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Unveiling the odor representation in the inner brain of Drosophila through compressed sensing
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The olfaction begins when odorant molecules stimulate a finite number of receptor types in the olfactory
neurons. According to the recent connectomics data of the Drosophila olfactory system, the olfactory neural
circuit is multilayered and there is an overall dimensionality reduction from the input to output layer. Compressed
sensing (CS) is an algorithm that enables the recovery of high-dimensional signals from the data compressed
in a lower dimension when the representation of such signals is sufficiently sparse. By analyzing the recent
Drosophila connectomics data, we find that the organization of the Drosophila olfactory system effectively
satisfies the necessary conditions for CS to work. The neural activity profile of projection neurons (PNs) can
be faithfully recovered from a low-dimensional response profile of mushroom body output neurons (MBONs),
which can be reconstructed using the electrophysiological recordings of a wide range of odorants. By leveraging
the residuals calculated between the measured and the predicted MBON responses, we visualize the perceptual
odor space using the residual spectrum and discuss the differentiability of an odor from others. Our study
highlights the sparse coding of odor to the receptor space as an essential component for odor identifiability,
clarifying the principles underlying the concentration-dependent odor percept. Further, simultaneous exposure
of the olfactory system to many different odorants saturates the neural activity profile of PNs, significantly
degrading the capacity of signal recovery and resulting in a perceptual state analogous to “olfactory white.” Our
study applying CS to the real connectomics data encompassing the neural circuitry from PNs to MBONs via
Kenyon cells provides quantitative insights into the neural signal processing and odor representation in the inner
brain of Drosophila.

DOI: 10.1103/PhysRevResearch.6.023298

I. INTRODUCTION

Olfaction is a sensory process of detecting chemical stim-
uli in the environment. Despite its fundamental importance,
still left ambiguous are basic quantities associated with the
understanding of olfaction, such as the number of differen-
tiable odors and odor percepts [1–3]. While there have been
attempts to study the representation of odorants or odor [4,5],
its translation to odor differentiability is not entirely clear.
Further, odor identification and perception are deemed highly
subjective and context dependent, varying from one individual
to another [6]. This is in stark contrast to other sensory pro-
cesses such as vision, which is quantitatively understood as
the combined responses of distinct types of photoreceptors to
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visual signals continuous in the spectral domain. However, the
conditions for understanding the insect olfactory system have
greatly been improved in recent years, thanks to the three-
dimensional map of neuronal morphology and the synaptic
connectivity reconstructed from high-resolution electron mi-
croscopy (EM) images, such as Drosophila hemibrain data
set [7], the olfaction-specific FAFB data set [8], and more
recently the full connectome of the Drosophila larva [9]. By
making the neural circuitry of the insect brain accessible at
synapse resolution, these connectomics data sets open a new
avenue to a quantitative understanding of the principles be-
hind olfactory processing.

As illustrated in Fig. 1(a), olfactory signaling starts when
an odorant binds to olfactory receptors (ORs) in the olfactory
receptor neurons (ORNs). Each ORN expresses a specific type
of OR, exhibiting homotype-dependent responses to input
odorants. The same type of ORN converges to a particular
set of uniglomerular PNs (uPNs) forming a glomerulus in the
antennal lobe (AL) [10]. The signals converged and sorted
at uPNs transfer to the higher olfactory centers such as the
mushroom body (MB) calyx and the lateral horn (LH), where
synaptic wirings with higher order neurons integrate the sig-
nal. Specifically, in the MB calyx, extensive and seemingly
randomized signal integration is made at the synaptic interface
between PNs and the Kenyon cells (KCs) [11,12], which
passes over to mushroom body output neurons (MBONs)
whose dimension is smaller than that of PNs. In LH, the
compartmentalized spatial organization of PNs translates to
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FIG. 1. Olfactory processes in Drosophila. (a) An odor repre-
sented in the chemical space is encoded by a sparse set of ORs/PNs
in the receptor space. Highly integrated olfactory signals in the
perceptual odor space are deciphered at higher cortical areas, which
infers the activity profiles of uPNs (blue) and hence the olfactory
code from the relatively low-dimensional and randomized informa-
tion integrated into MBONs (red). (b) Our problem is formulated
to solve for n-dimensional sparse olfactory codes (x) encoded by
PNs from a set of underdetermined linear equations in the form of
b = Ax, where b and A represent the m(< n)-dimensional response
profile of MBONs and the m × n sensing matrix, respectively.

a more stereotyped signal integration by lateral horn neurons
(LHNs) [13–16].

Previous studies have demonstrated that, in the Drosophila
olfactory system, the downstream components of KCs such as
MBONs and dopaminergic neurons (DANs) are responsible
for encoding the hedonic valence and value [17,18]. How-
ever, given the apparent compression of neural information in
MBONs, it is of great interest to explore whether higher corti-
cal areas can decipher a neural activity of MBONs in response
to the odor encoded into the neural activity profile in uPNs and
determine the odor identity utilizing a neural process analo-
gous to solving a constrained optimization problem [12,19–
23] [Fig. 1(a)]. Among several candidate algorithms, com-
pressed sensing (CS), which determines the sparsest solution
of a set of underdetermined linear equations, has previously
been applied to the Drosophila olfactory system as a means
to identify the chemical composition of an odor from activity
profiles (i.e., neuronal firing rates) of ORNs, PNs, or KCs
[21,24–27]. Provided that the chemical composition of an
odor is sparsely represented in the chemical feature space
[28,29], CS can reliably uncover the odor identity. CS has
been applied to the olfactory sensing in the scope of the
odorant-OR interface [21,26,27] and between odorants and
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FIG. 2. Odor representation and perceptual odor space. A pu-
tative structure of the perceptual odor space. The gap between the
self-residual and cross residuals in the residual spectrum decides
the differentiability of a given odor from others. In the illustration,
the apple odor is highly differentiable from others, but the mango
odor is not.

KCs [23,25]. The previous studies using CS on olfaction have
offered valuable insights into the odor codes and odor iden-
tification process; yet, their discussions were largely limited
to the relationship between the chemical feature space and the
receptor space.

In this study, aside from the odor valence information in
MBON, we analyze the electrophysiological responses on the
neural circuit of the Drosophila olfactory system revealed
from the connectomics data, so as to investigate (i) whether
CS can accurately reconstruct the odor code from the highly
integrated and compressed MBON response profile and (ii)
whether the perception of a given odorant(s) is unambiguously
discernible from other odors in the perceptual odor space
(Fig. 1). We test the capacity of CS in recovering uPN ac-
tivities from MBON response profiles by reconstructing the
latter based on the electrophysiological recordings of neural
spiking activities [29,30]. More specifically, we calculate the
spectrum of residuals to visualize the perceptual odor space by
comparing the reconstructed odor response profiles to those
projected onto other olfactory stimuli (see Fig. 2). Exploring
how the perceptual odor space changes when multiple odor-
ants are mixed, our study demonstrates that the simultaneous
introduction of diverse odorants significantly deteriorates the
capacity of CS, an observation in line with the notion of
“olfactory white.” We show that a significant variation in
concentration can yield a large deviation in the odor code
and alter the extent of odor identifiability. By employing the
CS algorithm as a means to probe the olfactory processing
in the inner brain of Drosophila, our study offers insights
into how odor perception is realized, while demonstrating the
functional benefits of randomized wiring and sparse coding.

