in feedback-evolving games

To better promote the emergence of cooperation, we fur-
ther introduce institutional reward into the aforementioned
feedback-evolving game model. We assume that each in-
dividual participating in the game will pay a tax of bδ
before the game begins. The total tax revenue Nbδ is then
evenly distributed to the cooperators at the end of the game,
thereby increasing the payoff of each cooperator in the gaming
group by Nbδ/(NC + 1). In the presence of incentives, the
difference between cooperators and defectors participating
in the collective-risk social dilemma game can be written
as bθ (NC + 1 − npg) + b[1 − θ (NC + 1 − npg)](1 − r) − c +

Nbδ
NC+1 − bθ (NC − npg) + b[1 − θ (NC − npg)](1 − r). Through

TABLE I. Symbols and meanings used in this article.

Symbol Meaning

N Group size
npg Collective target
r Collective risk
b Initial endowment
c Cost of cooperation
a Dilemma strength
α Lower limit of dilemma strength
β Upper limit of dilemma strength
u Growth rate of dilemma strength

with fraction of defectors
δ Per capita incentive
ε Feedback speed

calculation, Eq. (3) can be rewritten as

ẋ = x(1 − x)

[(
N − 1

npg − 1

)
xnpg−1(1 − x)N−npgrb

+ bδ
1 − (1 − x)N

x
− c

]
.

Correspondingly, system (5) can be rewritten as follows:

εẋ = x(1 − x)

[(
N − 1

npg − 1

)
xnpg−1(1 − x)N−npgrb

+ bδ
1 − (1 − x)N

x
− ba

]
,

ȧ = (a − α)(β − a)[(1 − x)u − x]. (6)

For the convenience of subsequent analysis, we refer to Eq. (6)
as system II. In the following section, we will specifically
analyze the evolutionary dynamics generated by the coupled
systems I and II. In Appendix B, we provide a detailed theo-
retical analysis.

To facilitate the comprehension of all parameters delin-
eated in our work, we compile them in Table I.

III. RESULTS

A. Coevolutionary dynamics without incentives

We begin by investigating the coevolutionary dynamics
of the coupled system I without considering any incentives.
Through analysis, we find that system I can have up to nine
equilibrium points. These consist of (i) four corner equi-
librium points (x, a) = (0, α), (0, β ), (1, α), (1, β ); (ii) four
boundary equilibrium points (x1, α), (x2, α), (x3, β ), (x4, β ),
where x1 and x2 (with x2 > x1) are the two roots of the equa-
tion

( N−1
npg−1

)
xnpg−1(1 − x)N−npgr = α [similarly, x3 and x4 (with

x4 > x3) are the two roots of the equation
( N−1

npg−1

)
xnpg−1(1 −

x)N−npgr = β]; and (iii) one interior equilibrium point
( u

1+u , a∗), where a∗ = ( N−1
npg−1

)
( u

1+u )npg−1( 1
1+u )N−npgr. For con-

venience, we set F (x) = ( N−1
npg−1

)
xnpg−1(1 − x)N−npg . Based on

the stability of the equilibrium points, we identify three rep-
resentative types of evolutionary outcomes, namely tristable,
bistable, and monostable states.
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FIG. 2. Coevolutionary dynamics of the coupling system I. Panel
(a) presents results of a tristable state, panels (b) and (d) exhibit
bistable state outcomes, and panel (c) shows results of a monos-
table stable state. Solid dots represent stable equilibrium points,
while empty circles denote unstable equilibrium points. Colored
lines illustrate the evolution trajectories of the coupled system, with
arrows indicating the direction of evolution. The color signifies the
gradient value, where red represents the maximum gradient value
and blue represents the minimum gradient value. Parameters are
N = 6, npg = 4, r = 0.7, ε = 0.1, b = 1, α = 0.01, β = 0.24,
and u = 2 in panel (a); N = 6, npg = 4, r = 0.3, ε = 0.1, b =
1, α = 0.01, β = 0.5, and u = 2 in panel (b); N = 6, npg = 4, r =
0.1, ε = 0.1, b = 1, α = 0.01, β = 0.5, and u = 8 in panel (c);
N = 6, npg = 4, r = 0.7, ε = 0.1, b = 1, α = 0.1, β = 0.24, and
u = 25 in panel (d).

