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Quantum mechanics of composite fermions
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We establish the quantum mechanics of composite fermions based on the dipole picture initially proposed
by Read. It comprises three complimentary components: a wave equation for determining the wave functions
of a composite fermion in ideal fractional quantum Hall states and when subjected to external perturbations,
a wave-function Ansatz for mapping a many-body wave function of composite fermions to a physical wave
function of electrons, and a microscopic approach for determining the effective Hamiltonian of the composite
fermion. The wave equation resembles the ordinary Schrödinger equation but has drift velocity corrections that
are not present in the Halperin-Lee-Read theory. The wave-function Ansatz constructs a physical wave function
of electrons by projecting a state of composite fermions onto a half-filled bosonic Laughlin state of vortices.
Remarkably, Jain’s wave-function Ansatz can be reinterpreted as the new Ansatz in an alternative wave-function
representation of composite fermions. The dipole picture and the effective Hamiltonian can be derived from the
microscopic model of interacting electrons confined in a Landau level, with all parameters determined. In this
framework, we can construct the physical wave function of a fractional quantum Hall state deductively by solving
the wave equation and applying the wave-function Ansatz, based on the effective Hamiltonian derived from first
principles, rather than relying on intuition or educated guesses. For ideal fractional quantum Hall states in the
lowest Landau level, the approach reproduces the well-established results of the standard theory of composite
fermions. We further demonstrate that the reformulated theory of composite fermions can be easily generalized
for flat Chern bands.
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I. INTRODUCTION

Exotic correlated states of electrons emerge in fractional
quantum Hall systems, where strong magnetic fields com-
pletely quench the kinetic energy of electrons, rendering
conventional many-body techniques inadequate in addressing
the effects of correlations between electrons [1]. The theory of
composite fermions, proposed by Jain in 1989, offers a com-
prehensive framework for understanding these exotic states
[2]. It introduces a new paradigm, interpreting correlated
states of electrons as noncorrelated or weakly correlated states
of fictitious particles called composite fermions, which are
assumed to be the bound states of electrons and quantum vor-
tices. Based on the insight, the theory prescribes an Ansatz for
constructing many-body wave functions that achieve nearly
perfect overlaps with those determined by exact diagonaliza-
tions for various fractional quantum Hall states in the lowest
Landau level [3]. On the other hand, for predicting the re-
sponses of these states to external perturbations, one usually
employs the effective theory proposed by Halperin, Lee, and
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Read (HLR) [4], which has been shown to make predictions
that align well with experimental observations [5]. The two
components of the theory, namely the wave-function Ansatz
and the effective theory, complement each other, forming a
versatile framework for understanding the rich physics of the
fractional quantum Hall systems.

Despite the remarkable success, the theory still lacks a
concrete foundation. On the one hand, one usually relies on
intuition or educated guesses when constructing composite
fermion wave functions. This is in sharp contrast to the de-
ductive approach typically employed for ordinary particles
like electrons, for which one can confidently write down a
Hamiltonian for a given physical circumstance, and obtain
wave functions by solving the Schrödinger equation. On the
other hand, the conjecture of the HLR theory—a composite
fermion also obeys the ordinary Schrödinger equation—is
only justified heuristically. Lopez-Fradkin’s theory [6] is often
cited as the rationale behind both the wave function Ansatz
and the effective theory [2]. However, the theory can only be
viewed as a tentative argument rather than a rigorous founda-
tion for the theory of composite fermions due to two obvious
issues.

First, Jain’s Ansatz prescribes wave functions of electrons
in the form [3]

�({zi}) = P̂LLLJ ({zi})�̃CF({zi}), (1)

which differs from the form suggested by Lopez-Fradkin’s
theory based on the singular Chern-Simons (CS)
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transformation [6]

�({zi}) = J ({zi})

|J ({zi})| �̃CF({zi}), (2)

where � and �̃CF represent the wave function of electrons and
composite fermions, respectively,

J ({zi}) ≡
∏
i< j

(zi − z j )
2 (3)

is the Bijl-Jastrow factor, which presumably attaches a vortex
with two flux quanta to each electron, P̂LLL is the projection
operator to the lowest-Landau-level, and {zi ≡ (xi, yi )} and
{zi ≡ xi + iyi} denote the coordinates of electrons in the vector
and complex forms, respectively. Equation (2) is formulated
in the full Hilbert space of free electrons, while Eq. (1) is
defined in the restricted Hilbert space of a single Landau level.
Reconciling the two is nontrivial [7].

Secondly, the picture of composite fermions implied by
Lopez-Fradkin’s theory, which is also inherited by the HLR
theory, differs from that obtained by directly inspecting the
Ansatz wave function Eq. (1). For the latter, Read’s analy-
sis indicates that the electron and the vortex in a composite
fermion are spatially separated [8]. The finding contradicts
the picture implied by Eq. (2), which suggests that a com-
posite fermion is a point particle, consisting of an electron
and δ-function flux tubes. More recently, Son points out that
the HLR theory lacks particle-hole symmetry [9], whereas the
Ansatz wave function is shown to preserve the symmetry well
[10]. These observations raise doubts about whether the HLR
theory accurately describes the composite fermions implied
by the Ansatz wave function. It prompts the need for an al-
ternative effective theory, or ideally, an alternative foundation
from which both the wave-function Ansatz and the effective
theory can be inferred.

The dipole picture of composite fermions, initially pro-
posed by Read, offers an alternative picture for the fictitious
particle [8,11]. The picture differs from the HLR view in two
fundamental ways. First, instead of being a point particle, the
composite fermion has a dipole structure with the electron and
vortex spatially separated. Second, the electron and the vortex
are confined in two separated Landau levels created by the
physical magnetic field and an emergent CS magnetic field,
respectively, as opposed to moving in a free space [12,13].
The dipole picture is shown to yield low-energy and long-
wavelength electromagnetic responses that are identical to
those predicted by the Dirac theory of composite fermions
[14], indicating that it satisfies the general requirements of
particle-hole symmetry. The feature, along with the fact that
the picture is inferred directly from microscopic wave func-
tions, sets it apart from other alternatives.

Pasquier and Haldane investigate the dipole picture of a
system of bosons in an isolated Landau level at filling fac-
tor 1 [15]. Their work, along with subsequent developments
by other researchers [16–18], sheds light on the construc-
tion of physical wave functions. They propose interpreting
vortices as auxiliary degrees of freedom that extend the
physical Hilbert space to a larger Hilbert space of com-
posite fermions. To obtain a physical state from a state of
composite fermions in the enlarged Hilbert space, one must

eliminate the auxiliary degrees of freedom by projecting the
state into a physical subspace defined by a pure state of
the vortices. In this context, the Bijl-Jastrow factor is in-
terpreted as the complex conjugate of the wave function
of the vortex state, rather than the numerator of the sin-
gular gauge factor in Eq. (2). The interpretation naturally
leads to a wave-function Ansatz alternative to Eq. (1), and
it avoids the difficulties associating with the singular CS
transformation [16].

In this paper, we present a theory of quantum mechan-
ics for composite fermions based on the dipole picture and
Pasquier-Haldane’s interpretation. The theory comprises three
complimentary components: a wave equation for determining
the wave functions of a composite fermion in ideal fractional
quantum Hall states and when subjected to external perturba-
tions, a wave-function Ansatz for mapping a many-body wave
function of composite fermions to a physical wave function
of electrons, and a microscopic approach for determining
the effective Hamiltonian of the composite fermion. In our
theory, the state of a composite fermion is represented by a
bivariate wave function that is holomorphic (antiholomorphic)
in the coordinate of its constituent electron (vortex), and is
defined in a Bergman space with a weight determined by the
spatial profiles of the physical and the emergent CS magnetic
fields. The wave equation is derived by applying the rules of
quantization in the Bergman space to the phenomenological
dipole model proposed in Ref. [14]. It resembles the ordinary
Schrödinger equation but has drift velocity corrections that
are not present in the HLR theory. The wave-function Ansatz
constructs a physical wave function of electrons by project-
ing a state of composite fermions onto a half-filled bosonic
Laughlin state of vortices. Remarkably, Jain’s wave-function
Ansatz, which underlies the success of the theory of composite
fermions, can be recast to the form of the new Ansatz us-
ing an alternative wave-function representation for composite
fermions. The phenomenological dipole model can be derived
from the microscopic model of interacting electrons confined
in a Landau level by applying a Hartree-like approximation,
with its parameters determined from first principles. In this
framework, we can construct the physical wave function of a
fractional quantum Hall state deductively by solving the wave
equation and applying the wave-function Ansatz, rather than
relying on intuition or educated guesses. We further demon-
strate that the reformulated theory of composite fermions can
be easily generalized for flat Chern bands, which are also
predicted to host the fractional quantum Hall states [19,20].

The remainder of the paper is organized as follows. In
Sec. II, we introduce the dipole model, which is the basis
of our discussions, and we give an overview of the main
results of this work. In Sec. III, we develop the theory for
ideal fractional quantum Hall systems, which are subjected
only to uniform magnetic fields. In Sec. IV, the theory is
established for general systems that could be subjected to
spatially and temporarily fluctuating external perturbations
and have inhomogeneous densities. In Sec. V, we provide
a microscopic underpinning for our theory by deriving the
phenomenological dipole model from the microscopic Hamil-
tonian of interacting electrons confined in a Landau level. In
Sec. VI, as an application of our reformulation, we general-
ize the theory of composite fermions for flat Chern bands.

023306-2



QUANTUM MECHANICS OF COMPOSITE FERMIONS PHYSICAL REVIEW RESEARCH 6, 023306 (2024)

FIG. 1. Dipole model of composite fermions. A composite
fermion consists of an electron (black) and a vortex (gray). The
electron is confined in the Landau level induced by the physical
magnetic field B, while the vortex belongs to a bosonic liquid of
vortices in the ν = 1/2 Laughlin state. Under the mean-field approx-
imation, the vortex is considered as an independent particle confined
in the Landau level induced by an emergent CS magnetic field b. The
electron and the vortex are bound together by a binding potential,
which can be modeled as the harmonic potential Eq. (23) in a lowest
Landau level.

In Sec. VII, we summarize and discuss our results. Certain
details of derivations are presented in Appendixes.

II. OVERVIEW

A. Dipole model

Our theory is based on the dipole picture which was orig-
inally proposed by Read for the half-filled Landau level [8].
The picture can be generalized to a dipole model of compos-
ite fermions which can be applied to arbitrary filling factors
[13,14,21].

The model is illustrated in Fig. 1. According to the model,
a composite fermion consists of an electron and a vortex con-
fined in two separate Landau levels: the one for the electron
is the Landau level induced by the physical magnetic field
B = −Bn, while the one for the vortex is the fictitious Landau
level induced by an emergent CS magnetic field b = bn with
its strength determined by the CS self-consistent condition
b = (2h/e)ρv, where ρv is the density of vortices, and n de-
notes the normal vector of the two-dimensional plane of the
system. In general, both the physical magnetic field and the
CS magnetic field can be nonuniform. The two particles are
bounded by a binding potential, which can be shown to be well
approximated by a harmonic potential for the lowest Landau
level (see Sec. V B).

The noninteracting dipole model is actually a mean-
field approximation for an underlying correlated system of
composite fermions. First of all, electrons confined in the
physical Landau level are interacting. On the other hand, in
Pasquier-Haldane’s interpretation [15,16], vortices are aux-
iliary degrees of freedom introduced to extend the physical
Hilbert space of electrons to a larger Hilbert space of compos-
ite fermions. They are assumed to form a collective half-filled
bosonic Laughlin state (see Sec. III B). In Sec. V, we will
show how the noninteracting dipole model emerges after ap-
plying a Hartree-like approximation in the enlarged Hilbert
space. We note that the standard interpretation of the vortex,
namely, an entity consisting of two quantized microscopic
vortices, is actually a property derived from the particular
collective state assumed for the vortices (see Sec. IV B).