II. DATA PREPARATION

The connectomics data analyzed in this study is based on
the hemibrain data set (hemibrain v1.2.1) [7]. When querying
the neurons, we chose only PNs, KCs, and MBONs that ex-
hibit at least one synaptic connection. We then collected a total
of 119 uPNs synapsing with 1776 KCs, which in turn synapse
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with 56 MBONs expressing 34 MBON types that project to
MB in the right hemisphere. As for the glomerular labels, we
used the one supplied by the hemibrain data set. In case a
uPN was associated with multiple glomeruli, we referred to
the labeling from the FAFB data set [8], which provided their
version of the glomerular label, along with the corresponding
neuron ID in the hemibrain data set. Additionally, we updated
several labels following the recent community agreement to
rename three glomeruli with conflicting glomerulus labels
to amend the homotypes VC3l, VC3m, and VC5 to VC3,
VC5, and VM6, respectively [31]. In this study, we designate
the homotype of a PN by the glomerulus innervated by the
dendrites, so that the homotype is uniquely defined for uPNs.

The odor response profile was reconstructed by merging
two different data sets that measured the electrophysiolog-
ical responses to the exposure of an odorant [29,30]. The
experimental procedure used several different concentrations
of odorants. 10−2 volume per volume (v/v) dilution with
either H2O, paraffin oil, or mineral oil is used, except for
geosmin which used 10−3 dilution. We explicitly stated the
dilution level whenever a different odorant concentration was
used. When there was an overlap between the data sets, we
selected the more recent recordings by Seki et al. [30]. The
connection between ORs and the respective glomerulus is
identified through a literature search [32–35]. The data set by
Hallem et al. contained a recording corresponding to Or33b.
Homotype DM3 coexpresses Or33b and Or47b, while ho-
motype DM5 coexpresses Or33b and Or85a [33], which we
incorporated manually by adjusting the odor response profile.
When testing naturalistic inputs, we only chose odorants that
elicited a strong response (�40) to at least a single recorded
homotype. This criterion resulted in odor response profiles for
39 homotypes against 96 distinct odorants (+baseline firing
rate). A keen reader might notice that neither of the data sets
was comprehensive enough to cover all 58 homotypes avail-
able in the hemibrain data set. For any missing measurements,
we assumed no response and assigned zero values.

The functional group information was taken from Hallem
et al. [29], while the odor valence information was acquired
from the literature [8,36–39].

III. ALGORITHM OF COMPRESSED SENSING

Since its original inception by a group of mathematicians
and engineers [40,41], CS has garnered substantial interest
due to the apparent overcoming of the Shannon-Nyquist sam-
pling theorem [42,43], leading to its application in many
different areas [44–46]. For a compressible signal that can
be mapped to a sparse representation, CS is employed to
recover the original signal by solving for the sparsest solution
of a set of underdetermined linear equations. The first set of
applications focuses on minimizing the quantity of measured
input when the measurement process is expensive. Another
set of applications recognizes the implementation of sparse
representation for a high-dimensional signal. The primary
example would be various attempts at analyzing the signal
processing inside a brain. The brain has been suggested to
benefit from utilizing CS as a means to reduce the band-
width and storage necessary for neural processes, including
vision [47], olfaction [12,21,24–27], and others [48,49], thus

inferring high-dimensional signals from low-dimensional sen-
sory input [50,51].

Consider a set of linear equations

b = Ax, (1)

where x is an unknown n-dimensional vector, and b and A are
the preassigned m-dimensional vector and m × n matrix, re-
spectively. If our goal is to find x that satisfies the equation for
given b and A, the problem is trivial when the dimension of
b is larger than the dimension of x (m � n). However, when
m < n, this is an underdetermined (overparametrized) prob-
lem, allowing infinitely many solutions for x. If our interest is
to find x̂, the sparsest solution of x subject to Eq. (1) such that
the vector x has the smallest number of nonzero values, our
problem becomes

x̂ = arg minx‖x‖0 subject to b = Ax, (2)

where ‖ · ‖0 is the cardinality or the l0 pseudonorm that
counts the nonzero elements in a vector such that ‖x‖0 = K
is the sparsity of the vector x. However, minimizing the car-
dinality of x under a constraint corresponds to a nonconvex
optimization problem, which is computationally demanding.
CS modifies Eq. (2) by considering an l1-norm minimization
instead, which algorithmically simplifies Eq. (2) to a convex
optimization problem:

x̂ = arg minx‖x‖1 subject to b = Ax, (3)

where ‖x‖1 = ∑n
i=1 |xi|. If the following two conditions are

met, the solution of Eq. (3) is identical to that of Eq. (2),
allowing one to recover the sparsest solution x̂ with a high
probability [40,43]. First, as the general rule of thumb, the
dimension of b should asymptotically be larger than the order
of O(K log(n/K )). Next, the sensing matrix A must be effec-
tively incoherent, meaning that randomly selected 2K column
vectors must be uncorrelated to each other (see Appendix A).

We constructed the sensing matrix A by taking a product
of the normalized synaptic connectivity matrices, CPN−KC and
CKC−MBON ( see Supplemental Material Fig. S1 [52]). That is,
each column and row of CPN−KC and CKC−MBON is normal-
ized, respectively. The l1-norm minimization was performed
to generate the solution x̂α for a given MBON activity profile
bmeas,α acquired from uPN expression to an odorant α. We
used the Sequential Least SQuares Programming (SLSQP)
optimizer implemented in the SCIPY package constrained to
b = Ax with unconstrained variable boundaries.

When assessing the capacity of CS in odor identifica-
tion for an odorant α, we evaluate the similarity between
bmeas,α and bα = Ax̂α , where x̂α is the solution of Eq. (3)
(see Appendix B).

IV. CAPACITY OF COMPRESSED SENSING
IN SIGNAL RECOVERY

We demonstrate that CS can reliably recover the uPN ac-
tivity profile from the MBON response profile through the
sensing matrix defined by the product of two synaptic con-
nectivity matrices (Fig. S1 [52]). Consider a situation depicted
in Fig. 1(a), where Drosophila whiffs the distinctive odor of
an apple, in which the apple odor in the chemical space is
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encoded into uPN activity profiles. Before an olfactory sig-
nal reaches the higher cortical area, the signal is integrated
as it passes through higher-order olfactory neurons such as
KCs and MBONs. Then, we ask whether or not the higher
cortical area can infer a high-dimensional uPN activity from
a low-dimensional MBON response profile and identify the
odor code as an apple odor. It turns out that the perceptual
differences between odors are not straightforward to con-
clude by simply comparing two response profiles compressed
in MBONs represented in m-dimensional vectors (see the
MBON profiles of methyl benzoate and ethyl benzoate in
Fig. S2 [52], for instance, and the analysis given in Ap-
pendix C). Therefore, given the MBON response profile, we
leverage CS to solve the inverse problem of finding the sparest
representation of the odor in uPN activities instead. Ideally,
the MBON activity expected from the solution of CS pro-
cessed through the sensing matrix should reproduce what was
originally given. Furthermore, provided that the odor code
of an apple is discernible from that of other odors, the odor
representation of an apple at MBONs should be unique and
clearly discernible from others.

In CS, an MBON response profile and a uPN activity
profile are translated to the vectors b and x, respectively. We
build uPN activities (xmeas,α) from the electrophysiological
recordings [29,30] for various odorants or odorant mixtures,
designated by α, and calculate the corresponding MBON
response profile via the relation bmeas,α = Axmeas,α . CS uses
bmeas,α and A to determine the sparest uPN representation
for α (x̂α). We next calculate the “residual” denoted by rα|β
(see Appendix B for further detail), defined between the mea-
surement (bmeas,α) and the calculation (Ax̂α) projected on
itself [Aδα (x̂α )] or another odor [Aδβ (x̂α )] (Appendix B). The
spectrum of residuals ({rα|β}), especially the gap between the
self-residual (rα|α) and the cross-residuals (rα|β , β �= α), pro-
vides an insight into the differentiability of the odor α in the
perceptual odor space (Fig. 2). If the self-residual is small and
well separated from all other cross-residuals (rα|α � rα|β for
all β �= α), then the representation of odor α in the perceptual
space is unique and easily discernible from others (Fig. 2, top).
In contrast, if the self-residual is comparable to other cross-
residuals (rα|α � rα|β), it is difficult to differentiate the odor α

from other odors, implying that the perceptual odor space of α

is not well isolated (Fig. 2, bottom). The spectrum of residuals
{rα|β} allows us to assess the specificity of the odor α among
other odors, offering glimpses into the perceptual odor space.

