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Using quantum systems as sensors or probes has been shown to greatly improve the precision of parameter
estimation by exploiting unique quantum features such as entanglement. A major task in quantum sensing is
to design the optimal protocol, i.e., the most precise one. It has been solved for some specific instances of the
problem, but in general even numerical methods are not known. Here, we focus on the single-shot Bayesian
setting, where the goal is to find the optimal initial state of the probe (which can be entangled with an auxiliary
system), the optimal measurement, and the optimal estimator function. We leverage the formalism of higher-
order operations to develop a method based on semidefinite programming that finds a protocol that is close to the
optimal one with arbitrary precision. Crucially, our method is not restricted to any specific quantum evolution,
cost function, or prior distribution, and thus can be applied to any estimation problem. Moreover, it can be applied
to both single-parameter or multiparameter estimation tasks. We demonstrate our method with three examples,
consisting of unitary phase estimation, thermometry in a bosonic bath, and multiparameter estimation of an
SU(2) transformation. Exploiting our methods, we extend several results from the literature. For example, in the
thermometry case, we find the optimal protocol at any finite time and quantify the usefulness of entanglement.
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I. INTRODUCTION

Quantum parameter estimation, also known as quantum
metrology or quantum sensing, is at the heart of quantum
technologies [1]. The quantitative assessment of some prop-
erties of a system, such as magnetic field amplitude, length,
temperature or chemical potential, to name a few, is a key task
for science and industry. A sensor is a device which manipu-
lates probes interacting with the system of interest in order to
readout its properties. Loosely speaking, the sensing becomes
quantum, whenever the manipulation of the probes and their
interaction with the measured system is governed by quan-
tum physics. Quantum metrology has been very successful in
advancing technological frontiers as showcased in several ex-
periments, namely, the detection of gravitational waves [2,3],
thermometry [4,5], magnetometry [6,7], and phase estimation
in optical platforms [8].

The theory of quantum metrology aims at developing
protocols that use optimally the probes and other metrologi-
cal resources, such as quantum correlations, coherence, and
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measurement time, in order to estimate the parameter with
minimal error [9–13], and uncovers ultimate limits on the
achievable estimation precision [14–19]. These limits are usu-
ally expressed as a bound on the quantum Fisher information
(matrix) that must hold in a certain context and are related to
the mean-squared error (MSE) via a Cramér-Rao type bound
[20–25]. In the single-parameter case, such bounds are often
saturable in the regime where the protocol is repeated many
times [26,27].

However, in the limit of small data, such bounds are not
generally saturable, and furthermore the MSE, addressed by
the Carmér-Rao bound, may not be the best quantifier of the
estimation precision. Such problems can be attacked from the
perspective of the full Bayesian framework. In the Bayesian
approach, one starts with a prior distribution (belief) of the
parameter and updates it through the protocol based on the
observed measurements results. Crucially, the choices of prior
distribution and the cost (or reward) function have a sub-
stantial impact on the optimal protocol. Finding such optimal
Bayesian protocols is one of the key problems in metrology.
This is a nontrivial task even in the case of single-shot scenar-
ios, where the protocol is described by the combination of the
initial state, the final measurement, and the estimator function.
Optimal protocols are only known for a few highly symmetric
specific cases (see Refs. [28,29] for a review), and general
effective numerical methods for finding them are lacking.

We therefore dedicate this work to address the shortcom-
ings of quantum metrology within the single-shot Bayesian
framework. Namely, we exploit the formalism of higher-
order operations [30–33] to combine two pivotal aspects
of the estimation protocol, the quantum state and the
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measurement, referred to as the quantum strategy, into a single
and equivalent higher-order transformation, called quantum
tester [30,34,35]. While the standard approach to metrology
typically involves the optimization over state and measure-
ment individually [36–38], often in a nonefficient, heuristic
manner, quantum testers allow us to optimize over the
quantum strategy altogether, finding the optimal state and
measurement efficiently with a single instance of a semidef-
inite program (SDP). Originally a tool applied to tasks such
as channel discrimination [34,39,40], the higher-order opera-
tions formalism was recently extended to quantum parameter
estimation problem, both in the frequentist setting in order to
maximize the Fisher information of a protocol [41,42] and in
the Bayesian setting in order to maximize the probability of a
fixed-width credible interval [38]. In this work we focus on
single-shot Bayesian setting and show how to leverage the
properties of higher-order operations in order to efficiently
optimize the estimation protocol with respect to any reward
function.

We propose three different methods to integrate the opti-
mization of the quantum strategy, i.e., state and measurement,
with the optimization of the estimators, therefore finding the
optimal overall protocol within arbitrary precision. Our meth-
ods take into account both numerical and practical limitations,
finding application in a wide range of realistic scenarios. It is
furthermore appropriate to any estimation problem regardless
of prior distribution, reward, or cost function, or the type of
quantum evolution. Moreover, we show how these methods
can be straightforwardly adapted to multiparameter estimation
problems.

To demonstrate the merit of our approach, we present
three case studies where we apply our methods to relevant
parameter estimation problems: phase estimation, thermom-
etry, and SU(2) estimation. These examples cover single and
multiparameter problems, both unitary and nonunitary evolu-
tion, reward, or cost functions of varying nature (e.g., fidelity
and MSE), and different prior distributions (e.g., uniform
and Gaussian). Moreover, we use one of our case studies,
thermometry, to show how our approach can be adapted to
approximate quantum strategies that do not permit for entan-
glement between the probe and an auxiliary system for their
implementation. This allows us to demonstrate that entangle-
ment provides an advantage over no-entanglement strategies
in a finite-time temperature estimation task. Our techniques
can be similarly used to answer whether entanglement can
be useful in other estimation tasks, and put a lower bound on
the usefulness of entanglement. In the thermometry problem,
we also find the optimal protocol in finite time, which was
previously only known in the frequentist regime [43], and
show that the estimation precision only decreases with
t → ∞.

II. BACKGROUND

A. Bayesian parameter estimation

In a standard metrology problem, one is interested in es-
timating an unknown parameter θ by encoding it into the
quantum state of a probe. The encoding process can be de-
scribed by a quantum channel, a completely positive and
trace-preserving map, which we denote by Eθ : L(HI ) →
L(HO) where HI and HO are the Hilbert spaces of the input

i

FIG. 1. Strategy for Bayesian parameter estimation. The left
panel represents the prior probability distribution of the parameter
θ encoded in the channel Eθ . The center panel shows a single-shot
strategy of parameter estimation in which part of a quantum state ρ

is sent through the channel Eθ and then measured by POVM {Mi},
yielding a classical outcome i. The right panel then represents the
posterior probability distribution of the parameter θ , conditioned on
the obtained measurement outcome i.

and output systems of the channel, respectively. When probing
the channel, it is in general more advantageous to also use
an auxiliary system which is initially entangled to the probe,
but does not go through the channel, as sketched in Fig. 1.
In other words, one considers the extended channel Eθ ⊗ id,
where “id” is the identity channel acting on the auxiliary
system. The chosen global input state, given by the density
operator ρ ∈ L(HI ⊗ Haux), is then mapped to a global output
state ρθ := (Eθ ⊗ id)[ρ] by the extended channel. In order
to extract the information about the parameter θ encoded in
this state, one performs a joint measurement M = {Mi}NO

i=1,
Mi ∈ L(Haux ⊗ HO) in the auxiliary system and the output
state of the channel. Finally, in the considered setting, one
designs an estimator θ̂ that assigns an estimate θ̂i to the true
value of the parameter θ , conditioned on each measurement
outcome i. The quality of the estimation can be then quantified
by setting some score (cost) function, evaluating the close-
ness (deviation) of the estimator to the true parameter value.
Indeed, the score should depend on the protocol; i.e., the
triplet of the initial state, the measurement, and the estimator
{ρ, {Mi}i, {θ̂i}i}. A central problem in quantum metrology is
finding the optimal protocol.

In the Bayesian approach, one starts with a prior belief in
the parameter value given by a probability distribution p(θ ).
After the measurement, described by the Born rule

p(i|θ ) = tr(ρθ Mi ) = tr[(Eθ ⊗ id)[ρ] Mi], (1)

one uses the Bayes’ rule to update the distribution of the
parameter based on the observed outcome i

p(θ |i) = p(i|θ )p(θ )

p(i)
, (2)

where the normalization factor is defined as p(i) :=∫
dθ p(i|θ )p(θ ).
The performance of the estimation strategy can be quanti-

fied according to a score. Generally, this can be cast as

S :=
∑

i

p(i)
∫

dθ p(θ |i) r(θ, θ̂i) (3)

=
∫

dθ
∑

i

p(θ )r(θ, θ̂i) tr[(Eθ ⊗ id)[ρ] Mi], (4)

where r(θ, θ̂i ) is a reward or cost function that quantifies the
difference between the parameter θ and each estimate θ̂i. A
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particular choice of cost function is the MSE rMSE(θ, θ̂i ) =
(θ − θ̂i )2. In light of this definition, it becomes clear that the
optimal protocol will be the one that either maximizes or
minimizes the score S , depending on whether r(θ, θ̂i) is a
reward or a cost function, respectively.

As previously mentioned, this problem does not have a
known analytical solution in general, and efficient numerical
methods have only been proposed for a few special single-
parameter problems [44,45]. In this work we provide an
efficient algorithm that approximates the solution with arbi-
trary precision, and works for all cost functions and number
of parameters.