1. Tristability

When max{ α
F ( u

1+u ) ,
β

F (
npg−1
N−1 )

} < r <
β

F ( u
1+u ) , we know that all

nine equilibrium points exist in the system. In this case,
if x4

1−x4
< u < x2

1−x2
, the coupled system I will generate a

tristable state (more detailed theoretical analysis can be found
in Appendix A). We further provide numerical examples to
validate our theoretical results. As shown in Fig. 2(a), there
are nine equilibrium points in the phase plane, among which
(0, β ), (x2, α), and (x4, β ) are stable. In the phase plane, the
vast majority of trajectories converge to (x2, α), indicating that
cooperators can be maintained in the population, accompanied
by the lowest dilemma strength. A portion of the trajectories
converge to (0, β ), implying the disappearance of cooperators
and the dilemma strength reaching its maximum value. The
remaining few trajectories converge to (x4, β ), depicting that
cooperation can still be sustained under the highest dilemma
strength.

2. Bistability

When all nine equilibrium points exist and if u <

min{ x2
1−x2

, x4
1−x4

}, the coupled system I will exhibit a bistable
outcome, characterized by the presence of two stable states,
namely (x2, α) and (0, β ). Furthermore, when the risk r <
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FIG. 3. The evolutionary outcomes of coupled systems I for
different feedback speed ε. Parameters are N = 6, npg = 4, r =
0.3, b = 1, α = 0.1, u = 0.08, and β = 0.5.

β

F (
npg−1
N−1 )

, the boundary equilibrium points (x3, β ) and (x4, β )

do not exist (a detailed theoretical analysis is provided in
Appendix A). To verify the theoretical analysis, we pro-
vide a numerical example. As shown in Fig. 2(b), the phase
plane exhibits seven equilibrium points, including four cor-
ner equilibrium points, one interior equilibrium point, and
two boundary equilibrium points (x1, α) and (x2, α). The
corner equilibrium point (0, β ) and boundary equilibrium
point (x2, α) are stable. Depending on the initial conditions,
some trajectories converge to the boundary equilibrium point,
while the remaining ones converge to the corner equilibrium
point.

Figure 2(b) illustrates a bistable outcome. The equilibrium
point positioned in the upper left corner delineates a scenario
characterized by a high strength of the dilemma, wherein
the choices of all individuals converge towards the defection
strategy, representing the most unfavorable state. In contrast,
the boundary equilibrium point located in the lower right cor-
ner characterizes a scenario marked by a low strength of the
dilemma, where the majority of individuals converge towards
the cooperate strategy, exemplifying a relatively advantageous
state. Nevertheless, it is important to note that the basin of
attraction of the boundary equilibrium point in the lower right
corner is significantly smaller than that of the upper left corner
equilibrium point. This implies that achieving a favorable state
has specific requirements regarding the initial proportion of
cooperators and the strength of the dilemma. Furthermore, our
results are not affected by the feedback speed (see Fig. 3).

Based on theoretical analysis, we know that the corner
equilibrium point (0, β) is always stable. When the coupled
system exhibits multiple stable states, it is crucial to maximize
the basin of attraction of the more favorable state. In light of
this, we investigate the variation of the basin of attraction of
the equilibrium point (x2, α) as the model parameters change.
We observe that an increase in the risk of collective task
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FIG. 4. The basin of attraction of the equilibrium point (x2, α) in
dependence of the risk value r (a), the feedback rate u (b), the group
size N (c), and the collective target npg (d). The Monte Carlo method
is used to calculate the convergence rate. Specifically, in the phase
plane, we randomly and uniformly select a large number of initial
points. After the system evolves to a steady state, we calculate the
proportion of initial points that converge to the point (x2, α). This
proportion represents the basin of attraction for (x2, α). Parameters
are N = 6, npg = 4, ε = 0.1, b = 1, α = 0.01, β = 0.24, and u =
2 in panel (a); N = 6, npg = 4, r = 0.7, ε = 0.1, b = 1, α = 0.01,
and β = 0.24 in panel (b); npg = 4, r = 0.7, ε = 0.1, b = 1, α =
0.01, β = 0.24, and u = 2 in panel (c); N = 10, r = 0.7, ε =
0.1, b = 1, α = 0.01, β = 0.24, and u = 2 in panel (d).