Embracing the criterion by Seki et al., who used either 30
spikes/s or 50 spikes/s as the detection threshold to demon-
strate that a strong response to an odor is sparse [30], we
define the strong response as the one evoking more than 40
spikes/s, analogous to the “winner takes all” (WTA) approach
[23], and take into account only the odorants that elicit a
strong response to at least one glomerular homotype in the
experiments. The combined data set contains the recordings
from 39 glomeruli, which correspond to ∼80 uPNs (Fig. 3), in
response to 96 different odorants encompassing diverse odor
types that feature different functional groups and behavioral
responses (see Supplemental Material Table S1 [52]). Here,
we assume that the activation of neurons is linearly correlated
with equal gain in response to the odorants [53] and that uPNs
extending from the same glomerulus receive identical input
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FIG. 3. uPN activity profiles sorted by odorant functional groups.
The electrophysiological recordings of 39 homotypes to 96 odorants
(+ basal response labeled as “spontaneous firing rate”) where at least
a single homotype exhibited a strong response (�40 spikes/s). The
labels are color coded based on the same odor categorization used
by Hallem et al. [29] (dark red: amines; red: lactones; pink: acids;
purple: sulfur compounds; violet: terpenes; dark blue: aldehydes;
blue: ketones; emerald: aromatics; green: alcohols; olive: esters).

(see Appendix D for the case of nonlinear filter). Furthermore,
we also assume that ∼40 uPNs out of 119 uPNs included in
our circuit, which are not part of the measured 39 glomeruli,
do not respond to the tested odorants.

Our CS framework correctly identifies 83 odorants out
of 96 odorants (∼86%), indicating that bmeas,α ≈ Ax̂α (and
xmeas,α ≈ x̂α), with rα|α being minimal among all the residuals
({rα|β}) (Fig. 4; see Supplemental Material Fig. S3 [52] for
an alternative illustration of the result). The 13 odorants that
failed in our test are either alcohols or esters, which include
1-butanol, 1-pentanol, 1-hexanol, 2-pentanol, 1-octen-3-ol,
3-methyl-2-buten-1-ol, trans-2-hexen-1-ol (E2-hexenol), cis-
2-Hexen-1-ol (Z2-hexenol), trans-3-hexen-1-ol (E3-hexenol),
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FIG. 4. Residual spectra, {rα|β}, calculated for 96 odorants. The residual rα|β calculated for an input odorant α against other odorants β

denoted in the horizontal axis. Red stars denote the self-residual rα|α . The same color code as Fig. 3 is used.

cis-3-Hexen-1-ol (Z3-hexenol), propyl acetate, butyl acetate,
and ethyl 3-hydroxybutyrate. For the statistical analysis of the
residual spectrum for an odorant α ({rα|β}), we calculate the
Z score of the self-residual (rα|α) (see Appendix B). Many
odorants exhibit significantly negative Z scores, indicative
of a large gap between rα|α from rα|β (β �= α) and a well-
partitioned perceptual odor space for α [Fig. 5(a)]. We also
study the performance of CS when the sensing matrix is
replaced with various types of statistically random matrices
(see Appendix E).

Successful identification of odorant α hinges on the spar-
sity (K) of its input uPN activity profiles xmeas,α [Fig. 5(b)].

An activity profile with a large K , which is found to correlate
with the Z score [Fig. 5(c)], gives rise to a large self-residual
(rα|α) resulting in a Z score with Z � 0, which implies a
nonoptimal solution of CS. For accurate odor identification,
the sparsity should be smaller than K = 25 [see Fig. 5(b) and
Appendix A].

A. Odor identifiability varies across odorants
with different functional groups

Odorants with certain functional groups, such as acids,
terpenes, and aromatics, are characterized by Z scores with
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FIG. 5. Z score and sparsity K . (a) Z scores of the self-residuals
for 96 odorants calculated from Fig. S3 [52]. (b) Self-residual rα|α
versus the sparsity of xmeas,α . The odorants whose self-residual (rα|α)
is not minimal in the spectrum of residuals are marked with the
star symbol. The black dashed line denotes the midpoint sparsity
(K = 25) obtained by fitting the data to a logistic function. (c) Z
scores of rα|α versus the sparsity (K) of xmeas,α . (d) The average spar-
sity of the odor response profile for odorants that displayed strong
responses (�40 spikes/s) under the specified functional group.
(e) Distributions of the residuals for α = MeOH and α = EtOH
(rm|m = rMeOH|MeOH, rm|e = rMeOH|EtOH, re|e = rEtOH|EtOH, and re|m =
rEtOH|MeOH).

Z � 0 (Figs. S3 [52] and 5), implying that the uPN activa-
tion profiles for these odorants are unique at least among the
odorants we tested, and hence the corresponding perceptual
odor space can be unambiguously discerned from others. In
contrast, alcohols and esters elicit stronger responses over
many uPNs [54], resulting in Z � 0 [see Figs. 5(a) and S3
[52]]. The average sparsity (〈K〉) of the activity profiles for
alcohols and esters is greater than that of acids and terpenes
combined by three- to fourfold [Fig. 5(d)]. The considerably
high 〈K〉 of alcohols and esters are likely linked to their poor
odor identifiability by the Drosophila olfactory system. This
finding is consistent with a previous study suggesting that
ORs encoding alcohols and esters are broadly tuned, while
another set of ORs that encode acids and amines are narrowly
tuned [55]. The relatively poor odor identifiability of alcohols
and esters, revealed from our CS framework, might also be

related to the fact that the information necessary to iden-
tify alcohols and esters is processed through channels other
than MBONs. Specifically, stereotyped spatial segregation of
fruit-odor encoding PNs has been observed [13], which leads
to stereotyped connectivity to LHNs [16,56], suggestive of
the existence of labeled lines [8,14,16,30,37,39]. The odor
identification and the subsequent decision-making process for
alcohols and esters may heavily rely on the coprocessing of
information transmitted through both KCs and LHNs, as a siz-
able portion of LH projections converge with the downstream
projection from MB calyx [8,31,57].

Still, esters such as ethyl methanoate and ethyl decanoate
are well discernible in the perceptual space. The same holds
for methanol and ethanol, except when compared to each
other. The odor identifiability assessed from our CS frame-
work suggests that Drosophila may not be able to tell
the difference between methanol and ethanol [29], as the
corresponding values of self- and cross-residuals are al-
most identical to each other [rm|m ≈ rm|e and re|e ≈ re|m; see
Fig. 5(e)].

B. Perceptual space of odor mixture and olfactory white

In natural environments, most odors originate from com-
plex mixtures of odorants. In humans, it is known that
exposure to multiple odorants leads to the loss of the odor
characterization of individual components [58–60] and that
a mixture consisting of an even greater number of odorants
leads to a perceptual state called “olfactory white” [61]. This
loss of odor differentiability is analogous to the loss in CS
capacity, raising a question of how simultaneous exposure
to multiple odorants affects our CS framework. To test this
hypothesis, we examine our framework against (i) random
mixtures of a predetermined number of odorants and (ii) nat-
ural odor mixtures of fruit extract.