B. Quantum testers: The quantum strategy
as a higher-order operation

A typically cumbersome part of metrology and estimation
problems is the optimization of the quantum strategy, i.e., of
the state and measurement that is used to probe the channel
that encodes the parameter to be estimated. Here, we apply
techniques from the formalism of higher-order operations
[30–33] to fully characterize the set of quantum strategies
applicable to a given estimation task. We then use this refor-
mulation to efficiently optimize over quantum strategies using
semidefinite programming [46–48]. In particular, we exploit
the connection between the states and measurements and an
object of the higher-order formalism called a quantum tester.

While quantum maps describes transformations of quan-
tum states, higher-order operations (also called supermaps)
describe transformations of quantum maps themselves. The
equivalent of a positive operator value measure (POVM)
in this formalism is a quantum tester, the most general
higher-order transformation that maps quantum channels to
a probability distribution, effectively “measuring” a quantum
channel and yielding a classical outcome with some proba-
bility. As illustrated in Fig. 1, a tester T is equivalent to the
concatenation of a state ρ and a measurement M. Neverthe-
less, as we now explain, the Born rule in Eq. (1) becomes
linear in the tester variable, which is characterized by simple
SDP constraints. We then exploit these two properties to effi-
ciently optimize over the quantum strategies.

In order to express an estimation problem in terms of
testers, we start by restating the problem using the Choi-
Jamiołkowski isomorphism [49,50]. In this representation, a
map Eθ : L(HI ) → L(HO) can be equivalently expressed as
an operator Cθ ∈ L(HI ⊗ HO), given by Cθ =∑i j |i〉〈 j| ⊗
Eθ [|i〉〈 j|], called the Choi operator.

Using the Choi operator, the output state of the probe can
be expressed as

ρθ = (Eθ ⊗ id)[ρ] = trI ((Cθ ⊗ 1aux) (ρTI ⊗ 1O)), (5)

where (·)TI denotes the partial transposition over the input
space HI . Then, the probability of obtaining outcome i, as in
Eq. (1), can be equivalently written as

p(i|θ ) = tr[trI ((Cθ ⊗ 1aux) (ρTI ⊗ 1O))Mi] (6)

= tr[Cθ traux((ρTI ⊗ 1O)(1I ⊗ Mi ))]. (7)

We can now group the objects that constitute the quan-
tum strategy, that is the state and the measurement, into a

single object called the quantum tester [30,34,35]. A tester
T = {Ti}NO

i=1, Ti ∈ L(HI ⊗ HO), is a set of NO (standing for
the “number of outcomes”) operators defined as

Ti := traux((ρTI ⊗ 1O)(1I ⊗ Mi )), (8)

which allows one to rewrite the probability of obtaining out-
come i, in Eq. (7), as simply

p(i|θ ) = tr(Cθ Ti ). (9)

The usefulness of this representation comes from the fact
that, as shown in Refs. [30,34,35], testers have a simple math-
ematical characterization. More specifically, they obey the
following set of necessary and sufficient conditions:

Ti � 0, ∀ i (10)∑
i

Ti = σ ⊗ 1O, (11)

where σ ∈ L(HI ), σ � 0, and tr(σ ) = 1. It is straightforward
to see that every set of operators T that satisfy Eq. (8) also
satisfy Eqs. (10) and (11). The converse is also true. Given
any set of operators T that satisfy Eqs. (10) and (11), one can
define a state ρ and measurement M = {Mi}NO

i=1 according to

ρ := (1I ⊗ √
σ )
∑

i j

|ii〉〈 j j|(1I ⊗ √
σ )†, (12)

Mi := (
√

σ
−1 ⊗ 1O) Ti (

√
σ

−1 ⊗ 1O)
†
, ∀ i (13)

such that

traux((ρTI ⊗ 1O)(1I ⊗ Mi )) = Ti, ∀ i. (14)

The state ρ and measurement M are called a quantum realiza-
tion of the tester T . This realization is not unique, as different
sets of states and measurements can lead to the same tester.
However, crucially, different states and measurements that
lead to the same tester will also yield the same probability dis-
tribution {p(i|θ )}i in Eq. (1), and have the same performance
in an estimation task.

Hence, the optimization of any linear function of p(i|θ ) in
Eq. (9) over a tester T = {Ti} that satisfies Eqs. (10) and (11)
is a semidefinite program, and its optimal tester is guaranteed
to have a quantum realization in terms of a quantum state and
measurement. Importantly, once the optimal quantum strategy
(i.e., tester) is found, the corresponding optimal state and
measurement can be easily determined using Eqs. (12) and
(13).

Notice that, while a tester is a set of operators that act
only on the input and output space of the channel Cθ , its
quantum realization may require an auxiliary system. This
implies that the optimal quantum strategy may require en-
tanglement between the target and auxiliary systems, and a
global measurement that acts on both of these systems. The
dimension of the auxiliary space is bounded to be at most the
dimension of HI , as established by the explicit construction of
ρ in Eq. (12). The auxiliary system can also be interpreted as
a (quantum) memory. Hence, by optimizing over testers, one
is effectively optimizing over all possible quantum strategies,
including those that may require memory or entanglement for
their implementation.
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However, certain experimental limitations might induce a
situation in which it is necessary to design a quantum strategy
that does not require entanglement for its implementation,
or a means to certify whether entanglement is indeed ad-
vantageous in a given estimation task. In Appendix A we
provide details on how quantum strategies that do not require
entanglement can be approximated with SDPs. Moreover, in
Sec. V B we provide an example of a temperature estima-
tion problem in which our methods demonstrate a clear gap
between the performance of strategies operating with and
without entanglement.

III. OPTIMAL TESTER FOR METROLOGY
VIA SEMIDEFINITE PROGRAMMING

Using quantum testers, we can now rewrite the score of an
estimation problem in Eq. (4) as

S =
NO∑
i=1

∫
dθ p(θ ) r(θ, θ̂i ) tr(Cθ Ti ). (15)

Now, to find the optimal score of a given estimation task,
the optimization of S over the triplet {ρ, {Mi}i, {θ̂i}i} can be
substituted for an optimization over the pair {{Ti}i, {θ̂i}i}.

We may express all dependencies of the score S on the
estimates {θ̂i}NO

i=1 with a set of operators {X (θ̂i )}NO
i=1, X (θ̂i ) ∈

L(HI ⊗ HO), which are given by an integral over the param-
eter θ , defined as

X (θ̂i ) :=
∫

dθ p(θ ) r(θ, θ̂i )Cθ , ∀ i. (16)

These operators encompass all the given information about
the task (prior distribution, cost function, and channels in
which the parameter is encoded) that does not depend on the
quantum strategy. Expressed in terms of these operators, the
score is simply

S =
NO∑
i=1

tr(X (θ̂i ) Ti ). (17)

For any given set of fixed estimates {θ̂i}, the optimization
of the score is given by either a maximization or minimization
(depending on the character of the cost function) of S over all
testers T . Taking maximization for instance, we have that

max
{Ti}

S = max
{Ti}

NO∑
i=1

tr(X (θ̂i ) Ti ) (18)

is the optimal score. The optimization over testers includes the
constraints of Eqs. (10) and (11). Since testers T = {Ti} are
sets of positive-semidefinite operators characterized by linear
constraints, the above optimal score can be efficiently com-
puted using SDP. Once again, the optimal tester is guaranteed
to have a quantum realization, hence for any optimal solution
of T that the SDP should return, there exist a probe state ρ and
measurement M that can realize it; they constitute the optimal
quantum strategy for the given estimators.

Notice that this can be straightforwardly generalized to the
multiparameter regime as well. In Appendix C we provide
more details on this case, while in Sec. V C we present an

example of the application of our methods to the multiparam-
eter problem of SU(2) estimation.

It is now clear that given the knowledge of the estimator
values θ̂i and the operators X (θ̂i ) one can find the optimal
tester T efficiently. The remaining difficulties thus are as
follows:

(i) Finding the optimal estimators {θ̂∗
i } leading to the opti-

mal score

S∗ := max
{Ti},{θ̂i}

S, {{T ∗
i }, {θ̂∗

i }} := arg max
{Ti},{θ̂i}

S. (19)

(ii) Computing the integral in Eq. (16).
In the following, we construct three different approaches to

tackle both of these problems.

IV. PARAMETER DISCRETIZATION AND ESTIMATOR
OPTIMIZATION

In situations where the optimal estimators are unknown,
or the integral in Eq. (16) cannot be calculated exactly, an
approximation of the optimal score in Eq. (18) can still be
computed with SDP. This can be achieved by first discretizing
the parameter θ to a finite number of hypotheses, thereby map-
ping the original parameter estimation task onto one closely
resembling channel discrimination.

Concretely, let us choose a discretization of θ such that
θ �→ {θk}NH

k=1, where NH (standing for the “number of hy-
photheses”) is the total number of different values assigned
to θ . We can then define a prior distribution over the new
hypotheses as

p(θk ) := p(θ = θk )∑NH
k=1 p(θ = θk )

, (20)

which is computationally straightforward and has the advan-
tage of giving a valid probability distribution.

Now, let us define the discrete equivalent of the operators
in Eq. (16) as {X̃ (θ̂i )}NO

i=1, where

X̃ (θ̂i ) :=
NH∑
k=1

p(θk ) r(θk, θ̂i )Cθk , ∀ i. (21)

Hence, the approximate score S̃ can be expressed as

S̃ :=
NO∑
i=1

tr(X̃ (θ̂i ) Ti ). (22)

The value of S̃ will depend on a chosen discretization {θk} of
the continuous parameter θ : the finer the discretization, the
better the approximation. Hence, for a given discretization
{θk}, the optimum score is given by either maximizing or
minimizing S̃ again over the pair {{θ̂i}i, {Ti}i} of estimates and
testers.

