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We propose a new platform to detect signatures of the presence of Majorana bound states (MBSs) in the
Fraunhofer pattern of Josephson junctions featuring quantum spin Hall edge states on the normal part and
Majorana bound states at the NS interfaces. We use a tight-binding model to demonstrate a drastic change in
the periodicity of the Fraunhofer pattern when comparing trivial and nontrivial regimes. We explain these results
in terms of the presence of additional parallel-spin electron-hole reflections, which due to the spin-momentum
locking, occur as cross Andreev reflections, accumulating a different magnetic flux and yielding a change in
the Fraunhofer periodicity. We show that this detection scheme exhibits some advantages compared to previous
ones as it is robust against disorder and finite temperature and works in equilibrium. Furthermore, we introduce
a scattering model that captures the main results of the microscopic calculations with MBSs and extend our
discussion to the main differences found using accidental zero-energy Andreev bound states.
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I. INTRODUCTION

In condensed matter, Majorana fermion quasiparticles [1],
i.e., γ † = γ exhibit unconventional properties for the charge,
which is neutral, and the occupation number, which is not well
defined γ †γ = γ γ † = 1 [2–4]. These exotic quasiparticles
emerge as zero-energy excitations in topological supercon-
ductors, among which p-wave superconductors are the most
studied platforms due to the possibility of engineering them
by proximitizing semiconductor systems with strong spin-
orbit interactions [5–7]. Furthermore, Majorana zero modes
exhibit a fractional nature, and therefore they always ap-
pear in pairs as the result of delocalizing the information
of a single fermion c = (γ1 + iγ2)/2 onto the boundaries of
the system. For example, in one-dimensional (1D) systems
a pair of zero-dimensional bound states becomes localized
at the boundaries of the topological superconductor [4,6,7],
whereas in two dimensions, they emerge as an even number of
chiral vortices [8]. Apart from their intrinsic interest, there are
practical applications due to their individual charge neutrality,
which protects them from the local coupling to environmental
charge fluctuations, and more importantly, due to the possibil-
ity of performing computational operations by the adiabatic
exchange of Majorana bound states, also known as braiding,
which leads to an adiabatic state change within a degenerate
ground-state manifold [3]. For further information and ref-
erences there is a collection of reviews that covers different
aspects of these exotic particles, see for example Refs. [9–15].
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Signatures of Majorana bound states (MBSs) are found in
several transport experiments. Two of the most studied exper-
iments, the zero bias conductance in an NS junction [8,16,17]
and the fractional Josephson effect [4] in the Josephson junc-
tion, report deviations from the theoretical predictions. In the
case of the zero bias conductance, the signature consists of
a quantized value G = 2e2/h at zero temperature. However,
most of the experimental realizations have shown a substan-
tially suppressed value [18–21], and only in one of them the
conductance is consistently close to 2e2/h, exhibiting devia-
tions below and above [22]. There are different explanations
that can justify such deviations, some of them are compat-
ible with a topological ground state, like effects of a finite
temperature, or a finite coupling to the opposite MBS, while
other explanations are compatible with a trivial ground state,
like the scattering with quasi-Majorana bound states [23–26]
or coupling to trivial zero-energy Andreev bound states
(ZEABSs) [27,28]. The situation is similar for the fractional
Josephson effect, which can be probed by means of the
Shapiro experiment, where odd Shapiro steps vanish [4,5,
29–33] or the Josephson radiation [34,35]. Experimentally,
however, in most cases only few odd steps are suppressed
when the driving frequency is low enough [36–39], and
only one contribution reports the lack of the first four odd
steps [40]. In this occasion, the signal can also be explained
in terms of a topological state that coexists with trivial
ones [32,41,42]; however, it is also possible that the behavior
can be explained in terms of nonadiabatic transitions be-
tween Andreev bound states [31–33,43–47]. Therefore, the
need for detection schemes that are more susceptible to the
triplet superconducting nature of the MBSs, such as the mea-
surement of triplet correlations by coupling the topological
superconductor to a spin-dependent current in a three-terminal
setup [48,49] or the spin susceptibility of a Josephson junction
are of utmost importance [50].
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FIG. 1. (a) Schematic representation of the planar quantum spin
Hall Josephson junction. Here, pink and white areas represent su-
perconducting and normal parts subjected to a magnetic flux �.
(b) Possible Andreev bound states present in the setup. Due to
spin-momentum locking, the crossed (local) Andreev bound states
hold parallel (antiparallel) spin. Solid and dashed arrows represent
electron- and holelike helical edge states, respectively.

In this work, we investigate signatures of the presence of
MBSs at the NS interfaces that arise in the Fraunhofer pattern
of a planar Josephson junction featuring quantum spin Hall
edge states on the normal part, see Fig. 1. Here, the spin-
momentum locking of the helical edge states forces local and
crossed Andreev reflections (LAR and CAR) to take different
spin symmetries, that is, rhe

s̄s for the LAR and rhe
ss for the CAR.

Note that in trivial junctions, the CAR is zero for a homoge-
neous or effectively linear in momentum spin-orbit coupling.
In contrast, in the presence of a MBS, LAR, and CAR are of
the same order. Interestingly, the presence of a magnetic flux
can unravel both contributions since electrons accumulate a
different magnetic flux when performing a LAR or a CAR
process [51,52]. In this way, we investigate the critical current
of a Josephson junction as a function of an applied magnetic
flux, also known as Fraunhofer pattern, expecting to observe
an abrupt change on the profile when passing from the trivial
to the topological regime. Since this detection scheme is per-
formed in equilibrium, it removes the complications of parity
conservation required in Fu and Kane’s proposal [5] and the
possibility of nonadiabatic transitions that can appear in the
Shapiro experiment or the Josephson radiation. Furthermore,
using a scattering model we demonstrate that the change in
Fraunhofer pattern profile is absent in the presence of acci-
dental zero-energy Andreev bound states if the direction of the
Zeeman field is parallel to the helicity operator of the quantum
spin Hall states.

In the same spirit but with a different mechanism, other
proposals suggest to use quantum Hall edge states to observe
a change in the Fraunhofer pattern profile when MBSs are
present [53]. Alternatively, one can study the change of peri-
odicity in the conductance of an NSN junction interferometer
fabricated on a 2D topological insulator [54]. A recent exper-
iment shows an abrupt π shift in the Fraunhofer pattern of a
Josephson junction in a SQUID loop configuration, formed
by two parallel Al-InAs Josephson junctions [55]. There,
the phase shift is attributed to a topological phase transition
produced by an external in-plane Zeeman field, but the mech-
anism for this transition is not further discussed.

The paper is organized as follows. In Sec. II we introduce
the proximitized Bernevig-Hughes-Zhang (BHZ) model and
the topological phase studied in this work. Then, in Sec. III
we explore the Fraunhofer pattern of the thin superconducting
junction where to expect a change in the Fraunhofer pat-
tern periodicity. Finally, in Sec. IV we introduce an effective
scattering model that captures the essential ingredients of
the microscopic model and compute the resulting Fraunhofer
pattern in the presence of MBSs and accidental zero-energy
crossings. Further information is given in several Appendixes.

II. MICROSCOPIC MODEL AND TRANSPORT
FORMALISM

In this section, we introduce the proximitized BHZ
model [56] and the transport formalism used to calculate the
critical current of the Josephson junction.

A. Tight-binding Hamiltonian

The proximitized Bogoliubov de Gennes (BdG) BHZ
Hamiltonian is given by H = (1/2)

∫
dxdy�†H� with

H =
[
He − EF �̂(y)

�̂(y)∗ EF − Hh

]
, (1)

with the Fermi energy EF and Hh = T HeT −1 is the
Hamiltonian for holes, which is obtained from the one for
electrons (He) by performing a time-reversal transformation
T = isyσ0C, with C being the complex conjugate operator.
Here �̂(y) = �0(y) exp[iϕ(y)]14×4 with the pairing poten-
tial �0(y), which is finite and constant for |y| > Ln/2 and
0 otherwise, with ϕ(y) = φ/2 [ϕ(y) = −φ/2] for y > Ln/2
(y < −Ln/2); see Fig. 1. This Hamiltonian is written in the
electron-hole basis �(x, y) = (ψe, ψh)t , with

ψe(x, y) = (cE ,↑, cH,↑, cE ,↓, cH,↓)t
(x,y), (2)

ψh(x, y) = (c†
E ,↓, c†

H,↓,−c†
E ,↑,−c†

H,↑)t
(x,y), (3)

where c(†)
a,σ is the annihilation (creation) operator of an electron

with orbital a = E , H and spin ↑ / ↓ at position (x, y). The
Pauli matrices σi and si, span the orbital and spin degrees of
freedom.

