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Computational study of elastic waves generated by ultrafast demagnetization in fcc Ni
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Picosecond ultrasonics is a fast growing and advanced research field with broad application to the imaging
and characterization of nanostructured materials as well as at a fundamental level. The aim of this paper is to
provide an advanced 3D model based on atomistic spin-lattice simulations of the laser-induced elastic response
in ferromagnetically ordered fcc Ni. The advantage of such an approach is the possibility to take into account
the laser radiation interaction with the spins and thus characterize the magnetic contribution to the total stress.
We analyze the atomic displacements caused both by the ultrafast thermal expansion of the crystal lattice and
by the demagnetization process due to the heating of a certain area of the sample by an ultrashort laser pulse.
Subsequently, an attempt is made to propose mathematical expressions for describing the corresponding total
stress. The lattice and magnetic contributions have been evaluated, whereupon the former is found to be much
greater than the latter.
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I. INTRODUCTION

With the development of ultrafast lasers, picosecond ul-
trasonics has become an advanced research field which
nowadays shows great potential for elastic nanoscopy and
ultrafast control of electronic and optical devices [1]. Using
ultrafast lasers, it makes possible to generate and detect acous-
tic waves with frequencies up to terahertz and wavelengths
down to nanometers and thus use picosecond laser ultrasonics
to experimentally study nanostructures, adhesion of nanolay-
ers, and profile inhomogeneity [2–4]. In particular, the usage
of picosecond ultrasonics together with ultrashort x-ray probe
pulses, a methodology discussed in Ref. [1], provides direct,
layer-specific, and quantitative information on the picosecond
strain response for structures down to few-nm thickness.

Impressive experimental achievements, however, face
comparably limited theoretical descriptions and modeling of
the laser-induced elastic response, both related to the com-
plexity of the studied phenomenon. Thus, it is possible to
construct analytical solutions for the strain field only for cer-
tain simplified cases [3,5]. As an alternative way, Mattern
et al. [1] proposed the usage of numerical approaches by
means of 1D linear chain models of masses and springs [6,7]
to take into account the time dependence of the stresses by
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subsystem couplings, thermal diffusion, and interface effects.
The situation becomes even more complicated in the case of
using ferromagnetic materials due to the simultaneous mag-
netic degree of freedom interaction with the laser radiation
[8,9] and coupling with the elastic degree of freedom. In other
words, due to the laser-induced ultrafast demagnetization pro-
cess [10–12], the magnetic subsystem can provide its own
contribution to the elastic stress [13–15].

The aim of this paper is to perform an atom-resolved
study on the basis of 3D atomistic spin-lattice simulations
for laser-induced elastic response. As an example for testing
our modeling approach, we use ferromagnetic fcc Ni. Such
a choice allows us not only to calculate the lattice elastic
response including ultrafast thermal expansion but also to
characterize the magnetic contribution to stress in this mate-
rial. Additional advantages of the 3D atomistic model include
the ability to create more realistic structures with atomic reso-
lution, defects, interfaces, given crystal orientations in layers,
and the possibility to obtain the full strain and stress tensor
components.

II. METHODOLOGY

A. Spin-lattice Hamiltonian

For the atomistic spin-lattice simulations, we consider the
following Hamiltonian:

Hsl (r, p, s) = Hmag(r, s) +
N∑

i=1

|pi|2
2mi

+
N∑

i, j=1

V (ri j ), (1)

where ri, pi, si, and mi stand for the position, momentum,
normalized magnetic moment, and mass for each atom i in the
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system, respectively, V (ri j ) = V (|ri − r j |) is the interatomic
potential energy and N is the total number of atoms in the
system with total volume V . In this paper, we restrict ourselves
to elastic waves induced by exchange magnetostriction, so we
only include the exchange interaction in the magnetic energy,

Hmag(r, s) = −1

2

N∑
i, j=1,i �= j

J (ri j )[si · s j − 1], (2)

where J (ri j ) is the exchange parameter. Here, we included an
offset of the exchange interaction, as detailed in Ma et al.
[16]. This offset does not affect the precession dynamics of
the spins, allowing us instead to offset the corresponding
mechanical forces. Without this additional term, the forces
and pressure generated by the magnetic Hamiltonian would
not be zero at its energy ground state (corresponding to the
ferromagnetic state). The spatial dependence of J (ri j ) is de-
scribed using the Bethe-Slater curve, as implemented in the
SPIN package of LAMMPS [17]

J (ri j ) = 4α
( ri j

δ

)2
[

1 − γ
( ri j

δ

)2
]

e−( ri j
δ )

2

�(Rc − ri j ), (3)

where �(Rc − ri j ) is the Heaviside step function and the Rc

are the cutoff radii. As shown in previous works [17,18], the
dynamics of the coupled spins and atoms can be obtained by
integrating the following equations of motion:

dri

dt
= pi

mi
,

dpi

dt
= −∂Hsl

∂ri
,

dsi

dt
= wi × si, (4)

where the precession vector

wi = −1

h̄

∂Hmag

∂si
(5)

is the analog of a spin force applied to the ith spin. Here, h̄ is
the reduced Planck constant.

