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In this work, we study two different quantum simulators composed of molecules with dipole-dipole interaction
through various theoretical and numerical tools. Our first result provides knowledge of the quantum order by
disorder effect of the S = 1/2 system, which is programmable in a quantum simulator composed of circular
Rydberg atoms in the triangular optical lattice with a controllable diagonal anisotropy. When the numbers of
up spins and down spins are equal, a set of subextensive degenerate ground states is present in the classical
limit, composed of continuous strings whose configuration enjoys a large degree of freedom. Among all possible
configurations, we focus on the stripe (up and down spins aligning straightly) and kinked (up and down spins
forming zigzag spin chains) patterns. Adopting the the real space perturbation theory, we estimate the leading
order energy correction when the nearest-neighbor spin exchange coupling, J , is considered, and the overall
model becomes an effective XXZ model with a spatial anisotropy. Our calculation demonstrates a lifting of
the degeneracy, favoring the stripe configuration. When J becomes larger, we adopt the infinite projected
entangled-pair state (iPEPS) and numerically check the effect of degeneracy lifting. The iPEPS results show
that even when the spin exchange coupling is strong the stripe pattern is still favored. Next, we study the
dipolar bosonic model with tilted polar angle which can be realized through a quantum simulator composed
of cold atomic gas with dipole-dipole interaction in an optical lattice. By placing the atoms in a triangular
lattice and tilting the polar angle, the diagonal anisotropy can also be realized in the bosonic system. With our
cluster mean-field theory calculation, we provide various phase diagrams with different tilted angles, showing
the abundant underlying phases including the supersolid. Our proposal indicates realizable scenarios through
quantum simulators in studying the quantum effect as well as extraordinary phases. We believe that our results
indicated here can also become a good benchmark for two-dimensional quantum simulators.

DOI: 10.1103/PhysRevResearch.6.023297

I. INTRODUCTION

Quantum many-body systems are often represented by a
Hamiltonian whose composing parts do not commute with
each other. This suggests that although the properties of
low-energy states can be easily identified in a certain limit,
often referred to as the classical limit, considering the whole
Hamiltonian will make the estimation of the ground state
difficult because one needs to consider the superposition of
every state in the full Hilbert space. Moreover, the extra quan-
tum or even thermal effect may lead to further stabilization
among some competing low-energy states, causing energy
level crossing or degeneracy lifting, known as the order by
disorder (OBD) effect [1–22]. Besides, the introduction of
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frustration, through the Hamiltonian [23–26] or lattice geom-
etry [27–32], can also result in the manyfold degeneracy of
the ground state in the classical picture, and such degeneracy
enriches the quantum or thermal fluctuation.

Among all structures, the triangular lattice is the simplest
lattice structure for inducing geometrical frustration. Particu-
larly, the inclusion of anisotropy could lead to the formation
of long strings composed of the same spins [33]. The shape
of strings enjoys a great degree of freedom, leading to a
manyfold degeneracy. Classically, such systems and their de-
generacies can be realized, as a composition of self-assembled
colloidal particles in a monolayer [34,35]. For this soft-matter
system, particles move to the opposite walls that confine them
to maximize the free volume, corresponding to the up-and-
down spin scenario and forming a good platform for studying
the dynamics of frustration. In d dimensions, the entropy of
degenerate ground states is proportional to Ld−1, with the
number of sites N ∼ Ld , resulting in a subextensive degen-
eracy. For the above-mentioned frustrated colloidal system,
its thermal OBD effect has been studied [36] and the authors
unveiled the conclusion that the straight stripe should be fa-
vored. On the other hand, the quantum counterpart for such
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OBD effect at zero temperature is also of interest. When an
extra noncommutable term, such as the spin exchange cou-
pling, is introduced to the Ising-like Hamiltonian, the quantum
fluctuation could further lower the energy, and the amount
is dependent on the classical configurations, resulting in the
lifting of degeneracy. Starting from the identical classical
system, usually the quantum and thermal fluctuations result in
similar outcomes and select the same ground state for weakly
frustrated magnets. However, this is not always guaranteed,
and many counterexamples have been provided [13,16,21,37].
Therefore, it is worthwhile to examine the quantum version of
this OBD effect. However, this effect has not yet been studied
to the best of our knowledge. One possible reason is be-
cause such a system can hardly be prepared in real materials.
However, the recent success in simulating various quantum
systems with neutral Rydberg atoms [38,39] has attracted
huge attention, leading to the so-called quantum simulator
[40–43]. It has been shown that the quantum Ising model with
both longitudinal and transverse fields can be simulated [44]
by utilizing the Rydberg blockade [45,46]. Other spin models,
such as the quantum XY model [47–49], XXZ model [50,51],
or even the XY Z model [52], can also be generated through
microwave engineering. In the following content we will pro-
vide a possible setup to study the quantum OBD effect in our
target system. We also conduct both analytical and numerical
calculations and conclude that the stripe pattern is ultimately
selected by the OBD effect. Our conclusion based on the
theoretical analysis could become a good benchmark for the
real-world device of a two-dimensional quantum simulator
using Rydberg atoms in the future.

Moreover, thanks to the advance of cold-atom techniques
[53–56], many physical scenarios can now be simulated with
emphasized quantum effect, leading to another type of quan-
tum simulators. Especially, dipolar quantum gases made of
erbium and dysprosium recently attracted wide attention for
the realization of supersolids out of their Bose-Einstein con-
densates [57–61]. Note that, by placing dipolar molecules in
optical lattices, researchers have realized suitable quantum
simulators for various Hamiltonians with electric [62–66] or
magnetic dipoles [67]. While Rydberg atoms are often used
to create the electric dipole-dipole interaction to synthesize
the spin exchange interaction, molecules carrying magnetic
dipoles can be viewed as a bosonic system probed by the
Bose-Hubbard model [68–70]. This makes the related stud-
ies of various extended Bose-Hubbard models necessary, and
many studies have been done [71–85]. In our previous work,
we studied the effect by tilting the polar angle of a dipole
and realized a competing scenario between different lattice
structures [77]. Within the original square lattice, we discov-
ered that a three-sublattice supersolid phase ought to show up
by tilting the polar angle. Related studies have also demon-
strated the potential of such techniques in fabricating artificial
physical scenarios of interest. Besides the quantum OBD ef-
fect by Rydberg-atom simulator, in this work we also study
hard-core bosons with dipole-dipole interaction in a triangu-
lar lattice with different tilted dipolar angles, mimicking the
distortion of the lattice.

