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Estimate of entropy production rate can spatiotemporally resolve the active nature of cell flickering
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We use the short-time inference scheme [Manikandan et al., Phys. Rev. Lett. 124, 120603 (2020)], obtained
within the framework of stochastic thermodynamics, to infer a lower bound to entropy production rate from
flickering data generated by interference reflection microscopy of HeLa cells. We can clearly distinguish active
cell membranes from their adenosine-triphosphate-depleted selves and even spatiotemporally resolve activity
down to the scale of about 1 µm. Our estimate of activity is model independent.
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I. INTRODUCTION

At the dawn of biophysical research [1], it was already
realized that the fundamental property of living cells is that
they are not in thermal equilibrium even when they are statisti-
cally stationary—they consume energy and generate entropy;
see, e.g., Ref. [2] for a recent review. Nevertheless, tools
of equilibrium physics are frequently used to interpret re-
sults of experiments on living cells; for example, equilibrium
models are used to infer bending rigidity from flickering
data—vibrating fluctuations of a cell membrane; see, e.g.,
Ref. [3] for this and several other examples. Although the
possible influence of active transport on flickering was first
pointed out at least 70 years ago [4], investigation into the
essential nonequilibrium feature of flickering, by comparing
flickering data from a healthy cell with its adenosine triphos-
phate (ATP)-depleted self, has peaked in the last two decades
[5–7], see also Ref. [8] and references therein. For red blood
cells (RBCs), the first unequivocal demonstration of their
nonequilibrium nature was shown via the violation of the
fluctuation-dissipation theorem [9]. However, no attempt has
been made so far to spatiotemporally resolve, from flicker-
ing data, the fundamental physical quantity that characterizes
nonequilibrium, viz., the rate of entropy production σ .

On the one hand, recent spectacular progress in visualizing
and tracking biological processes [10–14] with unprecedented
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accuracy and control raises hopes that measuring entropy pro-
duction rate for cellular processes is indeed possible. On the
other hand, there are several difficulties: (a) They are small
in magnitude, of the order of few kB s per second, and lie
below the threshold of detection for the existing calorimetric
techniques [15]. (b) Thermal fluctuations cannot be ignored,
hence any measurement results in noisy readings [16]. (c)
Typically, we have access to only a few degrees of freedom,
e.g., flickering gives us access to the fluctuations of the cell
membrane down to a certain length and time scale, while
fluctuations at smaller length and time scales and the motion
of the cytoskeleton that drives flickering are not accessible. (d)
In far-from-equilibrium regimes, there are very few general
principles.

The theoretical understanding of the far-from-equilibrium
behavior of microscopic systems has undergone a revolution
over the last two decades [17,18], giving rise to the subfield
of statistical physics called stochastic thermodynamics, which
can in principle extract entropy production rate from long-
enough stochastic trajectories of all the degrees of freedom of
the system [18,19]. With limited data—limited in both time
and number of accessible degrees of freedom—the best we
can do is to set bounds [20–34].

In this paper, we use a recent addition to this list of tech-
niques, the short-time inference scheme [29,35,36], together
with flickering data of HeLa cells to estimate spatiotemporally
resolved entropy production rate. As the entropy production
rate is the fundamental characteristic of the active nature of
the fluctuations, in the rest of this paper we shall use the word
activity and entropy production rate interchangeably. The
short-time inference scheme is built on the thermodynamic
uncertainty relation [22], which states that a lower bound to
the entropy production rate can be obtained via fluctuations of
any arbitrary current J in phase space, as

σ � 2kB
〈J〉2

t Var(J )
, (1)

where 〈·〉 and Var(·) denote mean and variance of a random
variable calculated from a statistically stationary time series
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FIG. 1. We use interference reflection microscopy (a) to obtain flickering data from the basal membrane of HeLa cells (b) with a patch
marked by a sky blue square. Zoomed-in picture of the patch in (c) typically contains M2 = 400 pixels. The 400 time series are dimensionally
reduced to a few by principal component analysis (PCA). (d) The stochastic trajectory of the first two principal components for a typical case.
We obtain the entropy production rate σ by numerical optimization of this reduced problem. Using the first six principal components instead
of the first two has a negligible effect on our results. Color map of σ in (e) clearly shows the active cells compared to its background. The
sketch in (a) is adapted from Ref. [37].

of phase space trajectories over a time interval t and kB is
the Boltzmann constant. References [29,35,36] extended this
result to show that for a large class of nonequilibrium sys-
tems with an overdamped Langevin dynamics, the inequality,
Eq. (1), saturates in the short time limit, i.e.,

σ = 2kB lim
�t→0

max
J

[
〈J�t 〉2

�t Var(J�t )

]
. (2)

Here, J�t is calculated over time �t and the mean and the
variance is calculated over an ensemble of such time intervals.