He = H0 + HR + HD + HZ is the BHZ Hamiltonian,
where

H0 = A(k̂xσxsz − k̂yσy) + ξ (k̂) + M(k̂)σz, (4)

HR = α
σ0 + σz

2
(k̂ysx − k̂xsy), (5)

HD = δ0σysy + δe
σ0 + σz

2
(k̂xsx − k̂ysy)

+ δh
σ0 − σz

2
(k̂xsx + k̂ysy), (6)

HZ = Be
⊥sz(σ0 + σz )/2 + Bh

⊥sz(σ0 − σz )/2 + B‖sθσ0, (7)

with ξ (k̂) = C − Dk̂
2
, M(k̂) = M − Bk̂2, and A, B,C, D, M,

are band-structure parameters. Here 2|M| gives approximately
the energy band gap of the system and its sign determines the
topological character of the Hamiltonian: M > 0 (M < 0) sets
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the Hamiltonian in the trivial (topological) insulating regime.
Its topological character expresses through the emergence of
helical quantum spin Hall edge states. In the presence of
time-reversal symmetry, these quantum spin Hall edge states
propagate without backscattering even in the presence of
disorder [56].

HR is the Rashba spin-orbit coupling with α being the
Rashba spin-orbit constant, which can be tuned by an ex-
ternal electric field [57]. HD accounts for the bulk inversion
asymmetry contribution, where δ0, δe, δh are bulk inversion
asymmetry parameters which are specific to the material un-
der consideration. The effects of an external magnetic field H
enter via the Peierls substitution, discussed below and also via
the Zeeman Hamiltonian HZ , with in-plane H‖ and out-of-
plane H⊥ components. The corresponding Zeeman energies
are given by B‖ = g‖μB|H‖|/2 and Be/h

⊥ = ge/h
⊥ μB|H⊥|/2,

with the parallel g‖ ≈ 2 and perpendicular electron-hole band
g factor ge/h

⊥ ≈ 22.7(−1.21) and the Bohr magneton μB.
Further, we have introduced the in-plane spin-operator sθ =
cos θsx + sin θsy with θ the in-plane polar angle. Guided
by HgTe, we use different in-plane and out-of-plane g fac-
tors [58]. While Be

‖ = Bh
‖, Be

⊥ �= Bh
⊥ because of different g

factors |gh
⊥/ge

⊥| 	 1, and thus, we assume a negligible gh
⊥ ≈

0. Nevertheless, similar results can be found using ge
⊥ = gh

⊥,
as realized in InAs-GaSb wells [59].

Following standard finite-difference methods, we dis-
cretize the Hamiltonian on a 2D lattice, turning the continuum
momenta k̂x/y�(x, y) = −i∂x/y�(x, y) into their discretized
version, that is, ∂x/y�(x, y) → 1

2ax/y
(�ix/y+ax/y − �ix/y−ax/y )

and ∂2
x/y�(x, y) → 1

a2
x/y

(�ix/y+ax/y − 2�ix/y + �ix/y−ax/y ). In the

normal part of the junction |y| < Ln/2, we add a per-
pendicular magnetic field, whose orbital effects enter
via the Peierls substitution k̂x,y → k̂x,y − (e/h̄)Ax,y, with
the Landau gauge A = |H⊥|xey. Thus, ψ

†
e,iy

ψe,iy±ay →
exp[±i(π�p/�0)ix]ψ†

e,iy
ψe,iy±ay , with the flux quanta �0 =

h/2e and the magnetic flux in a plaquette �p = A|H⊥| for
|y| < Ln/2 and 0 otherwise and with A = axay being the area
of a single plaquette. Besides, we assume a negligible Zeeman
contribution generated by the magnetic field responsible for
the magnetic flux.

B. Topological superconductivity

There are different ways to induce Majorana bound states
on the proximitized quantum spin Hall edges. The most direct
one, a proximitized helical edge state [60], is not relevant
here because without conserving the parity, its corresponding
Fraunhofer pattern gives no difference in the trivial and topo-
logical regimes. Here, we explore a different configuration
closer to the Rashba quasi-1D well, where the proximitized
BHZ model supports a chiral Majorana edge mode for a
Zeeman field above the critical field B⊥ > Bc [61,62] in the
NS junction. In addition, in the quasi-1D limit a pair of
proximitized quantum spin Hall edge channels can exhibit
a superconducting topological phase when the width of the
sample is smaller than the localization length of the quantum
spin Hall edge states ξqsh, that is, W � ξqsh [49]. To understand
this scenario, we first represent the nonproximitized spectrum

FIG. 2. (a) Energy dispersion of the (normal) overlapped quan-
tum spin Hall edge states in the thin limit, with (CN = 0). Inset: Zoom
within the gap opened by the overlap between the quantum spin Hall
edge states. (b) Local density of states as a function of the energy
ω and Zeeman energy B⊥. (c) BdG band spectrum inversion as a
function of the Zeeman energy B⊥, similarly to the energy disper-
sion of the Rashba wire in Refs. [6,7]. The width of the sample is
W = 144 nm, the critical field Bc ≈ 1.3 meV, and CS = −9.2 meV.

of a thin sample in Fig. 2(a), which develops a gap at the Dirac
point. In the vicinity of the gap, the resulting spectrum ex-
hibits the same structure as the Rashba wire, that is, parabolic
bands shifted in k by the spin-orbit coupling �k = ±kso,
see magnification in Fig. 2(a). Hence, it is not surprising
to expect an inversion of the proximitized superconducting
band produced by a Zeeman field applied perpendicularly to
the effective spin-orbit field direction, see bottom panels in
Fig. 2(c). As a result, two Majorana bound states appear at
the extremes of the superconductor, which becomes visible
imposing hard-wall boundary conditions. See LDOS at the NS
interface in Fig. 2(b) [49]. It is important to remark that even
though we need a finite overlap between opposite quantum
spin Hall edge states on the superconducting part, the quantum
spin Hall edge states placed on the normal part propagate
without scattering to the opposite edge. This is possible by
setting C in the normal region, i.e., CN , in such a way that the
Dirac point is away from the Fermi energy. Alternatively, one
can use the same chemical potential as in the superconducting
region, i.e., CN = CS , with a different width WN > WS on
the normal part and superconducting parts. Although we use
the former configuration (CN �= CS ), the latter (WN > WS )
might be easier to accomplish experimentally since it does not
involve a spatially dependent gate voltage control.

Experimentally, there are already two scenarios where non-
proximitized quantum spin Hall modes of opposite edges
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overlap. First, the addition of an electric field can push the
edge modes towards the bulk [63]. Second, materials like
bismuthene on SiC develop topological line defects through
which the quantum spin Hall edges propagating on opposite
sides can overlap [64].

Set of parameters

Unless it is specified otherwise, we use the following set
of parameters: A = 373 meV nm, B = −857 meV nm2, D =
−682 meV nm2, and M = −10.0 meV. The parameters asso-
ciated to spin-orbit coupling are α = 0.0, δ0 = 1.6 meV, δe =
−12.8 meV nm, δh = 21.1 meV nm, T = 0.1 K, and �0 =
0.15 meV. In the tight-binding calculations, we use a dis-
cretization constant a ≡ ax = ay = 2.4 nm. We set the Fermi
energy EF = 0 and the chemical potential on the normal and
superconducting parts is tuned by CN and CS , respectively.

In this work, we use the magnetic field for two different
purposes: a Zeeman field to invert the superconducting gap
and the magnetic flux to study the Fraunhofer pattern. Even
though both fields are applied in the z direction, it is possible
to study the critical current as a function of both contributions
independently because of the different order of magnitude of
each contribution. Here the Zeeman field is of the order of
B⊥ ∼ 1 T, while the orbital field is a few mT.