In the following content, we will first study the quantum
OBD effect using the real space perturbation theory (RSPT)
[16,86–90] and infinite projected entangled-pair state (iPEPS)

[91–93]. We first map the two-level Rydberg system to a
spin-1/2 scenario and show that when the number of up spins
(n↑) is equal to that of down spins (n↓), a subextensive de-
generacy is present in the classical limit. Introducing the spin
exchange coupling, energy correction can be considered with
RSPT, and we focus on the leading-order correction between
the stripe and kinked configurations. Our calculation shows
that the energy correction favors the stripe pattern, coinciding
with previous results for thermal OBD [36]. As a further
confirmation we apply the iPEPS calculation for a simplified
toy model, showing that the stripe state is indeed more stable.
Next, for the dipolar bosons in a triangular optical lattice with
tilted polar angle we conduct numerical simulations with the
cluster mean-field theory (CMFT), which has been shown ef-
fective in capturing distinct phases in our previous work [77].
We unveil fruitful phase diagrams with various underlying
phases, including the supersolid phase. We then conclude our
work and argue some potential scopes for further studies.

II. QUANTUM OBD EFFECT

A. Rydberg-atom quantum simulator

The adoption of Rydberg atoms for a quantum simulator
has recently become a topic of interest. It has been shown
that the quantum Ising model can be synthesized in a large
scale with many interesting properties [94–96], as well as the
potential application for quantum information [40]. However,
the adoption of Rydberg atoms for quantum simulation or
computation is largely hindered by the limited lifetime (a few
100 µs) for low-angular-momentum (�) Rydberg states [97].
In contrast, when exciting the Rydberg states to a very large
principal quantum number (n) and utilizing the levels with
largest � and magnetic quantum number (m), the lifetimes
of these Rydberg states, named circular Rydberg states [98],
can be greatly enhanced. Their naturally long lifetime orig-
inates from the fact that these large-� states can only decay
through the emission of a low-frequency photon, which is
polarized parallel to the quantization axis. This feature makes
the lifetime of circular Rydberg states much longer than that
of regular low-� Rydberg states. Since it is a single-mode
decay, the lifetime can be further elongated by placing the
atoms in an environment which prohibits the field of reso-
nance of the atomic transition [99,100]. Adopting a capacitor
parallel to the plane where atoms reside, the lifetime again
gets largely enhanced, and a useful lifetime of at least 1.1 s
for an atomic chain has been reported [101]. Such a measure
can even be helpful for a non-zero-temperature environment,
and a millisecond-lifetime circular Rydberg state was recently
reported at room temperature [102]. This makes the quan-
tum simulation and quantum computation much more feasible
[101,103,104].

From now on we denote the circular Rydberg states as
|nC〉, and such states fulfill the following condition: � =
|m| = n − 1. These states have a wave function distribution of
a torus whose circular orbit has a radius rn = a0n3/2, where a0

is the Bohr radius. The circular states can be stabilized by an
external electric field (F ), which also defines the quantization
axis, perpendicular to the plane of circular orbits. Through a
proper measure a two-level system composed of two circular

023297-2



PROGRAMMABLE ORDER BY DISORDER EFFECT AND … PHYSICAL REVIEW RESEARCH 6, 023297 (2024)

states, |n1C〉 and |n2C〉, where n2 > n1 and C means the cir-
cular state, can be generated.

The interaction between any two Rydberg atoms comes
from the electric dipoles carried by the atoms themselves,
leading to a manifest dipole-dipole interaction [105,106].
When two atoms are far from each other the interaction hardly
affects the two-atom Rydberg state and thus a second-order
perturbation is adopted, giving rise to a van der Waals inter-
action proportional to 1/r6, where r represents the distance
between sites [107,108]. On the other hand, when the energy
defect of two dipole-dipole coupled states is tuned to zero the
strongest Rydberg-Rydberg interaction, proportional to 1/r3,
appears through the Förster resonance process [109,110]. Ac-
cording to Ref. [101] one needs to choose n2 = n1 ± 2 to
have a flexible simulator, where both the spin-exchange and
van der Waals interaction are proportional to 1/r6. Since the
spin-exchange effect might lead to the decay of circular states
to nearby degenerate states, a magnetic field (B) parallel to
the electric field is cast so that the highly degenerate hy-
drogenic manifold of the same principal quantum number
n can be lifted and the circular state is thus isolated [101]. The
magnetic field also prohibits the hybridization of spin up and
down channel in each circular state. As a result, we obtain
clean two-level Rydberg states for the purpose of quantum
simulation.

The Hamiltonian for a pair of Rydberg atoms with the basis
[|n1C, n1C〉, |n1C, n2C〉, |n2C, n1C〉, |n2C, n2C〉] can then be
written as [101]

H ∝

⎡
⎢⎢⎣

hn1–n1 0 0 0
0 hn1–n2 vn1–n2 0
0 vn1–n2 hn1–n2 0
0 0 0 hn2–n2

⎤
⎥⎥⎦, (1)

where in the Pauli basis it reads

H ∝ J
(
σ x

1 σ x
2 + σ

y
1 σ

y
2

) + Jzσ
z
1σ z

2 − Bz
(
σ z

1 + σ z
2

)
, (2)

with

J ∝ |vn1–n2 |,
Jz ∝ hn1–n1 + hn2–n2 − 2hn1–n2 ,

Bz ∝ 1
2 (hn1–n1 − hn2–n2 ). (3)

While J is independent on the magnetic and electric fields,
Jz and Bz are susceptible to the field strength; when the in-
tersite spacing is 5 µm, h48–48 = 2.2 GHz µm6, h48–50 = 2.66
GHz µm6, and h50–50 = 3.03 GHz µm6 as F = 9 V/cm and
B = 13 G, while v48–50 = −0.539 GHz µm6 stays indepen-
dent of F and B [101].