failure expands the basin of attraction of (x2, α) [see Fig. 4(a)].
This implies that an elevation in risk better stimulates indi-
viduals to make cooperative decisions, thereby reducing the
strength of the dilemma. In addition, the basin of attraction
of this stable state decreases with an increase in the values
of u (rate of escalation of the dilemma strength inducing by
defection) [see Fig. 4(b)]. This implies that when the pro-
portion of defectors has a greater impact on the dilemma
strength, the willingness of individuals to cooperate is signif-
icantly reduced. The impact of the group size on the basin
of attraction for the equilibrium point (x2, α) is presented in
Fig. 4(c). We find that for different group size values, the basin
of attraction for this stable equilibrium point first increases
and then decreases. This nonlinear phenomenon implies that
an intermediate group size can best promote the emergence
of cooperation and thereby maintain a lower strength of the
dilemma. Too high or too low a group size cannot achieve this
effect. We further present the impact of different collective
goal values on the basin of attraction for the stable equilibrium
point (x2, α), as depicted in Fig. 4(d). We observe a nonlinear
effect of the collective goal on the basin of attraction for
this equilibrium point. That is, with the increase in collective
goal values, the basin of attraction initially enlarges, reaches
a maximum, and then gradually decreases. This phenomenon
subtly suggests that an intermediate collective goal can better
facilitate the system’s stability in this more favorable state.
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FIG. 5. The evolutionary outcomes of coupled system I, differ-
entiated by various colors, corresponding to different feedback rate
u and risk r. Parameters are N = 6, npg = 3, ε = 0.1, b = 1, α =
0.1, and β = 0.3.

Moreover, we present another bistable outcome of the cou-
pled system I in Fig. 2(d). When r >

β

F (
npg−1
N−1 )

, we know that

all four boundary equilibrium points exist. Then if u > x2
1−x2

,
the boundary fixed point (x2, α) is unstable, while (x4, β ) is
stable. Therefore, the coupled system exhibits two stable equi-
librium points, namely (0, β ) and (x4, β ). The former remains
the worst outcome for the coupled system: cooperation cannot
occur, and the strength of the dilemma reaches its maximum.
The latter avoids the disappearance of cooperation, but the
strength of the dilemma still remains at the highest level,
indicating that the cooperators need to bear a high cost of
cooperation.

3. Monostability

In the coupled system I, the corner equilibrium point (0, β)
is always stable. Ultimately, we present a monostable outcome
[see Fig. 2(c)]. When α

F (
npg−1
N−1 )

< r <
β

F (
npg−1
N−1 )

and u > x2
1−x2

,

the system has six equilibrium points: four corner equilibrium
points and two lower boundary equilibrium points (x1, α) and
(x2, α), among which only (0, β) is stable. This implies that
the strength of the dilemma reaches its peak, with no individ-
ual willing to cooperate.

Now we present the evolutionary dynamics of system I
under various parameter conditions. To provide readers with
a clearer understanding of the system’s evolutionary stable
states across different parameter regions, we depict the evo-
lutionary outcomes of the coupled system I in Fig. 5 where
diverse colors are employed to illustrate the distinct evolu-
tionary results.

Despite the potential for a variety of dynamic outcomes,
two unavoidable conundrums persistently emerge. The first
is that the optimal state of the coupled system can never
stabilize, that is, all individuals choose to cooperate, reducing
the strength of the dilemma to its lowest point. The second is
that the worst state of the coupled system is always stable, that
is, all individuals choose to defect, pushing the strength of the
dilemma to its maximum value.
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FIG. 6. Coupled systems with institutional rewards exhibit bista-
bility. Parameters are N = 6, npg = 4, r = 0.3, ε = 0.1, b =
1, α = 0.1, β = 0.96, δ = 0.12, and u = 2 in panel (a); N =
6, npg = 4, r = 0.3, ε = 0.1, b = 1, α = 0.1, δ = 0.2, u = 2,
and β = 0.96 in panel (b); N = 6, npg = 4, r = 0.3, ε = 0.1, b =
1, α = 0.1, u = 2, δ = 0.08, and β = 0.43 in panel (c).

B. Coevolutionary dynamics with institutional reward

To address the aforementioned two issues inherent
in a coupled system, we introduce institutional reward.
Through the analysis of the coupled system II, we find
that the four corner equilibrium points (0, α), (0, β ),
(1, α), (1, β ) and the interior equilibrium point ( u

1+u , ā∗)

still exist, where ā∗ = ( N−1
npg−1

)
( u

1+u )npg−1( 1
1+u )N−npgr +

δ
∑N−1

i=0 ( 1
u+1 )i. Additionally, the boundary equilibrium

points (x∗, α) and (x̄∗, β ) are determined by the
equations

( N−1
npg−1

)
(x∗)npg−1(1 − x∗)N−npgr + δ

∑N−1
i=0 (x∗)i = α

and
( N−1

npg−1

)
(x̄∗)npg−1(1 − x̄∗)N−npgr + δ

∑N−1
i=0 (x̄∗)i = β,

respectively. Due to the complexity of these two higher-order
equations, it is challenging to theoretically analyze the
distribution and quantity of the boundary equilibrium points.
Below, we numerically study the evolutionary dynamics of
the system based on the scenarios where the system can reach
its optimal state or escape from its worst state.