The effect of temperature is taken into account by con-
necting thermostats to the corresponding subsystems. Thus,
thermal fluctuations in the magnetization are described by
the connection of the spin system to a single thermal bath
by means of Langevin thermostat that leads to the following
stochastic Landau–Lifshitz–Gilbert equation:

dsi

dt
= 1

1 + λ2
((wi + η(t )) × si + λsi × (wi × si )), (6)

where λ is the transverse damping constant. The properties of
such a bath are given by the noise vector η whose components
follow a Gaussian probability law

〈η(t )〉 = 0,

〈ηα (t )ηβ (t ′)〉 = 2πλkBT

h̄
δαβδ(t − t ′), (7)

where α, β are the vector components and the amplitude of
the noise is proportional to the given external thermostat T
[17,19], and kB is the Boltzmann constant.

To connect the thermostat to the lattice, we used time inte-
gration on Nose-Hoover style non-Hamiltonian equations of
motion which are designed to generate positions and veloc-
ities sampled from an isothermal-isobaric (NPT) ensemble,
used in the first thermalization stage, and the canonical (NVT)
ensemble, used in the dynamics during the pulse applica-
tion [20,21]. For these thermostats, we set the temperature
damping parameter in LAMMPS to 0.01 time steps and the
pressure damping parameter to 0.1 time steps, where time step
is dt = 1 fs.

We point out that in this spin-lattice model, we do not
include longitudinal fluctuations of the magnitude of local
magnetic moments, so we assume that the ultrafast demagne-
tization is purely arising from the disordering of spins. Ruban
et al. [22] studied the temperature-induced longitudinal spin
fluctuations in fcc Ni theoretically, finding the average mag-
nitude of magnetic moment changed from 0.6 μB at T = 0 K
up to 0.42 μB at 650 K, just above TC , and to around 0.5 μB

at 1300 K. In neutron-diffraction experiment, it was found
0.4 μB measured slightly above TC [23]. From a theoretical
point of view, it is interesting to note that longitudinal spin
fluctuations allow us to have an effective finite local magnetic
moment at the paramagnetic state in fcc Ni since constrained
spin Density Functional Theory predicts a null local magnetic
moment [24]. In a classical spin-lattice model without longi-
tudinal spin fluctuations, as our model, a finite local magnetic
moment at the paramagnetic state can be achieved by neglect-
ing temperature effects on the magnitude of local magnetic
moment. Such approximation has been previously used in
atomistic spin dynamics simulations to simulate ultrafast de-
magnetization in fcc Ni successfully [25]. Longitudinal spin
fluctuations can be included in classical spin-lattice models
by using the Heisenberg-Landau Hamiltonian [26,27]. Sim-
ilar simulated ultrafast demagnetization has been obtained
in classical spin-lattice models with [27] and without [28]
longitudinal spin fluctuations, suggesting a small correction
arising from this effect in these models.

B. Spin-lattice model parameters

In our paper, we consider an effective prototype model of
fcc Ni. For the classical interatomic potential V (ri j ), we use
the embedded-atom method potential for fcc Ni developed by
Mishin et al. [29]. The parameters of the Bethe-Slater curve
for J (ri j ) are calculated to reproduce the desired Curie tem-
perature (TC) and spontaneous volume magnetostriction (ωs).
Considering exchange interaction up to first-nearest neighbors
for a fcc crystal (effective short-range exchange interaction),
one finds [30]

J (r0) = kBTC

4
, r0

∂J

∂r

∣∣∣∣
r=r0

= ωs(C11 + 2C12)V0

6N
, (8)

where C11 and C12 are the elastic constants, N is the total
number of atoms in the equilibrium volume V0, and r0 is
the equilibrium distance to the first nearest neighbors. The
relation between J (r0) and TC was obtained using the mean-
field approximation. Inserting Eq. (8) into the Bethe-Slater
curve and its derivative, and setting δ = r0 allows us to
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TABLE I. Bethe-Slater parameters of the spin-lattice model of fcc Ni and the corresponding value of ωs.

ωs 0.001 0.0001 0.00001 −0.00001 −0.0001 −0.001

α(meV) 6.97666 8.95914 9.15738 9.20144 9.39968 11.3822
γ −0.31573 −0.02459 −0.00241 0.00239 0.02343 0.19353

δ = 2.48901 Å, Rc = 2.6 Å

obtain [31]

α = e

8

[
2J (r0) − r0

∂J

∂r

∣∣∣∣
r=r0

]
,

γ =
r0

∂J
∂r

∣∣
r=r0

r0
∂J
∂r

∣∣
r=r0

− 2J (r0)
, (9)

where e is Euler’s number and the exchange cutoff ra-
dius Rc must be in between the first and second nearest
neighbors (Rc = 2.6 Å). The equilibrium interatomic distance
between first-nearest neighbors is obtained by fitting the
energy-volume curve to the Murnaghan equation of state
[32,33]. This procedure yields r0 = 2.48901 Å, so the lattice
parameter is a = √