III. FRAUNHOFER PATTERN

The Fraunhofer pattern, i.e., the critical current as a
function of the magnetic flux, contains important informa-
tion about the spatial distribution of the supercurrent in a
Josephson junction [65]. For example, when the normal part
of the junction is dominated by bulk modes, the critical current
oscillates and decays for an increasing magnetic flux, whereas
when the supercurrent is carried along the edges (quantum
spin Hall or quantum Hall states), the critical current oscillates
with a period (�/�0 or 2�/�0) without decaying. Using
standard equilibrium Green’s function methods introduced in
Appendix A, we calculate the critical current of a Josephson
junction with quantum spin Hall edges on the normal part in
the absence and presence of Majorana bound states at the NS
interfaces.

In the 2D limit, where chiral Majorana modes propagate
at the boundary of the superconducting slabs, the Fraunhofer
pattern does not exhibit a qualitative change when comparing
the trivial and topological regimes, see Fig. 11. This is caused
by the dominant coupling between normal and proximitized
quantum spin Hall edge states, which gives rise to a supercur-
rent contribution based on LAR, yielding negligible traces of
the presence of the chiral Majorana contribution. Therefore,
in order to observe a specific signature of the MBS in the
Fraunhofer pattern profile, we need to reduce the supercurrent
carried by local Andreev bound states (ABS) so that we can
enhance the coupling between the quantum spin Hall edge
states and the central part of the superconducting slab, where
the MBSs are located. To this aim, we induce MBSs directly
on the proximitized quantum spin Hall edge states by con-
sidering a thin superconductor junction. Alternatively, there
is another way to increase the coupling between the helical
modes and the MBSs, that involves a positive mass M > 0

FIG. 3. Fraunhofer pattern for the thin superconducting junc-
tion: (a) Critical current as a function of the flux and perpendicular
Zeeman field. The parameters of the model are MS/N = −10 meV,
W = 0.14 µm, Ln = 0.74 µm, CS = −9.25 meV, CN = 2.0 meV,
and �0 = 0.15 meV. (b) Fraunhofer pattern for two different line
cuts B⊥ = 0.0 (trivial regime) and B⊥ = 3.5 meV (topological
regime).

in the superconducting leads, having no helical edge states in
the normal state. Since the results are analogous to the thin
superconducting junction we place this setup and its results
to Appendix B 2. In addition, we show there that it is also
possible to observe the transition with an in-plane magnetic
field B‖.

In the trivial regime (B⊥ < Bc), the Fraunhofer pattern
exhibits the usual SQUID pattern with period p ∼ �0, see
Figs. 3(a) and 3(b). In contrast to the wide superconduc-
tor junction, see Appendix B 1, we observe a reduction of
one lobe every � ≈ 2�0. This beating pattern, also known
as even-odd flux quanta effect, occurs because the quantum
spin Hall edges placed on opposite sides become partially
coupled at the superconductor interface [66], resulting into
normal electron-electron and hole-hole reflections involving
both edges. In this situation, particles can encircle the normal
part several times before an electron-hole scattering event
takes place, accumulating extra magnetic phase factors, and
modifying the Fraunhofer pattern. Increasing the Zeeman field
above the critical field (Bc ∼ 1.5 meV), we observe the sup-
pression of the originally “odd” lobes placed around � ≈
(2n − 1)�0 (with n being an integer), yielding a Fraunhofer
pattern with a periodicity of p ≈ 2�0; see linecuts in Fig. 3(b).
Numerical calculations show a similar change in periodicity
for different set of parameters, such as CS , �0 as long as
B⊥ > Bc, and thus becoming a robust signature of the topolog-
ical transition. Furthermore, we can observe a constant shift
of the Fraunhofer pattern as a function of the Zeeman energy
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FIG. 4. Intra- and interedge GFs as a function of the frequency
ω/�0 for the trivial [(a) and (b)] and topological [(c) and (d)]
regimes. The set of parameters is the same as in Fig. 3, with φ =
0 and [(a) and (b)] B⊥ = 0, �/�0 = 0 and [(c) and (d)] B⊥ =
3.5 meV, �/�0 = −0.85 which lead to the maximum critical cur-
rent for each Zeeman fields.

B⊥, which can be gauged into the Peierls phase since the
Zeeman field is parallel to the helicity operator of the quantum
spin-Hall edges; see more details in Appendix B 1.

The abrupt change of the Fraunhofer periodicity can be
understood from the new scattering channels introduced by
the presence of MBSs, which enhance triplet electron-hole
reflections with parallel spin, i.e., rhe

ss . Due to spin-momentum
locking, the ABSs involving rhe

ss take place on opposite edges,
while rhe

ss̄ on the same edge. Due to this geometrical difference,
the magnetic flux accumulated in each process is different.
Crossed ABSs do not accumulate a magnetic flux, while local
ABS accumulate the flux �. In the tunneling limit [52], the
critical current is given to lowest order in the particle tunnel-
ing by

Ic ≈ |ICAR + ILAR cos(π�/�0)|, (8)

with ICAR/LAR the respective crossed and local critical cur-
rents. Using this simple equation, we can extract that the
presence of MBSs at the NS boundaries generates a local and
crossed supercurrents with approximately the same strength,
which is in accordance with the electron-hole reflection coef-
ficients of MBS [48] and the suppression of CAR in the trivial
regime [45,67,68].

A. Intra- and interedge Green’s functions

To support this interpretation, we compute the intra- and
interedge Green’s functions (GFs) defined respectively as

GT T
eh,σ,σ ′ (ω) = 2

W

∫ W

W/2
dxGeh,σ,σ ′ (x, x, ω), (9)

GT B
eh,σ,σ ′ (ω) = 4

W2

∫ W

W/2
dx

∫ W/2

0
dx′Geh,σ,σ ′ (x, x′, ω), (10)

as a function of the frequency ω, see Fig. 4. Here the sub-
scripts T, B refer to top and bottom edges, respectively. Note
that these GFs are the result of tracing the orbital degrees of
freedom and they are defined at the center of the junction y =
0. Besides, we have used a superconducting phase difference

FIG. 5. Fraunhofer pattern for the thin superconducting junction
with a disorder trench of Ltrench = 150 nm and a disorder strength
σ = ±5 meV. The rest of the parameters are the same as in Fig. 3.

φ = 0 and the magnetic flux � that gives rise to the maximal
critical current for the given Zeeman field. We can observe
that in the trivial regime (B⊥ < Bc), intra- and interedge GFs
contain only the singlet component |S〉 ∼ | ↑e↓h〉 − | ↓e↑h〉;
see Figs. 4(a) and 4(b). In contrast, in the topological regime
(B⊥ > Bc), we can observe that the triplet components are of
the same order as the singlet one; see Figs. 4(c) and 4(d).

B. Robustness against disorder

Due to the presence of the magnetic field, time-reversal
symmetry is broken, and thus the helical edge states are no
longer protected against backscattering. Therefore, we check
the robustness of the signature in the presence of disorder.
To this aim, we set two stripes of length Ltrench and width
W at both NS interfaces, see Fig. 10. This is consistent with
an actual experiment, where the superconducting leads can
introduce some disorder to the semiconductor system. In this
way, we consider an on-site disorder potential that is randomly
assigned in the range of ±σ . We first note that for values of
disorder strength σ = 1 meV, the Fraunhofer pattern exhibits
the same change of periodicity as the clean system, even when
Ltrench extends over the whole setup (∼0.74 µm), not shown.
For larger disorder strengths, σ = 5 meV, we observe no
change in the Fraunhofer pattern relative to the clean system
for Ltrench � 100 nm (not shown). However, increasing further
Ltrench to 150 nm the height of the odd lobes decays in the
trivial regime, see two linecuts in Fig. 5. Although in this
case the periodicity is strictly not doubled as a function of
the Zeeman field, it is still possible to appreciate the impact of
the Zeeman field on the Fraunhofer profile by performing the
Fourier transform on the critical current, that is,

Ic( f ) =
∫

d�e2π i f �/�0 Ic(�/�0). (11)

In Fig. 6, we represent the Fourier transform Ic( f ) as a func-
tion of the frequency f and the Zeeman energy B⊥. We can
observe that in the trivial regime (B⊥ < Bc), Ic( f ) exhibits
three maxima around f ≈ 0, 0.5, and 1.0, and smaller and
narrower contributions for 0 < f < 1. Here the contribution
around f ≈ 0 is related to the constant background observed
in Fig. 3, and the contributions with frequencies at f < 0.5,
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FIG. 6. Absolute value of the Fourier transform of the critical
current in the presence of disorder as shown in Fig. 3(a) as a function
of the characteristic frequency f and the Zeeman field B⊥.

correspond to the small oscillations observed on top of the odd
lobes. Moreover, the contribution close to f ≈ 0.5 is related
to the even-odd flux quanta effect mentioned above, whereas
f ≈ 1 is the characteristic frequency of a wide quantum spin-
Hall Josephson junction [69] Note that deviations of integer or
semi-integer values of f can be attributed to finite-size effects.
For B⊥ > Bc, we can observe an abrupt change in Ic( f ), with a

dominant component at f ≈ 0.5 resulting from the reduction
of the odd lobes, which serves as an indication of the presence
of MBSs as a function of the Zeeman field.