It is also possible to interpret the composite fermion as a
point-particle by defining its momentum p and coordinate x.
A definition of the momentum, as pointed out by Read [8],

could be

p = h̄

l2
B

n × (z − η), (4)

where z and η are the coordinates of the electron and
the vortex, respectively, and lB ≡ √

h̄/eB is the magnetic
length of the B-field. We can define x = η, as suggested in
Refs. [13,14]. The composite fermion can then be interpreted
as a particle that is subjected to a uniform momentum-space
Berry-curvature [13,14,22] and obeys the Sundaram-Niu dy-
namics [23]. It is notable that such a particle has a modified
phase space measure [24]. Consequently, for a Landau level
with the particle-hole symmetry, the kinetic energy of the
composite fermion should be modeled as [14]

T = D
p2

2m∗ , (5)

where m∗ denotes the effective mass of the composite fermion,
and D = b/B is the density-of-states correction factor due to
the modified phase space measure [14]. In Sec. V B, we will
show that the microscopic derivation of the dipole model gives
rise to the peculiar form of the kinetic energy.

Finally, we note that one is actually free to choose the
definition of (x, p) and have a different interpretation. The
physical results do not depend on the interpretation. This is
demonstrated in Ref. [14], where two different choices of the
definition and their interpretations are compared.

B. Summary of results

We summarize the main results of this work as follows:
(A) The state of the composite fermion can be represented

by a bivariate wave function that is holomorphic (antiholo-
morphic) in the coordinate of its constituent electron (vortex)
(see Sec. III A). The Hilbert space is the tensor product of two
Bergman spaces, one for the electron and one for the vortex,
with weights determined by the spatial profiles of the physical
and CS magnetic fields, respectively (see Sec. IV A).

(B) A new wave-function Ansatz can be logically inferred
from the dipole model (see Sec. III B):

�({zi}) = P̂v�CF({zi, η̄i}), (6)

where P̂v denotes the projection onto the collective state
assumed for vortices. Remarkably, the new Ansatz and
the standard Ansatz Eq. (1) are equivalent, although they
use two different wave-function representations for composite
fermions. The two representations can be related by a trans-
formation shown in Eq. (20) for ideal states and Eq. (48)
generally.

(C) A general wave equation can be established for com-
posite fermions, valid not only for ideal systems, but also
when external perturbations are present. The wave equa-
tion has a biorthogonal form, shown in Eqs. (73) and (74), and
its Hamiltonian in the long-wavelength limit has corrections
from the drift velocities of the electron and the vortex, shown
in Eq. (71). For ideal systems, the wave equation yields wave
functions identical to those prescribed by the standard theory.
However, the responses to external perturbations predicted by
the wave equation will differ from those predicted by the HLR
theory because of the drift-velocity corrections. It has been
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shown that the dipole model yields long-wavelength responses
identical to those predicted by the Dirac theory of composite
fermions with a dipole correction [14].

(D) The noninteracting dipole model can be derived from
the underlying microscopic model of a set of interacting elec-
trons confined in a Landau level by applying a Hartree-like
approximation in the enlarged Hilbert space of composite
fermions. The origin of the fictitious Chern-Simons fields is
clarified. They are introduced to impose the requirement of
consistency of orthonormalities between the physical Hilbert
space and the enlarged Hilbert space (see Sec. V A). The
derivation also confirms that the kinetic energy, which is basi-
cally the Coulomb attraction energy between the electron and
the charge void induced by the vortex, is indeed proportional
to D = 2ν, where ν is the filling factor of the system, and it
can be well approximated by the parabolic form Eq. (5) for a
lowest-Landau-level (see Sec. V B).

(E) The reformulated theory of composite fermions can
be generalized for a flat Chern band with a Chern number
|C| = 1 by substituting the Chern band in place of the physical
Landau level in the dipole model shown in Fig. 3. We find
that the effective band dispersion experienced by a composite
fermion is renormalized by the combination of the quantum
metric and the Berry curvature of the band that gives rise to the
heuristic “trace condition” [25]. The observation rationalizes
the “trace condition” for the stability of a fractional Chern
insulator state. It also suggests the possibility of stabilizing a
fractional Chern insulator state in a nonflat Chern band when
the renormalization cancels the dispersion of the Chern band
(see Sec. VI).

III. THEORY FOR IDEAL SYSTEMS

In this section, we develop the quantum mechanics of com-
posite fermions in systems that are subjected only to uniform
external magnetic fields and have homogeneous densities. We
will establish a new wave-function Ansatz and a set of wave
equations for composite fermions. Remarkably, our approach
can be shown to reproduce the well-established results of the
standard theory. The principles established in this section will
serve as the foundation for developing a general theory.

A. Hilbert space

The Hilbert space of a composite fermion shown in Fig. 1
is the tensor product of two Hilbert spaces with respect to the
two Landau levels. It differs from that of an ordinary quantum
particle in a free space as assumed in the HLR theory.

The Hilbert space spanned by a Landau level is a weighted
Bergman space [26,27]. For a disk geometry, the space
includes all holomorphic polynomials in the complex elec-
tron coordinate z = x + iy. The inner product between two
states ψ1(z) and ψ2(z) in the space is defined by 〈ψ1|ψ2〉 =∫

dμ
(0)
B (z)ψ∗

1 (z)ψ2(z) with the integral measure

dμ
(0)
B (z) ≡ dz

2π l2
B

e−|z|2/2l2
B . (7)

A Bergman space with the Gaussian weight is also known as
the Segal-Bargmann space [28].

The Hilbert space of a vortex is also a Segal-Bargmann
space consisting of all antiholomorphic polynomials in the
complex-conjugate vortex coordinate η̄ = ηx − iηy, where ηx

and ηy are the Cartesian components of the vortex coordinate
η ≡ (ηx, ηy). Note that because the direction of the b-field is
opposite to that of the B-field, wave functions for the vortex
are antiholomorphic functions. The corresponding integral
measure is

dμ
(0)
b (η) ≡ dη

2π l2
b

e−|η|2/2l2
b , (8)

where lb = √
eb/h̄ is the magnetic length of the b-field.

The Hilbert space of a composite fermion is the tensor
product of the two Segal-Bargmann spaces for the electron
and the vortex, respectively. The state of a composite fermion
can thus be naturally represented by a bivariate function:

ψ (z, η̄), (9)

which is holomorphic (antiholomorphic) in the complex coor-
dinate z (η̄) of the electron (vortex). Unlike the wave function
ψ (z) ≡ ψ (z̄, z) for an ordinary particle, the two coordinates
of the wave function Eq. (9) belong to different particles.

For a Bergman space, we can define a reproducing kernel,
which is basically the coordinate representation of the identity
operator of the space [28]. For the spaces of the electron and
the vortex, their reproducing kernels are

K (0)
B (z, z̄′) = ezz̄′/2l2

B , (10)

K (0)
b (η̄, η′) = eη̄η′/2l2

b , (11)

respectively. The kernels transform wave functions in the re-
spective Bergman spaces back to themselves:

ψ (z) =
∫

dμ
(0)
B (z′)K (0)

B (z, z̄′)ψ (z′), (12)

ϕ(η̄) =
∫

dμ
(0)
b (η′)K (0)

b (η̄, η′)ϕ(η̄′). (13)

The kernels can also be used to project nonholomorphic
functions into the Segal-Bargmann spaces [28]. Actually, P̂LLL

in Eq. (1), the projection operator to the lowest Landau level,
can be written as an integral transform using the reproducing
kernel:

P̂LLL f (z) ≡
∫

dμ
(0)
B (ξ)K (0)

B (z, ξ̄ ) f (ξ), (14)

where f (z) is shorthand notation of a nonholomorphic func-
tion f (z̄, z). We will use the notations interchangeably in this
paper. The projection into the η-space can be defined similarly
using the reproducing kernel K (0)

b (η̄, η′).

B. Wave-function Ansatz

The wave-function Ansatz Eq. (1) maps a many-body wave
function in the fictitious world of composite fermions to a
physical wave function of interacting electrons in the real
world. Although the Ansatz is customarily expressed in a form
that suggests its connection with the singular CS transforma-
tion Eq. (2), it can actually be more naturally inferred from
the dipole model, as we will demonstrate in this subsection.

Pasquier and Haldane presented an alternative approach
of constructing the many-body wave functions of fractional
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quantum Hall states [15]. The approach was further developed
by Read [16] and Dong and Senthil [17]. They investigate a
system of bosons at filling factor 1. Vortices of one flux quan-
tum, which are fermions, are introduced as auxiliary degrees
of freedom for extending the physical Hilbert space of bosons
to a Hilbert space of composite fermions. It is envisioned
that in the enlarged Hilbert space, it may become feasible to
apply mean-field approximations for the composite fermions.
To obtain physical wave functions, on the other hand, one
needs to eliminate auxiliary degrees of freedom by projecting
states of composite fermions into a physical subspace. This
leads to a relation between a wave function of composite
fermions �CF({zi, η̄i}) and its physical counterpart �({zi})
[16]:

�({zi}) = P̂v�CF({zi, η̄i}) (15)

≡
∫ ∏

i

dμ
(0)
b (ηi )�

∗
v ({η̄i})�CF({zi, η̄i}), (16)

where �v({η̄i}) is the wave function of a vortex state that
defines the physical subspace in the enlarged Hilbert space,
and P̂v denotes the projection into the subspace. For a system
of bosons, the vortex state is assumed to be a ν = 1 incom-
pressible state of fermions with �v({η̄i}) = ∏

i< j (η̄i − η̄ j ).
The corresponding physical wave function describes a Fermi-
liquid-like state of bosons.

The general idea of Pasquier-Haldane-Read’s approach
can be adapted for a system of electrons. We can introduce
bosonic vortices as the auxiliary degrees of freedom. We as-
sume that the vortices form a ν = 1/2 bosonic Laughlin state
with the wave function

�v({η̄i}) = J∗({ηi}). (17)

By substituting the vortex wave function into Eq. (16), we
obtain an Ansatz for constructing physical wave functions of
electrons:

�({zi}) =
∫ ∏

i

dμ
(0)
b (ηi )J ({ηi})�CF({zi, η̄i}). (18)

Remarkably, the Ansatz can be shown to be equivalent to
the standard (Jain’s) Ansatz Eq. (1). To see this, we express
Eq. (1) in an integral form by using Eq. (14):

�({zi}) =
∫ ∏

i

dμ
(0)
B (ξi )e

∑
i zi ξ̄i/2l2

B J ({ξi})�̃CF({ξi})

=
∫ ∏

i

dμ
(0)
b (ηi )J ({ηi})

∫ ∏
i

dμ
(0)
B (ξi )

× e
∑

i (zi ξ̄i/2l2
B+η̄iξi/2l2

b )�̃CF({ξi}), (19)

where we insert the reproducing kernel Eq. (11) for each of
the composite fermions. Comparing it with the new Ansatz
Eq. (18), we have

�CF({zi, η̄i}) =
∫ ∏

i

dμ
(0)
B (ξi ) e

∑
i (zi ξ̄i/2l2

B+ξi η̄i/2l2
b )�̃CF({ξi}).

(20)
We see that the two Ansätze are equivalent but use differ-
ent wave-function representations for a state of composite

fermions. In the following, we will refer to the two repre-
sentations as the dipole representation (�CF) and the standard
representation (�̃CF), respectively.

C. Wave equation: The dipole representation

The theory of composite fermions often relies on intu-
ition or educated guesses when selecting wave functions for
composite fermions. The resulting Ansatz wave functions are
then justified a posteriori by showing high overlaps with
wave functions obtained from exact diagonalizations [3]. Is
it possible to determine appropriate wave functions for com-
posite fermions a priori, as we do for ordinary electrons? In
this subsection, we take the first step towards demonstrating
the possibility by developing a wave equation for composite
fermions in ideal systems.

The wave equation can be derived from the variational
principle δL = 0, with the Lagrangian L defined by

L =
∫

dμ
(0)
B (z)dμ

(0)
b (η)[ε − T (z, η)]|ψ (z, η̄)|2, (21)

where ε is the Lagrange multiplier for the normalization con-
straint of the wave function∫

dμ
(0)
B (z)

∫
dμ

(0)
b (η)|ψ (z, η̄)|2 = 1, (22)

and T is the binding energy of a composite fermion modeled
as a harmonic potential,

T = h̄2

2m∗l2
Bl2

b

|z − η|2. (23)

It becomes the kinetic energy Eq. (5) in the point-particle
interpretation discussed in Sec. II A.