2r0 = 3.51999 Å. The magnetic moment
is μ = 0.61 μB [34] and the mass is 58.69 g/mole. The elas-
tic constants are evaluated through the energy-strain method
at zero temperature, as implemented in AELAS [35], find-
ing C11 = 259 GPa, C12 = 156 GPa, and C44 = 131 GPa, and
thus agreeing with available experimental data from Ref. [36]:
C11 = 261.2 GPa, C12 = 150.8 GPa, C44 = 131.7 GPa (at
T = 0 K) and C11 = 250.8 GPa, C12 = 150.0 GPa, C44 =
123.5 GPa (at T = 300 K). The Curie temperature is set to
the experimental value TC = 627 K [34]. It is interesting to
study the relationship between ωs (the exchange isotropic
magnetostriction) and the elastic wave generated by an ul-
trafast demagnetization. To do so, we consider a set of ωs

values in the model (ωs = ±0.001,±0.0001,±0.00001). The
other reason to use such a set of values is the fact that the
exact value of the spontaneous volume magnetostriction for
fcc Ni [37] is still an open question and different values can
be found in different publications: ∼10−3 [38], ∼10−4 [39,40]
and negative values have also been reported [41,42]. The
values of the Bethe-Slater parameters for J (r) that lead to the
desired ωs in the model are found by combining Eqs. (8) and
(9); see Table I. Extensions of this model that include magne-
tocrystalline anisotropy and anisotropic magnetostriction can
be achieved by using the Néel model [31]. In Appendix A, we
verify that the anisotropic effects do not significantly change
the results found using the isotropic model. The value of trans-
verse damping constant λ for fcc Ni was set to λ(T ) = �/T ,
where � = 3 K, similar to Ref. [43].

The atomic magnetic moments in this spin-lattice model
are considered effective localized moments at the lattice sites,
but Ni is a metal and the magnetism here is rather described
by the itinerant (delocalized, conduction band) electrons. The
amount of electron localization has long been debated in
3d metals, as the magnetism comes from the outer elec-
trons that are considered to be loosely bound to the atoms.
First-principles calculations of the electron density [44] indi-
cate that, in practice, even in itinerant ferromagnets, the spin

polarization is concentrated at the atomic sites. This means
that the bonding electrons are not polarized, and once the
bonding charge is accounted for, the remaining d electrons
create a clearly defined effective localized moment at the
atomic sites [45].

C. Computational details

As a simple model for atomistic spin-lattice simulations in
LAMMPS [17], we take a box of size 352 × 35.2 × 35.2 Å3 and
periodic boundary conditions. The box consists of two regions
of identical Ni atoms (with a total of 40 000 atoms in the box)
ferromagnetically ordered along the z direction and initially
thermalized at a temperature T = 300 K (Fig. 1). Note this
model is isotropic but for real fcc Ni, the hard and easy axis
are, respectively, [100] and [111]. Magnetic anisotropy effects
are examined in Appendix A. After that, in region 1 of size
35.2 × 35.2 × 35.2 Å3, we begin to increase the temperature
as a surrogate of the heating from a laser.

To realistically describe the effect of a femtosecond laser
pulse on region 1, we include thermostats in Eqs. (4) [17].
We assume that the pulse is absorbed by electrons and the
magnetic system is coupled to the electron bath, so the
temperature of the spin system corresponds to the elec-
tron bath temperature. To reach a quantitative agreement of
the temperature-dependent magnetization between simulation
and experiments according to Evans et al. [25], we then
rescale the spin bath temperature for Ni as

Tsim

TC
=

(
Texp

TC

)2.322

. (10)

The electron bath temperature is obtained from the numeri-
cal integration of the two-temperature model (2TM) [46,47]

FIG. 1. Diagram showing the model configuration to simulate
the elastic waves induced by ultrafast demagnetization. The crystal-
lographic directions [100], [010], [001] coincide with the axes x, y,
z, respectively.
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given by

Ce
dTe

dt
= −gep(Te − Tph) + P(t ),

Cph
dTph

dt
= gep(Te − Tph), (11)

where Te is the electronic temperature, Tph is the lattice or
phonon temperature, Ce(Te) = γeTe, γe = 3000 J/m3K2 [46],
and Cph = 2.2 × 106 J/m3K [10] are the specific heats of
the electrons and lattice, gep = 1.2 × 1018 J/s m3K [25] is an
electron-phonon coupling constant which determines the rate
of the energy exchange between the electrons and the lattice,
and P is the deposited laser energy. To model the optical pulse
excitation in the 2TM, we use the expression from Shalaby
et al. [48],

P(t ) = AF√
2πτd

e
−t2

2τ2 , (12)

where A = 0.11 is the absorption coefficient, F = 10 mJ/cm2

is the incident fluence, d = 15 nm is the film thickness, and
τ = 60 fs is the temporal width of the pulse.