Placing the circular Rydberg atoms in the optical lattice
[111,112], a highly tunable simulator for the effective XXZ
model with longitudinal field can thus be formed. In order to
engineer the triangular lattice to simulate the quantum OBD
effect, a better way is to trap the individual atom using optical
tweezers [113]. One recent work has demonstrated such as
possibility by trapping rubidium circular Rydberg atoms into
a 3 × 6 array of tweezers [114]. It is reported that the trapping
time can scale to over a few milliseconds while the simulation
time only demands a few microseconds. A very recent paper
reported the existence of long-lived circular Rydberg states
by trapping the alkaline-earth atoms using optical tweezers
[115]. Their discovery also widens the potential usage of this
kind of quantum simulator. Therefore, by properly manipu-
lating the positions of optical tweezers, a deformed triangular
optical lattice can be generated, as shown in Fig. 1. There, the
diagonal bonds (black bonds) have longer intersite spacing so
that the subextensive degeneracy in the classical limit (J = 0)
can be simulated. We demonstrate three different configura-
tions in Fig. 1, for the (a) stripe, (b) kinked, and (c) mixed
configurations. Mixture of stripe and kinked configurations
in a larger lattice gives rise to various possible states, form-
ing the manyfold degeneracy. Note that the diagonal spacing
needs to be large enough to prohibit the off-diagonal magnetic
orders.

Since the basic setup has been introduced, next we will dis-
cuss the theoretical and numerical tools to study this quantum
OBD effect, which can benchmark a real-world device of a
two-dimensional quantum simulator with Rydberg atoms.

B. Real space perturbation theory

We first introduce the RSPT and derive the formula in this
section. In this work we study the effect of spin-exchange
quantum fluctuation on a system of Rydberg atoms, which
can be represented as

∑
〈i j〉(Ŝ

+
i Ŝ−

j + Ŝ−
i Ŝ+

j ). As a result, the
target Hamiltonian represented by spin-1/2 operators can be

FIG. 1. Configurations for (a) stripe, (b) kinked, and (c) mixed states. Red (pink) dots indicate that the Rydberg atom occupies the |n1C〉
(|n2C〉) state, and the black (green) bonds represent the bonds for diagonal (horizontal) interaction, written as Jz

d (Jz
h) in Eq. (4) (also see the

context). The brown dotted boxes indicate the minimum repeated unit cell for the stripe and kinked patterns, which we will later adopt for the
iPEPS calculation.
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written as

H = J
∑
〈i j〉

(Ŝ+
i Ŝ−

j + Ŝ−
i Ŝ+

j ) +
∑
〈i j〉

Jz
i j Ŝ

z
i Ŝz

j −
∑

i

B · Ŝi, (4)

where Jz
i j � |J|, |B| and B represents the external Zeeman

field. We assign J to be isotropic since later we will find
out that only the perturbative processes concerning the di-
agonal spin exchange would matter. To effectively reflect
the anisotropy caused by the deformed lattice, we assign Jz

i j
equal to Jz

d when the bond is in the diagonal direction (black
bonds in Fig. 1) and Jz

h when the bond is in the horizontal
direction (green bonds in Fig. 1). When Jz

d < Jz
h and n↑ = n↓,

the ground state configuration enjoys a manyfold degeneracy
because the same spins tend to align along the diagonal di-
rection. However, due to the fact that there are two diagonal
bonds, we can have many different degenerate configurations
and the total number is equal to 2Ly−1, where Ly is the number
of rows along ŷ direction. As a result, the ground state entropy
SGS ∼ Ly − 1, leading to a subextensive degeneracy. Among
these degenerate configurations there are two special patterns,
the stripe and kinked states. The stripe state is composed of
parallel straight lines of up and down spins [Fig. 1(a)], while
for the kinked state there are three sublattices occupied by up
or down spins within each vertical diamond of the triangular
lattice [Fig. 1(b)]. The remaining degenerate states, called
the mixed states, are simply the combinations of stripe and
kinked states in specific proportions [one example is shown in
Fig. 1(c)].

To apply RSPT, one needs to rotate the local coordinate
on each site so that every spin points along the ẑ direction.
Thus, we rewrite the corresponding spin-1/2 Hamiltonian in
the following form:

H =
∑
〈i j〉

Si · J · S j −
∑

i

B · Si, (5)

with

J =
{

diag(2J, 2J, Jz
h ) if 〈i j〉 ‖ horizontal direction,

diag(2J, 2J, Jz
d ) if 〈i j〉 ‖ diagonal direction.

(6)

We can extend this to a more generalized Hamiltonian with
longer-range hopping or even off-diagonal terms if needed,
simply by modifying the form of coupling matrices. In
Eq. (5), Si = S+

i ê−
i + S−

i ê+
i + Sz

i êz
i with ê±

i = 1
2 (êx

i ± iêy
i ) and

the classical configuration on each site is S(0)
i = Sêz

i . Note
that now S± and Sz are no longer operators. They simply
represent the corresponding operation for the classical spin.
Our choice of the “unit” vectors guarantees the transformation
to be unitary, although its length is not necessarily unity. This
also explains why we have a prefactor of 2 for J in Eq. (6).
Next, we expand the equation and the result becomes

H =
∑
〈i j〉

(ê+
i · J · ê+

j S−
i S−

j + H.c.)