Differentiating the Lagrangian with respect to ψ∗(z, η̄)
gives rise to the wave equation εψ = Ĥψ , with the Hamil-
tonian defined by

[Ĥψ](z, η̄) ≡ P̂T (z, η)ψ (z, η̄), (24)

where P̂ denotes the projection into the Hilbert space of the
composite fermion defined in Sec. III A. Applying the rule
of the projection into Landau levels, we map z̄ and η to
the operators ˆ̄z ≡ 2l2

B∂z and η̂ ≡ 2l2
b ∂η̄, respectively [2]. The

stationary-state wave equation of the composite fermion can
then be written as

εψ (z, η̄) = − h̄2

2m∗

(
2∂z − η̄

l2
B

)(
2∂η̄ − z

l2
b

)
ψ (z, η̄), (25)

where an unimportant constant term in the Hamiltonian due to
the ordering of operators is ignored.

We can transform the wave equation to an ordinary
Schrödinger equation for a charged particle subjected to a
uniform magnetic field by applying the transformation

ψ (z, η̄) =
√

2π lB exp

[
1

4

(
1

l2
B

+ 1

l2
b

)
zη̄

]
ϕ(z, η̄). (26)

For ϕ(ξ) ≡ ϕ(z, η̄)|z→ξ,η̄→ξ̄ , we have

εϕ(ξ) = − h̄2

2m∗

(
2∂ξ − σ ξ̄

2l2

)(
2∂ξ̄ + σξ

2l2

)
ϕ(ξ), (27)
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with l ≡ √
h̄/e|B| being the magnetic length of the effective

magnetic field B = B − b, and σ ≡ sgn(B) indicating its di-
rection.

D. Wave equation: The standard representation

We can also have a wave equation for the standard repre-
sentation. In the case of noninteracting composite fermions,
both �CF and �̃CF are Slater determinants of single-particle
wave functions. The single-particle counterpart of the trans-
formation Eq. (20) is

ψ (z, η̄) =
∫

dμ
(0)
B (ξ)ezξ̄ /2l2

B+ξ η̄/2l2
b ψ̃ (ξ), (28)

where ψ̃ (ξ) denotes a single-particle wave function in the
standard representation. Substituting it into Eq. (25), we ob-
tain the wave equation (see Appendix E 1)

εϕ̃(ξ) = − h̄2

2m∗

(
2∂ξ − σ ξ̄

2l2

)(
2∂ξ̄ + σξ

2l2

)
ϕ̃(ξ) (29)

and

ψ̃ (ξ) =
√

2π lB exp

(
σ

|ξ |2
2l2

)
ϕ̃(ξ). (30)

We see that the wave equation for ϕ̃(ξ) is just the ordinary
Schrödinger equation for a charge particle in the uniform
effective magnetic field.

Our theory reproduces the well-established results of the
standard theory for ideal states. The eigensolutions of the
wave equation (see Appendix A) are exactly the � orbits of
the standard theory of composite fermions [2]. The interpreta-
tion of the fractional series is also the same: a fractional state
of electrons corresponds to an integer filling state of compos-
ite fermions. The filling factor ν = n/(2n + 1) < 1/2, n ∈ Z
corresponds to n filled �-levels, and ν = (n + 1)/(2n + 1) >

1/2 corresponds to n + 1 filled �-levels with σ = −1. For the
special case of ν = 1/2, the effective magnetic field vanishes.
The eigensolutions of the wave equation become the plane-
wave states, and composite fermions will form a Fermi sea.
The resulting physical wave function is exactly the Rezayi-
Read wave function of the composite Fermi-liquid [11].

We note that the states {ϕi}and {ϕ̃i} are dual to each
other, and form a biorthogonal system. This can be seen
by applying Eq. (28) to rewrite the orthonormal condition∫

dμ
(0)
B (z)

∫
dμ

(0)
b (η)ψ∗

i (z, η̄)ψ j (z, η̄) = δi j as∫
dξ ϕ̃∗

i (ξ)ϕ j (ξ) = δi j . (31)

IV. GENERAL THEORY

In this section, we generalize our theory to systems that are
subjected not only to strong uniform magnetic fields, but also
to spatial and temporal fluctuations of electromagnetic fields,
and generally have inhomogeneous densities. In the HLR
theory, this can be done trivially by assuming that the com-
posite fermion obeys the ordinary Schrödinger equation. In
the dipole model, however, the composite fermion is far from
being an ordinary particle, as we see in Sec. II A. We need to
derive the general quantum theory of composite fermions in a

logical way, as we demonstrate in the last section for the ideal
systems.

A. Bergman space

In this subsection, we show that the Hilbert space of a
particle confined in a Landau level by a nonuniform magnetic
field is generally a Bergman space with its weight determined
by the spatial profile of the magnetic field. Consequently, the
Hilbert space of a composite fermion is the tensor product of
two Bergman spaces with their weights determined by the
spatial profiles of the physical and the CS magnetic fields,
respectively.

We consider a nonrelativistic electron confined in the
lowest Landau level by a nonuniform magnetic field
B(z) = −B(z)n, and we assume B(z) = B0 + B1(z) > 0,
|B1(z)|/B0 
 1. The Hamiltonian of the system, in complex
coordinates, is given by [2]

Ĥ = − h̄2

2me

(
2∂z + i

e

h̄
Ā
)(

2∂z̄ + i
e

h̄
A
)

+ eh̄B(z)

2me
, (32)

with A ≡ Ax(z) + iAy(z) and Ā ≡ A∗ being the complex com-
ponents of the vector potential of the magnetic field. The first
term of the Hamiltonian yields zero-energy for a state with the
wave function ϕ(z) satisfying the constraint[

2∂z̄ + i
e

h̄
A(z)

]
ϕ(z) = 0. (33)

All such states form the lowest Landau level in the nonuni-
form magnetic field [29], and define the physical Hilbert space
of the electron in the zero-electron-mass limit me → 0. The
second term of the Hamiltonian, on the other hand, can be
interpreted as the orbital magnetization energy of the electron,
and will become a part of the scalar potential experienced by
composite fermions [30]. We note that for a two-dimensional
massless Dirac particle, Eq. (33) is an exact constraint for the
zero-energy Landau level, and there is no orbital magnetiza-
tion energy.

To fulfill the constraint, a wave function in Hilbert space
must have the form

ϕ(z) = ψ (z) exp
[− 1

2 fB(z̄, z)
]
, (34)

where ψ (z) is a holomorphic function in z, and fB(z̄, z) is
determined by the equation

∂z̄ fB(z̄, z) = i
e

h̄
A(z̄, z). (35)

Fixing the vector potential in the Coulomb gauge, we have
∂zA = −∂z̄Ā = −iB(z)/2, and

∂z∂z̄ fB(z̄, z) = e

2h̄
B(z). (36)

We can then choose fB(z̄, z) to be a real solution of the
equation.

The Hilbert space of the electron is therefore a weighted
Bergman space consisting of all holomorphic polynomials
that are normalized by the condition

∫
dμB(z)|ψ (z)|2 = 1,

where the integral measure is modified to

dμB(z) = wB(z)dz ≡ dz
2π l2

B

exp[− fB(z̄, z)], (37)
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with wB(z) being the weight of the Bergman space, and lB ≡√
h̄/eB0. We can choose the constant of integration for fB to

normalize the measure:
∫

dμB(z) = 1.
Similarly, for a vortex in a nonuniform CS magnetic field

b(η) = b(η)n, b(η) > 0, its Hilbert space is a Bergman space
consisting of all antiholomorphic polynomials in η̄ with the
modified integral measure

dμb(η) = wb(η)dη ≡ dη

2π l2
b

exp[− fb(η̄, η)], (38)

where fb(η̄, η) is a real solution of the equation

∂η̄∂η fb(η̄, η) = e

2h̄
b(η). (39)

The counterpart of Eq. (35) for the vortex is

∂η fb(η̄, η) = i
e

h̄
ā(η̄, η), (40)

where ā ≡ ax − iay denotes the complex-conjugate compo-
nent of the vector potential (ax, ay) of the CS magnetic field.

As in the ideal case, the state of a composite fermion is
represented by a bivariate wave function that is holomorphic
in the coordinate of the electron and antiholomorphic in the
coordinate of the vortex, defined in the Hilbert space that is
the tensor product of the two Bergman spaces.

We can also define the reproducing kernels KB(z, z̄′) and
Kb(η̄, η′) for the weighted Bergman spaces of electrons and
vortices, respectively [28]. KB transforms a wave function
defined in the B-Bergman spaces back to itself:

ψ (z) =
∫

dμB(z′)KB(z, z̄′)ψ (z′). (41)

It also defines the projection into the space:

P̂LLL f (z) ≡
∫

dμB(ξ)KB(z, ξ̄ ) f (ξ). (42)

In general, we do not have a closed form of the reproducing
kernel like Eq. (10). We formally express the reproducing
kernels as

KB(z, ξ̄ ) ≡ eFB (ξ̄ ,z) (43)

by introducing the function FB(ξ̄ , z). In the long-wavelength
limit, FB and fB can be related approximately; see Ap-
pendix C. The reproducing kernel of the b-space has a similar
set of properties.

B. Wave-function Ansatz

Using the modified integral measure Eq. (38), we can gen-
eralize the wave-function Ansatz Eq. (16) straightforwardly:

�({zi}) =
∫ ∏

i

dμb(ηi )J ({ηi})�CF({zi, η̄i}), (44)

where we only change the integral measures for {ηi}, and we
assume that the wave function of the vortices defining the
physical subspace remains the same as in the ideal case.

Due to the change of the weight of the η-Bergman space,
vortices are actually in a deformed bosonic Laughlin state
with an inhomogeneous density. The joint density distribution
of vortices is proportional to

e
∑

i< j 4 ln |ηi−η j |−
∑

i fb(η̄i,ηi ). (45)

Using Laughlin’s plasma analogy [31], we can interpret it as
the distribution function of a set of classical particles, each
of which carries two unit “charges,” on a nonuniform neutral-
izing background with the “charge” density ∂η∂η̄ fb(η̄, η)/π .
Such a system is expected to be nearly “charge-neutral” ev-
erywhere. It implies that the single-particle density of vortices
should be

2ρv(η) � 1

π
∂η∂η̄ fb(η̄, η) = e

h
b(η), (46)

where we make use of Eq. (39). We see that the CS self-
consistent condition, which relates the vortex density to the
strength of the CS magnetic field, arises as a result of the
constraint of the physical subspace.

The standard Ansatz can be generalized and shown to be
equivalent to the new Ansatz. By using the reproducing kernel
of the electron Bergman space, the standard Ansatz Eq. (1) can
be written as

�({zi}) =
∫ ∏

i

dμB(ξi )
∏

i

KB(zi, ξ̄i ) J ({ξi})�̃CF({ξi}).

(47)
The general relation between the dipole representation and the
standard representation reads

�CF({zi, η̄ib}) =
∫ ∏

i

dμB(ξi )

×
[∏

i

KB(zi, ξ̄i )Kb(η̄i, ξi )

]
�̃CF({ξi}).

(48)

C. General wave equation

In this subsection, we generalize the wave equation (25)
for systems that are subjected to external perturbations.
We assume that the external magnetic field has a strong
uniform component B0 and a small fluctuating component
B1(z) which varies slowly over space with |B1(z)|/B0 
 1,
|∇B(z)|lB/B0 
 1, and the strength of the external electric
field is weak and does not induce inter-Landau-level transi-
tions. The resulting theory will be adequate for predicting
long-wavelength responses to electromagnetic fields [14]. In
this limit, we can establish a general wave equation while not
obscured by excessive microscopic details. A more general
theory would require taking into account microscopic details,
which will be elucidated in Sec. V.