IV. SCATTERING MODEL

In order to have a deeper insight into the periodicity
changes introduced in the Fraunhofer pattern by the presence
of MBSs, we construct a phenomenological scattering model
including the main ingredients participating in the setup, that
is, helical modes propagating around the normal part in the
presence of a magnetic flux, and two superconducting slabs
accounting for scattering events with a bulk superconductor
and MBS, see Fig. 7. Furthermore, this model also allows us to
consider accidental zero-energy modes instead of MBSs and
to study the resulting Fraunhofer pattern.

The supercurrent at temperature T can be written in terms
of the S matrices SA and SN , namely [66,70,71]

I = −kT
2e

h̄

d

dφ

∞∑
n=0

ln det[1 − SN (iωn)SA(iωn)], (12)

where the sum runs over the Matsubara frequencies ωn =
πkT (2n + 1). Here SN is the S matrix that accounts for the
propagation along the normal part, while SA accounts for
the scattering events taking place at the left and right NS
interfaces.

FIG. 7. (a) Josephson junction setup with helical modes confined in the normal region threaded by a magnetic flux �. We highlight the
normal and superconducting regions, where the S matrices SN and SA,L/R act by light blue and red, respectively. On the superconducting sides,
the crossed boxes represent trivial (green) and topological (red) superconducting scattering centers, where the helical edge states perform
electron-hole reflections. In panel (b), we show the structure of SN and SA, which connect the incoming and outgoing (a/b) scattering states
on the left and right sides (L/R), by means of SA(bL, bR )t = (aL, aR )t and (bL, bR )t = SN (aL, aR )t . In panels (c) and (d), we detail the top-right
(trivial) and center-right (topological) scattering processes.
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FIG. 8. Fraunhofer pattern obtained using the scattering model
with MBSs scatterers for a deflection probability �d = 0.2 for
two values of �M : 1 − �M = 0 (solid blue) and 1 − �M = 1
(dashed red). We have used t↑,L = t↓,L = 2.5h̄vF /

√
Ln, t↑,R =

−t↓,R = 2.5h̄vF /
√

Ln, with Ln being the length of the normal part.

To model the processes occurring at each NS interface,
we combine three S matrices represented by crossed boxes
in Fig. 7; see more details in Appendix C. Two of them
(green crossed boxes) capture the physics of the scattering
events between the quantum spin Hall edges and the bulk
superconductor, where we also account for finite electron-
electron deflection probability (�d ) that connects quantum
spin Hall edge states placed on opposite sides. Additionally,
the scattering events produced by MBSs are modelled by
the addition of a third scatterer (red crossed boxes) centered
in between the bulk superconducting scatterers. Similarly as
in the superconducting bulk scatterers, the intensity of the
scattering processes with the MBSs scatterers is controlled by
the parameter �M : For 1 − �M = 0 particles propagate along
the NS interface without scattering with the MBS, while for
1 − �M = 1 any particle propagating along the NS junction
scatters with the MBS.

As a first step, we recover a similar Fraunhofer pattern as
the ones observed using the microscopic model for the trivial
regime, i.e., B⊥ = 0, see blue linecuts in Figs. 3 and 8. To do
so, we set �M = 1.0, which sets a zero coupling to the MBSs
and a finite �d > 0, which introduces finite deflection prob-
ability, connecting opposite edges with �d = 0.2. Here the
resulting Fraunhofer pattern exhibits the previously observed
even-odd flux quanta effect by the reduction of one of the lobe
maxima every 2�0; see blue curves in Fig. 8. Note that in
contrast to the microscopic model, here the reduced lobes are
always placed at odd multiples of �0. In general, the parity
of the reduced lobes depends on the phase factors picked up
during the deflection scattering processes [66]. For simplicity,
we have set all the phases picked up during the deflection to
zero, and therefore we cannot change the parity of the reduced
lobes.

A. Majorana bound states

Setting a finite scattering probability with the MBSs (1 −
�M > 0) introduces a finite electron-hole process with par-
allel spin [72]. Using the Mahaux-Weidenmüller formula we
can obtain the reflection amplitudes of an isolated MBS,

namely [48,73,74]

ree
ss′ = δss′ + 2πν0t∗

s ts′

iE − γ
, rhe

ss′ = 2πν0tsts′

iE − γ
, (13)

where γ = 2πν0(|t↑|2 + |t↓|2) and tσ is the effective coupling
amplitude between the helical edge states and the Majorana
bound states, see more details in Appendix C. As we have
discussed above, these scattering processes have a strong im-
pact on the Fraunhofer pattern because the resulting crossed
ABS do not accumulate a net magnetic flux.

Guided by the microscopic model, we assume tσ to be
real [75,76]. Concretely, we analyze the tunnel amplitude
configuration: t↑,L = t↓,L, t↑,R = −t↓,R, which reproduces ap-
proximately the Fraunhofer patterns observed using the
microscopic model; see the red dashed curves in Fig. 8. More-
over, the form of the Fraunhofer pattern can only be recovered
taking into account that the MBSs appear on both sides, and,
thus, the change in the Fraunhofer profile also provides a
nonlocal probe of a pair of separated MBSs appearing at the
left and right interfaces.

B. Zero-energy Andreev bound states

Accidental ZEABS can arise in the presence of a Zeeman
field when for example the NS interfaces of the proximitized
region are less doped than the interior regions [77]. These
states can give rise to similar signatures in the conductance
as the MBSs, like a zero bias conductance peak. Thus, to
test the robustness of the signatures observed in the Fraun-
hofer pattern, we replace the MBS S matrix by one resulting
from the scattering with an accidental ZEABS and study
under which conditions we observe similar changes in the
Fraunhofer pattern as the ones observed with the MBSs.

We model the ZEABS by means of the Hamiltonian [48],

HZEABS =
∑

s=↑,↓
ε0d†

s ds + Bξ d†
s ds′ (sξ )s,s′ + �0d†

↑d†
↓ + H.c.,

(14)

where ε0 sets the doping of these regions and it is assumed to
be smaller than the chemical potential of the bulk proximitized
region. �0 is the pairing amplitude of this region and in gen-
eral it can be different from the bulk �0. Furthermore, Bξ is
the Zeeman energy of an external magnetic field applied in the

ξ direction, which sets zero-energy states for Bξ =
√

�2
0 + ε2

0 ,
see further details of the model in Appendix C. The ZEABS
are coupled to the quantum spin Hall edge states by means
of the tunnel Hamiltonian HT = ∑

s ωsψ
†
s (x0)ds + H.c., with

ψ (x) the electronic field operator of the quantum spin Hall
edges at position x = x0, where the ZEABS is placed. More-
over, the ratio ε0/�0 reduces effectively the tunnel couplings
ω↑/↓ = 3h̄vF /

√
Ln between the quantum spin Hall edges and

the ZEABS for larger ε0. The reason for this reduction is that
the larger ε0, the higher Bα we need to apply and the more
spin-polarized the ZEABS become.