This scheme has certain key advantages over its competi-
tors: one, it is model independent—the precise knowledge of
the underlying overdamped Langevin equation is not required;
two, it is not limited to stationary time series. This scheme
has been successfully used to estimate the entropy production
rate from a moderate number of realizations of stochastic
trajectories of time-dependent systems [31]. The scheme was
also tested experimentally using the stationary trajectories of a
colloidal particle in an stochastically shaken optical trap [38].
Here, we apply Eq. (2) to analyze flickering data from living
cell membranes.

II. METHODS

In Fig. 1 we pictorially summarize our method. We first
obtain a movie of flickering data for the basal membrane,
a part of the membrane attached to the substrate, of ad-
herent HeLa cells using interference reflection microscopy
(IRM). HeLa cells (CCL-2, ATCC) were grown in Dulbecco’s
modified essential medium (DMEM, Gibco, Life Technolo-
gies, USA) supplemented with 10% fetal bovine serum (FBS,
Gibco) and 1% Antibiotic-Antimycotic (Gibco) at 37◦C under
5% CO2. Experiments were always performed after 16–18 h
of cell seeding. IRM imaging [37,39] was conducted using
a motorized inverted microscope (Nikon, Japan) equipped
with adjustable field and aperture diaphragms, a 60× water
immersion objective (NA 1.22), 1.5× external magnification,
an on-stage 37◦C incubator (Tokai Hit, Japan), an s-CMOS
camera (ORCA Flash 4.0, Hamamatsu, Japan), a 100-W mer-
cury arc lamp, an interference filter (546 ± 12 nm), and a

50-50 beam splitter [37]. Pixel intensities were converted to
relative heights (distance of the membrane from the coverslip)
using a MATLAB (MathWorks, USA) code after obtaining the
intensity-to-height conversion factor determined by a beads-
based calibration method as reported previously [37]. Every
experiment was preceded by an independent calibration.

A typical image of a cell is shown in Fig. 1(b). In addition
to the cell, the background is also visible. For the analy-
sis, we divide this cell into several square patches of equal
size (∼2 µm2). One such patch is shown as a blue square in
Fig. 1(b). Each patch is made of M × M pixels. Thus, the
time evolution of each patch is completely described by M2

stochastic variables I = (I1, I2, . . . , IM2 )—the light intensity
at each of the pixels. We record movies with a time step
�t = 50 ms between two consecutive snapshots. A typical
movie consists of Nf = 2048 snapshots—see Fig. 1(c). In
order to apply the inference scheme in (2), in principle, we
can calculate currents from two consecutive snapshots and
average over the number of snapshots to calculate the quantity
inside the square brackets in (2). In that case, we have to
perform numerical optimization over M2 space, which is a
formidable problem. Following Ref. [28], we use principal
component analysis (PCA) to reduce the dimension of the
problem in the following manner. Construct the covariance
matrix C, with elements Ci j ≡ 〈IiI j〉 − 〈Ii〉〈I j〉. The average is
taken over the number of frames Nf . This is averaging over a
time interval, in which the time series is assumed to be station-
ary. The method applies equally well for ensemble averaging
[31]. The projections of the data along the eigenvectors of
this covariance matrix, in decreasing magnitude of eigenvalue,
are the principal components. Figure 1(d) shows a typical
example of the dynamics in the first two components, I1(t )
and I2(t ). In general, the state of the system can be projected
to any N � M2-dimensional vector I = (I1, . . . Iα, . . . IN ).
Next, we define a scalar current:

J�t (ti ) ≡ d
(I (ti + �t ) + I (ti )