+ (ê+
i · J · ê−

j S−
i S+

j + H.c.)

+ (ê+
i · J · êz

jS
−
i Sz

j + êz
i · J · ê+

j Sz
i S−

j + H.c.)

+ êz
i · J · êz

jS
z
i Sz

j

−
∑

i

B · ê−
i S+

i + B · ê+
i S−

i + B · êz
i S

z
i . (7)

After introducing the quantum fluctuation, the spin configura-
tion does no longer align along the local êz

i direction and thus
we can replace Sz

i by S − δSi. Then, Eq. (7) becomes

H = H0 + Hunperturbed + Hp, (8)

where

H0 = S2
∑
〈i j〉

êz
i · J · êz

j − S
∑

i

B · êz
i , (9)

representing the classical energy. And Hunperturbed is

Hunperturbed = − S
∑
〈i j〉

êz
i · J · êz

j (δSi + δS j )

+
∑
〈i j〉

êz
i · J · êz

jδSiδS j +
∑

i

B · êz
i δSi.

(10)

Since Eq. (10) does not change the spin configuration, it will
not contribute to the perturbation. At last, the perturbative
Hamiltonian Hp is written as

Hp =
∑
〈i j〉

(
J (1)

i j + J (2)
i j + J (3)

i j

) −
∑

i

Bi, (11)

where

J (1)
i j = ê+

i · J · ê+
j S−

i S−
j + H.c.,

J (2)
i j = ê+

i · J · ê−
j S−

i S+
j + H.c.,

J (3)
i j = ê+

i · J · êz
jS

−
i Sz

j + êz
i · J · ê+

j Sz
i S−

j + H.c.,

Bi = B · ê−
i S+

i + B · ê+
i S−

i . (12)

With these transverse perturbative terms, we can evaluate the
energy correction with Hp in nth order with

δE (n) =
∑
{ψi}

〈0|Hp|ψ1〉〈ψ1|Hp|ψ2〉 · · · 〈ψn−1|Hp|0〉
(E0 − Eψ1 ) · · · (E0 − Eψn−1 )

, (13)

where E0 is the energy for the classical configuration, |0〉,
and Eψi is the energy for intermediate state denoted by |ψi〉.
The summation will run over every possible intermediate pro-
cesses for a given order. For any order of perturbation, its
energy correction is obtained under several rules:

(1) Each perturbation is evaluated within a linked cluster
to ensure the extensiveness of energy correction. On each
bond of such a cluster Hp can be applied more than one time,
and the total number of executions of Hp determines the order
of perturbation.

(2) Any series must start and end with J (1)
i j and J (3)

i j , since
we have rotated the local coordinate so that, for every site,
S(0)

i = Sêz
i .

(3) J (3)
i j and Bi only consider one spin flip and thus there

must be an even number for such process in a series. Because
of this constraint, one can always find a lower order series
without these two terms, and therefore we can ignore them in
search of leading-order correction.

Because of the above rules, we know that effective leading-
order perturbative series must start and end with J (1)

i j and

are composed of J (1)
i j and J (2)

i j . In Eq. (13), the denomina-
tor considers the energy difference between classical and
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FIG. 2. (a) The four-site diamond cluster that distinguishes
kinked and stripe states. Red and pink dots indicate sublattice a and
b separately. For the kinked state it has two configurations with three
sublattices a or b, while for the stripe state the numbers of a and b
sublattice are equal. (b) An example of the fourth-order tunneling
process within the diamond cluster. The perturbative process corre-
sponds to J (1)

12 → J (2)
14 → J (2)

34 → J (1)
23 . Black dots indicate the places

where spins have been flipped.

intermediate configurations. It is given by

E0 − Eψ = 〈0|H |0〉 − 〈ψ |H |ψ〉 = −〈ψ |Hunperturbed|ψ〉.

(14)

To adopt RSPT, first we rotate the local coordinates so that
S(0)

i = Sêz
i . Our classical configurations are composed of two

different sublattices representing the up and down spins,

êz
a = (sin φa, 0, cos φa), êz

b = (sin φb, 0, cos φb), (15)

and then we choose

ê±
a = 1

2 (cos φa,±i,− sin φa),

ê±
b = 1

2 (cos φb,±i,− sin φb),
(16)

where a and b denote two different sublattices. Without loss
of generality, we choose the planar spin orienting along the x̂
axis. In fact, in the classical limit we can simply assign φa = 0
for up spin and φb = π for down spin. Since we hope that our
derivation can also be useful in the more general scenarios
breaking the U (1) symmetry, we take the off-diagonal order
into our consideration. It is also clear to see that by adopting
the same coordinate of sublattice a or b for every site in
Eq. (7), we can resume the original Hamiltonian, Eq. (4),
where the translation invariance is accompanied.

To estimate the leading-order correction, we need to first
look for the minimal closed cluster which differentiates the
stripe and kinked patterns, and it is the vertical diamonds
whose longer diagonal line is parallel to ŷ in Fig. 1. In Fig. 2(a)
we demonstrate the minimal different cluster for kinked and
stripe states. Then, we need to flip the spins through the inter-
mediate process on the diamond bonds to evaluate the energy
correction. Since there are four bonds on each diamond, the
leading-order correction which we are looking for is of the
fourth order. One of the possible intermediate processes is
shown in Fig. 2(b).

The detailed equations and derivation of RSPT are shown
in Appendix A, and here we only demonstrate the final results.
While the degeneracy stays intact when J = 0, turning on the

spin-flip coupling will immediately introduce an energy cor-
rection to different patterns. For the stripe and kinked patterns,
we have φa = 0 and φb = π for the classical configurations.
Under this assumption our equations can be largely simplified.
More importantly, Jd (2)

3 becomes zero and thus only a few
terms remain in Eqs. (A4) and (A5). The energy correction
terms then become

δE (4)
kinked = 2J4

(�3)2�4
,

δE (4)
stripe = 2J4

(�3)2�4
+ 2J4

(�3)2�5
.