The temperature in the equation of motion of spins
[Eqs. (6) and (7)] corresponds to Te, while for the lattice
thermostat is Tph. In this way, we have a model for
ferromagnetically ordered fcc Ni that reproduces the
absorption of some optical energy from the laser pulse by the
surface and its transformation into lattice expansion, as well
as demagnetization, which in turn affects the lattice expansion
due to magnetostriction effects. In our model, there is actually
an energy transfer from an electron to spin subsystem since
the bath temperature of spins in Eq. (6) corresponds to the
electronic temperature (Te) but, for the sake of simplicity, we
neglected the energy transfer from a spin to electron subsys-
tem. Such energy transfer can be included by adding a term in
the differential equation of Te in the 2TM [Eq. (11)] associated
to the spin dynamics of the form

∑
i Heff

i · (dμi/dt ), where
μi = μsi is the atomic magnetic moment vector, Heff

i =
−∂Hmag/∂μi is the effective field, and index i in the summa-
tion runs over all spins in the system [49,50]. According to our
numerical tests, this additional term gives a small correction
to the overall dynamics which does not significantly change
the presented results. The energy transfer between spins
and lattice is achieved through the spatial dependence of
exchange interaction, as well as via the Néel model in the
case with anisotropy discussed in Appendix A. Recently,
heat conservation in spin-lattice simulations of ultrafast
demagnetization has been studied by Pankratova et al. [51,52].

III. THEORY OF THE STRAIN RESPONSE

The governing equation of picosecond ultrasound dynam-
ics may be written as [1]

ρ
∂2ux

∂t2
= ∂

∂x

(
C11εxx + σ ext

xx

) = C11
∂2ux

∂x2
+ ∂σ ext

xx

∂x
. (13)

Equation (13) is the elastic wave equation, i.e., the equation of
motion for the displacement component ux(x, t ), where ρ is
the mass density and the deformation of the solid is described
by the strain εxx = ∂ux/∂x. Here, for convenience, we use
the positive sign for the external stress σ ext

xx so a negative

longitudinal stress that acts from within the material leads to
an expansion along the direction of the stress. Note that this
is the opposite convention as in Mattern et al. [1]. The total
external stress may be written according to Refs. [1,3] as

σ ext,total
xx (T ) = −C11α

uf(T − T0), (14)

where T is the temperature compared to the reference temper-
ature T0 before the arrival of the optical pulse.

The ultrafast expansion coefficient for a metal with typical
Poisson constant ν ≈ 1/3 is approximately twice larger than
the equilibrium thermal expansion coefficient αuf = αeq(1 +
2C12/C11) ≈ 2αeq [1].

In Appendix B, we find that the magnetic contribution to
the external stress is approximately

σ ext,mag
xx ≈ (C11 + 2C12)

ωs

3
(m0 − m) (15)

in terms of the normalized magnetization m = |m| =
M/Ms(T = 0K ) at time t , where m0 is the normalized mag-
netization before the laser action, and ωs is the spontaneous
volume magnetostriction just as in the spin-lattice model.

IV. RESULTS

A. Waves generated by ultrafast magnetic disordering

First, we decided to single out the effect arising from
ultrafast demagnetization (which in this subsection is rudely
simplified to ultrafast magnetic disordering without heat
effects). For this purpose, we used atomistic spin-lattice sim-
ulations and set a constant temperature of 0 K and the
corresponding equilibrium lattice parameter for the ferromag-
netic state in the entire sample to avoid thermal effects. At
the initial time, in region 1 we set a random orientation for
the spins, while in region 2 the spins are oriented parallel to
the z axis. We found that such a rapid change in the orienta-
tion of the spins to a random one causes an elastic wave in
the adjacent magnetically ordered region 2 due to exchange
magnetostriction (ωs), which propagates with a velocity v =
5280 m/s and thus practically corresponds to the speed of
sound of a longitudinal wave along the crystallographic di-
rection [100] in Ni vsound = √

C11/ρ = 5379.39 m/s (shown
in Fig. 2). The amplitude of such a wave is proportional to
ωs, as seen in Fig. 2(b), and depends on the width in the x
direction of the magnetically disordered region. To investigate
the effect of the size of region 1 on the resulting properties of
the elastic wave, we increased the sample size in the model up
to 880 × 35.2 × 35.2 Å3 and approximated the elastic wave
by a Gaussian function,

ux(x, t ) = ame−(x−v(t−tm ))2/2σ 2
, (16)

where ux(x, t ) is the average displacement (in the x direction)
of atoms located on the crystallographic plane with the x coor-
dinate at time t , am is the wave amplitude, v is the speed of the
wave, tm is the fitting parameter which in our model is taken
equal to 100 fs, and σ is the Gaussian width parameter which
is responsible for the full width half maximum (FWHM) of
the resulting elastic wave as FWHM = σ

√
8 ln 2.

Thus, this effect is relatively small in comparison to the
thermal expansion and is mainly of purely theoretical interest,
while for the interpretation of the results from experimental
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FIG. 2. The elastic wave induced by the magnetic disorder in
region 1. (a) Elastic wave propagation and approximation of the wave
by a Gaussian function. As an example, the wave profile in two time
moments for the case of ωs = 0.001 is shown. The vertical dotted line
shows the boundary between region 1 and region 2. (b) Dependence
of the elastic wave amplitude am on the volume magnetostriction ωs

and the size of region 1. (c) Gaussian width parameter σ dependence
on the width of the magnetically disordered region.

studies, it is necessary to take into account the effects associ-
ated with heating.