2

)
· [I (ti + �t ) − I (ti )], (3)

where d(I ) is any arbitrary N-dimensional function. Then,
we need to find the optimal function d∗(I ) which maximize
the bound in (2). We use two different algorithms: (A) We
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FIG. 2. Activity of cell membrane. (a) and (b) From left to right: Typical IRM image of two live HeLa cells; the boundary of the cells is
marked in yellow. Color map of ln(σ ) before the cells are treated with ATP-depleting agents. Color map of log10(σ ) after incubating the cells
in ATP-depleting agents for 20, 40, and 60 min. For clarity, the color map is limited to a fixed range. (c) Representative IRM image of a cell
with FBRs (size: 20 × 20 pixels or 2 µm2) marked in yellow. (d) Plot of (1 - CDF) of σ , for the FBR patches, for control and three different
durations of ATP depletion. (e) Average of σ over FBR patches under ATP depletion.

use a linear function dα (I ) = cαβIβ , where the matrix cαβ

is a matrix of constant coefficients, and perform the op-
timization by the particle-swarm algorithm. (B) We use a
nonlinear function for d(I ) represented by a feed–forward
neural network d(I|θ), where θ are the parameters of the
network. For a fixed choice of the parameters, the mean and
the variance of the current are computed by averaging over
the index i. The analysis can then be extended to cells under
different physiological conditions and at different times, to
obtain a spatiotemporally resolved entropy production map as
in Fig. 1(e). Both the algorithms give similar results, with (A)
yielding a slightly lower estimate than (B). See Appendix A
for details.

III. RESULTS

In Fig. 2(a), we show how our method performs on the
experimental data as the cells are ATP-depleted by incubat-
ing them in glucose-free ATP-depleting medium. We do this
by adding 10 mM sodium azide and 10 mM 2-deoxy D-
glucose to the cells [40] in M1 Imaging medium (150 mM
NaCl; Sigma-Aldrich), 1 mM MgCl2 (Merck, Kenilworth,
NJ), and 20 mM HEPES (Sigma-Aldrich), and incubating
them for 60 min for ATP depletion. In recent work by some
of the authors, it was found that ATP-driven activities increase
temporal fluctuations and flatten out spatial undulations—see
Fig. 3 in Ref. [37] and discussions therein for the detailed

analysis and discussion on the effect of ATP depletion on
membrane fluctuations.

In the leftmost row of Fig. 2 we show the image of the
cell—the cell boundaries are marked in yellow. The next col-
umn shows a pseudocolor plot of log10(σ ) of the live cell,
marked by control. The next three columns show how the
entropy production rate changes after 20 min, 40 min, and 1 h
of incubation. In each of these cases, we use a movie of Nf =
2048 snapshots where consecutive snapshots are separated by
�t = 50 ms. Since the total duration of the movie is quite
short compared to the time scales over which ATP depletion
operates, each of these movies are considered statistically
stationary. We have performed these experiments for a total
of 31 HeLa cells, with two independent repeats. Images of
two typical cells are shown in Figs. 2(a) and 2(b). The images
of several other representative cases are in the Supplemental
Material [41]. Our results clearly demonstrate that the entropy
production rate computed using (2) spatiotemporally resolves
the active nature of cell membrane fluctuations. Notably, we
see many patches of high entropy production in the active
cell membrane, which is well contrasted with the background,
and patches of low entropy production in the ATP–depleted
membrane, less contrasted with the background. We also see
an overall decay of σ in time.

To calculate reliable statistical properties of the entropy
production rate—for the control and the ATP-depleted ones—
we limit ourselves to patches that are inside the cell and away
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FIG. 3. How Cyto-D affects activity. (a) IRM image and color map of log10(σ ) of a HeLa cell from the control set and Cyto-D treated
cells. Note that unlike Fig. 2, these two are not the same cell. The boundaries of the cells are marked in yellow. (b) The average as well as the
distribution (inset) of σ . Data is representative of three independent experiments on 17 control cells and Cyto-D treated ones. The images of
several other representative cases are in the Supplemental Material [41].

from the nucleus; an example is shown in Fig. 2(c). The
relative heights of these patches lie within the range ∼0–100
nm—termed as first-branch regions (FBRs). Henceforth we
call these patches FBR patches. We use rank-order methods
to calculate the cumulative distribution function (CDF) of
σ from all the FBR patches of all the cells, see Fig. 2(d).
The rank-order method does not suffer from the binning er-
rors that plague histogram-based methods to calculate the
probability distribution function. We calculate the probability
density function (PDF) of σ by calculating the derivatives of
the CDF. The complement of the CDF, defined as 1 - CDF,
has an exponential tail to the right. This implies that the PDF
of σ also has an exponential tail. In Fig. 2(e) we show how
the mean value of the σ decreases under ATP depletion. A
straightforward computation of the average σ over all FBR
patches for the control cell yields a value of approximately
4 × 10−3 kB s−1 across a patch area of 2 µm2. The exponential
tail of the PDF implies that σ shows large fluctuations. In
particular, the average of the top 10% of patches is nearly five
times higher than the mean, and the average of the top 50% of
patches is nearly double—see Appendix A 3.