The presence of accidental ZEABS depends on the specific
conditions of the NS interfaces, like a spatial dependence of
the chemical potential or pairing amplitude. Thus, it is possi-
ble that only one of the NS interfaces may develop a ZEABS.
For this reason, we analyze two different scenarios depending
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FIG. 9. Fraunhofer pattern obtained using the scattering model
with ZEABS scatterers for B‖/⊥ = √

�2
0 + ε2

0 and the same deflec-
tion probabilities as in Fig. 8, i.e., �d = 0.2, �M = 0.0. We set two
different magnetic field directions B⊥ [(a) and (b)] and B‖ [(c) and
(d)] and use either one [(a) and (c)] or two [(b) and (d)] ZEABS.
We use in all panels three different values of the ratio ε0/�0, which
controls indirectly the coupling between the quantum spin Hall edge
states and the ZEABS, see more details in Appendix C.

on the number of ZEABS present in the setup, that is, whether
only one or two NS interfaces develop a ZEABS [78,79,80].
In addition, we analyze two extra scenarios where the Zeeman
field is applied out-of-plane B⊥ and in-plane B‖. Here the
direction of the applied Zeeman field plays an important role
because B⊥ (B‖) is parallel (perpendicular) to the helicity
operator of the quantum spin Hall edge states, resulting in
the absence (presence) of parallel-spin electron-hole reflection
amplitudes rhe

ss in the S matrix, see Ref. [48], and more details
in Appendix C. As we have discussed in the previous section,
the presence of finite rhe

ss gives rise to supercurrent component
that does not depend on the magnetic flux, thus contributing
to a change in the Fraunhofer pattern periodicity.

In Fig. 9, we show a representative example of the
Fraunhofer pattern generated with the scattering model using
ZEABS. The main idea consists on checking whether it is pos-
sible to recover the Fraunhofer pattern observed in Fig. 8, that
is, the suppression of the half of the lobes by switching on the
coupling to the MBSs, that is, for �M = 1 → �M = 0. To this
aim, we use �d = 0.2 and analyze all four configurations of
Zeeman fields and number of ZEABS (�M = 0). In Figs. 9(a)
and 9(b) we show the results for the out-of-plane Zeeman field
with one and two ZEABS, respectively, while in Figs. 9(c)
and 9(d) we use an in-plane Zeeman field and again one and
two ZEABS. In all panels, we represent the Fraunhofer pat-
tern for three values of ε0/�0 = 0.5, 1, 2, which effectively
change the coupling between the quantum spin Hall edges and
the ZEABS.

Looking at the Fraunhofer pattern periodicity in Figs. 9(a)
and 9(c), we can observe that MBSs can be differentiated
always from ZEABS if only one of the NS interfaces con-
tains a ZEABS, since the Fraunhofer pattern periodicity is
not modified relative to the zero Zeeman field. Note that
this is independent of the applied Zeeman field direction.
We can also differentiate MBSs from ZEABS present on
both NS interfaces if the Zeeman direction is out-of-plane
B⊥, since in this occasion, the S matrix does not develop
spin-parallel electron-hole reflection coefficients, yielding an

unaltered Fraunhofer pattern periodicity; see Fig. 9(b). In turn,
when the applied Zeeman field is in-plane B‖ [Fig. 9(d)], we
observe a change in periodicity of the Fraunhofer pattern,
resulting from the introduction of parallel-spin electron-hole
reflection amplitudes. Thus, we can differentiate the trivial
from the topological scenario because in the case of MBSs,
the S matrix constructed from Eq. (13) is independent on the
direction of the Zeeman field, as long as it is perpendicular to
the spin-orbit field, whereas the ZEABS exhibits a change in
periodicity if the Zeeman field is in-plane.

V. CONCLUSIONS

In conclusion, using tight-binding calculations based on
the BHZ model, we predict that the presence of MBSs on
both NS interfaces leads to a drastic change in the Fraunhofer
pattern periodicity with respect to the trivial regime, where
the half of the lobes become suppressed. We explain the
change in periodicity in terms of the introduction of triplet
electron-hole reflection amplitudes rhe

ss enforced by the exotic
Majorana bound states, which, when coupled to the spin-
momentum locked quantum spin Hall edge states, leads to the
coexistence of two different kinds of Andreev bound states:
local and crossed, which are mediated by antiparallel and
parallel spin electron-hole reflection amplitudes, respectively.
Furthermore, this signature remains visible even in the pres-
ence of disorder strengths of 5 meV as long as the disorder
trench is shorter than Ltrench � 100 nm. For larger disorder
trenches Ltrench � 150 nm, the Fraunhofer pattern exhibits a
larger even-odd effect in the trivial regime, making it more
difficult to observe a change in periodicity as a function of
the Zeeman energy. Nevertheless, making use of the Fourier
transform, we observe an abrupt increment of the fractional
frequencies for B⊥ > Bc.

Finally, we have developed a phenomenological scattering
model with which we recover similar results as those observed
in the microscopic model with MBS, supporting our physical
picture of local and crossed Andreev reflections. Furthermore,
we have used this model to explore the robustness of the
detection scheme when accidental ZEABS are present. We
have found that when only one NS interface holds a ZEABS,
the Fraunhofer pattern does not change its profile indepen-
dently of the microscopic details of the ZEABS. Also when
both NS interfaces hold a ZEABS the relative height of the
Fraunhofer lobes remains unaltered when the applied Zeeman
field is out-of-plane and changes if the Zeeman field is in-
plane, resulting from the presence (absence) of parallel-spin
electron-hole amplitudes in the latter (former) case.
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FIG. 10. Sketch of the discretized Josephson junction, with the
mesh ax = ay. Here we split the junction into two slabs to visualize
the recursive inversion method, where the surface Green’s functions
gLL and gRR (blue areas) are coupled by VLR/RL and contain the
information of the semi-infinite normal-superconducting leads; see
further details in Sec. A. Besides, we introduce a magnetic flux �p

that threads each plaquette on the normal part of the junction.

APPENDIX A: SUPERCURRENT IN A JOSEPHSON
JUNCTION

The critical current Ic is the maximum amount of current
that the Josephson junction supports without generating any
voltage. Given the geometry of a Josephson junction, this
quantity characterizes its conducting properties and results
from the self-adjustment of φ, which minimizes the free
energy and maximizes the supercurrent, that is,

Ic = Maxφ{I (φ)}, (A1)

where I (φ) is the supercurrent of the Josephson junction.
The stationary longitudinal supercurrent at a given posi-

tion y0 on the normal part can be expressed in terms of the
GFs [81,82], that is,

I (φ) = e

h̄

∫ ∞

−∞
dωTrW{[VLRG+−

RL (ω) − VRLG+−
LR (ω)]e}. (A2)

Here the GFs G+−
i j (ω) are the Fourier transform

of the nonequilibrium GFs [83,84] G+−
i, j (t+, t ′

−) =
〈T←[�(x, yi, t+)�†(x, y j, t ′

−)]〉, with the field operators
�(x, yi, t ), introduced in Eqs. (2) and (3), now written in
the Heisenberg picture. Besides, T← is the time-ordering
operator and the subscripts ± refer to the upper and lower
time branches of the Keldysh contour. Here the subindices
L, R denote the left and right sections relative to y0, which is
placed in the normal part at which we calculate the current,
that is, L = y0 − a/2, R = y0 + a/2 and Vi j corresponds
to the tunnel couplings that link the sites i and j in the y
direction. Due to current conservation, I (φ) is independent
of the selected position and, thus, we will not specify it.
Furthermore, Vi j and the GFs are represented by matrices
of dimensions 8W̃ × 8W̃ with W̃ = Integer[W/a], with W
being the width of the Josephson junction; see Fig. 10.