The Lagrangian of the dipole model for a set of compos-
ite fermions, in terms of the single-particle wave functions
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{ψi(z, η̄)}, can be generally written as

L =
∑

i

∫
dμB(z)dμb(η)

{
εi|ψi(z, η̄)|2 − h̄2

2m∗

×
∫

dμb(η′)ψ∗
i (z, η̄)

(z̄ − η̄)(z − η′)
l2
b (z)l2

B(z)
Kb(η̄, η′)ψi(z, η̄

′)
}

−
∫

dz�(z)ρe(z) − Exc[ρe]

− e2

8πε

∫
dzdz′ [ρe(z) − ρ0][ρe(z′) − ρ0]

|z − z′|
−

∫
dηφ(η)

[
ρv(η) − e

2h
b(η)

]
, (49)

where the summation is over the occupied states of composite
fermions, and εi is the Lagrange multiplier for the normaliza-
tion constraint of the wave functions. The second term in the
curly brackets is the kinetic energy, which is basically the har-
monic binding potential Eq. (23) written in a form that implies
antinormal ordering when quantizing η (see Appendix B),
with a space-dependent coefficient parametrized in the local
magnetic lengths of the external field lB(z) ≡ √

h̄/eB(z) and
the CS field lb(z) ≡ √

h̄/eb(z). The third term is the energy
due to the single-body scalar potential �(z) experienced by
electrons, which includes the scalar potential of the exter-
nal electromagnetic field as well as the orbital magnetization
energy discussed in Sec. IV A, and

ρe(z) = wB(z)
∑

i

∫
dμb(η)|ψi(z, η̄)|2 (50)

is the local density of electrons. The next two terms are the
Coulomb energy and an exchange-correlation energy func-
tional Exc[ρe] which accounts for the exchange and correlation
effects of composite fermions. The last term imposes the CS
constraint, which relates the local density of vortices

ρv(η) = wb(η)
∑

i

∫
dμB(z)|ψi(z, η̄)|2 (51)

to the local strength of the CS magnetic field b(η), with φ(η)
serving as the Lagrange multiplier. The effects of the nonuni-
form physical and CS magnetic fields are included implicitly
in the integral measures dμB and dμb, respectively. In Sec. V,
we will derive the Lagrangian from first principles.

Differentiating the Lagrangian with respect to ψ∗
i , we ob-

tain a generalized wave equation for the stationary state of a
composite fermion:

εψ (z, η̄) =
∫

dμB(ξ)dμb(η′)KB(z, ξ̄ )Kb(η̄, η′)

×E (ξ; η̄, η′)ψ (ξ, η̄′), (52)

E (ξ; η̄, η′) = h̄2

2m∗
(z̄ − η̄)(z − η′)

l2
b (z)l2

B(z)
+ �eff (z) + φ(η), (53)

where we drop the state index subscripts for brevity, �eff is the
effective scalar potential experienced by electrons, defined by

�eff (z) = �(z) + e2

4πε

∫
dz′ ρe(z′) − ρ0

|z − z′| + vxc[ρe](z), (54)

with the exchange-correlation potential vxc[ρe] ≡
δExc[ρe]/δρe + τxc(z), and

τxc(z) = 2π h̄2

m∗

∫
dμb(η)

∑
i

∣∣∣∣ z − η̂

lB(z)
ψi(z, η̄)

∣∣∣∣2, (55)

which is obtained by differentiating the kinetic energy with
respect to ρe(z) ≈ ρv(z) = 1/4π l2

b (z) and applying the quan-
tization (see below), and φ(η) can be interpreted as the scalar
potential experienced by vortices. The orthonormal condition
between two eigen-states is∫

dμB(z)
∫

dμb(η)ψ∗
i (z, η̄)ψ j (z, η̄) = δi j . (56)

Applying the rules of quantization defined in Appendix B,
we can write the wave equation as

εψ (z, η̄) = Ĥψψ (z, η̄), (57)

with the effective Hamiltonian operator

Ĥψ = h̄2

2m∗ (ˆ̄z − η̄)
1

l2
b (η̄, z)l2

B(η̄, z)
(z − η̂)

+ N+[�eff (ˆ̄z, z) + φ(η̄, η̂)], (58)

where ˆ̄z and η̂ are defined by (see Appendix B 1)

[ˆ̄zψ](z, η̄) ≡
∫

dμB(ξ)KB(z, ξ̄ )ξ̄ψ (ξ, η̄), (59)

[η̂ψ](z, η̄) ≡
∫

dμb(ζ)Kb(η̄, ζ )ζψ (z, ζ̄ ), (60)

and N+[· · · ] denotes the normal ordering that places ˆ̄z and η̂

on the left of all z’s and η’s. We apply the approximations
l2
B(z) ≈ l2

B(η̄, z) and l2
b (z) ≈ l2

b (η̄, z) for the coefficient of the
kinetic energy.

The wave equation is complemented by a set of CS self-
consistent conditions, which are obtained by differentiating
the Lagrangian Eq. (49) with respect to a and φ. We have

b(η) = 2h

e
ρv(η), (61)

Ev(η) = 2h

e
n × jv(η), (62)

where Ev and b are the CS electric and magnetic fields, re-
spectively, jv(η) denotes the current density of vortices, which
can be written as (see Appendix F)

jv(η) = ρv(η)

b(η)
Ev(η) × n + h̄

m∗ wb(η)

×
∑

i

∫
dμB(z)ψ∗

i (z, η̄)

× n × (z − η)

l2
B(z)

ψi(z, η̄). (63)

D. Biorthogonal quantum mechanics

As in the theory for ideal systems, we can determine the
wave equation for the standard representation, and define a
biorthogonal system of wave functions. In general, the single-
particle wave functions of the dipole representation and the
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standard representation are related by the transformation

ψ (z, η̄) =
∫

dμB(ξ)KB(z, ξ̄ )Kb(η̄, ξ )ψ̃ (ξ). (64)

The operators in the dipole representation can be mapped to
their counterparts in the standard representation accordingly;
see Appendix E 2.

We further introduce the transformations

ψ (ξ) =
√

2π lB exp

[
fB(ξ) + fb(ξ)

2

]
ϕ(ξ), (65)

ψ̃ (ξ) =
√

2π lB exp

[
fB(ξ) − fb(ξ)

2

]
ϕ̃(ξ), (66)

which are the counterparts of the transformations Eqs. (26)
and (30), respectively. The orthonormal condition Eq. (56) can
then be rewritten as∫

dξϕ̃∗
i (ξ)ϕ j (ξ) = δi j . (67)

We see that as in ideal systems, {ϕi} and {ϕ̃i} are dual to each
other and form a biorthogonal system.

The wave equations for ϕ and ϕ̃ have the form of the
biorthogonal quantum mechanics [32]. In general, we can
show that the Hamiltonian for ϕ̃(ξ) is the complex conjugate
of that for ϕ(ξ)(see Appendix E 3). Therefore, we have

εϕ(ξ) = Ĥϕ(ξ), (68)

εϕ̃(ξ) = Ĥ†ϕ̃(ξ), (69)

where the first equation is transformed from Eq. (57) with

Ĥ ≡ e− fB+ fb
2 Ĥψe

fB+ fb
2 . (70)

Note that Ĥ is non-Hermitian in general.
In the long-wavelength limit, the effective Hamiltonian of

a composite fermion can be written as (see Appendix C)

Ĥ = − h̄2

2m∗

[
2∂ξ + i

e

h̄
Ā(ξ) + i

m∗

h̄
v̄(ξ)

]

×
[

2∂ξ̄ + i
e

h̄
A(ξ) + i

m∗

h̄
V (ξ)

]
+ �eff (ξ) + φ(ξ),

(71)

where (Ā,A) denotes the effective vector potential experi-
enced by composite fermions:

A = a + A, (72)

and V (η̄, z) ≡ 2i∂η̄�eff (η̄, z)/eB(η̄, z) and v̄(η̄, z) ≡
2i∂zφ(η̄, z)/eb(η̄, z) are the complex components of the drift
velocities V = E × B/B2 and v = Ev × b/b2 in the presence
of the electric fields E ≡ e−1∇�eff and Ev ≡ e−1∇φ for
electrons and vortices, respectively.

The set of wave equations can be further generalized for
time-dependent systems. We have (see Appendix D)

ih̄
∂ϕ(ξ, t )

∂t
= Ĥϕ(ξ, t ), (73)

ih̄
∂ϕ̃(ξ, t )

∂t
= Ĥ†ϕ̃(ξ, t ), (74)

where Ĥ is formally identical to the stationary state Hamil-
tonian Eq. (71) in the long-wavelength limit, but the electric
fields E and Ev, which determine the drift velocities, are
replaced by their gauge-invariant forms E = e−1∇�eff − ∂t A
and Ev = e−1∇φ − ∂t a.

The wave equations (74) and (73), together with the CS
self-consistent conditions (61) and (62) and the self-consistent
equation for the effective potential Eq. (54), define the ef-
fective theory of composite fermions in the presence of
long-wavelength external perturbations. It is evident that the
effective theory differs from the heuristic HLR theory because
of the corrections from the drift velocities in Eq. (71). The
corrections have previously been identified as either anoma-
lous velocity corrections [14] or side-jump corrections [33] in
the context of the semiclassical theory of composite fermions.
Equation (71) shows how these corrections are manifested in
the quantum mechanics of composite fermions.

V. MICROSCOPIC UNDERPINNING

In this section, we derive the phenomenological dipole
model, which underlies our derivation of the quantum me-
chanics of composite fermions, from the microscopic model
of interacting electrons confined in a Landau level in the
zero-electron-mass limit. The microscopic Lagrangian of such
a system can be written as

LM = 〈� | E − Vee − � | �〉, (75)

where � denotes the many-body wave function of elec-
trons, E is a Lagrange multiplier for the normalization
constraint 〈�|�〉 = 1, Vee = (e2/4πε)

∑
i< j |zi − z j |−1 + VB

denotes the Coulomb interaction between electrons with VB

being the potential from a uniform neutralizing positive
charge background, and � ≡ ∑

i �(zi ) denotes the energy
of an externally applied scalar potential. The kinetic energy
of electrons is ignored since it is completely quenched in a
Landau level.

Our derivation is based on the general variational principle
of quantum mechanics. By introducing the fictitious degrees
of freedom of the vortices, we basically embed the physi-
cal Hilbert space into a larger Hilbert space of composite
fermions, in the hope that the strongly correlated state of
electrons can be viewed as the projection of a noncorrelated
state of composite fermions onto a lower-dimensional sub-
space. Therefore, we choose the trial electron wave functions
for |�〉 to be the Ansatz form Eq. (44), with �CF being the
Slater determinant of a set of single-body trial wave functions
{ψi} of composite fermions. We will show that the Lagrangian
Eq. (49) in terms of {ψi} can be derived from the microscopic
Lagrangian Eq. (75). The set of the single-body trial wave
functions should be determined by applying the variational
principle

δL = 0, (76)

which gives rise to the wave equations and the CS self-
consistent conditions.

023306-9



JUNREN SHI PHYSICAL REVIEW RESEARCH 6, 023306 (2024)

A. Chern-Simons constraints

A notable feature of the theory of composite fermions is the
presence of the fictitious CS fields, which are determined self-
consistently by Eqs. (61) and (62). In this subsection, we show
how the CS fields and the self-consistent conditions emerge in
a microscopic theory.

It is easy to see that for the Slater determinant wave
function

�CF({zi, η̄i}) = 1√
N!

det[ψ j (zi, η̄i )], (77)

two sets of single-particle trial wave functions that are related
by a nonsingular linear transformation yield the same physical
wave function after applying Eq. (15) or Eq. (44). To eliminate
the redundancy, it is necessary to impose the orthonormal
condition:∫

dμB(ξ)dμb(η)ψ∗
i (ξ, η̄)ψ j (ξ, η̄) = δi j . (78)

We note that the orthonormality depends on the weight in dμb,
which is not yet defined at this point.

To proceed, we adopt an approximation analog to the
Hartree approximation. Basically, we determine the state of
a composite fermion in an effective medium formed by other
composite fermions. In the spirit of the Hartree approximation
[34], we introduce a test particle that is distinguishable from
other composite fermions but interacts and correlates just like
them. The physical wave function of a system with N com-
posite fermions plus such a test particle can be written as

� t (z, {zi}) =
∫

dμb(η)�v
η ({zi})ψ (z, η̄), (79)

�v
η ({zi}) =

∫ N∏
i=1

dμb(ηi )
N∏

i=1

(η − ηi )
2

× J ({ηi})�CF({zi, η̄i}), (80)

where the test particle has the wave function ψ (z, η̄), and it
correlates with other composite fermions via the Bijl-Jastrow
factor. Because the test particle has no exchange symmetry
with other composite fermions, it can occupy any state, in-
cluding those already occupied in �CF. Our approximation is
to assume that the set of single-particle trial wave functions for
constructing �CF can be chosen from eigen-wave-functions of
the test particle.