In what follows we propose three different methods, all
based on semidefinite programming, with which this approxi-
mation can be computed.

A. Method 1: Approximating metrology
with channel discrimination

The first approach we propose is heavily based on the
problem of channel discrimination [51]. Its starting point is
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the realization that, without loss of generality, we may restrict
ourselves to testers with as many measurement outcomes as
there are hypotheses to be distinguished. In the context of
our discretized parameter estimation problem, this amounts
to setting NO = NH ; essentially, there is no advantage in in-
creasing the number of measurement outcomes beyond the
number of different values in the discretization of θ . The
second simplification is to choose the values of the estimates
{θ̂i} to be the same as the values in the discretization {θk},
in such a way that each measurement outcome i is directly
associated to a value θ̂i = θi. Choosing the values of the po-
tential estimates of the parameter to correspond to the values
in the discretization of the parameter reduces the estimation
problem to a discrimination problem. In this case, the task can
be interpreted as determining the “classical” label k that is
encoded via the values of θk in the channel Cθk . In this case,
the set of operators {X̃ (θ̂i )} becomes

X̃ (θ̂i ) = X̃ (θi ) =
N∑

k=1

p(θk ) r(θk, θi )Cθk , ∀ i (23)

where N = NO = NH , and the approximate score S̃ becomes

S̃ =
N∑

i=1

tr(X̃ (θi ) Ti ). (24)

For this fixed value of the discretization {θi}N
i=1, the optimum

value of S̃ over all testers T is an SDP.
This approach circumvents problem (i), of finding the opti-

mal estimators, by setting them to be the same values used in
the discretization of the continuous parameter θ ; and problem
(ii), of computing the integral in Eq. (16), by discretizing it. In
principle, the higher the number of values in the discretization
of θ , the closer the estimates are to the optimal estimator. The
advantage then is that the optimal score can be found with
a single SDP that needs to optimize only over the quantum
strategies. The drawback, on the other hand, is that to achieve
a good approximation of the optimal estimator, a high number
N of values in the discretization are necessary, and since this
number is directly associated to the number of measurement
outcomes in the quantum strategy, the problem can eventually
become intractable numerically and experimentally. In prac-
tice, however, as demonstrated in our examples in Sec. V, this
method yields very good results with a value of N that can still
be straightforwardly handled numerically.

Nevertheless, our next approach is designed to overcome
this problem as well.

B. Method 2: Parameter discretization with optimal estimator

One possible way to overcome computational challenges is
to fix the number of measurement outcomes NO, and hence the
number of tester elements, to a value that is computationally
(and experimentally) tractable and increase the value of NH

far beyond that. Since, in this case, the complexity of the
problem does not depend on NH , the discretization of θ can
be arbitrarily fine. However, because the number of values
in the discretization of θ can far surpass the number of mea-
surement outcomes, the association of one estimate θ̂i to each

discretization value θk is no longer possible. Therefore, the
problem of choosing a “good” set of estimates {θ̂i} is crucial.

Let us start by assuming that the optimal estimator is
known to be {θ̂∗

i }. Then, the operators {X̃ (θ̂∗
i )} amount to

X̃ (θ̂∗
i ) :=

NH∑
k=1

p(θk ) r(θk, θ̂
∗
i )Cθk , ∀ i (25)

for a fixed discretization {θk}NH
k=1, which can now in principle

contain an arbitrarily high number of values NH � NO. The
approximate score S̃ then becomes

S̃ =
NO∑
i=1

tr(X̃ (θ̂∗
i ) Ti ). (26)

The optimization of S̃ over the quantum strategy is then given
by an SDP.

This approach essentially takes care of problem (ii), of
numerically computing the integral in Eq. (16), by discretizing
the parameter θ in an arbitrarily fine manner, while maintain-
ing the number of measurements low enough to decrease the
computational demand of the SDP. Hence, it is better suited
for a situation in which the optimal estimator is known. It
can nevertheless also be applied to a problem in which only a
good guess for the optimal estimator is known, in which case
the solution will be an approximation of the optimal score.
Otherwise, to overcome problem (i) of finding the optimal
estimator in the first place, we combine this approach with
an estimator optimization in a seesaw algorithm, detailed in
the following.

C. Method 3: Parameter discretization
with estimator optimization

This final approach consists of a seesaw between two opti-
mization problems, which are not necessarily SDPs, that will
approximate an optimization over both the quantum strategy
and the values of the estimates.

A seesaw is an iterative method that alternates between
two optimization problems, using the solution of one as the
input of the other. In our case, the first optimization problem is
the SDP of the previous approach (method 2). Namely, given
{θ̂i}NO

i=1,

max
{Ti}

NO∑
i=1

tr(X̃ (θ̂i ) Ti ), (27)

where {Ti} is an NO-outcome tester.
The second optimization problem will then be one that, for

a fixed tester {Ti}, taken to be the optimal tester of the previous
SDP, optimizes over the values {θ̂i} of the estimates. Namely,
given {Ti}NO

i=1,

max
{θ̂i}

NO∑
i=1

tr(X̃ (θ̂i ) Ti ), (28)

where {θ̂i} are NO possible values of θ .
Whether the problem in Eq. (28) is an SDP will depend

on whether the reward function r(θk, θ̂i ) is linear on {θ̂i}. In
practice, this will often not be the case. Nevertheless, in some
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cases this problem can be solved analytically, depending on
the form of the reward function, the optimal estimator may be
known or it may be found by standard Lagrangian optimiza-
tion methods. In other cases, heuristic optimization methods
may be applied.

This iterative method, although even for a fixed discretiza-
tion {θk} does not necessarily converge to the optimal value of
S̃ , in practice leads to very good approximations. A relevant
point here is that, assuming a situation where the seesaw does
converge to the optimal estimator, one may restrict themselves
without loss of generality to a maximum number of outcomes
NO that are related to the extremality properties of the tester.
In principle, since (i) the set of testers T = {Ti} is convex
and (ii) the function S̃ is linear on each tester element Ti, the
maximum (or minimum) of S̃ will be achieved by an extremal
tester. Analogously to extremal POVMs [52], extremal testers
have at most d2 (nonzero) elements, where d is the dimension
of the space upon which the tester (or POVM) elements act.
Hence, the number of outcomes NO in the seesaw can be fixed
to be at most NO � (dI × dO)2, where dI (O) := dim(HI (O) )
since, for optimal estimators, there is no advantage in optimiz-
ing over nonextremal testers. This fact also holds for method
2 if one is guaranteed to know the optimal estimator.

Furthermore, if the cost function is the mean-squared error
rMSE, then the optimal measurement will be projective (see
Appendix A in Ref. [45]), and hence the optimal tester will
have at most (dI × dO) outcomes. We present a case study in
Sec. V B, which concerns the problem of thermometry, that
precisely falls in this case.

D. Convergence of the methods

In all three methods above, we encounter some error due
to discretization of the integral in finite hypotheses, as well
as suboptimality due to our choice of estimators. The dis-
cretization error is expected to vanish as NH increases since
all three methods are based on approximating an integral with
a Riemannian sum with an error that vanishes as 1/NH . As for
the suboptimality, let us define the best approximate score S̃∗
similarly to Eq. (19) but for the approximate score defined in
Eq. (22). For large enough NH , and when the cost function is
supposed to be maximized, it means that S̃∗ � S∗ while for
cost functions that are supposed to be minimized, it means that
S̃∗ � S∗. The suboptimality roots from the fact that, none of
the methods simultaneously optimize over both {θ̂i} and {Ti}.
Each of the three methods, however, deals with suboptimality
differently. In all three methods one has

|S̃∗ − S∗| = O

(
1

NO

)
(29)

and thus one can guarantee convergence by choosing NO � 1.
In Appendix B we rigorously derive the convergence for arbi-
trary cost functions and furthermore show that for certain cost
functions that we will later use in the case studies (Examples
1 and 2) the convergence is even faster, i.e., |S̃∗ − S∗| =
O(1/N2

O). When we cannot arbitrarily increase NO, methods
2 and 3 come to the rescue. In particular, if a priori we know
what the optimal estimators are, then method 2 allows to find
the optimal testers in one shot. However, it is rarely the case
that we do know the optimal estimators a priori. Nonetheless,

as we see in the examples below, method 2 typically finds sub-
optimal solutions that are very close to the optimum. Method
3, on the other hand, adds a powerful layer of optimization
based on a seesaw between the estimators and testers, and
therefore has a higher chance of finding the optimal protocol
even with NO = (dI × dO)2.

V. CASE STUDIES

Our methodology for solving the Bayesian parameter
estimation problem using higher-order operations offers nu-
merous advantages over conventional techniques in quantum
metrology. By proposing to optimize over the input state and
measurement with a single SDP, and combining this with
effective heuristics for the joint optimization of the quantum
strategy and estimator, we overcome the longstanding chal-
lenges of the Bayesian approach. Our approach provides a
comprehensive and versatile set of techniques that can be
applied to any Bayesian estimation problem, setting it apart
from most existing methods in the literature.

The key strength of our approach lies in its ability to handle
a wide range of estimation problems, without being limited to
specific error quantifiers. This universality allows our method
to be seamlessly applied to any estimation scenario. More-
over, the techniques we described here are equally effective
for single-parameter and multiparameter estimation tasks. Fi-
nally, unlike most techniques in the Bayesian approach, our
methods are not bound by the type of dynamics used to en-
code the parameter. Whether the parameter is encoded via a
unitary evolution (e.g., phase estimation), or a more complex
open system dynamics resulting from the probe’s interaction
with a thermal environment (e.g., quantum thermometry), our
approach can be systematically applied and, as we show in the
following, delivers consistent results which are very close to
the optimal values.