(17)

Since Jz
h is repulsive and thus �5 = −8S2Jz

h < 0 (see
Appendix A), the stripe configuration is favored and would
be selected. This conclusion coincides with the previous one
for the frustrated colloidal soft matter system, whose thermal
OBD has been studied through the entropy estimation [36].
There, the authors have shown that the straight stripe con-
figuration possesses lower free energy, despite the fact that
during the cooling process the energy barrier among different
configurations will eventually lead to a mixed pattern. The
effective Hamiltonian of such a system can be written down
as an antiferromagnetic Ising model with deformation in the
triangular lattice, similar to our system considered here. Last,
we emphasize that, since the leading-order correction is of the
fourth order, the sign of J does not affect the final conclusion.
In Sec. III, we will consider an effective model with the
ferromagnetic J .

C. iPEPS calculation

Since RSPT applies well only for small J , we would like to
see if the conclusion still holds when the quantum fluctuation
is strong. For this purpose, we adopt a two-dimensional (2D)
tensor network ansatz, the infinite projected entangled-pair
state (iPEPS), to numerically calculate the simplified Eq. (4),

Hs = J
∑
〈i j〉

(Ŝ+
i Ŝ−

j + Ŝ−
i Ŝ+

j ) + Jz
∑
〈i j〉∈h

Ŝz
i Ŝz

j, (18)

where we consider the extreme case and ignore both the Ising
coupling along the diagonal direction and the longitudinal
field. By properly choosing the pre-designated unit-cell size
(in this work 2 × 2 or 4 × 2 as shown in Fig. 1) and opti-
mizing the d × D × D × D × D tensors, where d represents
the dimension of local Hilbert space and D is the virtual
bond dimension, this tensor network ansatz serves as a good
variational wave function for quantum many-body systems.
We provide some details of iPEPS in Appendix B.

To numerically estimate the ground state ansatz of Eq. (18),
we need to adopt numerous trials starting from different initial
setups. Because we already recognize that there are many
competing states (stripe, kinked, or mixed states), we need to
avoid the simulation being trapped in some undesirable local
minima. As a result, besides the random initial tensors we
also start our calculation by constructing the distinct product
states, corresponding to the stripe and kinked configurations
separately. Since the product state is of D = 1, we then enlarge
our tensors to the assigned D, with extra tensor elements being
small random numbers. Through this measure, we guide the
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TABLE I. We provide the values of energies and orders for several J/Jz, with bond dimension D = 2 or 3.

D = 2 D = 3

J/Jz 〈Hs〉 m S̃z S̃+ 〈Hs〉 m S̃z S̃+

0.1 −0.26327 0.47966 0.47966 0.00002 −0.26336 0.47880 0.47880 0.00004
0.2 −0.29746 0.43363 0.43363 0.00004 −0.29843 0.42404 0.42404 0.00007
0.3 −0.34539 0.38197 0.38197 0.00004 −0.34853 0.35545 0.35545 0.00032
0.4 −0.40150 0.33782 0.33782 0.00007 −0.40753 0.29673 0.29673 0.00108
0.5 −0.46177 0.30808 0.30808 0.00001 −0.47140 0.25309 0.25308 0.00174
0.6 −0.52501 0.28392 0.28392 0.00003 −0.53779 0.22126 0.22122 0.00372
0.7 −0.58987 0.26586 0.26586 0.00005 −0.60623 0.18589 0.18586 0.00359

optimization toward obtaining the stripe or kinked state. After
the convergence is reached, the averaged magnetization is
defined as

m = 1

NC

∑
i∈C

√〈
Ŝx

i

〉2 + 〈
Ŝy

i

〉2 + 〈
Ŝz

i

〉2
, (19)

where C means the repeating unit cell and NC is the number
of lattice sites within the cell. For the stripe pattern, since
there are two possible choices for the iPEPS unit cell and
they correspond to the wave numbers (0, π ) and (π, π ) after
Fourier transformation, we thus define the two related orders
for the stripe pattern. The first one is the diagonal magnetic
moment

S̃z = 1

NC

∑
i∈C

∑
k∈k1,k2

〈
Ŝz

i

〉
eik·ri , (20)

where k1 = (π, π ) and k2 = (0, π ). ri represents the co-
ordinate (rx

i , ry
i ) for each site within the unit cell. For the

off-diagonal order, we define

S̃+ = 1

NC

∑
i∈C

|〈Ŝ+
i 〉|. (21)

In Table I we provide the lowest energies as well as the
orders for several different J . We can clearly see that for each
J/Jz we have m ≈ S̃z, meaning that despite the different initial
trials the states of lowest energy always belong to the stripe
state. Although the off-diagonal orders are almost zero, 〈Ŝz〉
is highly suppressed due to the quantum effect, suggesting
that the initial setup for RSPT might not be well applicable.
However, our simulation indicates that the conclusion does
not change and the stripe state keeps being the ground state,
selected by the quantum OBD effect. It is also worth mention-
ing that for D = 3 and J > 0.3 no matter what initial states we
adopt the ground state ansatz always evolves toward the stripe
state. We then conclude that our system, where the circular
Rydberg atoms are placed in a deformed triangular optical
lattice, favors the existence of the stripe state.