When multiple odorants are randomly mixed, how does
the brain perceive the odor? At the glomerular level, it has
been suggested that an odorant mixture elicits glomerular
activities [62] that may or may not be identical to the sum
of the activities of individual glomeruli [63–65]. Competitive
binding of odorants to receptors is expected [65–67] and some
odorants may be more dominant than others depending on
the chemical and perceptual composition of the mixture [53].
Here we try to assess the odor identifiability from the vec-
tor xmeas,α encoding a natural odor whose precise chemical
composition is unknown. First, we estimate the sparsity of
the uPN activity profile associated with natural odors since
the challenges encountered by the olfactory system translate
to the difficulty of signal recovery via CS. We compare the
results from single odorants and fruit extracts, the latter of
which are available in the form of electrophysiological record-
ings on 23 glomeruli [29]. To make a fair comparison of fruit
extracts against the mixture of single odorants, we analyze
the responses to the single odorants using only 23 glomeruli,
which are extended to the 47 uPNs, as in the actual measure-
ment [see Fig. 6(a)]. The chemical composition of fruit odors
is expected to be diverse and we observe a large variation in
the sparsity among fruits. The sparsities of some fruits (e.g.,
banana) are high, to the point that their odor identifiability
through CS is anticipated to be low. There is a chance that
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FIG. 6. Analysis of odor mixtures. (a) The average sparsity of randomly sampled odor mixture with different sample size Nod (red dots)
and the sparsity of xmeas,α when α = natural mixtures (dashed line). The sparsities are counted based on the 23 glomeruli whose responses
were recorded in both the single odorant experiment and the fruit odor experiment for consistency. The red star denotes the average sparsity
for single (Nod = 1) odorant exposure. The error bars indicate the standard deviation. The dotted black line corresponds to K = 25 in Fig. 5(b).
(b) The input signal recovery (blue line) and the corresponding average sparsity (red dots) of a random mixture of odorants with different
sample size Nod . The output is from the combined data set measuring 39 glomeruli against 83 odorants whose self-residual (rα|α) was minimal.
The red star denotes the average sparsity for single (Nod = 1) odorant exposure. The red error bar indicates the standard deviation. The dashed
line corresponds to the midpoint sparsity (K = 25). (c) The probability of successful input signal recovery for the mixture consisting of two
attractive odors (green) or two aversive odors (red). (d) The matrix of the residuals, rα|β , calculated based on fruit odors. Each row depicts the
spectrum of the residuals of an odor input α with respect to other fruit odors β (β = apple, apricot, . . .) denoted in the horizontal axis.

the sparsity reported here is underestimated since other sets of
glomeruli not recorded in the experiment may have activated.
Furthermore, a natural odor, whose chemical composition is
complex in reality, could display a small K when it is encoded
by a small set of broadly tuned ORs [68].

For random odorant mixtures, we directly compared vec-
tors x̂ and xmeas to assess the accuracy of the signal recovery
instead of calculating the residual spectra. Specifically, we
assumed that the recovery was successful if the cosine dis-
tance between the two vectors, defined by dcos = 1 − (xmeas ·
x̂)/(||xmeas||2||x̂||2), is smaller than 0.05. From the 83 odor-
ants that the CS framework accurately identified, we randomly
sampled the odorants to create 500 random mixtures with size
Nod , linearly combined the uPN activity profiles of individual
odorants in each mixture, and performed CS to infer x̂. As
expected, we found that the chance of successful recovery of
the original signal xmeas declined as the number of odorants
composing a mixture (Nod ) increased, with the chance drop-
ping below 20% for Nod > 7 (or K > 40) [Fig. 6(b)]. We
note that mechanisms such as divisive normalization [69] and
primacy coding [20] can increase the number of odorants in a
mixture that linear, sparse coding-based CS can successfully
recover. Yet, it still holds true that the performance of CS
framework in the signal recovery gets less effective when
many odorants are mixed at comparable concentrations.

However, the nature of the random odorant mixture can
vary when the mixture is restricted to a specific valence. We
select nine attractive odorants and seven aversive odorants, all
of which are well characterized in terms of Drosophila behav-
ioral response [8,16,36–39,70,71] (see Table S1) and create
combinations of attractive or aversive odors by sampling two
odorants from each category. We find that the capacity for sig-
nal recovery is significantly poor for the mixture of attractive
odors compared to the mixture of aversive odors [Fig. 6(c)].
This may be associated with the generally poor odor

identifiability of alcohols and esters [Fig. 5(a)] that constitute
many attractive odorants. While our result may not be directly
translatable to the odor perception of Drosophila in vivo, the
functional consequence of loss in the identifiability of an odor
mixture is apparently analogous to the notion of “olfactory
white.”

In the case of natural mixtures (fruit extracts), we associ-
ated an activity profile for a fruit odor with a percept, such
that α designates a type of fruit (e.g., apple). The measure-
ments were made in response to the concentrated extracts
from nine fruits (apple, apricot, banana, cherry, mango, peach,
pineapple, raspberry, and strawberry) diluted to 10−2 volume
per volume (v/v) with H2O. Based on the results from ran-
dom odorant mixtures, the recovery of activity from fruits
such as apples and bananas whose uPN activity profile has
high sparsity K does not seem guaranteed [Fig. 6(a)]. The
spectrum of residuals is still specific enough to resolve the
corresponding odors among a list of fruits except for apple,
leading to a similar success rate as individual odors (∼89%)
and suggesting that their perceptual odor spaces in the brain
of Drosophila are generally well separated [see Figs. 6(d) and
S4 [52]].

C. Odor perception may depend on the odorant concentration

So far, our analysis has been conducted using electro-
physiological recordings of odorants at a relatively high
concentration. Both the recordings provided by Hallem and
Carlson [29] and Seki et al. [30] employed 10−2 dilution with
either H2O, paraffin oil, or mineral oil (except for geosmin,
which used 10−3 dilution) [30]. It is, however, known that the
activity profile of ORNs and PNs are concentration dependent
[22,29] and so is the observed hedonic valence of Drosophila
to a given odorant [70,72]. Similar concentration-dependent
behavioral responses have been observed in C. elegans [73].

023298-7



CHOI, KIM, AND HYEON PHYSICAL REVIEW RESEARCH 6, 023298 (2024)

(a)

(b)

200 100 0 100 200

D
D

A
1

D
A
2

D
A
3

D
A
4l

D
A
4m D
C
1

D
C
2

D
C
4

D
L1

D
L2

v
D

L3
D

L4
D

L5
D

M
2

D
M

3
D

M
4

D
M

5
D

M
6

VA
1d

VA
1l

m
VA

1v
VA

2
VA

3
VA

4
VA

5
VA

6
VA

7l
VA

7m V
C
2

V
C
3

V
C
4

V
L2

a
V
M

2
V
M

3
V
M

5d
V
M

5v
V
M

7d
V
M

7v

ethyl
butyrate

acetate
pentyl

salicylate
methyl

1-hexanol

E2-hexenal

2-heptanone

ethyl
acetate

1-octen-3-ol

-2
-4
-2
-4
-2
-4
-2
-4
-6
-2
-4
-6
-2
-4
-6
-2
-4
-6
-2
-4
-6

FIG. 7. Concentration-dependent perception of odor. (a) Elec-
trophysiological recordings of uPN activity profiles in response to
select odorants measured at different dilution levels (−2, −4, and
−6 on the vertical axes signify the dilutions of 10−2, 10−4, and 10−6,
respectively). Only those that elicited a strong response to at least
one homotype are plotted. (b) The distributions of rα|β for odorants
at different dilution levels. Red stars denote the self-residual rα|α .

Figure 7(a) summarizes the electrophysiological responses
of glomeruli to a small subset of odorants at varying dilution
levels (10−8, 10−6, 10−4, 10−2) [29]. Some odorants evoke
strong responses at low dilutions while others do not, which
is consistent with the studies on odorant-dependent odor
detection thresholds [66,74,75]. Odorants at unusually low
concentrations may still be perceivable through a combina-
tion of specialized olfactory processing [76,77]; however, for
consistency, we limit our study to dilution levels where there
is an activation from at least a single neuron [see Figs. 7(a)
and S5(a) [52]]. All eight odorants failed to evoke strong
responses at 10−8 dilutions.