With the approximation, we can determine the weight of
dμb self-consistently by requiring that the orthonormality
Eq. (78) in the Hilbert space of composite fermions is con-
sistent with that of the physical Hilbert space. This requires

〈
� t

i

∣∣� t
j

〉 = δi j, (81)

where |� t
i 〉 and |� t

j〉 denote two physical states obtained by
setting ψ = ψi and ψ = ψ j in Eq. (79), respectively, and
ψi and ψ j satisfy the orthonormal condition Eq. (78). Equa-
tion (81) can be rewritten as∫

dμB(z)dμb(η)dμb(η′)ψ∗
i (z, η̄) Kb(η̄, η′)ψ j (z, η̄

′) = δi j,

(82)

with

Kb(η̄, η′) ≡ 〈
�v

η

∣∣�v
η′
〉
. (83)

To make Eq. (82) consistent with Eq. (78), we can adjust the
weight of dμb so that Kb(η̄, η′) is the corresponding reproduc-
ing kernel. Equation (82) can then be reduced to Eq. (78) by
integrating out η′.

The requirement that Kb(η̄, η′) is the reproducing kernel
of the η-space gives rise to the CS constraint Eq. (61) in the
long-wavelength limit. To see this, we rewrite Eq. (83) as
Kb(η̄, η′) = 〈eF 〉, with

〈eF 〉 ≡
∫ N∏

i=1

dμB(zi )dμb(ηi )dμb(η′
i )e

F (η̄,η′,{η̄i,η
′
i})

× J∗({ηi})J ({η′
i})�∗

CF({zi, η̄i})�CF({zi, η̄
′
i}) (84)

and F (η̄, η′, {η̄i, η
′
i}) ≡ 2

∑
i ln(η̄ − η̄i )(η′ − η′

i ). Using
the cumulant expansion, we can approximate Fb(η̄, η′) ≡
ln Kb(η̄, η′) as

Fb(η̄, η′) ≈ 〈F〉 + 1
2 〈(F − 〈F〉)2〉 + · · · . (85)

To the lowest order, we ignore the fluctuation and higher-order
corrections, and we have Fb ≈ 〈F〉 = 2

∑
i〈ln(η̄ − η̄i )(η′ −

η′
i )〉. To evaluate the ith term of the summation, we expand

the Slater determinant Eq. (77) along its ith row, substitute the
expansion into Eq. (84), and ignore contributions involving
particle exchanges. We obtain

Fb(η̄, η′) ≈
∑

i

∫
dμB(zi )dμb(ηi )dμb(η′

i )

× 2[ln(η̄ − η̄i) + ln(η′ − η′
i )]

× 1

N

∑
a

ψ∗
a (zi, η̄i )K

(a)
b (η̄i, η

′
i )ψa(zi, η̄

′
i ), (86)

where K (a)
b is defined by Eq. (83) but with one composite

fermion in the state ψa being removed from Eq. (77). We
assume that the effect of removing a composite fermion from
the effective medium of N composite fermions is negligible,
thus we have

K (a)
b (η̄i, η

′
i ) ≈ Kb(η̄i, η

′
i ). (87)

After integrating out η′
i, we obtain

Fb(η̄, η) ≈ 2
∫

d2η1 ln(|η − η1|2)ρv(η1), (88)

where ρv(η1) is the vortex density defined in Eq. (51). Apply-
ing the identity ∂η∂η̄ ln(|η − η1|2) = πδ(η − η1), we have

∂η∂η̄Fb(η̄, η) = 2πρv(η). (89)

In the long-wavelength limit, we have Fb(η̄, η) ≈ fb(η) −
ln[l2

b (η)/l2
b ] (see Appendix C). Substituting the relation into

Eq. (89), ignoring the spatial gradient of the magnetic length,
and applying Eq. (39), we obtain the CS constraint Eq. (61).

We can then replace the normalization constraint 〈�|�〉 =
1 in Eq. (75) with normalization constraints of the single-body
wave functions as well as the CS constraint Eq. (61), and
introduce εi and φ(η) as the respective Lagrange multipliers.
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The Lagrangian becomes

L =
∫

dμB(z)dμb(η)
∑

i

εi|ψi(z, η̄)|2 −
∫

dηφ(η)

×
[
ρv(η) − e

2h
b(η)

]
− 〈� |Vee + � | �〉, (90)

B. Energy

In this subsection, we determine the expectation value
〈� |Vee + � | �〉. We shall show how the kinetic energy of a
composite fermion, i.e., the electron-vortex binding potential,
as well as its peculiar density-of-states correction factor (see
Sec. III C), would emerge.

We first determine the expectation value of the scalar po-
tential 〈�|�|�〉. Similar to Eq. (86), we have

〈� | � | �〉 ≈
∑

i

∫
dμB(zi )dμb(ηi )dμb(η′

i )�(zi )

× 1

N

∑
a

ψ∗
a (zi, η̄i )K

(a)
b (η̄i, η

′
i )ψa(zi, η̄

′
i ). (91)

Applying the approximation Eq. (87), we obtain

〈� | � | �〉 ≈
∫

dz�(z)ρe(z). (92)

Next, we determine the expectation value of the Coulomb
interaction energy. It can be written as

〈Vee〉 = e2

8πε

∫
dzdz′ ρ2(z, z′) − 2ρe(z)ρ0 + ρ2

0

|z − z′| , (93)

where ρ2(z, z′) = 〈�|∑i = j δ(z − zi )δ(z′ − z j )|�〉 is the two-
particle reduced density matrix of electrons. We decompose
〈Vee〉 into two parts. The first part is the mean-field contribu-
tion of the Coulomb interaction

V̄ee = e2

8πε

∫
dzdz′ [ρe(z) − ρ0][ρe(z′) − ρ0]

|z − z′| , (94)

which gives rise to the Coulomb energy term of the
Lagrangian Eq. (49). The second part is the correlation contri-
bution

T = e2

8πε

∫
dzdz′ ρ2(z, z′) − ρe(z)ρe(z′)

|z − z′| , (95)

which gives rise to the binding energy between electrons and
vortices.

We determine the two-particle reduced density ma-
trix by applying the Hartree-like approximation intro-
duced in the last subsection. We have ρ2(z, z′) = N (N −
1)wB(z)wB(z′)

∫ ∏N
i=3 dμB(zi )|�({zi}|2 with z1 = z and z2 =

z′. We treat the first particle (z1) as a test particle, and the
ensemble of other N − 1 particles as an effective medium.
By expanding the Slater determinant Eq. (77) along its first
row, ignoring exchange terms in |�({zi})|2, and replacing the
N − 1 particle effective medium with the N-particle one as in
Eq. (79), we can approximate ρ2 as

ρ2(z, z1) ≈ wB(z)
∫

dμb(η)dμb(η′)Kb(η̄, η′)

×
∑

a

ψ∗
a (z, η̄)ψa(z, η̄′)ρc(z1; η̄, η′), (96)

ρc(z1; η) = wB(z1)N
∫ N∏

i=2

dμB(zi )

∣∣�v
η ({zi})

∣∣2〈
�v

η

∣∣�v
η

〉 , (97)

FIG. 2. Electron-vortex binding potential vs r ≡ |z − η|/lB for
the ν = 1/3 Laughlin state. Dots are numerical results, and the solid
line shows the fitting εb(r)/ε0 = −12.6 + r2, ε0 ≡ νe2/16π 2εlB. In-
set: the electron-vortex pair correlation function h0(r). Calculated by
H. Jin.

and ρc(z1; η̄, η′) ≡ ρc(z1, η)|η→η′ . ρc(z1; η) is the density pro-
file of electrons surrounding a vortex at η, which suppresses
the electron density in its vicinity, resulting in a void of
electrons.

The Coulomb attraction between the test (first) electron
and the void gives rise to the binding energy of a composite
fermion. Substituting Eqs. (96) and (50) into Eq. (95), we
obtain

T ≈
∫

dμB(z)dμb(η)dμb(η′)Kb(η̄, η′) ε
�
b (z; η̄, η′)

×
∑

a

ψ∗
a (z, η̄)ψa(z, η̄′), (98)

with ε
�
b (z; η̄, η′) ≡ εb(z; η)|η→η′ ,

εb(z; η) = e2

8πε

∫
dz1

�ρe(z1; η)

|z − z1| , (99)

and �ρe(z1; η) ≡ ρc(z1; η) − ρe(z1).
The form of �ρe(z1; η) is constrained [35]. The elec-

tron density is suppressed near the center of the vortex, and
recovers in a lengthscale ∼lB (see the inset of Fig. 2). Thus
we have �ρe(z1; η) < 0 for z1 → η and �ρe(z1; η) → 0 for
|z1 − η| � lB. Moreover, because the insertion of a 2h/e vor-
tex should induce a charge void with a total charge of 2νe,
where ν is the filling factor, we have the sum rule∫

�ρe(z1; η)dz1 = −2ν(η), (100)

where ν(η) denotes the local value of the filling factor, and we
assume that the electron density is nearly homogeneous.

The fact that the binding energy of a composite fermion
originates from the Coulomb attraction between an electron
and a void with a total charge of 2νe suggests that it should
be proportional to 2ν, which is exactly the density-of-states
correction factor D ≡ b/B = 2ν appearing in Eq. (5). The
peculiar factor in the kinetic energy turns out to be a natural
consequence of the interaction origin of the binding energy.
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In the long-wavelength limit, we can approximate
�ρe(z1; η) as h(z1; η) ≈ ρe(η)h0(|z1 − η|/lB(η)), where
h0(r) ≡ �ρe(r)/ρ0 is the electron-vortex correlation function
of a homogeneous system, with �ρe(r) being the change
of electron density relative to the average density ρ0 in the
vicinity of a vortex at the origin of space. We expect that the
binding energy, apart from the density-of-states correction
factor, should depend only weakly on the density since
h0(r) is constrained by the density-independent sum rule∫ ∞

0 drh0(r)r = −2 and the overall form. We thus estimate
the binding energy using the Laughlin state at ν = 1/3, for
which we can complete the integrals with respect to {ηi} in
Eq. (80), and obtain

�v
η=0({zi}) =

∏
i

z2
i

∏
i< j

(zi − z j )
3. (101)

The density profile of the electrons near the origin can be
determined numerically using the Monte Carlo method. The
result is shown in Fig. 2. We find that the binding energy can
be well fitted by a quadratic function for |z − η| � 2lB [36],
and approximated as

εb(z; η) ≈ −g0
e2lB(z)

ε
ρe(z) + h̄2

2m∗
|z − η|2

l2
B(z)l2

b (z)
, (102)

with g0 ≈ 0.5 and

h̄2

m∗ ≈ 0.08
e2lB(z)

4πε
. (103)

The estimated effective mass is about four times larger
than the one usually assumed in the literature (h̄2/m∗ ≈
0.3e2lB/4πε) [4,37]. On the other hand, the effective masses
determined in experiments vary with the measurement meth-
ods [2]. Our estimate is actually close to the cyclotron
effective mass measured by Kukushkin et al. [38]. There is
also a theoretical proposal that the effective mass should be
four times larger [39].

We can define an exchange-correlation functional

Exc[ρe] = −g0
e2

ε

∫
dzlB(z)ρ2

e (z) + · · · , (104)

which includes the contribution of the first term of Eq. (102),
as well as contributions that are ignored in our derivation,
in particular the effect of particle exchanges. In the spirit of
the Kohn-Sham approach of the density functional theory,
we could define Exc[ρe] as the difference between the exact
ground-state energy of a system with a uniform density ρe and
the total kinetic energy of noninteracting composite fermions
at the same density [37,40].

Combining all of these, we obtain the Lagrangian Eq. (49).