We now delve into the practical application of our methods
and explore how they can be applied to determine the opti-
mal estimation strategy for various scenarios encountered in
quantum metrology. The examples are deliberately chosen to
be cover a wide range of different problems to demonstrate
the versatility of our methods.

A. Example 1. Paradigmatic example: Local phase estimation

We start with a paradigmatic task in quantum metrology,
namely, the single-parameter unitary phase estimation. In this
problem a single parameter θ ∈ [0, 2π ) is encoded in an n-
qubit quantum system via a local unitary channel Eθ [·] =
Uθ (·)U †

θ with

Uθ = e−iθSz , (30)

where Sz is a collective spin operator Sz = 1
2

∑n
i=1 σ (i)

z and σ (i)
z

is the Pauli-Z matrix of the ith qubit. Due to the intrinsic sym-
metry of the problem, every state of the n-qubit system can
be effectively described using an (n + 1)-dimensional Hilbert
space, i.e., the symmetric subspace [53]. Consequently, the
n-qubit phase estimation problem can be equivalently mapped
into a phase estimation problem of a d-dimensional sys-
tem with d = n + 1. In this representation the generator
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of the dynamics Sz expressed in the computational basis
{|0〉, |1〉, . . . , |n〉} is given by Sz =∑n

i=0 i|i〉〈i| [54].
For this example, we take a typical reward function in

phase estimation, which takes into account the cyclicity of its
parameter space, given by

r(θ, θ̂i ) = cos2

(
θ − θ̂i

2

)
. (31)

We also choose two different priors, one given by a uniform
distribution according to

p(θ ) = 1

θmax − θmin
, (32)

where θmin = 0 and θmax = 2π are, respectively, the minimal
and maximal values of the parameter. The other distribution is
given by a Gaussian distribution, according to

p(θ ) = 1

N exp
(θ − μ)2

(2σ 2)
, (33)

where N is the normalization factor. We set the mean μ = π

and the deviation σ = 1. For the discretization of the parame-
ter θ and initial value of the estimators, we fix

θk = θmax − θmin

NH
(k − 1), ∀ k ∈ {1, . . . , NH } (34)

and

θ̂i = θmax − θmin

NO
(i − 1), ∀ i ∈ {1, . . . , NO} (35)

respectively.
We now discuss how to apply each of our methods to

infer the optimal protocol in this case and present the results
obtained for the problem of (n = 2)-qubit phase estimation,
plotted in Fig. 2.

Method 1. To apply Method 1, we simply set NH = NO =
N , implying θ̂i = θi. For the results plotted in Fig. 2, we take
N ∈ {2, . . . , 10}.

Method 2. Here we fix the number of outcomes NO ∈
{2, . . . , 10} and set the number of hypotheses to be NH =
1000 � NO. We then discretize the parameter and set the
estimators according to Eqs. (34) and (35). For the case of a
uniform prior [Eq. (32), Fig. 2(a)], these are expected to be the
optimal estimators. For the case of a Gaussian prior [Eq. (33),
Fig. 2(b)], these estimators are not expected to be optimal, but
are nonetheless used in method 2, serving as a starting point
for the estimator optimization in method 3.

Method 3. For this method, we take the solution for the
testers found using method 2 for each NO as a starting point,
and then optimize over the estimator. We prove in Appendix B
that in this case the optimal estimators are given as a function
of the optimal tester, according to

θ̂∗
i =

⎧⎨⎩arctan
(

〈sin(θk )〉(i)

〈cos(θk )〉(i)

)
, 〈cos(θk )〉(i) � 0

arctan
(

〈sin(θk )〉(i)

〈cos(θk )〉(i)

)
+ π, 〈cos(θk )〉(i) < 0

(36)

where

〈 f (θk )〉(i) =
∑

k

p(θk|i) f (θk ) =
∑

k

p(θk )tr(Cθk Ti )

p(i)
f (θk )

(37)
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FIG. 2. Local phase estimation (Example 1). The maximum ap-
proximate score S̃ in a local n = 2 qubit phase estimation problem.
Each panel shows the scores corresponding to methods M1, M2, and
M3 as a function of the number of outcomes NO ∈ {2, . . . , 10} for
different prior distributions of the local phase: (a) corresponds to the
case of uniform prior, while (b) corresponds to a Gaussian prior. The
phase parameter ranges from θmin = 0 to θmax = 2π . The considered
cost function is the cosine squared in Eq. (31).

with p(i) =∑k p(θk )tr(Cθk Ti ). Note that with the definition
of Eq. (36) the range of the estimator is [−π

2 , 3π
2 ], instead of

[0, 2π ] as defined initially, this has no effect on the expected
reward and can be resolved by adding 2π if θ̂∗

i < 0. Hence,
the second step in the seesaw is solved analytically, and in
each round of the seesaw we update the value of the estimators
according to the expression above, as a function of the testers
found by the SDP in the first step. Here and in the following
examples, we iterate these two steps until the gap between the
value of the score in subsequent rounds is smaller than 10−6.

Results. In Fig. 2 we plot the maximal approximate scores
S̃ obtained via the three methods outlined above. In the case
of the uniform prior [Fig. 2(a)] we observe that the ap-
proximate score very quickly reaches the optimal one, i.e.,
S̃ ≈ S = 1

2 [1 + cos(π/4)] which was formerly obtained with
alternative methods [28,55]. All three methods converge very
quickly to this solution, already for NO = 3 outcomes, using
methods 2 and 3, and for NO = 4 outcomes, using method
1. Notice also that, since we start already at the optimal
estimator, we observe that for all NO there is no advantage
of applying the seesaw in method 3 since method 2 already
returns the optimal solution. For the case of the Gaussian
prior [Fig. 2(b)], we see that again method 3 converges to a
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stable value of S̃ with NO = 4 outcomes. Here we can see an
initial difference between methods 1 and 2, which take a fixed
estimator, and method 3, which optimizes over the estimator.
Nevertheless, all methods quickly converge to approximately
the same value, at NO = 10.

B. Example 2. Nonunitary evolution: Thermometry

Let us now discuss a different instance of single-parameter
estimation, namely, thermometry [56,57]. In this case, the
unknown parameter is the temperature θ of a sample (or a
thermal bath) that is resting at thermal equilibrium, and it is
encoded in the probe using a nonunitary quantum channel. We
consider the probe to be a two-level system (qubit) which is
potentially entangled with an auxiliary system, that does not
undergo the nonunitary dynamics. At the initial time t = 0,
the probe and the sample which are initially uncorrelated
start to interact. After some fixed time t , the probe and the
auxiliary system will be jointly measured to infer the tem-
perature of the bath. The probe’s reduced state ρ

p
θ = trA[ρθ ]

evolves according to a standard Markovian quantum master
equation [58–61], i.e.,

ρ̇
p
θ (t ) = −i

[
H, ρ

p
θ (t )
]+ �inD[σ+]ρ p

θ (t ) + �outD[σ−]ρ p
θ (t ),

(38)

where H = ε|1〉〈1| is the Hamiltonian of the probe, σ− =
|0〉〈1| and σ+ = |1〉〈0| are the jump operators, and D[A]ρ p

θ =
Aρ

p
θ A† − 1

2 {A†A, ρ
p
θ } is the dissipator superoperator which

captures the effect of the environment on the probe. The dis-
sipation rates �in and �out are the only temperature-dependent
parts of the dynamics and are responsible for encoding the
parameter. For a bosonic and fermionic environment, we
have �in = J (ε)NB/F and �out = J (ε)(1 ± NB/F ), where mi-
nus sign should be used for fermions, and positive sign for
bosons, with J (ε) being the bath spectral density while NB/F

is the occupation number for the bosonic or fermionic bath,
defined as NB = (eε/θ − 1)−1 and NF = (eε/θ + 1)−1, respec-
tively. In what follows, we focus on the bosonic bath, however,
our methods can be applied to the fermionic case as well.

The evolution specified by Eq. (38) generates an effective
quantum channel Eθ (t ) that imprints the temperature into the
probe’s state (see Appendix D for the explicit expression).
Note that in our notation we keep the time dependence be-
cause we are also interested in the optimal protocol at different
times.

As for the cost function, we use the MSE

r(θ, θ̂i ) = (θ − θ̂i )
2, (39)

while the prior distribution p(θ ) is uniform and given by
Eq. (32), where we set θmin = 0.1 and θmax = 2 as the min-
imum and maximum values of the temperature.

We discretize the temperature parameter θ and fix the
estimators according to Eqs. (34) and (35), respectively. We
evaluate the thermometry problem for 100 different time
steps, evenly distributed between t = 0 and 1.

Let us now discuss how to approach this problem using
each of the three methods presented in this work.

2 4 6 8 10 12 14 16 18 20
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FIG. 3. Thermometry (Example 2). The minimum approximate
score S̃ in the finite-time temperature estimation problem S̃, renor-
malized by the maximum value of S̃ in the plot. The temperature
θ is encoded via a qubit nonunitary evolution specified by Eq. (38)
acting for an amount of time t < ∞, here shown for a fixed time
t = 0.05. The plot shows the different scores corresponding to meth-
ods M1, M2, and M3 as a function of the number of outcomes
NO ∈ {2, . . . , 10} for a uniformly distributed prior in a temperature
parameter range of θmin = 0.1, θmax = 2. The considered cost func-
tion is the MSE in Eq. (39). The remaining parameters chosen are
ε = 0.1 and J (ε) = 2.

Method 1. To apply method 1, we again simply set NH =
NO = N , implying θ̂i = θi. For the results presented here we
take N ∈ {2, . . . , 20}.