When δ > α, the optimal state (1, α) of the coupled system
II is stable, implying that all individuals choose cooperative
behavior, accompanied by the lowest dilemma strength. At
this time, all individuals only need to pay the lowest co-
operation cost of bα. Furthermore, when δ <

β

N , the worst
state (0, β ) of the coupled system can also achieve stability,
implying that all individuals choose to defect, accompanied
by the highest dilemma strength. In Fig. 6(a), we provide
a numerical example that satisfies the conditions mentioned
above. We find that the phase plane exhibits bistability, that is,
depending on the initial conditions, part of the system trajec-
tories converge to the optimal state, while the vast majority of
the remaining trajectories converge to the worst state.

When δ > max{α,
β

N }, the best equilibrium state of the
system is stable while the worst state is unstable. As shown
in Fig. 6(b), the corner equilibrium point (1, α) in the phase
plane is stable, whereas the corner equilibrium point (0, β )
is unstable. A stable equilibrium point exists on the upper
boundary of the phase plane, which signifies the presence
of a minority of individuals choosing cooperative behavior,
accompanied by the highest dilemma strength. It should be
noted that these few cooperators need to pay higher coopera-
tion cost bβ.

When β

N < δ < α, both the best state (1, α) and the worst
state (0, β ) of the coupled system II are unstable. In Fig. 6(c),
we provide a specific numerical example in which there exist
seven equilibrium points in the phase plane, including four
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FIG. 7. The basin of attraction of the equilibrium point (1, α)
varies with the changes in risk (r), feedback rate (u), per capita in-
centive (δ), group size (N), and collective target (npg). Parameters are
N = 6, npg = 4, ε = 0.1, b = 1, α = 0.1, β = 0.96, δ = 0.12,
and u = 2 in the first panel of the top row; N = 6, npg = 4, r =
0.3, ε = 0.1, b = 1, α = 0.1, δ = 0.12, and β = 0.96 in the sec-
ond panel of the top row; N = 6, npg = 4, r = 0.3, ε = 0.1, b =
1, α = 0.1, u = 2, and β = 0.96 in the third panel of the top row;
npg = 4, r = 0.3, ε = 0.1, b = 1, α = 0.1, β = 0.96, and u = 2
in the first panel of the bottom row; N = 10, r = 0.3, ε = 0.1, b =
1, α = 0.1, β = 0.96, and u = 2 in the second panel of the bottom
row.

vertex equilibrium points, one interior equilibrium point, and
two boundary equilibrium points. The two boundary equilib-
rium points are stable, where the upper boundary equilibrium
point suggests that only a minority of individuals opt for coop-
erative behavior, reaching the highest strength of the dilemma,
and the lower boundary equilibrium point implies that the vast
majority of individuals choose to cooperate, accompanied by
the lowest strength of the dilemma, indicating that cooperators
only need to pay a lower cost of cooperation (bα).

When the coupled system II is capable of exhibiting mul-
tistable states, the optimal state (1, α) can reach stability. We
further provide results of how the basin of attraction for this
optimal state changes with model parameters. As shown in
Fig. 7, an increase in risk values or per capita incentive values
can expand the basin of attraction for the optimal state, while
the growth of feedback rates and group size can shrink it.
Additionally, we observe that the influence of collective goals
on the optimal state’s basin of attraction is nonlinear, i.e., with
the increase of the goal value, the basin of attraction first
increases and then decreases, a phenomenon consistent with
results under scenarios without incentives.