In the absence of an applied bias voltage, the system is in
equilibrium and thus G+− is simply given by

G+−(ω) = [Ga(ω) − Gr (ω)] f (ω), (A3)

where f (ω) is the equilibrium Fermi-Dirac distribution and
“r” and “a” denote the retarded and advanced GFs, re-
spectively. Thus, using the Dyson equation, we express the

FIG. 11. (a) Critical current as a function of the magnetic flux
and Zeeman field B⊥ for a proximitized Josephson junction, with
M = −8.0 meV for the whole junction. (b) Critical current for two
different Zeeman fields corresponding to trivial and topological su-
perconductors. The parameters used are �0 = 4 meV, W = 1 µm,
Ln = 0.35 µm, CN = −3 meV, CS = 10 meV, and lattice constant
a = 5 nm.

supercurrent in terms of the decoupled surface GFs gLL and
gRR, that is,

Gr/a
LR = gr/a

LL VLRGr/a
RR , (A4)

Gr/a
RL = Gr/a

RR VRLgr/a
LL and (A5)

Gr/a
RR = [(

gr/a
RR

)−1 − VRLgr/a
LL VLR

]−1
, (A6)

valid for both retarded and advanced (r/a) GFs. The uncou-
pled GFs gLL and gRR contain information of the semi-infinite
leads and the normal sectors from each side and are obtained
using the recursive inversion method for the normal part to-
gether with an efficient method to calculate the surface GFs
of semi-infinite superconducting leads [85]. Then these sur-
face GFs are combined with the normal part using standard
recursive methods; see for example Ref. [86].

APPENDIX B: FRAUNHOFER PATTERN IN DIFFERENT
CONFIGURATIONS

1. Wide inverted junction (MS,N < 0) with a perpendicular
Zeeman field

Using the microscopic BHZ model, we show the
Fraunhofer pattern of a junction where the quantum spin Hall
edge states on opposite sides are decoupled. In Fig. 11(a)
we can observe that the critical current shows the usual os-
cillatory pattern exhibited by quantum spin Hall junctions,
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with periodicity p = �0 [40,87,88]. In contrast to the case
analyzed in the main text, the Fraunhofer pattern profile re-
mains unchanged as a function of the Zeeman field B⊥ even
though the Zeeman field exceeds largely the critical field,
i.e., B⊥ > Bc = 0.3 meV, see also linecuts in Fig. 11(b). Due
to the large coupling between the normal and proximitized
quantum spin Hall edge states, the critical current is mainly
given by LAR. Thus, the presence of MBSs located in the
central regions of the NS junctions is not noticed by the edge
states.

The shift observed in the Fraunhofer pattern as a function
of the Zeeman field in Fig. 11 comes from the fact that the
Zeeman field is parallel to the helicity of the QSH edges
and thus it shifts the momentum in the same manner as the
magnetic flux introduced by the Peierls substitution. To see
this, we write the effective Hamiltonian for the QSH edge
states with a Zeeman field,

Heff ∼ h̄v f k̂yszτz + B⊥sz, (B1)

where sz and τz are the Pauli matrices describing the spin and
the top-bottom edges. The addition of a magnetic flux enters
via the Peierls substitution, shifting the momentum as k̂y →
k̂y − e/h̄Ay, where Ay changes the sign from the top to the
bottom edge, and thus Ay ∝ τz, which cancel the τz appearing
in Eq. (B1) and entering similarly as the Zeeman term.

2. Mass domain junction MN < 0, MS > 0 with an in-plane
Zeeman field B‖

An alternative way to enhance the coupling between the
quantum spin Hall edge states propagating on the normal
part and the MBSs placed at the NS interfaces is to consider
MS > 0 on the superconducting part. In this configuration, the
quantum spin Hall edge states propagate around the normal
part and can scatter with MBSs when present. Experimen-
tally, this setup requires a spatial control of the mass sign,
which can be realized, for example, in InAs-GaSb wells [59].
Alternatively, one could form a Josephson junction by cou-
pling laterally the superconductor [89] to a quantum spin Hall
system. In addition, we show that the topological transition is
also visible using an in-plane Zeeman field. Note that since the
spin-orbit coupling depends on both momenta kx and ky, it is
not possible to invert the superconducting gap [90]. However,
this restriction can be overcome since the width of the junction
W is small, and thus it imposes a confinement energy given by
∼h̄2/2m∗W2, with m∗ being the effective mass of the band,
that is much larger than the spin-orbit energy ∼δe,h/W that
couples different subbands.

In the trivial regime, the Fraunhofer pattern exhibits a
doubled period with respect to the one obtained in the prox-
imitized junction, i.e., p ≈ 2�0, compare the blue linecuts in
Figs. 12(b) with the SQUID pattern resulting from a junction
with MN,S < 0 with only LAR processes in Fig. 11(b). This
scenario represents an extreme version of the even-odd flux
quanta effect observed in the thin superconducting junction.
Here particles can encircle the normal part due to a finite
Fermi velocity mismatch between the quantum spin Hall
edge states and the superconducting part, which enhances the
electron-electron reflection amplitude [91]. In the topological
regime (B‖ > Bc), we again observe an abrupt change in the

FIG. 12. Fraunhofer pattern for the mass domain configuration:
(a) Critical current as a function of the flux and parallel Zeeman field
for the mass domain configuration. The parameters of the model are
MS/N = ±10 meV, CS = 12.0 meV, CN = 2.0 meV, W = 0.24 µm,
and Ln = 0.4 µm. (b) Fraunhofer pattern for two different linecuts
B‖ = 0.0 (trivial regime) and B‖ = 1.3 meV (topological regime).

Fraunhofer pattern periodicity. In the particular case shown
in Fig. 12, the periodicity is halfed to p ≈ �0. However, the
Fraunhofer pattern in the mass domain and the corresponding
changes caused by the presence of a MBS do not exhibit a
universal behavior. In contrast to the thin superconducting
junction, here the coupling to the bulk s-wave superconductor
is more visible yielding an extra source of LAR with respect
to the electron-hole reflections provided by the MBS. The
ratio between the two contributions is effectively controlled
by CS: The larger kF , the more favored the LAR processes
become. In Fig. 13, we show the Fraunhofer pattern for two
values of the Zeeman field: B‖ = 0 (blue) and B‖ = 1.2 meV
(red) and nine values of the chemical potential on the super-
conducting part (CS). Figure 13(a)–13(g) show a blue and a
red curve corresponding to the trivial and topological regimes,
respectively. Figures 13(h) and 13(i) correspond to the trivial
regime for both curves. In these two latter panels, an even
number of superconducting bands are occupied and conse-
quently above the critical Zeeman field, an even number of
Majorana bound states form on each side, which overlap, gap
out and yield a trivial superconductor [62,92]. This is known
as the even-odd effect in the Majorana wells. Indeed, we can
observe that the Fraunhofer pattern changes its profile for the
Figs. 13(a)–13(f), whereas close to the odd-even transition
and within the even sectors, the Fraunhofer pattern does not
exhibit a qualitative change in periodicity. In contrast to the
thin junction regime where the superconducting electrodes are
composed by a single proximitized mode, here the presence of
extra modes can make the distinction between the trivial and
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FIG. 13. Critical current for the mass domain configuration as
a function of the magnetic flux for two values of parallel Zeeman
field B‖ = 0 (blue) and 1.2 meV (red). Different panels correspond
to values of CS , starting from CS = 11.0 meV and increasing in
steps of ∼0.3 meV from (a) to (i). There are two types of panels,
shaded and nonshaded, corresponding to an even and odd number
of occupied bands, respectively. Thus, for finite magnetic field (red
curves) only the nonshaded panels can develop MBSs, whereas for
the shaded panels both blue and red curves correspond to the trivial
case. Besides, W = 0.24 µm and Ln = 0.4 µm.

topological regimes more difficult; see for example Figs. 13(c)
and 13(h), where blue and red curves exhibit a similar period-
icity. To distinguish between both cases we study the critical
current for � = 0 as a function of the Zeeman field B‖; see
Fig. 14. We can observe that in the case of a topological
transition (blue curve), the critical current exhibits a sharp

FIG. 14. Critical current as a function of the Zeeman field B‖ for
� = 0. We have used the same set of parameters as in Figs. 13(c) and
13(h) for the blue and red curves, respectively. The topological tran-
sition is evidenced by a sharp decrease of the critical current, see
Ref. [27].

drop around B‖ ∼ Bc, whereas the curve corresponding to the
“even” case decreases continuously. This has been proposed
as a detection scheme in Ref. [27].

APPENDIX C: SCATTERING MODEL

In this Appendix, we provide the explicit form of SN and
SA used in Eq. (12).