Method 2. Here we fix the number of outcomes NO ∈
{2, . . . , 20} and set the number of hypotheses to be NH =
1000 � NO. These values for the estimator are not expected
to be optimal but are nevertheless used in method 2, serving
as a starting point for the estimator optimization in method 3.

Method 3. To apply the seesaw in method 3, we again begin
with the solution provided by method 2 for each NO and t
as a starting point. For the thermometry problem, as was the
case for the phase estimation problem, we can analytically
express the optimal estimator as a function of the quantum
strategy (tester). Since the score is quantified using the MSE,
the optimal estimator is simply the mean over the posterior

θ̂i = 〈θk〉, (40)

where 〈θk〉 is given by Eq. (37). Once again, in this example
the first step of the seesaw consists in an optimization over the
testers while the second step consists in reassigning a value to
the estimators as a function of the testers found in the previous
step, according to the above expression.

Results. In Fig. 3 we compare the performance of the
three methods outlined above as a function of the number
of outcomes NO for a fixed time t = 0.05. We observe that
methods 1 and 2 start from a relatively large S̃, which is now
being minimized, that gradually decreases with increasing NO,
while method 3 already starts at a value of S̃ close to where it
will converge. While method 2 quickly converges to the same
values of S̃ of method 3 with increasing NO, at NO = 20 the
approximate score predicted by method 1 is still somewhat
above the corresponding one obtained using method 3. This is
a result of the error in approximating the operators X (θ̂i ) using
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FIG. 4. Thermometry (Example 2): Optimality of projective mea-
surements. The approximate score S̃ is computed using method 3
as a function of time t for different values of NO. The parameters
are chosen as in Fig. 3. The inset plot is a log-log plot of the same
curves. All values are renormalized by the maximum value of S̃ in
the plot. Since the cost function is the MSE, in this case projective
measurements (which have at most dI × dO outcomes) are optimal.
Indeed, we observe that increasing NO beyond 4 does not change the
value of the score.

a Riemannian sum with NH elements. Indeed, it is guaranteed
that only in the limit NH → ∞ the approximate score in
method 1 converges to the true optimal score. Finally, we ob-
serve that method 3 saturates around its optimal value already
for NO = dI × dO = 4 outcomes. This is expected since, for a
MSE cost function, projective measurements are optimal [45].
In Fig. 4, we focus on this point, by comparing method 3
for some fixed values of NO as a function of time t , for the
whole interval of time evaluated in this problem. Here we can
see that while there is an improvement in increasing NO up
to 4, the curve for NO = 16 lies on top of that of NO = 4,
demonstrating that there is indeed no advantage in increasing
the number of outcomes beyond NO = dI × dO.

Another interesting point to make here is that the score
clearly depends on time of evolution. In particular, in Fig. 4 we
observe that there exist times t < ∞ where the score is much
better (recall that for a MSE cost function, the optimal score
is being minimized) than at t → ∞. This means that mea-
suring the probe in the transient regime can be advantageous
over estimation performed after reaching the steady state. In-
deed, this effect has been observed in thermometry previously
[62]. For the steady state, the optimal measurement strategy
is known. In particular, in this case the auxiliary system is
useless and the optimal measurement is a projector-valued
measure (PVM) in the basis of the probe Hamiltonian [63].
However, as we discuss in the next paragraph, here we show
that this is not the case for the transient regime, where entan-
glement with the probe leads to a more precise estimation. Our
techniques therefore allow to determine the optimal probe and
memory state, as well as the measurements and estimators in
this difficult regime.

Finally, in order to investigate the role of entanglement in
the transient regime of temperature estimation, we compare
two different measurement strategies: a general strategy where
the memory can be initially entangled with the probe, and the
scenario where the initial state of the memory and probe is

FIG. 5. Thermometry (Example 2): Advantage of entanglement
in the transient regime. The main panel shows the approximate score
S̃ (computed via method 3) as a function of the evolution time t for
a fixed number of outcomes NO = 4. The parameters chosen are as
in Fig. 3. All values are renormalized by the maximum value of S̃ in
the plot. The inset shows the same curves plotted in a log-log scale.
We see that there are times t for which the precision of estimation
is better than in the steady state t → ∞. This can be understood
as an advantage arising from having entanglement with the probe:
the entanglement allows the transfer of the information about the
parameter into the memory system which is itself not subject to
the dephasing dynamics of the master equation. As a consequence,
measuring the entangled probe and memory systems before the joint
system thermalizes provides a significant advantage.

separable. Figure 5 highlights the importance of the entangled
auxiliary qubit. To this aim, we have focused again on method
3, and depict the approximate score as a function of time,
for strategies with and without entanglement. As one expects,
at the limits of very short time or very long time the two
kinds of strategies perform equally. While in the former this is
because there has not been enough time to collect and add new
information to the prior, in the latter case it is because after
a long time, the system reaches a steady state regardless of
the input state, namely, of it being entangled or not. However,
at the transient regime, we observe that an auxiliary system
entangled with the probe can significantly improve the score.

Let us emphasize that very often the parameter estimation
problem described above cannot be solved analytically and
is very difficult to solve numerically. In general, the effective
evolution of the probe may result from a complicated mas-
ter equation, which has to be evaluated many times. In our
approach there is no need to evaluate the evolution for each
potential state of the probe, as the only thing we need are the
Choi operators associated with the effective channels. In this
sense, our methods only require to solve the dynamics on a
finite grid of parameter values, and thus makes finding the
solution more tractable numerically.

Finally, for the method 3 we investigate the optimal initial
probe-ancilla state ρ found by our algorithm for different
times t ∈ [0, 1]. We consider the case with four outcomes
NO = 4, which is found to give the optimal precision. Here
the tester has four elements {T1, . . . , T4}, and the initial state
can be computed with the help of Eqs. (11) and (12). Note
that the state ρ = |�〉〈�|IA is pure by construction, and its
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FIG. 6. Thermometry (Example 2): Optimal state. The entangle-
ment of the optimal initial state ρ = |�〉〈�|IA in Eq. (41) as function
of time found by method 3 for NO = 4. The corresponding score S̃
is given in Fig. 4, the physical parameters are given in Fig. 3.

Schmidt diagonal form reads as (for p0 � p1)

|�〉IA = √
p0|n〉I |0〉A + √

p1|−n〉I |1〉A, (41)

where n is the Bloch vector corresponding to the state |n〉〈n| =
1
2 (1 + nT σ ) and basis choice of the ancillary qubit plays no
physical role. We find that for all times the optimal state is
always Schmidt diagonal in the computational basis for the
probe, and the Schmidt state corresponding the the larger
value p0 is always the ground state, i.e., |n〉I = |0〉I . In con-
trast, the amount of entanglement in the optimal state depends
on the interaction time t , as shown in Fig. 6. In particular,
for the two first times t = 0 and 0.01 the state is closed
to be maximally entangled. At t = 0 any state encodes no
information on the parameter. At t = 0.01 this is due to a
numerical error, as the score S̃ is still found to be maximal by
the algorithm (see the orange line Fig. 4). Then we find that
the entanglement in |�〉, as captured by the value p0 changes
smoothly with t . Asymptotically t → ∞, we know that all
initial states do equally well as the dynamics maps prepares as
the steady state, which is product with the auxiliary system’s
state independent of the parameter. Moreover, from Fig. 5
it is clear that the presence of entanglement in the initial
state does not give any substantial improvement for t close
to one. We have also considered the optimal measurements
{M1, . . . , M4} in Eq. (13) found by the algorithm. We see that
the POVM elements are given by rank-1 projectors. The states
corresponding to the projectors are also Schmidt diagonal in
the computational basis (for the probe), and the amount of
entanglement first increases and then decreases for t � 0.06
(similar to Fig. 6).

Lastly, as we have readily pointed out our methods can be
simply adopted to other reward functions. As an example, in
Appendix D we address the thermometry problem with the
mean-square logarithmic error as the reward function, which
has gained attention in recent years due to respecting scale-
invariance properties [64–66].

C. Example 3. Multiparameter estimation: SU(2) gates

For our final example, we will consider a more complex
metrology problem which involves multiple parameters. This
is the problem of estimating any qubit unitary: the group
SU(2).

As a first observation, note that any qubit unitary operator
can be parametrized in terms of three independent parameters
θ := (θ x, θ y, θ z ), with 0 � θ i < 2π for all i ∈ {x, y, z}, as

Uθ = e−i(θ xσx+θ yσy+θ zσz ). (42)

Here, σi for i ∈ {x, y, z} are the three Pauli operators. Since
these generators do not commute, the estimation of the unitary
Uθ (or equivalently the parameter vector θ ) is a multiparam-
eter estimation problem. The unitary channel that acts on
the probe system and encodes the parameter θ is then given
simply by Eθ [·] = Uθ (·)U †

θ , and will have a Choi operator Cθ

associated to it.
We take a natural reward function that captures how close

the estimated unitary is from the actual one, which is the
fidelity, i.e.,

r(θ, θ̂i ) = 1

d2
tr(Cθ Cθ̂i

), (43)

where in this example d = 2. Here Cθ̂i
, and for later reference

Cθk , are defined analogously to Cθ , for a vector of estimator
values θ̂i = (θ̂ x

a , θ̂
y
b , θ̂ z

c ) and for a vector of discretization val-
ues θk = (θ x

a , θ
y
b , θ z

c ).
Here, we again analyze the cases of two different prior

distributions, a uniform prior, as in Eq. (32), and a Gaussian
prior, as in Eq. (33).