III. DIPOLAR HARD-CORE BOSONS

In the previous section we revealed the quantum OBD
effect for the targeted Rydberg system and identified that the
stripe state is more stable. Next, we aim to unveil the possible
underlying phases for the artificial Hamiltonian of dipolar
bosons in the triangular optical lattice, which can be gen-
erated with cold-atom simulators. The realization of placing

magnetic cold atoms in optical lattices has been reported for
erbium [67] and ytterbium [116], where a three-dimensional
(3D) optical lattice is generated with two horizontal lasers in
the x-y plane and one vertical laser reflecting the direction
of gravity. Confining the atoms in a 3D lattice would help
elongate the lifetime by preventing the inelastic collision of
atoms [117,118]. The vertical tunneling can be reduced by
adopting a laser with a longer wavelength, and thus a quasi-
2D system can be synthesized. Reference [67] provides a
good example using a laser with wavelength (λx, λy, λz ) =
(532, 532, 1064) nm, creating an effective 3D optical lattice
with size (lx, ly, lz ) = (266, 266, 532) nm and a trapping po-
tential V (x, y, z) = Vx cos2(kxx) + Vy cos2(kyy) + Vz cos2(kzz)
where Vi is the lattice depth and ki is the wave vector in a
different direction. After preparing the Bose-Einstein conden-
sate (BEC) of the target atoms through an optical dipole trap
(ODT), the BEC cloud is then adiabatically loaded to the
optical lattice within a timescale of milliseconds. In the end
we obtain a long-lived system whose lifetime scales up to a
second [67,117]. Our system, however, demands a triangular
optical lattice for its realization, and Ref. [30] has unveiled
this possibility using Rb BEC. There, they adopt a three-laser
trapping within the x-y plane whose wave vectors mutually
share a 120◦ enclosing angle. Optionally, the recent proposal
of using optical tweezers to trap cold atoms might also provide
a more flexible platform for designing quantum simulators
[119,120].

Next we discuss the Hamiltonian of interest and its real-
ization through cold-atom simulators. The magnetic quantum
gas is composed of atoms which can be seen as magnetic
dipoles even at zero magnetic field. The origin of dipole mo-
ment comes from the spin and orbital angular momentum of
electrons, as well as some minor contribution from the nuclear
spin. This fact results in the high susceptibility of atoms to an
external Zeeman field, which we could use to control the over-
all orientation, expressed by the polar and azimuthal angles
shown in Fig. 3, of the magnetic dipoles [68]. This simplifies
the general form of dipole-dipole interaction in Ref. [121] and
makes it of the following form:

Vi j = V

r3
i j

(1 − 3 cos2 αi j ), (22)

where V is the interactive strength and ri j = |�ri − �r j |. αi j

is the included angle by the dipole moment and �ri j . This
interaction contributes to the on-site repulsive interaction, in-
tersite interaction, and the density induced tunneling. In this
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FIG. 3. Schematic demonstration of dipolar interaction in the
triangular lattice. Dots denote the lattice site and arrows represent
the dipole polarization. Such polarization can be parametrized with
polar (θ ) and azimuthal (φ) angles. The lower right panel shows the
projection of the lattice from above for a better demonstration of the
azimuthal angle.

work we consider the hardcore limit, meaning that only one
atom is allowed to occupy one site in every snapshot. This
condition can be naturally fulfilled once the on-site interaction
is much larger than the intersite interaction, which can be
tuned through controlling the lattice spacing [122]. Once the
doubly occupancy is prohibited, the density induced tunneling
process also disappears. Along with the normal tunneling
process, we end up obtaining the following extended Bose-
Hubbard Hamiltonian with the dipolar interaction:

H = −t
∑
〈i j〉

(b̂†
i b̂ j + H.c.) +

∑
〈i j〉

Vnnn̂in̂ j − μ
∑

i

n̂i, (23)

where b̂†
i and b̂i represent the creation and annihilation oper-

ators of the hard-core boson, with the number operator being
n̂i = b̂†

i b̂i. Vnn denotes the nn dipole-dipole interaction among
bosons and we neglect its long-range tail since it decays
rapidly. We emphasize that the dipole-dipole interaction in
this section is different from that for the Rydberg atoms. As
explained in Sec. II A, for the circular Rydberg atoms one
makes use of the electric dipole-dipole interaction of neutral
atoms to generate the spin exchange coupling. On the other
hand, in this section the cold atom itself can be seen as a
magnetic dipole and thus mutual interaction with the form
indicated in Eq. (22) is cast among atoms. Moreover, the
atoms act as quanta and thus the tunneling effect takes place,
minimizing the energy, leading to the hopping term in Eq. (23)
that lowers the energy.

The interaction in Eq. (22) can be easily tilted with an
external magnetic field. In this work we study the case when
the dipole moments are tilted as φ = 0 (see Fig. 3). Thus, for
the nn interaction, the two interactive terms along diagonal
direction are equal and become attractive when polar angle
θ is large enough. Therefore, there are two different terms
for Vnn:

V h
nn = V,

(24)
V d

nn = V
(
1 − 9

4 sin2θ
)
,

where indices h and d indicate the interaction along the hor-
izontal and diagonal directions, as shown in Fig. 1, labeled
by green and black bonds. As a result, Eq. (23) is akin to
Eq. (4) with negative J since there is a one-to-one mapping by
simply replacing b̂†

i → Ŝ+
i , b̂i → Ŝ−

i , and n̂i → Ŝz
i + 1

2 [26].
Therefore, by numerically studying Eq. (23) with different
tilting angles, the resulting phase diagrams cover a wide range
of XXZ-like models with anisotropy in the triangular lattice.

In this work, we adopt CMFT [73,74,77] for the construc-
tion of phase diagram. Some details of applying CMFT are
indicated in Appendix C. When the strength of the hopping
term is small, the ground state is an ordered state with U (1)
symmetry preserved. As we increase t , the solid order will
dissolve and the phase transits to the superfluid state through a
first-order phase transition. However, in some small windows
between solid and superfluid phases, two orders, namely the
structural and superfluid orders, can coexist and a supersolid
phase manifests. To identify distinct phases we first intro-
duce the order parameters adopted here. Solid and supersolid
phases both possess structural order which is defined as

ñ(k) = 1

NC

∑
i∈C

〈n̂i〉eik·ri , (25)

where C again represents the repeating unit cell whose size is
equal to 3 × 3 or 4 × 4 in our CMFT calculation, and thus
NC = 9 or 16. As for the superfluid order, we calculate its
condensate density defined as

ρ0 = 1

NC

∑
i∈C

|〈b̂i〉|2. (26)

The above two order parameters help identify different phases
in our numerical phase diagrams.