Which processes on the membrane are the major contrib-
utors to the measured activity? Of the many ATP-dependent
processes that may actively impact membrane fluctuations,
forces originating at the underlying actomyosin cortex are
important [37,42]. The effect of actin polymerizing forces
[43] as well as forces by myosin motor protein contracting
the actin network are expected to be diminished if the cor-
tex is weakened or removed. It has been shown [44] that
the drug Cytochalasin D (Cyto D) suppresses actin polymer-
ization and weakens the cortical network. This is achieved
by treating the cells with 5-µM cytochalasin D (Cyto D,
Sigma Aldrich) for 1 h in serum-free media [37]. Its effect
on membrane fluctuations was further found to be highly spa-
tially inhomogeneous—see Fig. 4 in Ref. [37] and discussions
therein for the detailed analysis and discussion on the effect of
Cyto D treatment on membrane fluctuations. The network is
subsequently contracted and fragmented by myosin, and the
cortex ruptures, clears from most of the membrane area, and
accumulates at multiple foci. Thus, we expect that a possible
effect of Cyto-D is to decrease the entropy production rate. In
Fig. 3 we show the effect of Cyto-D on the entropy production
rate. We indeed find a decrease in activity. The decrease of

the mean value of the measured activity is smaller than the
decrease measured for ATP depletion.

Note that the probability distribution function of entropy
generation rate has an exponential tail. We have found a
significant number of patches with estimates of σ at least
five times higher than the mean value (See Appendix A 3).
As our measurements find set a lower bound to the actual
entropy production rate, it is likely that in reality the PDF
falls off even slower than an exponential. This underscores
the heterogeneous nature of the activity of the membrane.

IV. DISCUSSION

Our attempt to tease out the essential nonequilibrium fea-
ture from flickering by using the entropy production rate
as a measure of activity has a clear advantage over ear-
lier methods, such as the ones dependent on the breakdown
of the fluctuation-dissipation relation, e.g., Refs. [9,45–47].
First, the entropy production rate is the crucial measure of
nonequilibrium—if a system A has a higher entropy pro-
duction rate than a system B, then A is further away from
equilibrium than B. Second, we are able to spatiotemporally
resolve the entropy production rate, and are thereby able to
identify regions that have a higher entropy production rate.
This has not been achieved before. Third, our method gives
a model-independent estimate of the lower bound of entropy
production, whereas Refs. [9,48] must use a model for ac-
tive fluctuations. Finally, the measurements in Refs. [9,45–
48] are typically invasive in nature—they involve tracking
the response of microscopic beads attached to systems and
external perturbations [11] or attaching fluorescent proteins
or filaments to the relevant degrees of freedom [12,13]. In
contrast, our analysis is less invasive and is applicable to
movies made by exploiting the naturally existing intracellular
contrast [14,28].

Several comments are now in order. First, on the role of
noise in our data: Clearly, if we apply our algorithm to patches
outside the cell, we would obtain a small but nonzero number.
We define a signal-to-noise ratio to be the activity obtained
for patches inside the cell over patches outside the cell. We
calculate this for patches of different sizes and find that the
signal-to-noise ratio is maximum for patches of size 2 µm2

[See Appendix A 1]. All the results we show in this paper uses
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this size. Furthermore, for this patch size the activity grows
linearly with the area of the membrane. See Appendix A 1.

Second, in addition to the necessary spatiotemporal coarse
graining, which is part of any experimental measurement, we
have performed a dimensional reduction by using principal
component analysis and retained the first few components.
How many principal components must we keep? We use a
method proposed in Ref. [28]. We randomly shuffle our data
along the time axis and then again calculate the eigenvalues
of the correlation matrix. We find that the eigenvalues of this
shuffled data are very close to one another. These set the noise
floor of our measurements of principal components. Now, go-
ing back to the eigenvalues calculated from the original data,
we find that only the first few—at most ten—eigenvalues are
significantly larger than the noise floor (see Appendix A 2).
Next, let us consider the algorithm where we assumed the op-
timal function to be a linear function of the currents. We limit
our analysis to the first two principal components. Increasing
the number of components to 10 does not have any significant
effect on the estimated value of σ . For the second algorithm,
where we used a neural network representation, the estimate
of σ changes as the number of components is increased from
two to ten, during the training stage, but yielded minimal
change in the testing stage. Nonetheless, we retained the first
ten components for all the results shown in this paper. The
estimates of σ obtained by the two algorithms are comparable;
the neural-network-based estimates are slightly higher. Fur-
thermore, these also have better signal-to-noise ratio between
the cell and the background.