B. Waves generated by ultrafast heating

In this section, we consider the spin-lattice model with
ωs = 0.001 to study heat effects. As follows from a compari-
son with experimental data [10] in Fig. 3(a), the temperature
model we have proposed in Sec. II C describes the laser-
induced temperature change in region 1 quite well, and this
leads to a correct representation of the demagnetization pro-
cesses in our atomistic spin-lattice simulations as shown in
Fig. 3(b). We also see our approach leads to similar overall
dynamics as the three temperature model (3TM) used by
Beaurepaire et al. [10]. For example, remarkable similarities

FIG. 3. (a) Temporal evolution of different contributions to the
temperature in region 1 in our simulations (according to 2TM),
namely, phononic (blue dashed line), electronic (light blue line) and,
following Beaurepaire [10], spin (orange) and electronic (yellow)
using the 3TM. (b) Subpicosecond demagnetization (normalized) in
region 1 induced by femtosecond laser pulse: our model (blue) versus
experimental data (orange symbols) from Beaurepaire et al. [10].

between the microscopic implementation of the 3TM (so-
called M3TM) [53] and coupling magnetic dynamics to the
2TM has been reported [54]. Rapid heating and the resulting
demagnetization create stress in region 1, the averaged com-
ponent σ ext

xx of which is shown in Fig. 4. This stress can be
successfully approximated [as can be seen on Fig. 4(a)] by an
exponential function as

σ ext,total
xx (t ) = a0e−bt − c0 = a0(e−bt − e−bt0 ), (17)

where a0, b, and c0 = a0e−bt0 are fitting parameters.
To evaluate the magnetic contribution to the total stress,

we performed an additional simulation that shows the contri-
bution of the lattice alone without spin interactions (silver line
in Fig. 4). From the total stress, we define the contribution re-
sponsible for the magnetic subsystem as σ

ext,mag
xx = σ ext,total

xx −
σ ext,lat

xx and compare it with the theoretical, Eq. (15). As can
be seen from Fig. 4(a), although the σ

ext,mag
xx obtained from

simulations has certain inaccuracies, on average it agrees quite
well with the theoretical expression (15). In the simulation
for σ ext,total

xx and in the formula for σ
ext,mag
xx , we have supposed

ωs = 0.001 according to the used spin-lattice model.
Additionally, we compared our simulation results for

the total external stress with the temperature dependence
represented by Eq. (14) and find good agreement (linear de-
pendence) only for phonon temperature case,

σ ext,total
xx (Tph) = −C11α

uf(Tph − Tph0), (18)

while Eq. (14) is written with the assumption that the temper-
atures of the different degrees of freedom are the same and
therefore does not contain the specification of this tempera-
ture. The value αuf = 2.671 × 10−5 K−1 obtained from the
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FIG. 4. (a) Time dependence of total stress (blue line), magnetic
contribution to external stress (green line), and lattice contribution
to external stress (silver line). Orange line shows the approximation
to the total stress by using formula (17) with fitting parameters
a0 = 1.334 GPa, b = 1.206 ps−1, and t0 = −0.058 ps (or c0 =
−1.431 GPa). The dark green line is the theoretical magnetic con-
tribution to the external stress from Eq. (15). (b) Lattice temperature
dependence of average stresses in region 1. The orange line shows
the approximation to the total stress by using formula (14) with fitting
parameter αuf = 2.671 × 10−5 K−1.

approximation in Fig. 4(b) is indeed about twice times larger
than the calculated equilibrium thermal expansion coefficient
αeq = 1.192 × 10−5 K−1 (including the magnetic part, i.e.,
ωs).

It is noteworthy that the external stress in Eq. (17) and
Eq. (18) is the same stress expressed in terms of time or
lattice temperature, which can be written as average val-
ues for region 1 in the same way as the exact values for
some point with coordinate xi [with stress amplitude a0(xi )
correction with respect to coordinate xi] in region 2. This
gives us the opportunity to obtain the time dependence of
the phonon temperature expressed in terms of external stress
parameters as

Tph(t ) = Tph0 + a0

C11αuf
(e−bt − e−bt0 ), (19)

which might be useful for temperature Tph analysis in picosec-
ond ultrasonics experiments. Nevertheless, in this case, further

FIG. 5. The heating-induced demagnetization as simulated in
LAMMPS and the corresponding atomic displacements. (a) Spatial
distribution of the magnetization component along the z direction
mz(x) at time t = 1.65 ps. The heated region is clearly visible due
to noticeable demagnetization. (b) The atomic displacements along
x direction ux (x) in Å at the same time. (c) Displacement component
ux (x, t ) as averaged in crystallographic planes, where the coordinate
x corresponds to the coordinate of the crystallographic plane. All data
in (a)–(c) are shown for the coordinate x ranging from 0 to 176 Å,
which includes the heated region (region 1) and approximately half
the adjacent region (region 2).

analysis of the physical nature of the fitting parameters a0 and
b is required.