When performing CS, we included all the previously
tested odorants, which were measured at 10−2 dilution while

replacing the odorant α with different dilution levels. One
odorant that evaded our CS framework at a high concentra-
tion, E2-hexenal, became identifiable at lower concentrations,
exhibiting a minimal self-residual across cross-residuals [see
Fig. 7(b)]. A significant reduction in the sparsity K at a lower
odorant concentration [see Supplemental Material Fig. S5(a)
[52]] helps CS accurately recover the uPN activity profile. Our
finding also translates to natural mixtures. The high identifi-
ability of fruit odor at 10−2 dilution drops significantly for
undiluted fruit extracts [see Fig. S5(b) [52]].

Significant changes are observed for the residual spectra of
the same odorant at different concentrations [see Fig. 7(b)].
For example, the residual distributions of pentyl acetate and
E2-hexenal exhibit a drastic change from 10−6 to 10−4 and
from 10−4 and 10−2 dilutions, respectively. Physiologically,
a drastic shift in the residual distributions implies consider-
able changes in uPN activity and the corresponding MBON
response profiles [see Fig. S5(c) [52]]. We surmise that this
signifies an alteration of the odor percept in the perceptual
space to the point that the odorant under two concentra-
tions may be perceived as different odors. For ethyl butyrate,
our calculation shows a concentration-dependent shift in the
residual distribution, explaining the conflicting information on
the Drosophila behavioral responses reported in the literature
[8,70,78]. These results are reminiscent of the changes in the
qualitative properties reported in human odor characterization
experiments.

Lateral inhibition in PNs normalizes the PN responses
and makes them closer, regardless of the odor concentrations
[69], but this does not preserve sparsity. An odor under two
vastly different concentrations can occupy disparate percep-
tual spaces, leading to a different odor percept, as the sparse
encoding of odor to the receptor space is a prerequisite for
odor identifiability under the CS framework.

V. DISCUSSION

The neurons and the synaptic connectivity associated with
the Drosophila olfactory system are akin to the nodes and
weight matrices of artificial neural networks (ANN). Whereas
an ANN dynamically trains the weight matrix to gain func-
tionality, our system operates on a preconfigured synaptic
weight matrix. The synaptic characteristics observed from the
Drosophila olfactory system, such as the seemingly random-
ized, incoherent synaptic interface between uPNs and KCs
(Fig. S1 [52]) and the sparsity of uPN activity profiles (Fig. 3),
are aligned well with the prerequisite for CS. Hence we have
applied CS to the experimentally reconstructed physiological
circuits of the Drosophila olfactory system to explore its ca-
pability of inferring the identity of the sensed odorant from its
representation in the inner brain. By leveraging the relations
of neural codes in the receptor space to the perceptual odor
space represented by the MBON response profiles, we study
the differentiability of an odor stimulus in the perceptual odor
space and provide a conceptual explanation of perceptual phe-
nomena such as olfactory white and concentration-dependent
odor perception. Our study suggests that MBONs encode
enough information for the fruit fly’s brain to reconstruct the
odor identity in addition to the odor valence.
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As previous studies have acknowledged, whether or not
CS is implemented in the Drosophila brain is unknown
[21,79]. There is no direct evidence that the higher cortical
area effectively leverages the randomization of the PN-KC
interface and that there exists a necessary circuitry to per-
form l1-norm minimization, although there are suggestions
for the implementation of sparse coding in real organisms
[50,80]. Nonetheless, it is fascinating to discover that the
Drosophila olfactory system exhibits the structural prerequi-
sites for CS. We hypothesize that, for the downstream neural
circuitry beyond the odorant-OR interface, the compression of
the information for chemical stimuli through the effectively
randomized sensing matrix is beneficial for conserving signal
integrity while reducing the bandwidth and resources neces-
sary for signal transmission to the higher cortical area. It is
also interesting to note that a randomly prewired network has
shown to be more cost-effective with improved accuracy and
network trainability in the recent computational development
in ANN [81].

In the Drosophila olfactory system, additional components
regulate the activities of PNs, KCs, and MBONs that are
not explicitly included in our framework. The most notable
are the peripheral interactions [65] present in the second-
and third-order olfactory neurons. Lateral inhibitions by local
neurons (LNs) [82] suppress the sensitivity of PNs to ORN
inputs, thereby achieving gain control. With divisive nor-
malization, the inhibitions scale with the total ORN activity
[68,69], making it particularly relevant for odorant mixtures
that activate similar ORNs [83]. Since lateral inhibition tends
to sparsify the PN activity [69], our assessed identifiability
for complex odor mixtures and highly concentrated odors
may be the lower bound of the CS performance. KCs are
also subjected to lateral inhibition through anterior paired
lateral (APL) neuron that extensively innervates MB. APL
takes input from KCs broadly and reciprocally inhibits KCs
globally [84,85], denoising and sparsifying the KC activ-
ity. Finally, MBON responses are extensively modulated by
DANs, which is the basis of associative learning and valence
encoding [18,86]. While these neurons alter the activity of
olfactory neurons, we report that their effects enhance the
performance of our CS framework, generally improving the
accuracy of CS and odor identifiability (see Appendixes F
and G, Figs. 14 and 13). These results suggest that our
original CS framework has been subjected to stringent con-
ditions and the reported performance may be a conservative
approximation.

In the olfactory system, both the synaptic transmission and
the neuronal response to an odor are nonlinear [22,29,87,88]
and a more sophisticated and physiologically correct model
for the firing rate could be used [21]. However, the per-
formance of CS-based odor identification is dominated by
sparsity and is not significantly altered by the nonlinearity
incorporated to the synaptic transmission. We test various
nonlinear filters, such as a ReLU, a saddle-node on invariant
cycle (SNIC) representing the input response between the
firing rates of ORNs and PNs [89], or a sigmoidal response
approximating the relationship between GCaMP signal and
vesicle release [90]. We find the performance of CS by non-
linear filters comparable to that with a linear filter (see Fig. 11
and Appendix D). This, combined with our analyses on APLs

and DANs, indicates that a linear filter can still be efficacious
in the framework of CS.

Noise filtration is implemented through inhibitory circuits
composed of various antennal lobe LNs [69,91,92], GABAer-
gic inhibitory PNs (iPNs) [15,56], DANs [17,18,86,93,94],
and others. These regulatory circuits reduce noise and sparsify
odor representation [28,82], both of which should improve
the capacity of our CS framework. While we find that the 83
odorants maintain a respectable level of recovery even in the
presence of a significant amount of noise (see Supplemental
Material Fig. S6 [52]), the reduced noise can further sparsify
the vector xmeas and ease the recovery and identification of the
correct activity profile, especially for an odor mixture where a
low sparsity of xmeas is not always guaranteed.

Lastly, the temporal dynamics of the signal, which has not
been considered here, is critical for olfactory processing. For
odor perception, time-varying changes in odor concentration
play a pivotal role in odor identification, decision-making,
and odor-guided navigation [20,95,96]. Other interesting psy-
chophysical phenomena, such as olfactory fatigue (peripheral
olfactory adaptation) [97], require temporal information to
understand. Furthermore, the temporal dynamics are closely
related to the primacy coding hypothesis, which predicts ORs
that are activated earlier to govern the overall odor identity
[20], thereby significantly reducing the difficulty of signal
recovery at higher concentrations under our CS framework if
implemented. Whereas we did not implement primacy coding
due to the limitation in data, it may still be possible to infer
the temporal characteristics from the concentration-dependent
changes in the uPN activity profile as they highlight ORs most
sensitive to a given odorant which should correlate with the
order of activity. While we believe that the primacy coding
is an effective principle behind concentration-invariant odor
identification, we suspect that the less sensitive and there-
fore delayed ORN responses may also contribute to the odor
perception as characterized by the concentration-dependent
quality changes observed in humans.