Third, we compare our findings with the already known
estimates of entropy production rates in microscopic bio-
logical systems. To the best of our knowledge there are no
results for HeLA cells. Measurements that tracked a single
filament of microtubules report an entropy production rate
of 5 kB min−1 [32] while a single actin fiber contracted by
myosin motors reports an entropy production rate, per unit
length, to be ∼1 kB/(µm s) [49]. At the level of cells, e.g.,
in Ref. [33], the entropy production rate was quantified from
experimental recordings of spontaneous hair-bundle oscilla-
tions in mechanosensory hair cells from the ear of the bullfrog.
Interestingly, by applying (1), without any optimization over
the current, the study found entropy productions of the order
of 103 kB s−1. Another recent work [48] that analyzes flicker-
ing data from circumference of RBCs in a model-dependent
fashion finds an entropy production rate of ∼106 kB s−1. This
estimate depends on the details of the model used for cell
flickering. However, it is argued to be compatible with mi-
crocalorimetric measurements of heat generation from packed
RBCs in bulk [50,51]. In contrast, we find an average entropy
production rate of ∼4 × 10−3 kB s−1 over a 2-µm2 patch of
the membrane. The distribution of the entropy production
rate over patches features a fat tail to the right, and there
are a significant number of patches with activities up to five
times higher than the mean value (see Appendix A 3). Mul-
tiplying just the mean with the area of the basal membrane
(∼103 µm2), we find an estimate close to a few kB per second.
Although this is at least an order of magnitude higher than
the numbers reported in Ref. [32], who used measurements
of calcium flicker trajectories from single cells reported in
Ref. [52], these values are several orders of magnitude lower

than Refs. [33,48]. There may be several reasons for the low
estimates we obtain, but the obvious reasons appear to be high
noise levels in the experimental data and lower bounds of the
estimate in Eq. (2) resulting from the necessary spatiotempo-
ral coarse graining and dimensional reduction. Furthermore,
we reiterate that the goal of our paper is not to calculate the
total entropy production by all nonequilibrium processes in a
cell—our focus is solely on the cell membrane. We do expect
values significantly smaller than the total rate of consumption
of ATPs in a cell because the membrane fluctuations are just
one nonequilibrium process among many that goes on in a
living cell.

Fourth, can we estimate the time scales of the active
processes that play the most significant role in entropy gen-
eration? Unlike many of the cases listed above, the flickering
data does not contain any clear “active spikes.” This may
be because multiple active processes with a range of time
scales (0.1–2 s [9,37]) act on the membrane. Furthermore, an
estimate of time scales is necessarily model dependent. We
have analyzed such a model to obtain a closed-form estimate
for the entropy production rate, and argue why it cannot be
reliably applied to experimental data. See Appendix B for
details.

In summary, there are a couple of areas that could benefit
from further studies. Firstly, the entropy generation rate we
obtained may be too small to be relevant for the metabolic pro-
cesses of the whole cell. This could be attributed to the high
noise level in our data; at most, only the first ten, sometimes
even just the first two, principal components contain useful
information. Thus, we anticipate that with improved resolu-
tion, our approach may unveil a significantly larger entropy
generation rate. Secondly, the effect of Cyto-D on the entropy
generation rate is quite small. Despite the significant impact
of the acto-myosin cytoskeleton, which is notably affected
by Cyto-D, the most active fluctuations of the membrane re-
main largely unchanged. Consequently, although we expected
Cyto-D to substantially alter the entropy production rate, this
is not the case. At present, we do not fully comprehend this
aspect of our results.