This model is adapted from the one presented in Ref. [66],
where we use helical propagation along the NS interfaces and
add the possibility of scattering with MBSs or trivial ZEABSs.

We start with SN , which gives the relation between the
incoming and outgoing modes relative to the central part
of the junction. Thus, we write (bL, bR)t = SN (aL, aR)t ,
where aL(R) and bL(R) are four-component vectors containing
left (right) incoming and outgoing scattering amplitudes
on the top and bottom edges relative to the normal part of
the junction and are given by aL = (aT

e,↑, aB
e,↓, aT

h,↑, aB
h,↓)t

L,
aR = (aB

e,↑, aT
e,↓, aB

h,↑, aT
h,↓)t

R, bL = (bB
e,↑, bT

e,↓, bB
h,↑, bT

h,↓)t
L,

and bR = (bT
e,↑, bB

e,↓, bT
h,↑, bB

h,↓)t
R, where T and B denote

top and bottom edges. Note that the lack of some
of the incoming and outgoing states comes from the
spin-momentum locking of the edge states, e.g., there is
no left-top incoming down-spin state aT

e/h,↓. The form of SN

is given by

SN =
(

0 SN,LR

SN,RL 0 ,

)
(C1)

which is an off-diagonal matrix since SN connects the incom-
ing of the L-R side with the outgoing scattering states of the
R-L side. Here

SN,LR =

⎡
⎢⎢⎢⎣

ei(χb+�̃/2) 0 0 0
0 ei(χt −�̃/2) 0 0
0 0 ei(χb−�̃/2) 0
0 0 0 ei(χt +�̃/2)

⎤
⎥⎥⎥⎦

SN,RL =

⎡
⎢⎢⎢⎣

ei(χt +�̃/2) 0 0 0
0 ei(χb−�̃/2) 0 0
0 0 ei(χt −�̃/2) 0
0 0 0 ei(χb+�̃/2)

⎤
⎥⎥⎥⎦,

where χt/b = E/ET,t/b are the dynamical phases accumulated
along the top and bottom edges and ET,t/b the top-bottom
Thouless energies and the dimensionless magnetic flux
through the normal part �̃ = π�/�0 = (e/h̄)

∫ Ln

0 Ay|x=Wdy
with A = |H⊥|xey. In the following we consider the short
junction limit, i.e., �0 	 ET,t,b = h̄vF /Ln. However, the peri-
odicity of the Fraunhofer pattern is similar in intermediate or
the long junction limit.

The S matrix describing the scattering processes at the NS
junctions is given by

SA =
(

SA,L 0
0 SA,R

)
. (C2)

SA,L/R describes the scattering events taking place at the left-
right interfaces and fulfills SA(bL, bR)t = (aL, aR)t . Guided by
the microscopic model, we include three different scattering
processes:
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(i) Scattering with the bulk superconductor.
(ii) Normal deflection between the top and bottom edges.
(iii) Scattering with the MBS-ZEABS.
To do so, we model each NS interface by the combina-

tion (×) of three S matrices, that is, SA,i = ST
green,i × Sred,i ×

SB
green,i, with i = L/R. Here ST/B

green,i describes the scattering
between the quantum spin Hall edges with a bulk super-
conductor that includes a deflection probability towards the
opposite edge. Besides, Sred,i is the MBS scattering matrix on
the i side.

We start introducing ST/B
green,i, which are represented by

green crossed boxes in Fig. 7 and are obtained by the combi-
nation of two S matrices, i.e., ST/B

green,i = ST/B
pot,i × SBulk,i, where

ST/B
pot,i describes the scattering processes between the quantum

spin Hall edges and a (ficticious) normal potential that intro-
duces a deflection probability (�d ) towards the opposite edge.
For simplicity, we consider the same deflection probability
on the top, bottom, left, and right, and thus the S matrix
becomes independent of the T/B and L/R labels; that is,
ST/B

pot,L/R ≡ Spot and consequently ST/B
green,L/R ≡ Sgreen,L/R. For the

sake of simplicity, we model the potential scatterer by means
of the simplest S matrix that respects time-reversal symmetry

and does not mix the spin degree of freedom, namely

Spot =
(

eiψ1
√

�d
√

1 − �d√
1 − �d −eiψ2

√
�d

)
, (C3)

where ψ1 and ψ2 are phases acquired after crossing the poten-
tial barriers. Furthermore, we set both phases to zero and also
neglect the possibility of a spin rotation due to the presence of
spin-orbit coupling. The scattering matrix connects the states,

(aedge, aaux)t = Spot(bedge, baux)t ,

where “aux” refers to the auxiliary states placed between the
potential and the superconductor and “edge” refers to the edge
states propagating along the normal part; see Fig. 7. Their spe-
cific components depend on the considered scattering center;
for example, in Fig. 7 we illustrate the modes scattering on the
top-right scattering center. Here electron and hole components
of the incoming top-right “T” (outgoing “inter,T”) states with
spin up fulfill (ainter,T

e/h,↑ , aaux
e/h,↑)t = Spot(bT

e/h,↑, baux
e/h,↑)t . A simi-

lar expression can be written for the spin-down components.
Due to their helical character, the incoming and outgoing com-
ponents with spin down are exchanged, that is, (aT

e,↓, aaux
e,↓ )t =

Spot(b
inter,T
e,↓ , baux

e,↓ )t .

So much for Spot, we now introduce SBulk,L/R, which describes the electron-hole reflection processes mediated by a trivial bulk
superconductor and fulfills

SBulk,L/R

⎛
⎜⎜⎜⎜⎜⎝

aaux
e,↑

aaux
e,↓

aaux
h,↑

aaux
h,↓

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

ree
↑,↑ ree

↑,↓ reh
↑,↑ reh

↑,↓
ree
↓,↑ ree

↓,↓ reh
↓,↑ reh

↓,↓
rhe
↑,↑ rhe

↑,↓ rhh
↑,↑ rhh

↑,↓
rhe
↓,↑ rhe

↓,↓ rhh
↓,↑ rhh

↓,↓

⎞
⎟⎟⎟⎟⎟⎟⎠

L/R

⎛
⎜⎜⎜⎜⎜⎜⎝

aaux
e,↑

aaux
e,↓

aaux
h,↑

aaux
h,↓

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

baux
e,↑

baux
e,↓

baux
h,↑

baux
h,↓

⎞
⎟⎟⎟⎟⎟⎠, (C4)

which relates the incoming aaux
e/h,↑↓ and the outgoing baux

e/h,↑↓ scattering amplitudes in the “aux” region. Using the Andreev ap-
proximation, the right reflection coefficients are given by rhe

↓↑(E ) = [reh
↓↑(−E )]∗ = exp[i(χ − φ/2)] and rhe

↑↓(E ) = [reh
↑↓(−E )]∗ =

− exp[i(χ − φ/2)], with χ = −arccos(E/�0), while the left-reflection coefficients are obtained from the right coefficients by
substituting φ → −φ. An alternative way to model Sgreen,i is to relax the conditions that lead to the Andreev approximation.
Away from this limit one can naturally obtain electron-electron reflection amplitudes which lead to a finite deflection probabil-
ity [68,93–95].

To proceed further, we combine Spot in Eq. (C3) with the corresponding superconducting S matrix Eq. (C4) eliminating the
“aux” modes. In the trivial case, the resulting matrix is given by

Sgreen,L/R = 1

1 − e2iχ�d

⎡
⎢⎢⎢⎢⎢⎣

√
�d (1 − e2iχ ) 0 0 (1 − �d )ei(χ∓φ/2)

0
√

�d (1 − e2iχ ) −(1 − �d )ei(χ∓φ/2) 0

0 −(1 − �d )ei(χ±φ/2)
√

�d (1 − e2iχ ) 0

(1 − �d )ei(χ±φ/2) 0 0
√

�d (1 − e2iχ )

⎤
⎥⎥⎥⎥⎥⎦. (C5)

The S matrices Sred,i, represented by red crossed boxes in
Fig. 7, are obtained in a similar fashion as Sgreen,i, that is,
Sred,i = Spot,M × SMBS,i. Here we combine two S matrices, one
accounting for the probability of particles propagating along
the NS junction without scattering with the MBS, �M = 1,
and the MBS S matrix. While Spot,M is obtained from Eq. (C3)
using the replacement �d → �M .