Based on the stability of corner equilibrium points, we
further provide two scenarios of monostability. When δ <

min{ β

N , α}, the corner equilibrium point (0, β) is stable, while
the other three corner equilibrium points are unstable. More-
over, when the parameters do not satisfy α < ā∗ < β, the
interior equilibrium point does not exist. In Fig. 8(a), we
provide a specific numerical example where we find only a
single stable point in the phase plane, located in the upper left
corner. This implies the occurrence of the worst-case scenario
in the system, where no individuals are willing to bear the
cost of cooperation, and the strength of the dilemma reaches
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FIG. 8. Two representative numerical examples when the cou-
pled system exhibits monostability. Parameters are N = 6, npg =
4, r = 0.3, ε = 0.1, b = 1, α = 0.1, β = 0.6, δ = 0.08, and u =
10 in panels (a) and (b); N = 6, npg = 4, r = 0.3, ε = 0.1, b =
1, α = 0.1, β = 0.96, δ = 0.2, and u = 0.08 in panels (c) and (d).

its maximum. In Fig. 8(c), we present another result of a
single stable state. We find that when the model parameters
satisfy δ > max{α,

β

N }, the corner equilibrium point (1, α)
is stable, while the other three corner equilibrium points are
unstable. Moreover, our numerical results reveal the absence
of an interior equilibrium point, with an unstable boundary
equilibrium point existing on the upper border. In this sce-
nario, the best state of the system is the sole stable state,
implying that all individuals are willing to bear the minimum
cost of cooperation to achieve the collective goal. This result
is also unaffected by the feedback speed (see Fig. 9).

IV. DISCUSSION

In complex social systems, individual behaviors are of-
ten influenced by the surrounding environment, such as the
abundance of resources and the risk level of the game en-
vironment. Previous theoretical research has revealed that
individuals are more inclined to choose defection strategy in
resource-rich environments [39] and cooperation in high-risk
environments [24]. At the same time, collective behavior can
also change the surrounding environment. For example, ex-
cessive defectors can lead to resource depletion and increase
the risk of disaster. In recent years, coevolutionary game
theory has provided a powerful theoretical tool for studying
such strategy-environment coupled systems [39]. Along these
lines, in this work we have constructed a feedback-evolving
game model to capture the coupling relationship between
strategy and dilemma strength. We have considered a form of
feedback where strategies have linear effects on the dilemma
strength, that is, an increase in the proportion of defectors in
the population linearly increases the dilemma strength, while
an increase in the proportion of cooperators linearly decreases
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FIG. 9. The evolutionary outcomes of coupled system II for
different feedback speed ε. Parameters are N = 6, npg = 4, r =
0.3, b = 1, α = 0.1, δ = 0.2, u = 0.08, and β = 0.96.

the dilemma strength. We have identified intriguing coevo-
lutionary dynamics, including tristable and bistable states,
for which we have provided the analytical conditions and
performed numerical validations. Our results illustrate that
cooperation can persist, accompanied by either the highest
or the lowest dilemma strength. However, under the highest
dilemma strength, the state of full defection is always stable.
This indicates that the optimal state of this coupled system is
unattainable, whereas the least desirable state remains stable.

Although the system’s optimal state is unattainable, a
suboptimal state can be achieved. In this suboptimal state,
cooperation can be maintained at a certain level, while the
strength of the dilemma can be kept at a minimum. This
implies that the cost incurred by the cooperators is mini-
mized (c = bα). Since the worst state is always stable, it is
worth exploring how to expand the basin of attraction of the
suboptimal state when it reaches stability. Our results reveal
that increasing the risk r or reducing the feedback rate u
can expand the basin of attraction of this suboptimal state.
Furthermore, an intriguing finding is that the influence of
group size and collective target on the basin of attraction
of the suboptimal state is nonlinear. Specifically, an inter-
mediate group size or an intermediate collective target value
can more effectively facilitate the evolution of cooperation.
However, previous theoretical research [24] has demonstrated
that decision-making within small groups can significantly
enhance the likelihood of coordinating actions and avoiding
the tragedy of the commons. Furthermore, it is also unveiled
that a larger collective target is conducive to the emergence of
high-level cooperation. The introduction of dynamic feedback
between strategy and dilemma strength primarily contributes
to this inconsistency phenomenon.

Building on the understanding that the system’s worst state
remains persistently stable, a surprising revelation from our
research is that the introduction of feedback mechanisms
does not categorically facilitate the resolution of coopera-
tion dilemmas. Despite the high risks of collective failure,
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our model uncovers a stubbornly stable worst-case scenario
(0, β ) (see Fig. 5). This observation is especially intriguing
in light of the substantial body of literature that suggests
elevated risk levels can effectively enhance cooperation. Con-
sequently, our research highlights the need for a more nuanced
comprehension of the dynamics involved. It proposes that a
comprehensive approach should be adopted, one that extends
beyond focusing solely on the inherent risks of the game, but
also takes into account the complex interplay between group
decision-making processes and the gaming environment.