To end on a positive note, besides capturing the cell-level
activity, we report, for the first time, a spatiotemporally re-
solved activity. As shown in Fig. 2, cells have high activity
regions which disappear on ATP depletion. This offers explicit
evidence of heterogeneity of activity in the cell membrane,
pointing to a lack of rapid establishment of a statistically
homogeneous (although nonequilibrium) state. This technique
can be combined with fluorescence imaging of a variety
of “active” proteins or structures to measure their local-
ized action. Thus, comparing maps of lateral organization
of molecules of interest with activity maps could potentially
identify those involved in actively regulating processes such
as cell migration, endocytosis, and mechano-sensing.
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APPENDIX A: INFERENCE ALGORITHMS

We first considered a particle swarm-based algorithm to
perform the maximization

σ = 2kB max
J

[
〈J�t 〉2

�tVar(J�t )

]
. (A1)

Here, J�t is calculated over time �t , and the mean and the
variance are calculated over an ensemble of such time inter-
vals. Explicitly, we are searching over the phase space of the
first few PCA components (see Appendix A 2), and currents
constructed using a linear basis. We defined an N-dimensional
vector d(I ) as a linear combination of the components of I ,
i.e.,

dα (I ) = cαβIβ, (A2)

where the matrix cαβ consists of constant coefficients. At time
t = i�t , we define a scalar current:

J�t (ti ) ≡ d
(I (ti + �t ) + I (ti )

2

)
[I (ti + �t ) − I (ti )].

(A3)

While using the particle swarm algorithm, we fixed N = 2. In-
creasing the number of components did not have a significant
effect on the estimates of entropy production rate, primarily
due to the presence of experimental noise. The details of the
algorithm can be found in Ref. [38].

Linear representations of the function d(I ) such as the
above severely limits the phase space of currents we are
working with. Ideally, we should consider models which are
more generic in the sense of having a nonlinear basis, and
straightforwardly scalable to an arbitrary number of principal
components. The most natural choice is to use a neural net-
work. Hence, we have performed an independent estimation
of the entropy production rate by using a neural network
to represent the vector d(I ). The network architecture we
used consists of two fully connected layers with a hyperbolic
tangent (Tanh) activation function applied after each layer.
The input dimension (x_dim) is set to N , and the number
of nodes in the hidden layer (nb_nodes) is set to 256. For
any input, this network returns an N-dimensional, nonlinear
representation of the vector d := d(I|θ), where θ are the pa-
rameters of the neural network. The presence of the activation
function tanh makes this representation arbitrarily nonlinear
and bounded.

In Algorithm 1, we provide a schematic summary of the
inference scheme with the neural network model. The hyper-
parameters of the algorithm, such as the number of nodes in

ALGORITHM 1. Train the model function d(I|θ).

Require: N-dimensional trajectories with length Nf �t

I (i)(t ) = {I (i)
0 ,I (i)

�t , ...,I
(i)
Nf �t }(i = 1, ..., N )

Choose a hyperparameter set nb_nodes
θ ← initialize network parameters
loop

Compute the current using I (t )|Nf �t/2
t=0

{J�t, j}Nf /2
j=1 = {

d
(I j�t +I ( j+1)�t

2

∣∣θ) · (I ( j+1)�t − I j�t )
}

Compute the objective function

f̂ (θ)|train =
[

2kB〈J�t 〉2

�t Var(J�t )

]
Update the parameters to maximize f̂

end loop
θ∗ ← parameters that maximize f̂ (θ)|train in the record

Compute the test value f̂ (θ∗)|test using I (t )|Nf �t
t=Nf �t/2.

returnσ̂ = f̂ (θ∗)|test

the hidden layer, the number of principal components used,
and the number of steps used for training are chosen by trying
to maximize the signal-to-noise ratio between the estimate of
entropy production rate between the cell and the background.
Crucially, we have also used a data-splitting scheme where
the first half of the data is used for training the model and the
second half of the data is used to estimate entropy production
rate using the trained model. See Ref. [31] for details. This
approach helps overcome issues of overfitting to the data,
which can lead to very high estimates of dissipation. Over-
fitting was also found to happen when the training was done
for a large number of steps. Hence, we limited the number of
steps in training to 100. With the data-splitting scheme, we get
estimates of dissipation that are consistent with the estimates
obtained using the particle swarm algorithm. See Fig. 4 for the
comparison of results between the two algorithms. Results for
more cells using both algorithms are shown in the Supplemen-
tal Material [41].

1. Dependence of the entropy estimate on the patch size

In Fig. 5, we summarize our analysis of how entropy pro-
duction estimates depend on the cell area. We identified an
optimal patch size of 20 × 20 pixels (approximately 2 µm2),
which yielded the highest signal-to-noise ratio when com-
paring activity within the FBR region to background values.
For this optimal patch size, we further found that entropy
production computed over the entire cell membrane increases
linearly with the membrane’s area (number of patches).