The parameter vector θ = (θ x, θ y, θ z ) is discretized into
values θk = (θ x

a , θ
y
b , θ z

c ), where each of the three elements
follow the discretization in Eq. (34), with θmin = −π and
θmax = π , and all with the same value of NH = nH . Notice that
this will amount to a final number of different discretization
values of NH = n3

H .
The initial set of estimators θ̂i = (θ̂ x

a , θ̂
y
b , θ̂ z

c ) is also set
according to Eq. (35) for each parameter estimator, using the
same values of θmin = −π and θmax = π , and all with the
same value of NO = nO. Here again this amounts to a total
number of outcomes equal to NO = n3

O, analogously to the
indexation of the parameter discretization.

We now discuss the application of our methods to this
specific problem, plotting our results in Fig. 7.

Method 1. To apply method 1, we again set nH = nO = n
for each of the three parameters, amounting to a total number
of discretization values and of outcomes equal to N = n3. For
the results presented here, we look at values of n = N1/3 ∈
{2, . . . , 10}.

Method 2. Here we fix the number of outcomes nO =
N1/3

O ∈ {2, . . . , 10} and set the number of hypotheses to be
NH = n3

H = 103. Notice that while the total number of hy-
potheses is 1000, each of the three parameters is discretized
in only 10 different values. These values for the estimator are
not expected to be optimal but are nevertheless used in method
2, serving as a starting point for the estimator optimization in
method 3.

Method 3. To apply the seesaw in method 3, we again begin
with the solution provided by method 2 for each NO as a
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FIG. 7. SU(2) estimation (Example 3). The maximum approxi-
mate score S̃ for an SU(2) multiparameter estimation problem. Both
panels show the scores corresponding to methods M1, M2, and M3
as a function of the cubic root of the total number of outcomes
N1/3

O ∈ {2, . . . , 10}, for different prior distributions of the phase pa-
rameters (θ x, θ y, θ z ). (a) Shows the case of a uniform prior while
(b) corresponds to a Gaussian prior. Each of the three parameters
range from θmin = −π to θmax = π . The considered cost function is
the fidelity in Eq. (43).

starting point. In this case, we optimize over the estimators
using standard gradient descent techniques. Therefore, the
first step in the seesaw is the SDP in method 2, while the
second step is a heuristic search over the estimators for a fixed
tester.

Results. In Fig. 7, we plot the maximal approximate scores
S̃ obtained via the three methods outlined above. Figure 7(a)
concerns the case of a uniform prior distribution and Fig. 7(b)
that of a Gaussian prior distribution. In both cases we observe
method 3 converging to its final value of S̃ with N1/3

O = 3,
i.e., total number of outcomes NO = 27. This is consistent
with the fact that, in this case, extremal testers have at most
(dI × dO)2 = 16 outcomes, and hence, for N1/3

O = 2 (total
number of outcomes NO = 8) we are not yet optimizing over
all possible extremal testers. This is an interesting case where
extremal nonprojective POVMs with (dI × dO)2 outcomes
show improvement over (dI × dO)-outcome PVMs. Method 2
quickly approaches this same value, while method 1 requires
higher values of N1/3

O . Nevertheless, as expected, for a larger
number of outcomes, namely, N1/3

O = 10, all methods yield
the same result.

VI. CONCLUSION AND OUTLOOK

We introduced a set of tools for addressing Bayesian pa-
rameter estimation problems, applying techniques from the
formalism of higher-order operations and drawing inspiration
from the problem of channel discrimination. The key insight
that we exploit consists of describing the quantum strategy,
i.e., the state preparation and the measurement (see Fig. 1),
as a single operation called a quantum tester. The latter is
characterized by SDP constraints, and can thus be optimized
efficiently. We developed three methods for determining the
state of the probe, the measurement, and the estimators in any
parameter estimation problem, regardless of prior distribution,
reward function, or description of the quantum evolution.

The first method exploits the connection between the
Bayesian approach to parameter estimation and quantum
channel discrimination. By discretizing the parameter to a
finite set of values, and by furthermore associating each value
of the estimator to a value of the discretized parameter, one
can directly map a parameter estimation task onto a channel
discrimination one, albeit with a reward function which inher-
its the geometry of the original parameter set. We leveraged
this connection to create a general method for approximating
the optimal solution of the estimation problem within any
arbitrary precision. We also proved that our approximation
converges to the optimal score. Although this method is con-
ceptually simple and comes with a convergence guarantee,
it may nonetheless be computationally demanding since the
size of the optimization variables increases with the fineness
of parameter discretization. Our second method computes an
approximation of the optimal quantum strategy for a fixed set
of estimators. This method is less computationally demanding
in general, but it relies on a good guess for optimal estimators,
which is not always available. To address this drawback, our
third method iteratively combines an optimization over the
quantum strategy and over the estimators, and hence does not
require any previous knowledge over the estimator.

A key advantage of our methods is their universal applica-
bility. They can be used for any parameter estimation problem,
regardless of the nature of parameter encoding or the number
of parameters to be estimated. To showcase this wide-ranging
applicability, we examined three distinct case studies of high
practical importance: local phase estimation, thermometry,
and SU(2) estimation.

We also developed tools to bound the performance of es-
timation strategies that do not require entanglement and used
them to show that, in the thermometry problem, probe states
that are entangled with an auxiliary system lead to a more
precise estimation of the temperature parameter, particularly
at finite times.

Our work provides a starting platform for the application
of higher-order operations to the problem of Bayesian param-
eter estimation. We conclude by summarizing further research
directions that could draw further benefits from this approach.

Generalization to many shots. The quantum strategies ex-
plored here concern a situation in which, at each independent
realization of the experiment, one is given access to a single
call, or copy, of the channel that encodes the parameter θ . It is
also the case that, in more general scenarios, where one has ac-
cess to multiple calls at once, the optimization of the quantum
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strategy can be done with SDP as well. Multiple-copy testers
can take different forms, describing different classes of quan-
tum strategies, such as parallel (nonadaptive) and sequential
(adaptive), or even those involving an indefinite causal order.
Such testers have been defined in Refs. [39,40] and explored
in a frequentist approach to metrology [42]. These techniques
can also be applied to multiple-copy Bayesian estimation pro-
tocols, and be exploited to investigate, for example, whether
different classes of estimation strategies can lead to higher
precision in the parameter estimation. Similarly, strategies
with an indefinite causal order could lead to establishing new
types of metrological resources.

While in the multishot scenario one can find the global
optimal protocol as explained above, it can be hard to imple-
ment in practice, due to the exponential growth of of Hilbert
space dimension. Alternatively, one can seek greedy optimal
algorithms [67]. In such a strategy, one would (i) perform the
optimization protocol as subscribed in our work, (ii) update
the prior distribution to the posterior distribution based on
the outcome, and repeat steps (i) and (ii) until all shots are
consumed. Despite not being necessarily globally optimal,
this strategy can be very strong and has shown to be asymptot-
ically optimal in some cases [68]. An example of our interest
is in Bayesian equilibrium thermometry [66]. Regardless of
global optimality, it is practically easier to implement such
multishot strategies since the required operations do not in-
volve exponentially increasing Hilbert spaces.

Applications to complex noise models. One of the key
advantages of our approach is its versatility in handling var-
ious types of parameter-encoding dynamics. Often, sensing
methods are limited to specific parameter-encoding channels,
however, our approach can effectively model and accommo-
date any type of dynamics and address different types of noise.
Specifically, if one has a good description of the noise appear-
ing in the measurement process, one can simply incorporate
this noise into the encoding channel and compute optimal
testers and optimal estimators according to any one of the
three methods. Therefore, applying these techniques to real
(noisy) experimental settings to infer their actual performance
would be an interesting next step.

Quantum metrology techniques for asymptotic quantum
channel discrimination. In this study, we utilized higher-order
operations, a technique previously used to study channel
discrimination, to provide a nearly optimal solution for the
quantum parameter estimation problem. It would be inter-
esting to explore whether the reverse approach could also
yield novel insights into the field of channel discrimination.
Specifically, one could investigate whether leveraging asymp-
totic theoretical results from quantum metrology, such as
the Heisenberg scaling, can contribute to the investigation
of asymptotic quantum channel discrimination. This direc-
tion holds promise for gaining a deeper understanding of
the relationship between channel discrimination and quantum
metrology.

Connections with the multihypothesis testing problem. The
discretization of the parameter space that we perform suggests
that the Bayesian estimation problem can be connected with
a multihypothesis testing problem [69]. However, it should
be noted that this connection is only partial. Indeed, our
work exploits the fact that Bayesian estimation can be seen

as a multihypothesis testing problem with (i) a continuous
set of hypotheses and with (ii) a specific geometry on the
“hypothesis space” as captured by the cost function. Still,
we believe that the methods developed here (method 1 in
particular) could be potentially useful for determining bounds
on the errors for the multihypothesis testing problem. Another
interesting question is whether some of the bounds on error
probabilities arising in the multihypothesis testing scenario
could be also applicable in the Bayesian setting.

All code developed for this work is freely available in our
online repository [70].
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APPENDIX A: APPROXIMATIONS FOR STRATEGIES
WITHOUT ENTANGLEMENT

If the particular problem at hand does not allow for the
use of auxiliary systems that may be entangled with the target
system, the estimation problem in Eq. (1) above reduces to the
following:

p(i|θ ) = tr(Eθ [ρ] Mi ), (A1)

where now ρ ∈ L(HI ) and Mi ∈ L(HO) or, in the Choi repre-
sentation

p(i|θ ) = tr(Cθ (ρT ⊗ Mi )). (A2)

In this case, the optimization over the quantum strategy (state
and measurement) of any linear function of p(i|θ ) is no longer
an SDP. The tester in this case, which does not require an
auxiliary system for implementation, is given by

Ti = ρT ⊗ Mi, (A3)

where ρ ∈ HI and Mi ∈ HO. Unfortunately, this kind of tester
does not admit a simple mathematical characterization. In
fact, the problem of characterizing this kind of tester is
mathematically very similar to the problem of characterizing
separable states, except in this case we are interested in the
“separability” between the operators acting on the input and
output spaces of the tester.