We then conduct the CMFT calculation and plot the phase
diagrams for several polar angles in Fig. 4. When tilting
is small [Fig. 4(a)], the diagonal solid (blue) and super-
solid (purple) dominate the phase diagram before entering
the superfluid phase. Its structural factor has the modulating
momentum (2π/3, 2π/3), and is named after the diagonal
stripe in our earlier work [77]. In the supersolid phase the
ñ(2π/3, 2π/3) and ρ0 orders coexist. This phase appears
after a continuous transition from the diagonal solid. Further
enlarging t , solid order disappears and the phase transits into
superfluid (red) phase discontinuously.

On the other hand, the central orange lobe indicates
the classically highly degenerate solid configurations (stripe,
kinked, and mixed). Thanks to the diagnosis of RSPT and
iPEPS in the previous section, we have learned that the true
ground state must be in the stripe configuration, although
the numerical energies of stripe and kinked configurations by
CMFT are very close to each other due to the small t . The
green phase in Figs. 4(b) and 4(c) represents a supersolid
phase coming from the stripe solid and thus we call it the
stripe supersolid. Note that our results indicate that the tran-
sition from stripe solid to stripe supersolid, as well as the one
from stripe supersolid to superfluid, are both continuous.

One can see from Fig. 4 that as we further tilt the polar
angle, the central lobe grows and its corresponding supersolid
phase also starts to appear [Fig. 4(b)]. Finally, as the polar
angle is large enough, dominant ordered phases in the phase
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FIG. 4. CMFT phase diagrams with nn dipolar interaction with polar angle equal to (a) 0.4, (b) 0.5, and (c) 0.6, which approximate
to 0.127π , 0.159π , and 0.191π . The inset in (b) enlarges the area for two supersolid phases. Solid (dashed) phase boundaries indicate the
first-order (second-order) phase transition.

diagram will be replaced by the stripe solid and supersolid
[Fig. 4(c)]. The scenario described here is just opposite to
the one in our previous work, where a square lattice effec-
tively shifts to a triangular one by tilting the polar angle [77].
Here, we start from the triangular lattice where the corre-
sponding phase possesses three sublattices (see, e.g., Fig. 3
in Ref. [77] for explanation), and eventually ends up with a
square one with only two sublattices, according to the phase
diagram. Last, we emphasize that including the long-range
tail of dipole-dipole interaction will automatically lift the
degeneracy even in the classical limit. In such a scenario
we expect an even more fruitful phase diagram with many
different ground-state configurations, but it requires a highly
precise experimental tool to sort out. We will leave the further
studies of this issue for future work.

IV. CONCLUSION

In this work we study two different systems of a dipolar
quantum simulator. Placing circular Rydberg atoms in a de-
formed triangular optical lattice, a subextensive degeneracy
can be realized and the spin exchange interaction, arising from
the electric dipole-dipole interaction of Rydberg atoms leads
to the quantum OBD effect. The degeneracy of lowest-energy
configuration in the classical limit is caused by deformation,
making the van der Waals repulsion only be seen in the hori-
zontal direction between nearby sites. Once the spin exchange
term is introduced, the overall Hamiltonian is akin to the XXZ
model with anisotropic interactive potential. With RSPT and
iPEPS, we predict that the stripe configuration is the true
ground state, in coincidence with the thermal counterpart of
this OBD effect according to the previous work [36]. Next,
we consider an extended Bose-Hubbard model with mag-
netic dipole-dipole interaction in an optical lattice, which is
related to the cold-atom quantum simulator. We then pro-
vide the phase diagrams for the nn dipolar hard-core bosonic
Hamiltonian with different tilting angles in the triangular
lattice, using CMFT. We exploit the competing scenario pro-
posed in our earlier work [77] and demonstrate that the
effective lattice structure shifts from triangular lattice to a
square one, as well as various different phases including the
supersolid.

The technique of neutral atoms for quantum comput-
ing has recently attracted huge attention. By placing the
Rydberg atoms with the desirable geometric controls, large-
scale quantum Hamiltonian can be simulated with quantum
analog simulators [123]. However, the current platforms
mainly focus on the Ising model and its variants. In this
work, we push one step forward and combine the spin ex-
change interaction as well as the van der Waal repulsion.
We propose a possible experimental setup using the circular
Rydberg atoms in an optical lattice for realization, which
benefits further investigation by experimental groups. Our
analytical and numerical studies, as well as the conclusion,
might be useful benchmarks once the simulator can be put into
practice, instead of checking the full phase diagram (see, e.g.,
Sec. III B of Ref. [101]). Moreover, controlling the anisotropy
of the triangular lattice, we might reach a novel regime where
the order disappears and a state with larger entanglement
entropy manifests [44]. This would benefit further studies with
quantum simulators as well as numerical calculation through
quantum Monte Carlo or tensor networks, and we will leave
it for future consideration. It is also important to note that our
proposal unveils a possible protocol for studying the dynamics
of glassy phases through a quantum simulator. In Ref. [36]
the authors revealed that although the straight stripe benefits
from lower free energy and should be more favorable in the
arbitrarily low temperature region, the free-energy barrier be-
tween different configurations results in a metastable disorder
state while cooling down the temperature. Similarly, if we
introduce the spin exchange coupling in the same manner a
nontrivial glassy dynamics [124] can likely be simulated.