The implementation of incentives is a crucial measure in
regulating collective actions. To modulate the aforementioned
coupled system, we have introduced institutional reward with
taxation. We have demonstrated that the system can reach its
optimal state, where all individuals choose to cooperate, ac-
companied by the lowest dilemma strength. Simultaneously,
the worst-case scenario, where all individuals choose to de-
fect, accompanied by the highest dilemma strength, can be
avoided. We theoretically demonstrate that the occurrence of
this state hinges on strong incentives (δ > max{α,

β

N }). Ad-
ditionally, we have identified other bistable dynamics where,
when the system’s optimal state is stable, we have examined
the variation of its basin of attraction with model parameters.
Our results indicate that an increase in risk r and incentive
value δ both individually enhance the basin of attraction of the
optimal state, while an increase in group size N and feedback
rate u both exert a suppressive effect. The influence of the
collective target npg on this optimal state’s basin of attraction
manifests as a nonlinear phenomenon, consistent with conclu-
sions drawn in previous scenarios without incentive.

In this study, we have presented a rudimentary feedback-
evolving game model to illustrate the interconnectedness
between individual behavioral decisions and the state of the
gaming environment. Specifically, the model suggests that an
upsurge in the ratio of cooperators within the group linearly
mitigates the dilemma’s strength, whereas an increase in de-
fectors proportionally exacerbates it. A logical progression
of this work would be to explore the impact of nonlinear
feedback mechanisms. This is primarily due to the fact that in
real-world scenarios, individuals’ responses to environmental
shifts are not always incremental; they can often be sudden
and dramatic. For instance, the expression −xp + u(1 − x)p,
where p is greater than 1, could be considered to model such
nonlinear dynamics.

While the system’s optimal state can be stabilized and
the worst-case scenario circumvented, achieving this outcome
will necessitate substantial per capita incentives. This raises
an intriguing question: can we devise alternative incentive
schemes that yield the same evolutionary trajectory, but de-
mand considerably fewer per capita incentives? Moreover,
alterations in the population’s state have a dual effect: they
not only modulate the severity of the dilemma, but they
also influence the risk. Consequently, understanding how
cooperative behavior manifests in a milieu with multiple
concurrent feedback mechanisms is a promising avenue for
future research. Integrating measures of social capital (e.g.,
trust, volunteering), inequality (e.g., Gini coefficient), and risk
aversion into this analysis will further elucidate the dynam-
ics of individual versus collective benefits, thereby enriching
our comprehension of investment dilemmas within group

settings. Furthermore, the impact of population size, such as
more realistic finite populations [53,54], and different network
structures, such as regular graphs and small-world networks,
represent a direction worthy of in-depth exploration in future
research.
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APPENDIX A: COEVOLUTIONARY DYNAMICS
WITHOUT INCENTIVES

We first investigate the evolutionary dynamics of the cou-
pled system when no additional incentives are considered.
Correspondingly, the coupled system incorporating strategy-
dilemma strength feedback can be depicted by the following
equations:

εẋ = x(1 − x)

[(
N − 1

npg − 1

)
xnpg−1(1 − x)N−npgrb − ba

]
,

ȧ = (a − α)(β − a)[(1 − x)u − x].

By solving the aforementioned coupled system, we can
obtain all possible equilibrium points of the system,
which are (x, a) = (0, α), (0, β ), (1, α), (1, β ),
(x1, α), (x2, α), (x3, β ), (x4, β ), and ( u

1+u , a∗),
where x1 and x2 are the two roots of the equa-
tion

( N−1
npg−1

)
xnpg−1(1 − x)N−npgr = α, x3 and x4 are the two

roots of the equation
( N−1

npg−1

)
xnpg−1(1 − x)N−npgr = β, and

a∗ = ( N−1
npg−1

)
( u

1+u )npg−1( 1
1+u )N−npgr. Then we determine the

stability by analyzing the signs of the eigenvalues of the
Jacobian matrix at each equilibrium point. Accordingly, the
detailed analysis of all possible evolutionary outcomes is
presented below.