To study the elastic response in region 2 to laser-induced
heating in region 1, it is necessary to take into account
the spatial dependence of the studied physical quantities.
While a purely analytical consideration of the solution of
the equation of motion Eq. (13) requires knowledge of the
explicit dependence of the stress σ ext,total

xx (x, t ) on both time
and coordinate x (that are not currently known), in atom-
istic simulations there is no such problem. Thus, the effect
of heating on the magnetic subsystem (the component of
magnetization along the z direction) obtained from the simula-
tion in LAMMPS and visualized in OVITO [55] at time t = 1.65
ps is shown in Fig. 5(a), while the state of the elastic subsys-
tem (displacements along the x direction) at this same time
are represented in Fig. 5(b). Further analysis of the simulation
data allows us to depict a map of the spatial-time dependence
of displacements averaged in the crystallographic planes.
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FIG. 6. LAMMPS simulation vs numerical solution of the gov-
erning equation of picosecond ultrasonics, Eq. (13), with the total
external stress as specified in Eq. (20).

From the spatial and time dependencies of displacements
ux(x, t ), it is possible to make an assumption about the spec-
ified time and coordinate dependent parts of the analytical
expression of the external stresses. The total external stress
shows a tendency for exponential dependencies on time in
the entire sample and not only in the heated region 1, but the
specific value of stress at a certain point depends on coordinate
x. Therefore, the spatial dependence of the σ ext,total

xx can be
found by correction to its amplitude as a0(x) = aconst

0 f (x)
in Eq. (17), where the explicit analytical expression of the
function f (x) is unknown. To reach an agreement with the
ux(x, t ) obtained in the simulation, we propose to express this
function in the form f (x) = e− 1

2 ( x−x0
�x )2

, where �x = 17.6 Å is
half the size of region 1 and x0 = 17.6 Å is the coordinate of
the center of the heated region. For simplicity, in the follow-
ing example, we take approximately aconst

0 ≈ a0 = 1.334 GPa
found in Fig. 4 (although the average value of the ampli-
tude in region 1 can formally be obtained by integration as
aconst

0
2�x

∫ 2�x
0 e− 1

2 ( x−x0
�x )2

dx giving a scaling factor between these
two quantities).

The total stress specified as

σ ext,total
xx (x, t ) = aconst

0 (e−bt − e−bt0 )e− 1
2 ( x−x0

�x )2
(20)

can then be substituted directly into the governing equation of
picosecond ultrasound dynamics, Eq. (13), and the solution of
the latter by numerical methods shows quite good agreement
with atomistic simulation data, as can be seen from Fig. 6.

In summary, we have proposed a theoretical model for
simulating laser-induced responses of the elastic and magnetic
subsystems of the crystal, clarified the type of temperature in
Eq. (14), clarified the magnetic contribution to the total stress,
and proposed an analytical expression for the total stress.
The presented results, including analytical expressions, can be
experimentally verified in picosecond ultrasonics experiments
using ultrashort hard x-ray pulses.

V. CONCLUSIONS

We have proposed a method of using the SPIN package of
LAMMPS to simulate the laser-induced elastic response in pi-

cosecond ultrasonics. The advantages of the proposed method
are the possibility of creating more realistic 3D models of
crystal structures that are able to take into account the defects,
system geometry, crystal orientation, the magnetic ordering,
and the possibility of obtaining complete strain and stress ten-
sors. Based on the example of fcc Ni, we have shown how this
method can be applied to ferromagnetically ordered materials
and have characterized the magnetic contribution to the stress.
The ferromagnetically ordered Ni example considered in the
present paper shows good agreement of the simulation results
with both available experimental data and previous theoretical
models.

The theoretical approach presented in our paper can be
useful for further interpretations of experiments in the pi-
cosecond ultrasonics, as well as for providing other required
parameters (like ultrafast thermal expansion coefficient αuf)
in micromagnetic models of picosecond ultrasonics within a
multiscale approach.

As a possible further development of the proposed model,
we suggest trying to apply a similar approach to the
description and investigation of phenomena related to de-
magnetization due to x-ray [56–61], where the ultrafast
demagnetization and related processes proceed even faster.
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APPENDIX A: MAGNETIC ANISOTROPIC EFFECTS

The magnetic anisotropic effects can be included in
the spin-lattice model by adding the Néel interaction in
the magnetic energy [Eq. (2)] [30,31] through a two-ion
Hamiltonian [62]

HNéel = −1

2

N∑
i, j=1

{l1(ri j )

[
(ei j · si )(ei j · s j ) − si · s j

3

]

+ q1(ri j )

[
(ei j · si )

2 − si · s j

3

][
(ei j · s j )

2 − si · s j

3

]

+ q2(ri j )[(ei j · si )(ei j · s j )
3 + (ei j · s j )(ei j · si )

3]},
(A1)
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where ei j = ri j/ri j and

l1(ri j ) = l (ri j ) + 12
35 q(ri j ),

q1(ri j ) = 9
5 q(ri j ),

q2(ri j ) = − 2
5 q(ri j ).