In this work, we explored the concentration-dependent
changes to projected perceptual space by entirely attributing
it to the changes in the odor codes (xmeas). Regarding the
concentration-dependent valence, the aversion at high con-
centration is mediated by the signal through LH that defines
the innate responses and the innate responses are in turn
modulated by the output from MB calyx [30]. In light of
classical conditioning experiments on Drosophila [98,99],
which demonstrated the dramatic change in the Drosophila
behavior in response to electric shock, it can be surmised that
behavioral responses depend on both the multimodal sensory
processes of odor identification and the learned responses.
Modification in behavioral response (or decision making) may
result from the multimodal integration of various sensory in-
puts not covered in this study.

Taken together, we demonstrate the capacity of the CS
framework to recover high-dimensional uPN activity profiles
from low-dimensional barcodes at MBONs in the Drosophila
olfactory system. In fact, partial information on the MBON
response profile still suffices to recover the corresponding
uPN activity profile for many odorants (Appendix H), sug-
gestive of much room for more efficient data compression
and retrieval. It will still be of great interest to explore the
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effects of incorporating the various neuronal features listed
above into the basic structure of our CS framework.

All original data and codes are deposited and publicly
available [100].
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APPENDIX A: CONDITIONS FOR SOLVING THE
INVERSE PROBLEM THROUGH COMPRESSED SENSING

We performed a detailed analysis of the synaptic con-
nectivity between the layers of olfactory neurons to check
whether it conforms to the criteria for successful recovery
of the sparsest solution x̂ through CS. Unlike the previous
applications of CS to the olfactory system [21,26,27], where
the true dimension of the odorant space is unknown, the di-
mensions of input and output vectors are well defined in our
problem.

First, CS requires that the size of the input (m, the dimen-
sion of b) be reasonably large compared to the dimension (n)
and the sparsity (K) of the target vector to be recovered (x).
While the strict threshold for this criterion is often disputed
[43,101], it has been demonstrated that m should be greater
than the scale of O(K log(n/K )) for a successful recovery
of the x̂ [101,102]. According to the synaptic connectivity
provided by Drosophila hemibrain connectome [7], out of 162
uPNs, only 119 uPNs innervate MB calyx and connect to KCs
[16]. These n = 119 uPNs that synapse with at least one of
∼2000 KCs can be traced down to m = 56 MBONs based on
the synaptic connectivity. Based on these numbers, and the
typical sparsity of KCs in response to an odor, we believe that
the dimensionality requirement of CS is generally satisfied.

We also approximated the incoherence criterion of the
sensing matrix A constructed from two connectivity matrices,
CPN−KC and CKC−MBON, between uPNs, KCs, and MBONS.
Traditionally, the coherence of a matrix A is defined through
[103,104]

μ = max
j,k, j �=k

M j,k, (A1)

where

M j,k = |A, j · A,k|
||A, j ||2||A,k||2 . (A2)

Here, A,i denotes the ith column vector of A. The value μ

ranges from 0 to 1, with 0 indicating complete incoherence.
Then, reconstructing a K-sparse vector x̂ becomes highly
probable under the following condition [104]:

K <
1

2

(
1 + 1

μ

)
. (A3)

From the sensing matrix A = (CPN−KC · CKC−MBON)ᵀ and
Eq. (A1), we obtain μ ≈ 1, which is the theoretical maxi-
mum. Based on this result, the reconstruction of the vector
x̂ through l1-norm minimization seems infeasible. However,
the requirement for incoherence, defined in Eq. (A1), is often

FIG. 8. Criteria required for successful signal recovery using the
CS framework. The distribution of the pairwise correlation M∗

j,k

between the connectivity matrices CPN−KC and CKC−MBON.

considered unnecessarily stringent for CS, given that μ ∼ 1 is
obtained even when a single pair of columns in the sensing
matrix A are similar. As a result, several guidelines to relax
the original criterion for incoherence have been suggested
[103,105], requiring that the sensing matrix be only effectively
incoherent.

In practice, it has been suggested that the recovery of a
K-sparse vector is achievable with a high probability from
asymptotically small μ as the size of A increases [104,105].
Brunton and Kutz have suggested a more relaxed condition
[43]. When the sensing matrix A is a product of a measure-
ment matrix S and a sparsifying basis �, i.e., A = S�, a
small scalar product between the rows of S and the columns of
� is a good indication that l1-norm minimization will recover
x̂, which replaces the matrix M j,k [Eq. (A2)] with

M∗
j,k = |S j, · �,k|

‖S j,‖2‖�,k‖2
. (A4)

While our CPN−KC and CKC−MBON are not analogous to the
measurement matrix and the sparsifying basis by defini-
tion, the suggested requirement is mathematically equivalent
within the scope of successful l1-norm minimization subject
to b = Ax. When we adopt M∗

j,k to approximate the inco-
herence criterion, a large portion of M∗

j,k are zero or close
to zero (Fig. 8) and about 96% of the values are below 0.2, a
theoretical limit that would allow CS to recover a target vector
x with the sparsity of K = 3 [Eq. (A3)], which corresponds to
an approximate average uPNs per glomerulus.

Restricted isometry property (RIP) is often cited as the rule
of thumb when it comes to solving the inverse problem, but
checking for RIP is often prohibitively expensive [104] and
unnecessary in practical applications [105]. It has, indeed,
been demonstrated that CS is possible even under weaker
conditions [105,107]. We find that the sensing matrix of the
Drosophila olfactory system is effective in recovering x̂ for
all practical purposes.

APPENDIX B: ASSESSING THE ODOR IDENTIFIABILITY
BY MEANS OF RESIDUAL SPECTRUM

The specificity (identifiability or differentiability) of an
odor α against other odors is assessed by evaluating the sim-
ilarity between (i) the measurement and (ii) the calculation
of the MBON response profile. (i) The measured MBON
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FIG. 9. Calculation of residual spectrum. uPN activity profile is used to calculate the input MBON response profile bmeas,α , where α is an
odorant. l1-norm minimization is performed to determine the solution x̂α from a set of underdetermined linear equations, which is compared
with the input uPN activity profile δβ (x̂α ) filtered based on the expected uPN activity from another odorant β, xmeas,β . Adapting the framework
of sparse representation for classification (SRC) [43,106], we calculate the residuals rα|β for a given input odorant α and reference odorant β.
The residuals for an odorant α against all other reference odorants {β}, rα|β are calculated.

response profile, denoted by bmeas,α , is acquired using the
electrophysiological recording of uPN activity profile xmeas,α

and the sensing matrix A via the relation bmeas,α = Axmeas,α .
(ii) A MBON response profile of the odor α can be calculated
from bα = Ax̂α using the solution of the CS algorithm, i.e.,
x̂α from Eq. (3).

To assess the differentiability of the odor α against other
odors {β}, we adapted the sparse representation for classifi-
cation (SRC) [43,106] and considered a function δβ (x̂α ) that
filters the uPN activity profile calculated for the odor α against
the uPN activity profile measured for the odor β. Specifically,
the filtering function δβ (x̂α ) for the ith component of the uPN
activity profile is defined as

[δβ (x̂α )]i =
{

x̂α
i , xmeas,β

i �= 0,

0, xmeas,β
i = 0.