Case 1. When max{ α
F ( u

1+u ) ,
β

F (
npg−1
N−1 )

} < r <
β

F ( u
1+u ) , all nine

equilibrium points exist in the system.
For (x, a) = (0, α), the Jacobian matrix is

J =
[−bα

ε
0

0 u(β − α)

]
,

thus the fixed equilibrium is unstable.
For (x, a) = (0, β ), the Jacobian matrix is

J =
[−bβ

ε
0

0 u(α − β )

]
,

thus the fixed equilibrium is stable.
For (x, a) = (1, α), the Jacobian matrix is

J =
[

bα
ε

0

0 α − β

]
,

thus the fixed equilibrium is unstable.
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For (x, a) = (1, β ), the Jacobian matrix is

J =
[

bβ
ε

0

0 β − α

]
,

thus the fixed equilibrium is unstable.
For (x, a) = (x1, α), the Jacobian matrix is

J =
[

bα
ε

[npg − 1 − (N − 1)x1] − x1(1−x1 )b
ε

0 (β − α)(u − ux1 − x1)

]
,

thus the fixed equilibrium is unstable since x1 <
npg−1
N−1 .

For (x, a) = (x2, α), the Jacobian matrix is

J =
[

bα
ε

[npg − 1 − (N − 1)x2] − x2(1−x2 )b
ε

0 (β − α)(u − ux2 − x2)

]
,

thus the fixed equilibrium is stable when u < x2
1−x2

.
For (x, a) = (x3, β ), the Jacobian matrix is

J =
[

bβ
ε

[npg − 1 − (N − 1)x3] − x3(1−x3 )b
ε

0 (α − β )(u − ux3 − x3)

]
,

thus the fixed equilibrium is unstable since x3 <
npg−1
N−1 .

For (x, a) = (x4, β ), the Jacobian matrix is

J =
[

bβ
ε

[npg − 1 − (N − 1)x4] − x4(1−x4 )b
ε

0 (α − β )(u − ux4 − x4)

]
,

thus the fixed equilibrium is stable when u > x4
1−x4

.
For (x, a) = ( u

1+u , a∗), the Jacobian matrix is

J =
[

ba∗
ε

[
npg − 1 − (N−1)u

1+u

] − ub
(1+u)2ε

(a∗ − α)(β − a∗)(−u − 1) 0

]
,

thus the fixed equilibrium is unstable.
In summary, we can derive the following two conclusions:
(i) If x4

1−x4
< u < x2

1−x2
, the coupled system I has three sta-

ble points: (0, β ), (x2, α), and (x4, β ).
(ii) If x1

1−x1
< u < x3

1−x3
, the coupled system I has two stable

points: (0, β ) and (x2, α).
Case 2. When β

F (
npg−1
N−1 )

< r < α
F ( u

1+u ) or r >
β

F ( u
1+u ) , apart

from the nonexistence of an interior equilibrium point, the
other eight equilibrium points indeed exist.

Based on the stability of equilibrium points, we summarize
the following three conclusions:

(i) If r < α
F ( u

1+u ) and u > x2
1−x2

, the coupled system I has two

stable points: (0, β ) and (x4, β ).
(ii) If r < α

F ( u
1+u ) and u < x1

1−x1
, the coupled system I has

two stable points: (0, β ) and (x2, α).
(iii) If r >

β

F ( u
1+u ) and x3

1−x3
< u < x4

1−x4
, the coupled system

I has two stable points: (0, β ) and (x2, α).
Case 3. When max{ α

F (
npg−1
N−1 )

, α
F ( u

1+u ) } < r <
β

F (
npg−1
N−1 )

, except

for (x3, β ) and (x4, β ), the other seven equilibrium points all
exist. According to the stability analysis, the coupled system
I has two stable points: (0, β ) and (x2, α).

Case 4. When α

F (
npg−1
N−1 )

< r < min{ β

F (
npg−1
N−1 )

, α
F ( u

1+u ) }, except

for (x3, β ), (x4, β ), and ( u
1+u , a∗), the other six equilibrium

points exist.

Based on the stability of equilibrium points, we can iden-
tify the following two conclusions:

(i) If u < x1
1−x1

, the coupled system I has two stable points:
(0, β ) and (x2, α).

(ii) If u > x2
1−x2

, the coupled system I has one stable point:
(0, β ).

Case 5. When r < α

F (
npg−1
N−1 )

, only four corner equilibrium

points exist. According to the stability analysis, the coupled
system has one stable equilibrium point: (0, β ).

In the main text, we provide numerical validation based on
these theoretical predictions.

APPENDIX B: COEVOLUTIONARY DYNAMICS WITH
INSTITUTIONAL REWARD

When considering additional institutional reward, our cou-
pled system can be reformulated as

εẋ = x(1 − x)

[(
N − 1

npg − 1

)
xnpg−1(1 − x)N−npgrb

+ bδ
1 − (1 − x)N

x
− ba

]
,

ȧ = (a − α)(β − a)[(1 − x)u − x].