2. Principal component analysis

Here, we demonstrate that the principal components other
than the first few do not significantly contribute to the dy-
namics. We consider the data corresponding to the first cell
in Fig. 2 of the main text. In Fig. 6, we plot the first 20 eigen-
values corresponding to PCA components for the normalized
experimental data (blue) and the normalized data randomly
shuffled along the time axis (purple). The error bars repre-
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FIG. 4. The figure illustrates comparisons of entropy production rate estimates obtained using different algorithms: particle swarm
algorithm, which takes in as input the first two principal components of IRM data, and neural-network-based algorithm, which takes as input
the first ten principal components. While the neural-network-based algorithm, without a data-splitting scheme, produced the highest estimate,
discerning overfitting effects is challenging. Conversely, estimates acquired using neural networks following the data-splitting scheme were
lower but comparable in order of magnitude and slightly higher in values to those obtained from the particle swarm algorithm. Thus, we have
presented results only from the neural network with data splitting and the particle swarm algorithm.

sent the standard deviation over different patches. The PCA
eigenvalues for the shuffled data show the noise level in the
system [28], which is slightly above zero. We observe that the
eigenvalues rapidly decrease in magnitude and reach the noise
levels within the first few principal components. This indicates
that the principal components other than the first few closely
approach the noise floor and do not significantly contribute to
the dynamics.

3. Percentile averages

Due to significant inhomogeneity across the cell surface,
relying solely on the mean value of the entropy production
rate over patches may be inadequate. Hence, here we look at
percentile averages, where we plot the average σ over the top
x% of patches of the control cells. As shown in Fig. 7, the
average of the top 10% of patches is nearly five times higher

than the mean, and the average of the top 50% of patches is
nearly double.

APPENDIX B: ENTROPY PRODUCTION RATE
IN A MODEL OF ACTIVE MEMBRANE

We calculate the entropy production rate for an elementary
model of active membrane [53]. Usually, flickering data is
interpreted with a model [3,54,55] where the membrane is
described by a height field h(x, y) above the x − y plane in
Monge gauge described by the Hamiltonian

H[h] =
∫

dxdy
[γ

2
|∇h|2 + κ

2
(∇2h)2

]
, (B1)

in equilibrium at temperature T . Here, γ is the surface tension
and κ is the bending rigidity of the membrane. As the fluc-
tuations of h are small, the model uses a small deformation
approximation of curvature. We shall call this the Gaussian

(a) (b)

FIG. 5. (a) The signal-to-noise ratio computed by comparing the ratio of activity inferred in the FBR region with the corresponding value
for the background. We find that the patch size 20 × 20 pixels or ∼2 µm2 has the best signal-to-noise ratio. (b) The dependence of the
entropy production rate on the area of the cell membrane for the optimal patch size (20 × 20 pixels). We observe that the estimate increases
approximately linearly with the area.
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FIG. 6. Plots of the first 20 eigenvalues corresponding to PCA
components, for the normalized experimental data (blue) and the
normalized data randomly shuffled along the time axis (purple), for
a representative cell flickering data. The error bars correspond to one
standard deviation over different patches. The PCA eigenvalues for
data shuffled along the time axis show the noise level in the system
[28], which lies slightly above zero. We see that the magnitude of the
eigenvalues rapidly drop and reach the noise levels within the first
few principal components.

model. The Hamiltonian is diagonal in Fourier space. In the
same spirit as Refs. [8,9,53], we write an active version of this
model by writing an equation of motion for each Fourier mode
ĥ(q, t ) coupled to an Ornstein-Uhlenbeck noise [56] λ(q, t ) as

∂ ĥ(q, t )

∂t
+ 1

τ (q)
ĥ(q, t ) + b λ(q, t ) =

√
2D ζ (q, t ) (B2a)

∂λ(q, t )

∂t
+ 1

τA
λ(q) =

√
2DA ζA(q, t ), (B2b)

×

FIG. 7. The average σ over the top x% of patches of the control
cells. Error bar corresponds to the standard deviation. We observe
that the average of the top 10% of patches is nearly five times higher
than the mean, and the average of the top 50% of patches is nearly
double. Data is from one set of experiments using 14 cells. Two
independent repeats show a similar trend.