VI. GENERALIZATION FOR FLAT CHERN BANDS

The fractional quantum Hall effect is also predicted to
emerge in flat Chern bands, i.e., Bloch bands that are nearly
dispersionless and have nonzero Chern numbers [19,20]. A
flat Chern band is considered as a generalized “Landau level”
which possesses essential properties for hosting the fractional
quantum Hall effect. Conversely, a Landau level could be
interpreted as an ideal flat Chern band with a Chern number

FIG. 3. Dipole model of composite fermions for a flat Chern
band. Compared to the model presented in Fig. 1 for a Landau level,
the electron is now confined in a Bloch band characterized by a
Chern number C and other parameters such as the Berry curvature
�k and the quantum metric Gk. A Landau level can actually be
interpreted as an ideal flat Chern band with C = −1, a constant
Berry curvature, and vanishing TrGk − |�k|. The Landau level can
be continuously evolved to a flat Chern band with the same Chern
number. One expects that the continuous evolution should not induce
a topological phase transition to the state of vortices. The possibility
that the vortices adopt other topological collective states, in particular
for flat Chern bands with |C| = 1, is not yet considered in this work.

|C| = 1 [41]. One expects that interacting electrons confined
in a flat Chern band behave similarly as in an ordinary Landau
level. The expectation was recently confirmed in experiments
[42–45].

The generalization of our approach for flat Chern bands
with |C| = 1 is straightforward. A dipole model is shown in
Fig. 3, where we replace the electron Landau level in Fig. 1
with a flat Chern band. The general idea presented in Sec. III B
for constructing many-body wave functions of electrons is still
applicable. We introduce vortices as auxiliary degrees of free-
dom which should be projected out in the end, and require that
electrons always reside in their original and physical Hilbert
space. We thus have the wave-function Ansatz for flat bands
with C = −1 [46]:

�({ri}) =
∫ ∏

i

dμb(ηi )J ({ηi})�CF({ri, η̄i}), (105)

where {ri} denotes the set of electron coordinates. For a flat
Chern band, unlike a Landau level, the wave functions � and
�CF are generally not holomorphic in the electron coordi-
nates. Instead, they should be expanded in the Bloch states
of the flat band which span the physical Hilbert space. Thus,
the single-body wave function of a composite fermion can be
written as

ψ (r, η̄) =
∑
k∈BZ

ϕk(η̄)eik·ruk(r), (106)

where uk(r) denotes the periodic part of the Bloch wave func-
tion at the quasi-wave-vector k of the flat band, and the state
of the composite fermion is represented by the wave function
ϕk(η̄).

We can introduce an effective Hamiltonian for compos-
ite fermions. In the enlarged Hilbert space of composite
fermions, each electron in the flat band is bound to a vortex.
While the binding potential could be derived microscopically,
as we have demonstrated for a Landau level in Sec. V B, it
is reasonable to assume that the harmonic form Eq. (23) is
a good first approximation. Therefore, the effective Hamilto-
nian of a composite fermion can be written as

ĤCF = T̂e + h̄2

2m∗l2
Bl2

b

|r − η̂|2, (107)
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where T̂e is the electron kinetic energy, and we define the
effective magnetic length

l2
B ≡ Vp

2π
, (108)

with Vp being the area of the primitive cell of the system.
We can obtain the effective Hamiltonian for ϕk(η̄) by de-

termining the expectation value 〈ψ |ĤCF|ψ〉 for ψ defined by
Eq. (106). It is easy to prove the identities:

〈ψ | r | ψ〉 =
∑

k

ϕ∗
k (η̄)(i∂k + Ak)ϕk(η̄), (109)

〈ψ | r2 | ψ〉 =
∑

k

ϕ∗
k (η̄)(|i∂k + Ak|2 + TrGk)ϕk(η̄), (110)

where Ak and Gk are the Berry connection and quantum
metric tensor of the flat band, respectively, defined by [25]

Ak = i〈uk | ∂kuk〉, (111)

Gab
k = Re〈∂ka uk | ∂kbuk〉 − Aa

kAb
k. (112)

Applying the identities, we obtain〈
ψ | ĤCF | ψ 〉 =

∑
k

ϕ∗
k (η̄)Ĥϕk(η̄) (113)

and

Ĥ = εk + h̄2

2m∗l2
Bl2

b

(TrGk + �k)

+ h̄2

2m∗l2
Bl2

b

(2i∂k + Āk − η̄)(2i∂k̄ + Ak − η̂), (114)

where εk and �k are the dispersion and Berry curvature of the
flat band, respectively. The form of the η̂ operator depends on
the spatial profile of the vortex density. As a first approxima-
tion, one could assume a homogeneous vortex density, thus
η̂ = 2l2

b ∂η̄.
We could predict the stability of a fractional Chern insu-

lator by determining the eigenspectrum of the single-body
effective Hamiltonian Eq. (114). For an ideal flat band with
a uniform Berry curvature, only the last term remains, and it
is easy to show that the Hamiltonian gives rise to the ordi-
nary �-levels (see Appendix A). For the more general cases,
however, we expect that the first two terms, which could be
interpreted as the renormalized band dispersion experienced
by composite fermions, will make �-levels nondegenerate
and suppress excitation gaps. When the gaps are closed, the
fractional Chern insulator state will be destroyed. The appli-
cation of the effective Hamiltonian to real materials is left for
future investigation.

The form of the effective Hamiltonian seems to justify
the heuristic trace condition, which requires TrGk − |�k| ≈ 0
everywhere in the Brillouin zone for the emergence of a
fractional Chern insulator [25,47]. We see that the second
term, which is proportional to TrGk + �k = TrGk − |�k| for
�k < 0 [48], renormalizes the dispersion εk of electrons. As
the renormalization tends to make a flat electron band nonflat,
it destabilizes a fractional Chern insulator. On the other hand,
it could be possible to engineer the correction to compensate
the electron dispersion of a nonflat electron band and make
it flatter after the renormalization. The latter suggests a novel

possibility that fractional Chern insulators could be stabilized
in nonflat Chern bands.

VII. SUMMARY AND DISCUSSION

In summary, we present a reformulation of the theory of
composite fermions based on the dipole model. Some new
insights emerge.

(A) The states of composite fermions can be determined
by solving a wave equation, with an effective Hamiltonian
that can be derived from first principles. Such a deductive
approach can reproduce the well-established results of the
standard theory of composite fermions, namely the wave func-
tions of the ideal fractional quantum Hall states in the lowest
Landau level. It may also provide an alternative to intuition
and educated guesses for understanding more complex states
such as those observed in higher Landau levels [49].

(B) A wave-function Ansatz � = P̂v�CF, or equivalently
Jain’s wave-function Ansatz in an alternative wave-function
representation of composite fermions, can be naturally in-
ferred from the dipole model. The Bijl-Jastrow factor in Jain’s
Ansatz can be interpreted as the complex conjugate of the
wave function of the collective state of vortices, rather than
the numerator of the singular CS transformation.

(C) The effective theory specified by Eqs. (73) and (74) dif-
fers from the HLR theory due to the drift-velocity corrections
in the effective Hamiltonian Eq. (71).

(D) The wave-function Ansatz and the effective theory can
be unified on the common basis of the dipole model, and
logically connected.

(E) The Hilbert space of composite fermions has a sim-
ple structure, i.e., the tensor product of two separate Hilbert
spaces for the physical and fictitious degrees of freedom,
respectively. The simple structure makes it much easier and
less prone to arbitrariness to generalize the composite fermion
theory, e.g., for the flat Chern bands.
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APPENDIX A: �-LEVELS OF THE FRACTIONAL
QUANTUM HALL STATES

The wave equation (27) is the same as that for an ordinary
charge particle in an effective magnetic field B except for
an unimportant constant. Therefore, the wave functions of
�-levels are just those for ordinary Landau levels, which can
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be written as [2]

ϕn,m(ξ) ∝ e−|ξ |2/4l2

√
2π l

fn,m(ξ), (A1)

with

fn,m(ξ) = cnml2n+me|ξ |2/2l2 ×
{

∂n
ξ ∂m+n

ξ̄
e−|ξ |2/2l2

, ν < 1
2 ,

∂n
ξ̄
∂m+n
ξ e−|ξ |2/2l2

, ν > 1
2 ,

(A2)

and cnm ≡
√

22n+m/n!(m + n)!, m � −n. ψmn(z, η̄) is related
to ϕn,m(z, η̄) ≡ ϕn,m(ξ)|ξ→z,ξ̄→η̄ by Eq. (26), and normalized
by Eq. (22). We have

ψn,m(z, η̄) = fn,m(z, η̄)

{ lB
l

( lB
lb

)n
ezη̄/2l2

b , ν < 1
2 ,

lb
l

( lb
lB

)n
ezη̄/2l2

B , ν > 1
2 .

(A3)

The corresponding eigenenergies are

εn,m = h̄ω∗
c

{
n, ν < 1/2,

n + 1, ν > 1/2,
(A4)

with ω∗
c ≡ e|B|/m∗.

For the special case ν = 1/2, B = b, we have B = 0. The
wave function is plane-wave-like:

ψk(z, η̄) = lB√
2π

e
i k̄z+kη̄

2 + zη̄

2l2B
− |k|2 l2B

4
, (A5)

where k ≡ (kx, ky) denotes the wave vector of the state, and
k ≡ kx + iky, k̄ = k∗. The wave function is normalized by∫

dμB(z)dμb(η)ψ∗
k (z, η̄)ψk′ (z, η̄) = δ(k − k′).

It is easy to show that the wave function describes a bound
state of an electron and a vortex. Its spatial distribution can be
written as

|ψn,m(z, η̄)|2e−|z|2/2l2
B−|η|2/2l2

b

∝
{

e−|z|2/2l2−|z−η|2/2l2
b , ν < 1/2,

e−|η|2/2l2−|z−η|2/2l2
B , ν > 1/2.

(A6)

We see that the electron and the vortex are bound by a Gaus-
sian factor with a lengthscale lb (lB) for ν < 1/2 (ν > 1/2).

We can also solve Eq. (29) and obtain wave functions in
the standard representation:

ϕ̃n,m(ξ) = e− |ξ |2
4l2√

2π l
fn,m(ξ)

⎧⎨
⎩
( lb

lB

)n
, ν < 1

2 ,( lB
lb

)n+1
, ν > 1

2 ,
(A7)

where the normalization constants are fixed using Eq. (67).
ψ̃n,m(ξ) is related to ϕ̃n,m via Eq. (30). It is straightforward to
verify that ψn,m(z, η̄) and ψ̃n,m(ξ) are related by Eq. (28).

An alternative way of solving the wave equation (25) is
to define a set of ladder operators [2]. For the filling factor
ν < 1/2, the ladder operators are

â = 1√
2

l

lBlb
(z − η̂), (A8)

â† = 1√
2

l

lBlb
(ˆ̄z − η̄), (A9)

b̂ = l√
2

( ˆ̄z

l2
B

− η̄

l2
b

)
, (A10)

b̂† = l√
2

(
z

l2
B

− η̂

l2
b

)
. (A11)

It is easy to verify the commutation relations [â, â†] = 1,
[b̂, b̂†] = 1, and [â, b̂] = 0. For ν > 1/2, the ladder operators
can be obtained by exchanging lb ↔ lB and z ↔ η̄ in the
definitions.

APPENDIX B: QUANTIZATION IN BERGMAN SPACES

In this Appendix, we discuss quantization in weighted
Bergman spaces. Two alternative forms of the quantization,
corresponding to the normal ordering and the antinormal or-
dering of operators, respectively, can be defined and related to
each other.

1. Quantization: Normal ordering

We can quantize an arbitrary function H (z̄, z) (e.g., the
energy of a composite fermion) to an operator Ĥ . In analogy
to Eq. (24), the action of Ĥ on a wave function ψ (z) can be
defined as

[Ĥψ](z) =
∫

dμB(ξ)KB(z, ξ̄ )H (ξ̄ , ξ )ψ (ξ ), (B1)

where we use the reproducing kernel to project the non-
holomorphic function into the Bergman space. As we see in
Sec. III C, varying the Lagrangian with respect to a wave func-
tion defined in a Bergman space gives rise to a Hamiltonian
operator.

The operator can be written in general as

Ĥ = N+[H (ˆ̄z, z)], (B2)

where ˆ̄z is defined in Eq. (59). It is sufficient to show the
relation for H (ξ) = ξ̄mξ n, m, n ∈ Z . Substituting the function
into Eq. (B1), we can combine ξ n with ψ (ξ ) (i.e., put it on the
right), and show that ξ̄m is mapped to ˆ̄zm. For the latter, we
have

ˆ̄z2ψ (z) ≡
∫

dμB(ξ1)KB(z, ξ̄1)ξ̄1

×
∫

dμB(ξ)KB(ξ1, ξ̄ )ξ̄ψ (ξ ) (B3)

=
∫

dμB(ξ)KB(z, ξ̄ )ξ̄ 2ψ (ξ ), (B4)

where we apply the complex conjugate of Eq. (41) when
completing the integral with respect to ξ1.