Through analysis, we ascertain that the system
invariably exhibits four corner equilibria: (x, a) =
(0, α), (0, β ), (1, α), and (1, β ). An interior equi-
librium ( u

1+u , ā∗) is present when ā∗ satisfies the

equation
( N−1

npg−1

)
( u

1+u )npg−1( 1
1+u )N−npgr + δ

∑N−1
i=0 ( 1

u+1 )i = ā∗

and α < ā∗ < β. Additionally, the boundary equilibrium
points (x∗, α) and (x̄∗, β ) are determined by the
equations

( N−1
npg−1

)
(x∗)npg−1(1 − x∗)N−npgr + δ

∑N−1
i=0 (x∗)i = α

and
( N−1

npg−1

)
(x̄∗)npg−1(1 − x̄∗)N−npgr + δ

∑N−1
i=0 (x̄∗)i = β,

respectively. It is extremely challenging to analytically
investigate the number of boundary equilibria due to the
high complexity of the aforementioned high-order nonlinear
equations. Next, we present the Jacobian matrix of the
aforementioned equilibrium points:

For (x, a) = (0, α), the Jacobian matrix is

J =
[ bNδ−bα

ε
0

0 u(β − α)

]
,

thus the fixed equilibrium is unstable.
For (x, a) = (0, β ), the Jacobian matrix is

J =
[

bNδ−bβ
ε

0
0 u(α − β )

]
,

thus the fixed equilibrium is stable when Nδ < β.
For (x, a) = (1, α), the Jacobian matrix is

J =
[ bα−bδ

ε
0

0 α − β

]
,

thus the fixed equilibrium is stable when δ > α.
For (x, a) = (1, β ), the Jacobian matrix is

J =
[

bβ−bδ
ε

0

0 β − α

]
,

thus the fixed equilibrium is unstable.
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For (x, a) = (x∗, α), the Jacobian matrix is

J =
[

a11 − x∗(1−x∗ )b
ε

0 (β − α)(u − ux∗ − x∗)

]
,

where a11 = 1
ε
{( N−1

npg−1

)
(x∗ )npg−1(1 − x∗ )N−npg rb[npg − 1 − (N − 1)x∗] −

bδx∗ ∑N−1
i=1 i(1 − x∗ )i}, thus the fixed equilibrium is stable when

a11 < 0 and u < x∗
1−x∗ .

For (x, a) = (x̄∗, β ), the Jacobian matrix is

J =
[

a11 − x̄∗(1−x̄∗ )b
ε

0 (α − β )(u − ux̄∗ − x̄∗)

]
,

where a11 = 1
ε
{( N−1

npg−1

)
(x̄∗ )npg−1(1 − x̄∗ )N−npg rb[npg − 1 − (N − 1)x̄∗] −

bδx̄∗ ∑N−1
i=1 i(1 − x̄∗ )i}, thus the fixed equilibrium is stable when

a11 < 0 and u > x̄∗
1−x̄∗ .

For (x, a) = ( u
1+u , ā∗), the Jacobian matrix is

J =
[

a11 − ub
(1+u)2ε

(ā∗ − α)(β − ā∗)(−u − 1) 0

]
,

where a11 = 1
ε
{( N−1

npg−1

)
( u

1+u )npg−1( 1
1+u )N−npgrb[npg − 1 − (N − 1) u

1+u ] −
bδ u

1+u

∑N−1
i=1 i( 1

1+u )i}, thus the fixed equilibrium is unstable since
det J < 0.

Here, our primary focus is on when the optimal state is
stable, and when the worst state is unstable. Then, based on
the stability of the optimal states of coupled system II, we
present the following two conclusions:

Case 1. When δ > α, the optimal state (1, α) of the coupled
system is stable.

(i) If δ >
β

N , the worst state of the coupled system II is
unstable.

(ii) If δ <
β

N , the worst state of the coupled system II is
stable.

Case 2. When δ < α, the optimal state (1, α) of the coupled
system is unstable.

(i) If δ >
β

N , the worst state of the coupled system II is
unstable.

(ii) If δ <
β

N , the worst state of the coupled system II is
stable.

Therefore, to achieve the optimal state and escape the worst
state in coupled system II, it is necessary to ensure that δ >

max{α,
β

N }.
In accordance with the theoretical analyses, we

present the corresponding numerical results in the main
text.
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