(B1)

Note that the self-filtering yields the original profile, i.e.,
δα (x̂α ) = x̂α . Along with Eq. (B1), we defined rα|β , the (rel-
ative) residual between the measurement (bmeas,α) and the
calculation [Aδβ (x̂α )] over all test odors {β} including β = α,
which enables us to assess the specificity of the odor α against
all other odors {β}:

rα|β = ‖bmeas,α − Aδβ (x̂α )‖2

‖bmeas,α‖2
, (B2)

where ‖x‖2 ≡
√∑n

i=1 x2
i (Fig. 9).

Ideally, Aδα (x̂α ) must be identical to bmeas,α , i.e., rα|α =
0, but, in practice, we find rα|α � 0. However, if rα|α �
rα|β for all β �= α, then the odor represented by α can be

considered specific and easily discernible from other odors. In
contrast, when there are many odors, say β1, β2, . . ., satisfying
rα|α ≈ rα|β1 ≈ rα|β2 ≈ · · · ≈ rα|βk , it means that the odor space
(perceptual space) of α is not well isolated from that of β, sug-
gesting ambiguous sensing of odor α. In this case, discerning
the odor α from other odors β1, β2, . . ., βk is challenging for
Drosophila.

To assess the spectrum of the residuals for the odor α, we
calculated the Z score of rα|α defined as

Z = rα|α − μrα|β

σrα|β
, (B3)

where μrα|β = 1
Nβ

∑
β rα|β and σrα|β = 1

Nβ−1

∑
β (rα|β −

μrα|β )2. Therefore, a Z score with Z � 0 implies that the
value of the self-residual (rα|α) is statistically well separated
from the cross-residuals (rα|β) and the odor α is easily
discernible from other odors.

APPENDIX C: ANALYSIS OF MBON RESPONSE
PROFILES USING EUCLIDEAN DISTANCES

In this study, we utilize CS to discuss the differentiability
between the MBON response profiles of various odorants. In
principle, one could perform a similar analysis by calculating
the distances between MBON response profiles. We, however,
find that the results from such an analysis on high-dimensional
vectors are often limited by the issues associated with the
curse of dimensionality [50]. We find that the recovery of the
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FIG. 10. Analysis of MBON response profiles using the Euclidean distances. (a) The distribution of scaled Euclidean distances between
(top) uPN activity profiles and (bottom) MBON response profiles in response to select odorants. (b) The output of PCA projecting (top) uPN
activity profiles and (bottom) MBON response profiles to three-dimensional space, along with the proportion of variance explained by each
principal component. (c) The output of t-SNE projecting (top) uPN activity profiles and (bottom) MBON response profiles on two dimensions.

uPN activity through the CS algorithm is better suited for odor
differentiability than other standardized methods.

Consider a pairwise distance matrix between MBON re-
sponse profiles. Figure 10(a) shows the distribution of the
scaled Euclidean distances between uPN activity profiles,
d̂ (xmeas,α, xmeas,β ), where

d̂ (u, v) = d (u, v)/ max
v

[d (u, v)], (C1)

with d (u, v) = [
∑n

i=1(ui − vi )2]1/2 and max
v

[d (u, v)]

being the maximum among the distances from the
vector u to other vectors v. The clear gap between
the self- [d̂ (xmeas,α, xmeas,α ) = 0] and cross-distance
[d̂ (xmeas,α, xmeas,β ) > 0] found in the uPN activity profiles
is no longer observable in the MBON response profiles
[d̂ (bmeas,α, bmeas,β )]. This suggests that the Euclidean distance
and its derivative measures are inadequate to characterize the
highly integrated signal at MBONs [Fig. 10(a), bottom]. We
observed a similar trend when we used other metrics such as
cosine distance.

Incidentally, separation of the odor space by physio-
chemical features of odorants and OR/PN activities has
previously been shown using principal component analysis
(PCA) and t-distributed stochastic neighbor embedding (t-
SNE) [22,29,70,71]. We performed PCA and t-SNE on a
standardized matrix of MBON response profiles, in which
each column of the matrix that represents MBON response
profiles has zero mean and unit variance. PCA was performed
using singular value decomposition (SVD) and t-SNE was
performed using a perplexity of 15 after initializing with PCA.

The result of PCA indicates that, unlike uPN activity profiles,
many odorants are hard to differentiate using MBON response
profiles [Fig. 10(b)], where the proportion of variance ex-
plained by each principal component quickly diminishes after
the first principal component [Fig. 10(b), bottom], suggestive
of no clear separation in the odor representation. The lack of
a clear separation in the component space is also found in the
analysis using t-SNE [Fig. 10(c)].

APPENDIX D: TESTING NONLINEAR FILTERS
FOR SYNAPTIC TRANSMISSION

Here we detail the three nonlinear filters (ReLU, SNIC, and
sigmoid) that we used to reconstruct the sensing matrix and
test the effect of nonlinear synaptic transmission. The ReLU
filter is generated such that the synaptic weight under 8 is
ignored—a criterion we used previously [16]. SNIC filter is
generated based on the input-response relationship from the
conductance-based Morris-Lecar type model [108]. Finally,
a sigmoidal filter is generated according to [90], using 3 as
the center point. We assumed that the strength of synaptic
transduction directly correlates to the level of neurotransmitter
release. For each nonlinear filter, the connectivity matrices
(CPN−KC and CKC−MBON) are passed through, which are then
normalized, and the sensing matrix is constructed. We gener-
ated MBON responses from the newly formed sensing matrix
and applied the CS framework to generate the correspond-
ing residual spectra/Z scores. The correlation between the Z
scores from the linear and the nonlinear models was evaluated

023298-12



UNVEILING THE ODOR REPRESENTATION IN THE … PHYSICAL REVIEW RESEARCH 6, 023298 (2024)

(a)

(b)

FIG. 11. Linear model well approximates the nonlinear models
in CS. (a) Scatter plot between the Z scores of the self-residuals for
96 odorants under the linearity assumption and the Z scores after
passing the connectivity matrices through a nonlinear filter. Three
nonlinear filters, ReLU, SNIC, and sigmoid, are tested. Pearson
correlation coefficient (ρ) and the corresponding p values are shown.
(b) Scatter plot between the self-residuals rα|α under the linearity
assumption and after passing the connectivity matrices through a
nonlinear filter.

using the Pearson correlation coefficients and the correspond-
ing p values [Fig. 11(a)].

APPENDIX E: COMPARING THE CS PERFORMANCE
BETWEEN OBSERVED CONNECTIVITY

AND RANDOM MATRICES

In applying CS, the sensing matrix is judiciously chosen
to maximize the performance, where random matrices are
considered the ideal choice [43]. Then, it is of great interest
to ask how the observed connectivity in the Drosophila ol-
factory system compares to the random matrices. To compare
the performance of CS, we tested three different randomized
matrices, including sparse random, Bernoulli random, and
Gaussian random matrices. The sparsities of random matrices
are matched to the observed sparsity except for the Gaussian
random matrix, which is naturally dense. To generate a Gaus-
sian random matrix, we sampled from N (0, 1) with negative
values set to zero. In addition to statistically random matrices,
we tested a randomly shuffled version of the observed con-
nectivity matrix. The performance across different matrices is
assessed by comparing self-residuals rα|α and Z scores, as they
measure how well CS recovered the sparsest vector x̂ and how
differentiable the odor is, respectively.

* ****

****, §

FIG. 12. Performance comparison between CS using the ob-
served connectivity matrix and random matrices. Box plots of
self-residuals r(α|α) and Z scores with the paired values for the 96
odorants are plotted. For most comparisons, the performance of CS
using the observed connectivity matrix is not significantly different
from that using random matrices. Original: the observed connectivity
matrix. Sparse: sparse random matrix. Bernoulli: Bernoulli random
matrix. Shuffled: randomly shuffled connectivity matrix. Gaus-
sian: Gaussian random matrix. *p < 0.05, ****p < 10−4; Wilcoxon
signed-rank test. §p < 10−3; Mann-Whitney U rank test.