We thus only need to determine the quantization of z̄. In
general, the operator ˆ̄z can be written as a function of ∂z and z
satisfying

ˆ̄z(∂z, z)KB(z, ξ̄ ) = ξ̄KB(z, ξ̄ ). (B5)

For the case of a uniform magnetic field with the reproducing
kernel Eq. (10), it is easy to see that ˆ̄z = 2l2

B∂z does satisfy
the equation. For a general space, we substitute Eq. (43) into
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Eq. (B5), and we obtain

ˆ̄z = 2l2
B

(
∂z + ie

h̄
N−[Ā�

1 (ˆ̄z, z)]

)
, (B6)

where we introduce the starred vector potential Ā� defined by

∂zFB(ξ̄ , z) ≡ −i
e

h̄
Ā�(ξ̄ , z), (B7)

and decompose as Ā�(ξ̄ , z) = iB0ξ̄ /2 + Ā�
1 (ξ̄ , z), and

N−[· · · ] denotes the antinormal ordering that puts ˆ̄z’s to the
right of all z’s.

The starred vector potential Ā� can be related to the phys-
ical vector potential Ā, as we will show in the next subsection.
Consequently, the quantization can also be written as

ˆ̄z = 2l2
B

(
∂z + ie

h̄
N+[Ā1(ˆ̄z, z)]

)
. (B8)

These equations can be solved iteratively.
The vortex degree of freedom can be quantized sim-

ilarly. We express the reproducing kernel as Kb(η̄, η′) ≡
exp[Fb(η̄, η′)], and we define the corresponding starred vector
potential with ∂η̄Fb(η̄, η′) = −iea�(η̄, η′)/h̄. Making substi-
tutions z → η̄, ˆ̄z → η̂, B → b, and Ā� → a�, we have

η̂ = 2l2
b

(
∂η̄ + ie

h̄
N−[a�

1 (η̄, η̂)]

)
(B9)

= 2l2
b

(
∂η̄ + ie

h̄
N+[a1(η̄, η̂)]

)
. (B10)

The normal (antinormal) ordering should be reinterpreted ac-
cordingly to put η̂’s to the left (right) of all η̄’s.

2. Quantization: Antinormal ordering

Alternatively, we can define

[Ĥψ](z) =
∫

dμB(ξ)KB(z, ξ̄ )H�(z, ξ̄ )ψ (ξ ), (B11)

where H� is defined by the transformation

H�(z, ξ̄ ) = 1

KB(z, ξ̄ )

×
∫

dμB(ζ)KB(z, ζ̄ )H (ζ̄ , ζ )KB(ζ , ξ̄ ). (B12)

It is easy to verify that Eq. (B11) reduces to Eq. (B1) after
substituting Eq. (B12).

It is not difficult to see that the operator can be written in
the form of the antinormal ordering

Ĥ = N−[H�(z, ˆ̄z)]. (B13)

We thus have two alternative forms of the Ĥ operator in the
normal ordering and the antinormal ordering, respectively,
which are related by the transformation Eq. (B12).

The vector potential Ā and its starred counterpart Ā� are
also related by the transformation. To see that, we note that

∂zψ (z) can be written in two alternative forms:

∂zψ (z) =
∫

dμB(ξ )KB(z, ξ̄ )∂ξψ (ξ ) (B14)

=
∫

dμB(ξ )[∂zKB(z, ξ̄ )]ψ (ξ ). (B15)

Applying an integral by parts to the first form, we have∫
dμB(ξ )KB(z, ξ̄ )Ā(ξ̄ , ξ )ψ (ξ )

=
∫

dμB(ξ )KB(z, ξ̄ )Ā�(ξ̄ , z)ψ (ξ ). (B16)

The two sides of the equation correspond to the two alterna-
tive quantization forms of the vector potential. They are thus
related by Eq. (B12).

APPENDIX C: LONG-WAVELENGTH LIMIT

We can relate fB with FB when the nonuniform component
of the magnetic field is small and varies slowly over space. In
this limit, Eq. (41) can be approximated as

ψ (z, η̄) ≈
∫

dμ(0)(ξ)K (0)
B (z, ξ̄ )

× [
1 − f (1)

B (ξ) + F (1)
B (ξ̄ , z)

]
ψ (ξ, η̄), (C1)

where f (1)
B and F (1)

B denote the corrections to fB and FB due to
the spatial fluctuation of the magnetic field, respectively. Since
an electron is always bound to a vortex in a composite fermion
with a lengthscale of the magnetic length (see Appendix A),
which is much smaller than the wavelength of the fluctuating
magnetic field, we expand f (1)

B and F (1)
B to the linear order of ξ̄

around the vortex coordinate η̄, and we complete the integral.
We obtain

ψ (z, η̄) ≈
[

1 − f (1)
B (η̄, z) + F (1)

B (η̄, z) − 2l2
B∂z∂η̄ f (1)

B (η̄, z)

]
× ψ (z, η̄). (C2)

We thus have

FB(z, η̄) ≈
[

fB(z) − ln
l2
B(z)

l2
B

]∣∣∣∣
z̄→η̄

. (C3)

Similarly, we can relate fb and Fb in the long-wavelength limit.
Differentiating the relation with respect to z, and ignoring

the gradient of the local magnetic length, we have

Ā�(η̄, z) ≈ Ā(z̄, z)|z̄→η̄. (C4)

We can have the approximate forms of ˆ̄z and η̂ in the long-
wavelength limit as well. To do that, we apply the expansion
N+[Ā1(ˆ̄z, z)] ≈ Ā1(η̄, z) + (ˆ̄z − η̄)[∂η̄Ā1(η̄, z)] and the similar
one for N+[a1(η̄, η̂)], and we substitute them into Eqs. (B8)
and (B10), respectively. We obtain

ˆ̄z − η̄ ≈ 2
[
∂z + i

e

h̄
Ā(η̄, z)

]
l2
B(η̄, z), (C5)

η̂ − z ≈ 2
[
∂η̄ + i

e

h̄
a(η̄, z)

]
l2
b (η̄, z), (C6)

with l2
B(z, η̄) ≡ l2

B(z)|z̄→η̄ and l2
b (z, η̄) ≡ l2

b (z)|z̄→η̄.
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The scalar potentials can similarly be approximated as

N+[�eff ] ≈ �eff (η̄, z) − V (η̄, z)[ih̄∂z − eĀ(η̄, z)], (C7)

N+[φ] ≈ φ(η̄, z) − v̄(η̄, z)[−ih̄∂η̄ − ea(η̄, z)], (C8)

where V and v̄ are the complex components of the drift veloc-
ities defined in the main text.

We can then obtain the approximate form of Ĥψ by ap-
plying these approximations to Eq. (58), and ignoring all
corrections proportional to the gradients of the magnetic and
electric fields as well as contributions beyond the linear order
of B1(z), b1(η), and the electric fields. Equation (71) can be
obtained by applying Eq. (70).

APPENDIX D: TIME-DEPENDENT SYSTEMS

We first note that the stationary-state wave equation can
also be obtained from the variational principle δLeff = 0,
where Leff is the effective Lagrangian for a composite
fermion:

Leff ≡
∫

dμB(z)dμb(η)ψ∗(z, η̄)(ε − Ĥψ )ψ (z, η̄). (D1)

For time-dependent systems, the term proportional to ε in
the Lagrangian should be replaced by∫

dμB(z)dμb(η)ψ∗(z, η̄; t )

×
{

ih̄
∂

∂t
− ih̄

2

[
∂ fB(z, t )

∂t
+ ∂ fb(η, t )

∂t

]}
ψ (z, η̄; t ), (D2)

where the second term in the curly brackets originates from
the exponential factor in Eq. (34) and its counterpart for vor-
tices.

After making the substitution, and applying Eqs. (64)–(66),
we obtain the Schrödinger action of a composite fermion:

SCF =
∫

dt
∫

dξϕ̃∗(ξ, t )

(
ih̄

∂

∂t
− Ĥ1

)
ϕ(ξ, t ), (D3)

with

Ĥ1 ≡ Ĥ + ih̄

2
N+[∂t fB(ẑ, ξ , t ) − ∂t fB(ξ, t )]

+ ih̄

2
N+[∂t fb(ξ̄ , η̂, t ) − ∂t fb(ξ, t )]. (D4)

In the long-wavelength limit, we can approximate the cor-
rection terms in the same way as in Eqs. (C7) and (C8). It is
not difficult to show that Ĥ1 has the same form as Ĥ shown in
Eq. (71) but with the gauge-invariant definitions of the electric
fields.

APPENDIX E: OPERATORS IN THE STANDARD
REPRESENTATION

1. Ideal systems

In ideal systems, wave functions of composite fermions in
the dipole representation and the standard representation are

related by Eq. (28). Transforming to the standard representa-
tion, we have

z̄ψ (z, η̄) → 2l2
B∂zψ (z, η̄)

=
∫

dμ
(0)
B (ξ)ezξ̄ /2l2

B+ξ η̄/2l2
b ξ̄ ψ̃ (ξ), (E1)

zψ (z, η̄) =
∫

dμ
(0)
B (ξ)

[
2l2

B∂ξ̄ ezξ̄ /2l2
B+ξ η̄/2l2

b
]
ψ̃ (ξ)

=
∫

dμ
(0)
B (ξ)ezξ̄ /2l2

B+ξ η̄/2l2
b
(−2l2

B∂ξ̄ + ξ
)
ψ̃ (ξ), (E2)

and similar expressions for η and η̄. Therefore, in the standard
representation, the operators should be mapped to

z → −2l2
B∂ξ̄ + ξ, (E3)

z̄ → ξ̄ , (E4)

η → ξ, (E5)

η̄ → −2l2
b ∂ξ + (

l2
b /l2

B

)
ξ̄ . (E6)

It is straightforward to apply the mappings to Eq. (23) and
obtain a wave equation for ψ̃ (ξ). After applying the transfor-
mation Eq. (30), we obtain Eq. (29).

2. General systems

For general systems, wave functions in the dipole represen-
tation and the standard representation are related by Eq. (64).
For the ˆ̄z operator defined in Eq. (B5), we have

ˆ̄zψ (z, η̄) =
∫

dμB(ξ)KB(z, ξ̄ )Kb(η̄, ξ )ξ̄ ψ̃ (ξ). (E7)

On the other hand, applying complex conjugation to
Eq. (B5) and exchanging z and ξ, we obtain

ˆ̄z∗(∂ξ , ξ )KB(z, ξ̄ ) = zKB(z, ξ̄ ). (E8)

Here, we make use of the relation [KB(z, ξ̄ )]∗ = KB(ξ, z̄). We
thus have

zψ (z, η̄) =
∫

dμB(ξ )[ˆ̄z∗(∂ξ , ξ )KB(z, ξ̄ )]

×Kb(η̄, ξ )ψ̃ (ξ) (E9)

=
∫

dμB(ξ )KB(z, ξ̄ )Kb(η̄, ξ )

× ˆ̄z†

(
∂ξ − ie

h̄
Ā(ξ

)
, ξ )ψ̃ (ξ). (E10)

Here we apply integral by parts and make use of Eq. (35). Note
that (∂ξ )† = −∂ξ̄ . The mappings of η and η̄ can be obtained
similarly.