(A2)

The dipole [l (ri j )] and quadrupole [q(ri j )] terms can describe
the anisotropic effects induced by spin-orbit coupling like
the anisotropic magnetostriction (λ100 and λ111) and mag-
netocrystalline anisotropy (K1), respectively [30,31]. As for
the exchange parameter J (ri j ), we describe the spatial de-
pendence of l (ri j ) and q(ri j ) using the Bethe-Slater curve, as
implemented in the SPIN package of LAMMPS [17]:

l (ri j ) = 4αl

(
ri j

δl

)2
[

1 − γl

(
ri j

δl

)2
]

e
−

(
ri j
δl

)2

�(Rc,l − ri j ),

q(ri j ) = 4αq

(
ri j

δq

)2
[

1 − γq

(
ri j

δq

)2
]

e
−

(
ri j
δq

)2

�(Rc,q − ri j ).

(A3)

For fcc Ni, we use the following values of these parame-
ters: αl = 179.396 µeV/atom, γl = 1.39848, δl = 2.48901 Å,
Rc,l = 2.6 Å, αq = −49.1335 µeV/atom, γq = 1.1186, δq =
2.48901 Å, and Rc,q = 2.6 Å, which were previously found
to reproduce experimental anisotropic magnetostriction (λ100

and λ111) and magnetocrystalline anisotropy at zero tempera-
ture (K1) [31].

In the case of fcc Ni, taking into account the effects of
magnetic anisotropy in the study of ultrafast heat-induced
demagnetization does not lead to noticeable effects, as can
be seen from Fig. 7. The obtained difference in the aver-
aged stress σxx in the heated region is relatively small and
can be explained both by the effects of anisotropy and the
limited accuracy of the measurement of this value in the
proposed model. We think this result is consistent with theory
since magnetic stress is proportional to spontaneous volume
magnetostriction ωs [see (B9)], and ωs only depends on
isotropic magnetostrictive coefficient (λα) up to first order in
cubic crystals ωs = 3λα + O(λ2

100, λ
2
111) [37]. Hence, accord-

ing to this argument, one might expect very small anisotropic
effects on magnetic stress during ultrafast demagnetization in
cubic crystals like fcc Ni. Conservation of angular momentum
of this spin-lattice model has been recently studied by Cooke
and Lukes [63]. Note that more advanced models like ab initio
nonadiabatic molecular dynamics may be required to describe
spin-orbit coupling effects on the electronic structure during
ultrafast demagnetization [64].

APPENDIX B: MAGNETIC STRESS

In this Appendix, we derive some theoretical expressions
for the magnetic contribution to stress. The stress tensor σi j is
related to the fourth-order elastic stiffness tensor ci jkl and the
second-order strain tensor εi j through the generalized Hooke’s
law:

σi j =
∑

k,l=x,y,z

ci jklεkl , i, j = x, y, z. (B1)

FIG. 7. Magnetic anisotropic effects. (a) Demagnetization in re-
gion 1 induced by femtosecond laser pulse: model with neglected
(blue) and model with included magnetic anisotropy effects (yellow)
versus experiment (orange symbols) from Beaurepaire et al. [10]. In
the model with anisotropy, the direction of the initial magnetization
is set along the easy crystallographic axis [111]. (b) Changes in
the total stress with respect to including the effects of magnetic
anisotropy. Green line shows the approximation of the total stress
(with magnetic anisotropy effects) by Eq. (17) with fitting parame-
ters a0 = 1.329 GPa, b = 1.227 ps−1, and t0 = −0.066 ps (or c0 =
−1.441 GPa).

Using the symmetry of the stress and strain tensors, Hooke’s
law can be written in matrix notation as⎛

⎜⎜⎜⎜⎜⎜⎝

σxx

σyy

σzz

σyz

σzx

σxy

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

cxxxx cxxyy cxxzz cxxyz cxxzx cxxxy

cyyxx cyyyy cyyzz cyyyz cyyzx cyyxy

czzxx czzyy czzzz czzyz czzzx czzxy

cyzxx cyzyy cyzzz cyzyz cyzzx cyzxy

czxxx czxyy czxzz czxyz czxzx czxxy

cxyxx cxyyy cxyzz cxyyz cxyzx cxyxy

⎞
⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎝

εxx

εyy

εzz

2εyz

2εzx

2εxy

⎞
⎟⎟⎟⎟⎟⎟⎠

. (B2)

To facilitate the manipulation of this equation, it is conve-
nient to define the following six-dimensional vectors (Voigt
notation):