We report that the observed connectivity matrices perform
comparably to the randomized matrices (Fig. 12). Self-
residuals rα|α were significantly smaller only for the Gaussian
random matrix (p < 10−4, Wilcoxon signed-rank test; p <

10−3, Mann-Whitney U rank test). For odor differentiability,
sparse random and shuffled observed matrices fared slightly
better (p < 0.05 for sparse random; p < 10−4 for shuffled,
Wilcoxon signed-rank test; no significance in Mann-Whitney
U rank test). For every other case, random matrices did not
perform significantly better than the observed connectivity.

We emphasize that the significant improvement was
achievable only when the KC-MBON connectivity was
randomized. The observed connectivity between KCs and
MBONs is far from random, as KCs and MBONs synapse
within MB compartments [93,109]. However, given what is
known about the innervation pattern of DANs, randomized
connectivity between KCs and MBONs that removes the com-
partmentalized structure within MB will interfere with odor
valence encoding and associative learning [86,93,110]. There-
fore, we speculate that the observed connectivity balances the
transmission of odor identity and olfactory learning.

APPENDIX F: TESTING THE LATERAL
INHIBITION BY APL ON KCS

The APL neuron performs global inhibition in insect MB
and sparsifies KC response through lateral inhibition [84].
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***, §

FIG. 13. Performance comparison between CS with (APL) and
without (no APL) lateral inhibition by APL applied to the KC
activity. Box plots of Z scores with the paired values for the 96
odorants are plotted. Z scores with lateral inhibition tend to be
smaller, especially for odorants whose Z scores were large originally.
***p < 10−3; Wilcoxon signed-rank test. §p < 0.05; Mann-Whitney
U rank test.

To test the effect of the APL neuron on our CS framework,
we collected all connections between APL and KCs from
the hemibrain data set. Since KCs seem to recruit inhibition
differentially and APL inhibits KCs with a similar strength
[85], we devised a simple nonlinear model to approximate the
KC activity when inhibition by APL is present (KC∗), such
that

KC∗ = KC · e−inhAPL/τAPL , (F1)

where

inhAPL =
∑ |KC|

‖KC‖2
. (F2)

Here KC is a vector representing the KC activity and τAPL =
15. Then, we computed the input MBON response profile
bmeas,α using KC∗ without altering the sensing matrix and
performed CS.

Figure 13 compares the Z scores for the same 96 odorants
with and without lateral inhibition by APL applied to KCs.
We see a significant decrease in Z scores when KC activity is
further sparsified by lateral inhibition, indicating an increase
in odor differentiability (p < 10−3, Wilcoxon signed-rank
test; p < 0.05, Mann-Whitney U rank test). The difference
is particularly noticeable for odorants that had high Z scores
originally, whose odor differentiability was relatively low.
Overall, this result suggests that the wiring of the Drosophila
olfactory system conforms to an effective CS and the real
performance of CS may be better than what has been reported
here.

APPENDIX G: TESTING THE DAN-BASED MODULATION
OF KC-MBON CONNECTIVITY

When active and supplied with an odor in coincidence,
DANs synapsing to KCs facilitate a long-term depression of
the input to the unconditioned valence, consequently promot-
ing MBONs with the opposite valence. While our framework
cannot account for dynamic changes in the synaptic weight as
seen in the learning process, olfactory learning tends to cul-
minate in the modulation of the synaptic weight between KCs
and MBONs by DANs. While olfactory learning is inherently
multimodal, incorporating the olfactory signal and other sen-

sory information, connectomics data have shown that DANs
often receive inputs from common upstream neurons, forming
several DAN clusters [93]. We collected protocerebral anterior
medial (PAM) and protocerebral posterior lateral 1 (PPL1)
dopaminergic neurons that target KCs and categorized them
based on previously identified 35 DAN clusters that received
shared inputs [93]. For each DAN cluster, the synaptic weight
between KCs and MBONs is altered according to the con-
nectivity between DANs and KCs, from which the modified
sensing matrix was computed, and the effect of the change
was tested. Specifically, we defined the synaptic weight w

between KCs and MBONs at steady state after conditioning
as

w∗
i =

{
wKC

i /wDAN
j + η, wDAN

j > 0,

wKC
i , wDAN

j = 0,
(G1)

for ith KC modulated by jth DANs before normalizing
the connectivity matrix. To further diversify the synaptic
strength, a Gaussian white noise η(0, kwKC

i ) with k = 0.1
was added since it was not possible to incorporate potentially
synapse-specific, compartmentalized control of DANs on
synapses between KCs and MBONs due to a lack of available
data.

We found that the capacity of CS was effectively unal-
tered from the changes made in the KC-MBON connectivity
(Fig. 14). On average, simulating the effect of depression by
DANs increases the accuracy of CS slightly, with a gener-
ally higher recovery rate [Fig. 14(a)] and improved Z scores
[Fig. 14(b)]. We hypothesize that the representation of an
odor identity is preserved and independent of the modulation
of synaptic connectivity by DANs and only the characteris-
tic connectivity between PNs and KCs is necessary for the
recovery of odor identity by the CS. Additionally, we note
two other types of connections that may modulate the MBON
response: (i) the feedback connections from MBONs to DANs
or feedforward connections from KCs to DANs [17] and
(ii) MBON-to-MBON interactions [93]. The consequence of
these connections to the Drosophila odor identity and percep-
tion requires further studies.

APPENDIX H: ODOR IDENTIFICATION USING PARTIAL
INFORMATION FROM MBONs

Our CS framework reconstructs the uPN activity from the
response profile of 56 MBONs, where we assume that the
MBON response profile reflects the information transmitted
to the higher cortical area. Here, we consider a hypothetical
situation where only partial information from the MBONs
is available to the higher cortical area, perhaps due to some
stereotyped connectivity, intrinsic stochasticity, and limited
access to MBONs at a given time frame in animal percep-
tion, and ask whether the information encoded by a subset of
MBONs is still enough to accurately infer the uPN activity
profile [12]. For each of the 83 odorants our CS framework
correctly identified, we randomly sample the MBON response
profile 10 times with a sampling size NMBON and examine
whether at least one of the samples led to a correct iden-
tification. We find that a large number of odors can still
be identified by using only a handful of MBONs, with the
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(a)

(b)

FIG. 14. Effect of DAN-based modulation on CS. (a) The percentage of signal recovery after applying DAN-based modulation. 35 DAN
clusters with common input identified in [93] are used. The black dashed line denotes the success rate from the unaltered result. (b) Z scores
of the self-residuals for 96 odorants after the application of DAN-based modulation. The results from applying 35 DAN clusters use the same
color code in (a). Black stars denote Z scores from the unaltered result.
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(a)

(b)

FIG. 15. Robustness of odor identification. (a) Testing the odor identifiability using a random subset of MBONs of the size NMBON. The
relationship between NMBON and the success rate of odor identification. For a given odorant and a given size NMBON, MBONs are sampled
ten times, where the odor identification is considered successful if at least one set of the sampled MBONs can accurately identify the given
olfactory stimulus. We employ the 83 odorants where the identification was successful in the original setup. (b) The results of the identification
test on 83 odorants from a subset of MBONs with the size NMBON labeled on the y axis. Gray denotes success and white denotes failure.

success rate improving with the sampling size NMBON [see
Fig. 15(a)]. We observe that the compressibility of informa-
tion necessary to identify the odor varies with the functional
group of the odorants. In particular, alcohols and esters are

the first to fail as the size of NMBON decreases [see Fig. 15(b)].
Odors from other functional groups (e.g., acids and terpenes)
retain their accuracy even if the size of NMBON is significantly
small.
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