All summarized, we have the following mapping rules in
the standard representation:

z̄ → ξ̄ , (E11)

η → ξ, (E12)

z → ˆ̄z†

(
∂ξ − ie

h̄
Ā(ξ), ξ

)
, (E13)

η̄ → η̂†

(
∂ξ̄ + ie

h̄
A(ξ), ξ

)
. (E14)
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3. Transformations of Hamiltonians

We introduce an operator K̂ to represent the transformation
Eq. (64):

ψ = K̂ψ̃. (E15)

We further define

K̂1 ≡ K̂e fB (ξ). (E16)

Using the operator, the mapping rules Eqs. (E11)–(E14)
can be written as

K̂−1
1

ˆ̄zK̂1 = ξ̄ , (E17)

K̂−1
1 η̂K̂1 = ξ, (E18)

K̂−1
1 zK̂1 = ˆ̄z†, (E19)

K̂−1
1 η̄K̂1 = η̂†. (E20)

Applying the transformation to Ĥψ , we have

K̂−1
1 Ĥψ K̂1 = Ĥ†

ψ. (E21)

The Hamiltonians Ĥ and ˆ̃H that govern the wave equa-
tions for ϕ and ϕ̃. respectively, can be identified to be

Ĥ ≡ e− fB+ fb
2 Ĥψe

fB+ fb
2 , (E22)

ˆ̃H ≡ e
fB+ fb

2 K̂−1
1 Ĥψ K̂1e− fB+ fb

2 . (E23)

Applying Eq. (E21), we obtain

ˆ̃H = Ĥ†. (E24)

APPENDIX F: CURRENT DENSITIES

1. Current density in a Landau level

In a Landau level, the particle density of a state ψ can be
defined as

ρ(z, t ) = w(z, t )|ψ (z, t )|2, (F1)

where w(z) denotes the weight of the Bergman space. The
wave equation in the space can generally be written as

ih̄
∂ψ

∂t
=

∫
dμ(ξ)K (z, ξ̄ )H�(ξ̄ , z)ψ (ξ, t ). (F2)

We can determine the current density by establishing a
continuity equation for ρ(z). We have

∂ρ(z, t )

∂t
= 1

ih̄

∫
dμ(ξ1)dμ(ξ2)ψ∗(ξ1, t )K (ξ1, ξ̄2)

× H�(ξ̄2, ξ1)ψ (ξ2, t )[δ(z − ξ1) − δ(z − ξ2)].
(F3)

We then substitute the expansion

δ(z − ξ1) − δ(z − ξ2)

= −1

2

∞
′∑

n,m=0

[
1

m!n!
(ξ1 − ξ2)m

× (ξ̄1 − ξ̄2)n∂m
z ∂n

z̄ δ(z − ξ1) − (1 ↔ 2)

]
, (F4)

where the summation excludes (m, n) = (0, 0). We obtain the
continuity equation

∂ρ(z, t )

∂t
+ ∇ · j(z, t ) = 0, (F5)

with the current density j ≡ jx + i jy:

j(z, t ) = j0(z, t ) − 2i∂z̄m(z, t ), (F6)

j0(z, t ) = 1

h̄
w(z, t )

∫
dμ(ξ)(z − ξ )

× Im[ψ∗(z, t )K (z, ξ̄ )H�(ξ̄ , z)ψ (ξ, t )], (F7)

m(z, t ) = 1

4h̄
Re

∞∑
m,n=1

∂m−1
z ∂n−1

z̄

m!n!
w(z, t )

∫
dμ(ξ )

×ψ∗(z, t )K (z, ξ̄ )H�(ξ̄ , z)ψ (ξ, t )

×(z − ξ )m(z̄ − ξ̄ )n, (F8)

where m(z, t ) is the orbital magnetization density.
Applying the quantization rules shown in Appendix B, we

can rewrite the equations in operator forms,

j0(z, t ) = w(z, t )Re{ψ∗(z, t )[v̂ψ](z, t )}, (F9)

m(z, t ) = Re
∞∑

m,n=1

∂m−1
z ∂n−1

z̄

m!n!
w(z, t )ψ∗(z, t )

× [m̂mnψ](z, t ), (F10)

with

v̂ ≡ 1

ih̄
[ẑ, Ĥ ], (F11)

m̂mn ≡ 1

4h̄
[ˆ̄z . . . , [ˆ̄z︸ ︷︷ ︸

n

, [ẑ, . . . [ẑ︸ ︷︷ ︸
m

, Ĥ ] . . . ]] . . . ]. (F12)

In the long-wavelength limit, we can keep only j0(z, t ), and
we ignore the magnetization current.

2. Current densities of a composite fermion system

The result derived in the preceding subsection can be
applied to composite fermions with a straightforward gener-
alization. The electron and vortex current densities for a state
ψ (z, η̄) can be written as

je(z) ≈ wB(z)Re
∫

dμb(η)ψ∗(z, η̄)[Ûψ](z, η̄), (F13)

jv(η) ≈ wb(z)Re
∫

dμB(z)ψ∗(z, η̄)[ûψ](z, η̄), (F14)

where Û ≡ [ẑ, Ĥψ ]/ih̄ and û ≡ [η̂, Ĥψ ]/ih̄ are the electron
and vortex velocity operators, respectively, Ĥψ is the effective
Hamiltonian shown in Eq. (58), and we ignore the orbital
magnetization contribution.

In the long-wavelength limit, we can apply the approximate
commutators [ˆ̄z, ẑ] ≈ 2l2

B(z), [η̂, ˆ̄η] ≈ 2l2
b (z). The velocity op-

erators are then approximated as

Û ≈ h̄

m∗
n × (ẑ − η̂)

l2
b (z)

+ V , (F15)

û ≈ h̄

m∗
n × (ẑ − η̂)

l2
B(z)

+ v. (F16)
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Substituting Eq. (F16) into Eq. (F14) and summing over oc-
cupied states of composite fermions, we obtain the current
density of vortices Eq. (63). The current density of electrons
can be obtained similarly using Eq. (F15).

3. Dipole approximation

We can also obtain approximate expressions for the particle
and current densities of electrons and vortices by differentiat-
ing the action Eq. (D3) with respect to (�eff , A) and (φ, a),
respectively. The approximation corresponds to the multipole
expansion discussed in Ref. [14]. We have

ρe(ξ, t ) ≈
∑

i

ϕ̃∗
i (ξ, t )ϕi(ξ, t ) − ∂ξ̄ P̄(ξ, t ), (F17)

ρv(ξ, t ) ≈
∑

i

ϕ̃∗
i (ξ, t )ϕi(ξ, t ) + ∂ξ P(ξ, t ), (F18)

and

j̄e(ξ, t ) ≈
∑

i

[−2ih̄∂ξ̄ + eA + m∗v
m∗ ϕ̃i

]∗
ϕi + ∂t P̄, (F19)

jv(ξ, t ) ≈
∑

i

ϕ̃∗
i

[−2ih̄∂ξ̄ + eA + m∗V
m∗ ϕi

]
− ∂t P, (F20)

where P and P̄ are the complex components of the dipole
density, approximated as

P(ξ, t ) ≈ −l2
b (ξ)

∑
i

ϕ̃∗
i

(
2∂ξ̄ + i

e

h̄
A
)
ϕi. (F21)

4. Vanishing dipole density

We can show that a system of composite fermions always
has a vanishing dipole density in the long-wavelength limit.
To see this, we apply the self-consistent condition Eq. (61),
and find that the first term of the current density Eq. (63)
becomes an anomalous Hall current with a half-quantized
Hall conductance σ (v)

xy = −e2/2h [14]. Comparing the current
density to the second CS constraint Eq. (62), we have

P(η) ≡ wb(η)
∑

i

∫
dμB(z)(z − η)|ψi(z, η̄)|2 ≈ 0, (F22)

where we ignore the slow spatial variation of 1/l2
B(z).

The vanishing dipole density suggests that, on average, the
coordinate of an electron, always coincides with the coordi-
nate of the vortex to which it is bound. The same identity has
also been found in the semiclassical theory [14]. In Ref. [16],
it was considered that this condition could replace the CS self-
consistent conditions and serve as the basis for a composite
fermion theory without the CS fields.
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M. Milovanović, Microscopic derivation of Dirac composite
fermion theory: Aspects of noncommutativity and pairing in-
stabilities, Phys. Rev. B 104, 115150 (2021).

[19] S. A. Parameswaran, R. Roy, and S. L. Sondhi, Frac-
tional quantum Hall physics in topological flat bands, C. R.
Phys. Topological Insulators / Isolants Topologiques, 14, 816
(2013).

[20] E. J. Bergholtz and Z. Liu, Topological flat band models and
fractional Chern insulators, Int. J. Mod. Phys. B 27, 1330017
(2013).

[21] G. Ji and J. Shi, Asymmetry of the geometrical resonances of
composite fermions, Phys. Rev. B 101, 235301 (2020).

[22] G. Ji and J. Shi, Berry phase in the composite Fermi liquid,
Phys. Rev. Res. 2, 033329 (2020).

[23] G. Sundaram and Q. Niu, Wave-packet dynamics in slowly per-
turbed crystals: Gradient corrections and Berry-phase effects,
Phys. Rev. B 59, 14915 (1999).

[24] D. Xiao, J. Shi, and Q. Niu, Berry phase correction to elec-
tron density of states in solids, Phys. Rev. Lett. 95, 137204
(2005).

[25] R. Roy, Band geometry of fractional topological insulators,
Phys. Rev. B 90, 165139 (2014).

023306-18

https://doi.org/10.1103/PhysRevLett.48.1559
https://doi.org/10.1142/S0217979297001301
https://doi.org/10.1103/PhysRevB.47.7312
https://doi.org/10.1103/PhysRevB.44.5246
https://doi.org/10.1103/RevModPhys.75.1101
https://doi.org/10.1088/0268-1242/9/11S/002
https://doi.org/10.1103/PhysRevX.5.031027
https://doi.org/10.1103/PhysRevB.93.235152
https://doi.org/10.1103/PhysRevLett.72.900
https://arxiv.org/abs/1704.07712
https://doi.org/10.1103/PhysRevB.97.125133
https://doi.org/10.1103/PhysRevResearch.3.043055
https://doi.org/10.1016/S0550-3213(98)00069-8
https://doi.org/10.1103/PhysRevB.58.16262
https://doi.org/10.1103/PhysRevB.102.205126
https://doi.org/10.1103/PhysRevB.104.115150
https://doi.org/10.1016/j.crhy.2013.04.003
https://doi.org/10.1142/S021797921330017X
https://doi.org/10.1103/PhysRevB.101.235301
https://doi.org/10.1103/PhysRevResearch.2.033329
https://doi.org/10.1103/PhysRevB.59.14915
https://doi.org/10.1103/PhysRevLett.95.137204
https://doi.org/10.1103/PhysRevB.90.165139


QUANTUM MECHANICS OF COMPOSITE FERMIONS PHYSICAL REVIEW RESEARCH 6, 023306 (2024)

[26] S. M. Girvin, Anomalous quantum Hall effect and two-
dimensional classical plasmas: Analytic approximations for
correlation functions and ground-state energies, Phys. Rev. B
30, 558 (1984).

[27] N. Rohringer, J. Burgdörfer, and N. Macris, Bargmann repre-
sentation for Landau levels in two dimensions, J. Phys. A 36,
4173 (2003).

[28] B. C. Hall, Holomorphic methods in mathematical physics,
Contemp. Math. 260, 1 (2000).

[29] L. Spodyneiko, A note on GMP algebra, dipole symmetry,
and Hohenberg-Mermin-Wagner theorem in the lowest Landau
level, arXiv:2304.09927.

[30] S. H. Simon, Coupling of surface acoustic waves to a
two-dimensional electron gas, Phys. Rev. B 54, 13878
(1996).

[31] R. B. Laughlin, Anomalous quantum Hall effect: An incom-
pressible quantum fluid with fractionally charged excitations,
Phys. Rev. Lett. 50, 1395 (1983).

[32] D. C. Brody, Biorthogonal quantum mechanics, J. Phys. A 47,
035305 (2014).

[33] C. Wang, N. R. Cooper, B. I. Halperin, and A. Stern,
Particle-hole symmetry in the Fermion-Chern-Simons and
Dirac descriptions of a half-filled Landau level, Phys. Rev. X
7, 031029 (2017).

[34] R. G. Parr and W. Yang, Density-Functional Theory of Atoms
and Molecules (Oxford University Press, New York, 1994).

[35] R. Tafelmayer, Topological vortex solitons in effective field
theories for the fractional quantum Hall effect, Nucl. Phys. B
396, 386 (1993).

[36] H. Jin (private communication).
[37] Y. Hu and J. K. Jain, Kohn-Sham theory of the fractional quan-

tum Hall effect, Phys. Rev. Lett. 123, 176802 (2019).
[38] I. V. Kukushkin, J. H. Smet, K. von Klitzing, and W.

Wegscheider, Cyclotron resonance of composite fermions,
Nature (London) 415, 409 (2002).
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