σ̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

σ̃1

σ̃2

σ̃3

σ̃4

σ̃5

σ̃6

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

σxx

σyy

σzz

σyz

σzx

σxy

⎞
⎟⎟⎟⎟⎟⎟⎠

, ε̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

ε̃1

ε̃2

ε̃3

ε̃4

ε̃5

ε̃6

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

εxx

εyy

εzz

2εyz

2εzx

2εxy

⎞
⎟⎟⎟⎟⎟⎟⎠

, (B3)
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and replace ci jkl by Cnm contracting a pair of Cartesian indices
into a single integer: xx →1, yy →2, zz →3, yz →4, zx →5,
and xy → 6. Using these conversion rules, Hooke’s law is
simplified to

σ̃i =
6∑

j=1

Ci j ε̃ j, i = 1, ..., 6, (B4)

which in matrix form reads⎛
⎜⎜⎜⎜⎜⎜⎝

σ̃1

σ̃2

σ̃3

σ̃4

σ̃5

σ̃6

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

ε̃1

ε̃2

ε̃3

ε̃4

ε̃5

ε̃6

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(B5)

Hence, for cubic crystals the xx component of stress is simpli-
fied to

σ̃1 = σxx = C11εxx + C12(εyy + εzz ). (B6)

Now, let us assume that the system is initially at the equilib-
rium ferromagnetic state at zero temperature (m0 = 1, V =
VFM and T0 = 0 K), and we suddenly set the spins to a para-
magnetic state (m = 0) but with frozen lattice (V = VFM). In
this case, the trace of the induced strain tensor is equal to the
spontaneous volume magnetostriction:

ωs = VFM − VPM

VPM

 εxx + εyy + εzz. (B7)

Since we also have εxx = εyy = εzz, then

εxx = εyy = εzz = ωs

3
. (B8)

Inserting Eq. (B8) in Eq. (B6) leads to

σ mag
xx = (C11(T0) + 2C12(T0))

ωs(T0)

3
. (B9)

This relationship can be also obtained from bulk modu-
lus B0 = −V (dP/dV ) since for cubic crystals B0 = (C11 +
2C12)/3.

For our model of fcc Ni with ωs = 0.001 (where C11 =
259 GPa and C12 = 156 GPa), the theoretical induced mag-
netic stress is σ

mag
xx = 0.1905 GPa from Eq. (B9), finding

good agreement with the spin-lattice model simulation
(0.1903 GPa). In Fig. 8, we numerically verified with spin-
lattice simulations that for an arbitrary demagnetized state m
the magnetic stress follows approximately

σ mag
xx (m) ≈ (C11(T0) + 2C12(T0))

ωs(T0)

3
(1 − m), (B10)

where Eq. (B9) is recovered for the fully demagnetized state
m = 0. Thus, the change in magnetic stress between two arbi-
trary magnetic states m1 and m2 may be written as

δσ mag
xx = σ mag

xx (m2) − σ mag
xx (m1) ≈ (C11 + 2C12)

ωs

3
(m1 − m2).

(B11)

We see that an ultrafast change in magnetization δm = m1 −
m2 induces a change in the magnetic contribution to stress due

FIG. 8. Magnetic contribution to stress: Comparison of simula-
tion data (squares) and the result obtained from theoretical Eq. (B10)
(line). Here spontaneous volume magnetostriction in Eq. (B10) is
taken as ωs = 0.001 the same as initial value of it in simulation.

to exchange magnetostriction ωs, as shown in Fig. 4. Note also
that the sign of this stress depends on the sign of ωs.

We additionally note that although Eq. (B11) uses an ap-
proximately constant value of ωs, and at the same time it
agrees quite well with the simulation data (see Fig. 8), in
the general case spontaneous volume magnetostriction also
changes with temperature, as discussed in Appendix C.

APPENDIX C: TEMPERATURE DEPENDENCE OF
SPONTANEOUS VOLUME MAGNETOSTRICTION

Spontaneous volume magnetostriction varies with temper-
ature, decreasing up to zero at the Curie temperature reaching.
As an example of such a temperature dependence, we present
here the data from work [42] and compare them with the
results obtained within the framework of our model from
the simulations in LAMMPS (see Fig. 9). We consider a spin-
lattice model with ωs = −0.0012 at T = 0 K, as in Ref. [42],
by setting the Bethe-Slater parameters to α = 11.8227 meV,

FIG. 9. Temperature dependence of the spontaneous volume
magnetostriction. Experimental data are taken from Ref. [42]. The
simulation curve is obtained from the simulations (with the corre-
sponding to the experiment initial parameter ωs = −0.0012 at T =
0 K for FM case) as ωs(T ) = (VFM(T ) − VPM(T ))/VPM(T ) while the
simulation rescaled curve additionally takes into account the differ-
ence between the temperature in the simulation and the temperature
in the experiment according to Eq. (10), based on Evans et al. [25].
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γ = 0.22358, δ = 2.48901 Å, and Rc = 2.6 Å. We see that
better agreement between simulation and Ref. [42] is achieved
by rescaling simulation temperature according to Eq. (10),
suggesting that the method of Evans et al. [25] might also

be useful for a quantitative simulation of the temperature
dependence of ωs(T ). More advanced spin-lattice models,
capable of accounting for possible thermal anomalies, could
be developed through a genetic algorithm [65].
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