We now introduce the matrix SMBS,i, which accounts for
the scattering with MBSs or ZEABSs. In both cases, we use

the Weidenmüller formula [48,73,74]

(
ree reh

rhe rhh

)
= 1 − 2πν0iW †(E + iπν0WW †)−1W, (C6)

with the density of states of the quantum spin Hall edges ν0 =
1/π h̄vF and W accounting for the tunnel amplitudes between
the MBSs-ZEABSs and the quantum spin Hall edge states.
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1. Majorana bound states

In the case of MBSs W = (t↑, t↓, t∗
↑, t∗

↓ ), yielding the re-
flection coefficients

ree
ss′ = δss′ + 2πν0t∗

s ts′

iE − γ
, rhe

ss′ = 2πν0tsts′

iE − γ
, (C7)

where γ = 2πν0(|t↑|2 + |t↓|2) and tσ is the effective coupling
amplitude between the helical edge states and the Majorana
bound states. The analytical expressions for Sred,L/R is cum-
bersome and therefore we obtain it only numerically. The
same expressions can be rederived without using explicitly the
Weidenmüller formula following Refs. [49,96].

2. Zero-energy bound states

In the same way, we can obtain the S matrix describing
the scattering processes between the quantum spin Hall edges
and an accidental ZEABS. To do so, we use an effective model
describing a proximitized region (�0) that can develop a zero-
energy state under a Zeeman term (B‖/⊥), namely [48]

HZEABS =
∑

s=↑,↓
ε0d†

s ds + �0d†
↑d†

↓ + H.c.

+ B‖d†
s ds′ (sθ )s,s′ + B⊥d†

s ds′ (sz )s,s′ , (C8)

here d (†) are fermionic destruction (creation) operators and
ε0 is the energy of the particle. This region is coupled to
the quantum spin Hall edge states by means of the tunnel
Hamiltonian HT = ∑

s ωsψ
†
s (x0)ds + H.c., with ψ (x) being

the electronic field operator of the quantum spin Hall edges
at position x = x0, where the ZEABS is placed.

3. In-plane magnetic field

For a finite in-plane field B‖ �= 0 and a zero perpendicular
Zeeman field B⊥ = 0, we diagonalize the Hamiltonian

HZEABS = (
√

�2
0 + ε2

0 − B‖)a†a + (
√

�2
0 + ε2

0 + B‖)b†b +
const. For B‖ =

√
�2

0 + ε2
0 , the Hamiltonian develops a

zero-energy state and the spectrum has a low- and high-energy
sector. In this way, we project HT onto the low-energy sector
by means of the transformation

d↑ ≈ − sin(α)a† − cos(α)a, (C9)

d↓ ≈ − sin(α)a† + cos(α)a, (C10)

with the parametrization

sin(α) =

√
�2

0 + ε0
(
ε0 −

√
�2

0 + ε2
0

)
2
√

�2
0 + ε2

0

, (C11)

cos(α) =

√
�2

0 + ε0
(
ε0 +

√
�2

0 + ε2
0

)
2
√

�2
0 + ε2

0

. (C12)

Thus, in the low-energy sector, the tunnel Hamiltonian reads,

HT =
∑

k

(
a†, a

)
W‖

⎛
⎜⎜⎜⎝

ψk,↑
ψk,↓
ψ

†
k,↑

ψ
†
k,↓

⎞
⎟⎟⎟⎠ (C13)

with

W‖ =
(−t2,↑ t1,↓ t∗

1,↑ t∗
2,↓

−t1,↑ −t2,↓ t∗
2,↑ −t∗

1,↓

)
, (C14)

and the tunnel amplitudes t1[2],↑ = ω∗
↑ sin(α)[cos(α)]

and t1[2],↓ = ω∗
↓ cos(α)[sin(α)]. Now W‖ enters into the

Weidenmüller formula (C6), so we obtain the reflection
coefficients. In this case, the analytical expressions for
ree

ss′ and rhe
ss′ are cumbersome; thus, we restrict ourselves

to evaluate it numerically. In general, we observe a finite
electron-hole reflection amplitude with parallel spin. Thus,
we expect to observe a similar (but not equal) behavior in the
Fraunhofer pattern as with MBSs.

4. Perpendicular magnetic field

When the Zeeman field is applied in z direction, that is,

B‖ = 0 and B⊥ �= 0 the gap also closes at B⊥ =
√

�2
0 + ε2

0

and the low-energy sector allows us to write

d↑ ≈ − sin(α)a†, (C15)

d↓ ≈ cos(α)a, (C16)

with the parametrization

sin(α) = �0√
2�2

0 + 2ε0
(
ε0 +

√
�2

0 + ε2
0

) , (C17)

cos(α) = �0√
2�2

0 + 2ε0
(
ε0 −

√
�2

0 + ε2
0

) , (C18)

yielding

W⊥ =
(

0 t̃↓ t̃∗
↑ 0

−t̃↑ 0 0 −t̃∗
↓

)
, (C19)

with t̃↑ ≡ sin(α)ω∗
↑ and t̃↓ ≡ cos(α)ω∗

↓.
In this case, the electron-hole reflection coefficients can be

obtained analytically [48], namely

rhe = 2πν0
t̃↑t̃↓

iE − γ /2
σx, (C20)

where, in contrast to the in-plane ZEABS, here rhe
↑↑ = rhe

↓↓ =
0. Thus, we expect to observe a completely different behavior
as compared to the in-plane fields.

5. Interedge transmission probability and total conductance

To have more insight into the reflection properties of the
combined S matrix SA,i , we calculate numerically the in-
teredge electron-hole reflection probability T ↑↑

he and the zero
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bias conductance at zero temperature, given by

G = e2

h
(2 − Tr[S†

eeSee] + Tr[S†
ehSeh]), (C21)

with �M = 0 and E = 0.
Here we consider two different scenarios, the first one with

a MBS and the second one with an accidental zero-energy
ABSs with an in-plane magnetic field. In both cases we restrict
to the case where all tunnel amplitudes are real tσ ∈ R.

We start with the MBS case, whose results are shown in
Figs. 15(a) and 15(c). For zero deflection probability �d = 0,
we observe that electrons are locally reflected from the bulk
superconductor, yielding T ↑↑

he = 0 and G = 4e2/h. Then, in-
creasing �d , the conductance becomes constant and equal to
G = 2e2/h independent on the tunnel couplings tσ , whereas
the transmission T ↑↑

he changes in the following manner: For
t↑ = 2t↓, with t↑/↓ Reals T ↑↑

he increases linearly as a function
of �d , reaching a plateau for large �d . Similarly, for t↓ = 2t↑,
T ↑↑

he decreases linearly as a function of �d until it reaches a
plateau. In all cases, when �d ≈ 1 the transmission is mainly
given by the Majorana electron-hole reflection coefficient, that

is, T ↑↑
he ≈ |rhe

↑↑|2 = |t↑|4
|t2

↑+t2
↓|2 .

In the case of zero-energy Andreev bound states, T ↑↑
he is

in general finite for �d > 0, due to finite rhe
↑↑ introduced by

the zero-energy scatterers. In contrast to the MBS scenario,
here the conductance G exhibits any value between 4 and 0,

FIG. 15. [(a) and (b)] Interedge electron-hole reflection probabil-
ity T ↑,↑

he as a function of the deflection probability �d for the MBS
(a) and the ZEABS (b), with �M = 0 and E = 0. We have used three
different tunnel amplitude configurations t↑ = 2t↓, t↑ = t↓, t↓ = 2t↑
in the MBS case and ε0 = �0/2, ε0 = �0, and ε0 = 2�0 for the
ZEABS case. [(c) and (d)] Zero bias conductance as a function of
�d for the MBS and ZEABS with the same parameters as in panels
(a) and (b).

depending on the used set of tunnel couplings ti,σ ; see
Figs. 15(b) and 15(d). These couplings can be tuned as a
function of the microscopic parameters ε0 and �0, which
modify sin(α) and cos(α) in Eqs. (C11) and (C12).
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