For this reason, techniques used to approximate the set
of separable states can be applied here to approximate the
set of testers that do not require an auxiliary system, or en-
tanglement, for its implementation. Outer approximations of
the set of testers that do not require entanglement are useful
to determine whether or not entanglement or memory is ad-
vantageous in an estimation task; if the score achieved by a
general tester is better than the best score achieved by a tester
in the outer approximation, then entanglement is useful. On
the other hand, inner approximations are useful to determine
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a lower bound on how well a tester without entanglement can
perform in a given task.

An example of outer approximation is the positive partial
transpose (PPT) condition [71]. The set of all testers whose
elements have a positive partial transpose, i.e., the set of all
T = {Ti} that satisfy

Ti � 0, ∀ i (A4)∑
i

Ti = σ ⊗ 1O, (A5)

(Ti )
TI � 0, ∀ i (A6)

is an outer approximation of the set of testers that satisfy
Eq. (A3). Similarly, the imposition of the condition of k-
symmetric extensibility [72] on the tester elements defines
an outer approximation for the set of testers that require
entanglement. Any other SDP method of approximating the
set of separable states can also be applied to approximate
the set of testers without entanglement, although the resulting
approximation may not be tight or may not converge to the
actual set.

Inner approximations can, for example, be achieved by
applying a seesaw method of optimizing over states and mea-
surements separately over many iterations. This method is not
guaranteed to converge, but will yield a bound.

APPENDIX B: CONVERGENCE OF THE
APPROXIMATIONS

The cornerstone of our results is the discretization of the
estimators and the hypotheses. The intuition suggests that as
the discretization is made finer, the approximation becomes
more precise and converges to the exact value. Here, we make
this statement more rigorous. We focus on a score function
that needs to be maximized; for those that require minimiza-
tion a similar argument holds.

First, let us denote the optimal protocol by {{T ∗
i }, {θ̂∗

i }}, it
maximizes the score in Eq. (17) to its optimal value S∗. We
know that the optimal protocol has at most D := (dI × dO)2

elements, therefore,

{{T ∗
i }, {θ̂∗

i }} := arg max
{Ti},{θ̂i}

D∑
i=1

tr(X (θ̂i ) Ti ), (B1)

S∗ := max
{Ti},{θ̂i}

D∑
i=1

tr(X (θ̂i ) Ti ) =
D∑

i=1

tr(X (θ̂∗
i ) T ∗

i ). (B2)

Now consider another protocol in which the estimators are
fixed to {θ̂i}NO

i=1, and the tester {T̃i}NO
i=1 is the solution of the

SDP maximizing the score for the given estimators

{T̃i} = arg max
{Ti}

NO∑
i=1

tr(X (θ̂i ) Ti ). (B3)

The protocol achieves a certain score

S̃∗ = max
{Ti}

NO∑
i=1

tr(X (θ̂i ) Ti ) =
NO∑
i=1

tr(X (θ̂i ) T̃i ) � S∗. (B4)

Next, let us consider the two sets of estimators {θ̂∗
i }D

i=1 and
{θ̂i}NO

i=1 and for each θ̂∗
i define θ̄∗

i to be the closest value in the

second set, i.e.,

θ̄∗
i := arg min

θ̂k |1�k�NO

|θ̂k − θ̂∗
i |, (B5)

εi := θ̂∗
i − θ̄∗

i , (B6)

where εi quantifies how different these values are. For simplic-
ity we also introduce ε := maxi |εi|. Note that for concreteness
we here used the absolute value of the difference |θ̂i − θ̂∗

k | as
a distance between the estimated values, however, any other
distance d (θ̂i, θ̂

∗
k ) could be used here and below to define θ̄∗

k
and ε instead (e.g., in the multiparameter case). The new val-
ues {θ̄∗

i } allow us to define the protocol {{T ∗
i }, {θ̄∗

i }}, where the
testers are taken from the optimal protocol but the estimators
have been modified. It achieves a certain score

D∑
i=1

tr[X (θ̄∗
i ) T ∗

i ] � max
{Ti}D

i=1

D∑
i=1

tr[X (θ̄∗
i ) Ti]

� max
{Ti}NO

i=1

NO∑
i=1

tr[X (θ̂i ) Ti] = S̃∗. (B7)

Here, we used the fact that by construction {θ̄∗
k }D

i=1 form a
subset of {θ̂i}NO

i=1, therefore, the maximization over the tester
{Ti}NO

i=1 includes the maximization over the tester {Ti}D
i=1 (some

of the tester elements can be identically zero).
Our next goal is to bound the deviation between∑D
i=1 tr[X (θ̄∗

i ) T ∗
i ] and the optimal score S∗, which are ob-

tained with the same tester. To do so we recall their Bayesian
interpretation in terms of posterior parameter distribution in
Eq. (4):

D∑
i=1

tr[X (θ̂∗
i ) T ∗

i ] =
D∑

i=1

p(i)
∫

dθ p(θ |i)r(θ, θ̂∗
i )

=
D∑

i=1

p(i)E(i)[r(θ, θ̂∗
i )], (B8)

where each expected value E(i)[·] is taken with respect to the
probability distribution p(θ |i). This allows us to write

S∗ − S̃∗ �S∗ −
D∑

i=1

tr[X (θ̄∗
i ) T ∗

i ]

=
D∑

i=1

p(i) {E(i)[r(θ, θ̂∗
i )] − E(i)[r(θ, θ̄∗

i )]}

=
D∑

i=1

p(i)E(i)[r(θ, θ̂∗
i ) − r(θ, θ̄∗

i )]. (B9)

Here, it is intuitively clear that for nearby values θ̂∗
i and

θ̄∗
i the expected values E(i)[r(θ, θ̂∗

i )] and E(i)[r(θ, θ̄∗
i )] will

also be close, provided that the reward function r is regular
enough. For simplicity let us now assume that it is Lipschitz
continuous, i.e.,

|r(θ, θ̂∗
i ) − r(θ, θ̄∗

i )| � Kr ε if |θ̂∗
i − θ̄∗

i | � ε, (B10)

for any small enough ε � δ (here Kr might depend on delta)
which directly implies S̃∗ � S∗ − Kr ε. Finally, for a scalar
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parameter the NO estimators {θ̂i} can be chosen such that ε �
L

NO
, where L is some constant depending on the prior. This

would guarantee the convergence to the optimal score with

0 � S∗ − S̃∗ � KrL

NO
. (B11)

1. Case of reward functions that are not Lipschitz continuous

Notably, Lipschitz continuity of the reward function is not
necessary to guarantee the convergence of the score S̃∗ → S∗.
However, in such cases it seems difficult to make a general
statement, which might furthermore require to assume some
regularity of the prior. Nevertheless, for illustration let us
consider a piecewise constant reward function

r(θ, θ̂ ) =
{

1, |θ − θ̂ | � 


0, otherwise
(B12)

that can be used to define a confidence interval for the param-
eter. This reward function coincides with the recent proposal
in Ref. [38]. This function is manifestly discontinuous, with
r(θ, θ̂∗

i ) − r(θ, θ̄∗
i ) taking the value +1 on an interval θ ∈ I i

+
of width |θ̂∗

i − θ̄∗
i | � ε, the value −1 on another interval of

the same width, and is otherwise zero. From Eq. (B9) we then
find

S∗ − S̃∗ �
D∑

i=1

p(i)E(i)[r(θ, θ̂∗
i ) − r(θ, θ̄∗

i )]

�
D∑

i=1

p(i)Pr(i)[θ ∈ I i
+], (B13)

where each probability Pr(i)[ f (θ )] = ∫ dθ f (θ )p(θ |i) is taken
over the conditional distribution p(θ |i). Defining the union of
all the intervals I+ = ∪D

i=1I i
+ we can further upper bound the

score difference with

S∗ − S �
D∑

i=1

p(i)Pr(i)[θ ∈ I i
+] �

D∑
i=1

p(i)Pr(i)[θ ∈ I+]

= Pr[θ ∈ I+], (B14)

where in the last term the probability is taken over the prior
distribution p(θ ) =∑i p(i)p(θ |i), and we used

D∑
i=1

p(i)Pr(i)[θ ∈ I+] =
∫

dθ

D∑
i=1

p(i)p(θ |i)χI+ (θ )

=
∫

dθ p(θ )χI+ (θ ) (B15)

for the indicator function χI+ = {1, θ ∈ I+
0, θ /∈ I+. Here, the set I+ is

of measure at most Dε. Thus, for any regular prior p(θ ) sup-
ported [p(θ ) �= 0] on a set of finite measure, the probability
Pr[θ ∈ I+] to find a value inside I+ converges to zero with ε.
In particular, for any prior with a bounded density p(θ ) � p∗

FIG. 8. The thermometry problem seen from the perspective of
the EMSLE as the cost function. The top, middle, and low panels
correspond to Figs. 3–5 of the main text, respectively; note the
logarithmic scaling in the middle and bottom figures. All other pa-
rameters are kept the same as the corresponding graphs in the main
text.

we find

S∗ − S � Pr[θ ∈ I+] =
∫

d θ p(θ )χI+ (θ )

�
∫

dθ p∗χI+ (θ ) � Dε p∗. (B16)

2. Convergence for the MSE

As a first example, let us have a look into the MSE that we
used for the thermometry problem. In this case the score func-
tion is a cost which has to be minimized, so to match to the
notation with the previous section we consider maximization
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of r(θ, θ̂ ) = −(θ − θ̂ )2. We have

r(θ, θ̂∗
i ) − r(θ, θ̄∗

i ) = −(θ − θ̂∗
i )2 + −(θ − θ̄∗

i )2 (B17)

= −(θ − θ̂∗
i )2 + (θ − θ̂∗

i + εi )
2 (B18)

= ε2
i + 2εi(θ − θ̂∗

i ), (B19)

where εi is defined in Eq. (B6). Plugging this in Eq. (B9) one
gets

S∗ − S̃∗ �
D∑

i=1

p(i)E(i)[r(θ, θ̂∗
i ) − r(θ, θ̄∗

i )]

=
D∑

i=1

p(i)
(
ε2

i + 2εiE
(i)[(θ − θ̂∗

i )]
)
. (B20)

But for the MSE we know that the optimal estimator is the
mean, i.e., θ̂∗

i = E(i)[θ ] = ∫ dθ θ p(θ |i). Therefore, the sec-
ond term is zero and we find

S∗ − S̃∗ �
D∑

i=1

p(i)ε2
i � ε2 (B21)

with ε = maxi |εi|.