where τ (q) = 4ηq

κq4 + γ q2
, (B2c)

〈ζ (q, t )ζ (−q, s)〉 = 2D(q)δ(t − s), (B2d)

〈ζA(q, t )ζA(−q, s)〉 = δ(t − s), and (B2e)

D(q) = kBT

4ηq
. (B2f)

The membrane is assumed to undergo a stochastically
driven overdamped motion. The viscosity of the fluid around
the membrane is η, which is related to the amplitude of the
stochastic driving ζ by fluctuation-dissipation theorem (B2f).
In addition, there is active noise ζA, which is assumed to be
white in space, and an Ornstein-Uhlenbeck noise (B2b) in
time with a correlation time τA and an amplitude DA. This
active noise models both active processes on the membrane
[53], e.g., opening of ion channels, endo and exo cytosis, etc.,
and driving by the cytoskelton [9]. In (B2a), we use the pa-
rameter b (of dimension s−1) to determine the strength of the
coupling of the membrane to the active fluctuations. Note that
there are other models of time-correlated noises used to model
active fluctuations in living systems. In Refs. [8,9,53], the
active noise is modeled using a random telegraph process [57],
which leads to the same exponential correlation in time for the
noise as the Ornstein-Uhlenbeck process. In Refs. [58–60] the
Ornstein-Uhlenbeck model itself is used.

For simplicity, from here onward, we drop the q depen-
dence of ζA, τA, and DA. As we have ignored nonlinearities
in the model for the membrane, every ĥ(q) is independent of
every other ĥ(q). Consequently, the total entropy production
rate is a sum over all q,

σ =
∑

σq. (B3)

The individual terms in the sum corresponding to the entropy
production rate for Eqs. (B2a) and (B2b) can be calculated
analytically [61,62], by mapping to a well-studied model in
stochastic thermodynamics [38,63,64]. We obtain

σq = 2kB
b2DAτ (q)τA

D(τ (q) + τA)
(B4a)

= 2kB

τA(q)

[
S(q)

∣∣
A

S(q)
∣∣
Eq

− 1

]
. (B4b)

In (B4b) the subscript “A” denotes the variance being cal-
culated for an active membrane (b �= 0), whereas the subscript
“Eq” denotes the variance being calculated for a membrane in
thermal equilibrium, i.e., b = 0. They can be computed from
the knowledge of the stationary distribution of ĥ and λ as
[63,65]

S(q)|A = 〈ĥ∗(q)ĥ(q)〉 = Dτ (q) + b2DAτ (q)2τ 2
A

τ + τA
. (B5)

We remark that the entropy production rate remains finite in
the white noise limit of the Ornstein-Uhlenbeck process.

Notice that, though the model provides an exact analytical
expression (B4a) and an accessible form (B4b) for the entropy
production rate, applying it on the experimental data is rather
challenging. This is because we do not have access to either
the active time scale τA nor the equilibrium fluctuations of
the membrane S(q)|Eq. Furthermore, in reality, the mechanical
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FIG. 8. The spectrum of height fluctuations S(q) as a function of q in the horizontal direction for the two cells shown in Fig. 2 of the main
paper. Different symbols denote different durations of ATP depletion.

properties of the membrane such as σ and κ could also change
as a function of ATP depletion, and the model ignores any
such possibility [66,67]. Nevertheless, assuming the model
is representative of the actual membrane dynamics observed
in the experiments, the following qualitative features can be
deduced.

(1) The entropy production rate vanishes in the DA → 0
limit.

(2) The entropy production rate must be positive. Hence,

S(q)
∣∣
A � S(q)

∣∣
Eq. (B6)

Assuming that the ATP depletion takes the cell membranes
close to the equilibrium state, we can further argue that

S(q)|A > S(q)|ATPD, where the subscript stands for the ATP-
depleted cell membrane.

(3) The summation in (B3) should converge. Hence,

S(q)
∣∣
A → S(q)

∣∣
Eq for large q. (B7)

As a corollary, we also obtain S(q)|A → S(q)|ATPD for large
q.

Indeed, we find that fluctuations of the cell membranes
we studied experimentally exhibit the qualitative features pre-
dicted by this model. We summarize our findings in Fig. 8 for
the two cell samples in Fig. 2 of the main paper. For simplicity,
we have only shown S(q)| for q[0, i] ≡ qx with 1 � i � 9, and
we find that it decreases as a function of ATP depletion in time
for a fixed q.
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