3. Convergence for the cos2 reward function

In the phase estimation problem we considered a reward

function that reads as r(θ, θ̂∗
i ) = cos2( θ−θ̂∗

i
2 ). First of all, note

that in this case the optimal estimator can be found in a closed
form. To do so, we first rewrite the score for the posterior
distribution p(θ |i) as

E(i)

[
cos2

(
θ − θ̂∗

i

2

)]
= E(i)

[
cos(θ − θ̂∗

i ) + 1

2

]

= 1 + E(i)[cos(θ )] cos(θ̂∗
i ) + E(i)[sin(θ )] sin(θ̂∗

i )

2
.

(B22)

Impose that the derivative of the score with respect to the
estimator θ̂∗

i is zero:

∂

∂θ̂∗
i

E(i)

[
cos2

(
θ − θ̂∗

i

2

)]
= −1

2
E(i)[sin(θ − θ̂∗

i )]

= 1

2
{−E(i)[cos(θ )] sin(θ̂∗

i ) + E(i)[sin(θ )] cos(θ̂∗
i )} = 0,

(B23)

which is equivalent to

tan(θ̂∗
i ) = E(i)[sin(θ )]

E(i)[cos(θ )]
(B24)

and admits two solutions

θ̂∗
i = arctan

(
E(i)[sin(θ )]

E(i)[cos(θ )]

)
or

θ̂∗
i = arctan

(
E(i)[sin(θ )]

E(i)[cos(θ )]

)
+ π, (B25)

with the notation from the main text. We then need to pick
the value which gives the highest contribution to the reward
in Eq. (B22). In fact, up to a constant the reward is the scalar
product between the vectors (E(i)[cos(θ )], E(i)[sin(θ )]) and
( cos(θ̂∗

i ), sin(θ̂∗
i )), so its maximum is attained when the two

vectors are in the same half of the disk. Since the range of
arctan ∈ [−π

2 , π
2 ] corresponds to positive cosine, the choice

of the optimal estimator solution depends on the sign of
〈cos(θ )〉(i):

θ̂∗
i =

⎧⎨⎩arctan
(

E(i)[sin(θ )]
E(i)[cos(θ )]

)
, E(i)[cos(θ )] � 0

arctan
(

E(i)[sin(θ )]
E(i)[cos(θ )]

)
+ π, otherwise.

(B26)

Therefore, we can see that

S∗ − S̃∗ �
D∑

i=1

p(i)E(i)[r(θ, θ̂∗
i ) − r(θ, θ̄∗

i )]

=
D∑

i=1

p(i)E(i)

[
cos2

(
θ − θ̂∗

i

2

)
− cos2

(
θ − θ̂∗

i

2

)
cos2

(εi

2

)
+ 1

2
sin(θ − θ̂∗

i ) sin(εi ) − sin2

(
θ − θ̂∗

i

2

)
sin2

(εi

2

)]

=
D∑

i=1

p(i)E(i)

[
cos(θ − θ̂∗

i ) sin2
(εi

2

)
+ 1

2
sin(θ − θ̂∗

i ) sin(εi)

]

=
D∑

i=1

p(i)E(i)
[
cos(θ − θ̂∗

i ) sin2
(εi

2

)]
+ 1

2

D∑
i=1

p(i)E(i)[sin(θ − θ̂∗
i ) sin(εi)]

=
D∑

i=1

p(i)E(i)
[
cos(θ − θ̂∗

i ) sin2
(εi

2

)]
� 1

4

D∑
i=1

p(i)ε2
i E

(i)[cos[2(θ − θ̂∗
i )]] � 1

4

D∑
i=1

p(i)ε2
i � ε2

4
, (B27)

where in the penultimate line we use the optimality criterion (B23), and used the definition of εi in Eq. (B6), and ε = maxi |εi|.
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APPENDIX C: EXTENSION TO MULTIPARAMETER
ESTIMATION

Take the two-parameter estimation example, where the
parameters θ1 and θ2 are encoded via a channel Cθ1,θ2 . The es-

timates of these parameters are given, respectively, by {θ̂1
i1}

NO1
i1=1

and {θ̂2
i2}

NO2
i2=1. The continuous version of the problem can be

expressed as

S =
NO1∑
i1=1

NO2∑
i2=1

∫
dθ1

∫
dθ2 p(θ1, θ2) r

(
θ1, θ2, θ̂1

i1 , θ̂
2
i1

)
× tr

(
Cθ1,θ2 Ti1,i2

)
. (C1)

We then choose a discretization of θ1 given by {θ1
k1
}NH1

k1=1 and

of θ2 given by {θ2
k2
}NH2

k2=1, leading to the approximation

S̃ =
NO1∑
i1=1

NO2∑
i2=1

NH1∑
k1=1

NH2∑
k2=1

p
(
θ1

k1
, θ2

k2

)
r
(
θ1

k1
, θ2

k2
, θ̂1

i1 , θ̂
2
i2

)
× tr(Cθ1

k1
,θ2

k2
Ti1,i2 ). (C2)

By mapping the indices (i1, i2) �→ i, where i ∈ {1, . . . , NO},
NO = NO1 NO2 , and (k1, k2) �→ k, where k ∈ {1, . . . , NH },
NH = NH1 NH2 , and furthermore defining �θk := (θ1

k1
, θ2

k2
) and

�̂θi := (θ̂1
i1 , θ̂

2
i2 ), S can be rewritten as

S̃ =
NO∑
i=1

NH∑
k=1

p(�θk ) r(�θk,
�̂θi ) tr(C�θk

Ti ), (C3)

which is equivalent to the single-parameter problem. Hence,
the techniques presented here are applicable to multiparame-
ter estimation problems as well.

APPENDIX D: DETAILS OF THERMOMETRY
(EXAMPLE 2)

Here, we provide some technical details for the Example
2 where we want to estimate the temperature of a bosonic
bath. A qubit that is initially prepared in the state ρ p(0) =
(ρ11 ρ12
ρ21 1 − ρ11

). Under the evolution (38) the probe evolves to

Eθ (t )[ρ p(0)] = ρ
p
θ (t ) =

⎛⎝ e−�t [ρ11(2NB/F +1)+(e�t −1)(NB/F +1)]
2 NB/F +1 ρ12 e− �t+2iεt

2

ρ21 e− �t−2iεt
2

e−�t [−ρ11(2NB/F +1)+NB/F (1+e�t )+1]
2 NB/F +1

⎞⎠, (D1)

where

� = �in + �out = J (ε) (2 NB/F + 1).

The Choi operator of the thermalization channel is then given by

∑
i j Eθ (t )[|i〉〈 j|] ⊗ |i〉〈 j| =

⎛⎜⎜⎜⎜⎜⎜⎝

NB/F +NB/F e−�t +1

(2 NB/F +1) 0 0 e− �t+2iεt
2

0
e−�t (e�t −1) (NB/F +1)

(2 NB/F +1) 0 0

0 0 NB/F −NB/F e−�t

(2 NB/F +1) 0

e− �t−2iεt
2 0 0

e−�t (NB/F +NB/F e�t +1)
(2 NB/F +1)

⎞⎟⎟⎟⎟⎟⎟⎠.
(D2)

Remark. The only temperature dependence comes from NB/F . In particular, the Hamiltonian term is independent of (θ )
and thus can be ignored. Then the optimal solution for this problem should be rotated with the same Hamiltonian in order to
compensate for it. As such, we can ignore the phases in the off-diagonal terms above.

Using the expected mean logarithmic error as a cost function

In the main text, we took the MSE as our figure of merit. However, in recent years, an alternative cost function has been put
forward for thermometry, which is motivated by scale invariance [65]. This is the so-called expected mean square logarithmic
error (EMSLE) at the kernel of which lies the following reward function:

r(θ, θ̂∗
i ) = log2(θ̂i/θ ), (D3)

which can be analytically solved to find the optimal estimator as [65]

θ̂∗
i = exp

∫
dθ p(θ |i) ln(θ ). (D4)

Interestingly, for this cost function, one can also prove that the optimal POVM is in fact a PVM [64]. Our results straightforwardly
apply to such figure of merit. We showcase this by reproducing our Figs. 3–5. These are depicted here in the three panels of
Fig. 8, respectively, from top to bottom. The fact that PVMs are optimal is reflected in the middle panel, where our method M3
is optimal with only NO = 4 outcomes.
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