Moreover, a quantum simulator made of cold atoms with
magnetic dipoles plays another important role in simulating
the extended Bose-Hubbard model. While each atom can be
seen as a magnetic dipole, their collective alignment can be
manipulated by an external field. By tilting the polar angle of
dipoles, the corresponding phase diagram changes and pecu-
liar phases also appear. This implies that through some simple
action, such as tilting the polar angle, many extraordinary
physical scenario can be artificially realized through such
quantum simulators. In sum, we believe that our proposals
both indicate alternative paths in applying quantum simulators
for studying intriguing physics and demonstrate their great
potential for artificial many-body systems.
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APPENDIX A: DETAILS FOR THE REAL SPACE
PERTURBATION THEORY

In this Appendix, we work on the details for RSPT. With
the choice for the local coordinate shown in the main text
[Eqs. (15) and (16)], we can now write down the correspond-
ing J (1)

i j and J (2)
i j terms. For diagonal bonds we have

Jd (1)
aa = 1

4 sin2 φa
(
Jz

d − 2J
)
S+

a S+
a + H.c.,

Jd (1)
bb = 1

4 sin2 φb
(
Jz

d − 2J
)
S+

b S+
b + H.c.,

Jd (1)
ab = 1

4

[
2J (cos φa cos φb − 1) + Jz

d sin φa sin φb
]
S+

a S+
b

+ H.c., (A1)

where we assign Jd (1)
1 = 1

4 sin2 φa(Jz
d − 2J ), Jd (1)

2 =
1
4 sin2 φb(Jz

d − 2J ), and Jd (1)
3 = 1

4 [2J (cos φa cos φb − 1) +

Jz
d sin φa sin φb]. And

Jd (2)
aa = 1

4

[
2J (1 + cos2 φa) + Jz

d sin2 φa
]
S+

a S−
a + H.c.,

Jd (2)
bb = 1

4

[
2J (1 + cos2 φb) + Jz

d sin2 φb
]
S+

b S−
b + H.c.,

Jd (2)
ab = 1

4

[
2J (1 + cos φa cos φb) + Jz

d sin φa sin φb
]
S+

a S−
b

+ H.c., (A2)

where we again set Jd (2)
1 = 1

4 [2J (1 + cos2 φa) + Jz
d sin2 φa],

Jd (2)
2 = 1

4 [2J (1 + cos2 φb) + Jz
d sin2 φb], and Jd (2)

3 =
1
4 [2J (1 + cos φa cos φb) + Jz

d sin φa sin φb]. For the horizontal
bonds we simply need to replace Jz

d in Eqs. (A1) and (A2)
with Jz

h , but in fact it does not affect the leading-order
correction since our cluster of interest is the vertical diamond
[Fig. 2(a)]. Moreover, all possible intermediate configurations
as well as their corresponding −〈ψ |Hunperturbed|ψ〉, labeled
by different � and composing the denominator of energy
correction, also need to be considered. For this purpose,
we first list all the possible intermediate configurations
during the spin flipping process, shown in Fig. 5, with each
configuration’s corresponding minus unperturbed energy,
E0 − Eψ , labeled by different �. We list their formulas
in Table II. Note that �′

k ( 2©) = �k ( 2©), �′
k ( 3©) = �k ( 3©),

and �′
s( 1©) = �s( 2©), �′

s( 2©) = �s( 1©), �′
s( 3©) = �s( 3©),

�′
s( 4©) = �s( 4©), �′

s( 5©) = �s( 5©). For simplicity, we further
conclude that

�1 = �k ( 1©) = �s( 2©) = �′
s( 1©),

�2 = �′
k ( 1©) = �s( 1©) = �′

s( 2©),

�3 = �k ( 3©) = �′
k ( 3©) = �s( 3©) = �′

s( 3©),

�4 = �k ( 2©) = �′
k ( 2©) = �s( 4©) = �′

s( 4©),

�5 = �s( 5©) = �′
s( 5©). (A3)

Along with �k ( 4©) and �′
k ( 4©), we have obtained all the

ingredients needed for the denominators of the energy
corrections.

TABLE II. Different �’s for the kinked and stripe configurations. Ea
B = 2SB · êz

a and Eb
B = 2SB · êz

b. �a = Jz
d cos2 φa + 2J sin2 φa and

�b = Jz
d cos2 φb + 2J sin2 φb.

Kinked

�k ( 1©) 4S2�a + 8S2(Jz
d + Jz

h ) cos φa cos φb + 32S2J sin φa sin φb − 2Ea
B

�k ( 2©) 4S2(�a + �b) + 4S2(2Jz
d + Jz

h ) cos φa cos φb + 24S2J sin φa sin φb − Ea
B − Eb

B

�k ( 3©) 4S2(�a + �b) + 4S2(Jz
d + 2Jz

h ) cos φa cos φb + 24S2J sin φa sin φb − Ea
B − Eb

B

�k ( 4©) 8S2�a + 8S2(Jz
d + Jz

h ) cos φa cos φb + 32S2J sin φa sin φb − 2Ea
B

�′
k ( 1©) 4S2�b + 8S2(Jz

d + Jz
h ) cos φa cos φb + 32S2J sin φa sin φb − 2Eb

B

�′
k ( 4©) 8S2�b + 8S2(Jz

d + Jz
h ) cos φa cos φb + 32S2J sin φa sin φb − 2Eb

B

Stripe

�s( 1©) 4S2�b + 8S2(Jz
d + Jz

h ) cos φa cos φb + 32S2J sin φa sin φb − 2Eb
B

�s( 2©) 4S2�a + 8S2(Jz
d + Jz

h ) cos φa cos φb + 32S2J sin φa sin φb − 2Ea
B

�s( 3©) 4S2(�a + �b) + 4S2(Jz
d + 2Jz

h ) cos φa cos φb + 24S2J sin φa sin φb − Ea
B − Eb

B

�s( 4©) 4S2(�a + �b) + 4S2(2Jz
d + Jz

h ) cos φa cos φb + 24S2J sin φa sin φb − Ea
B − Eb

B

�s( 5©) 4S2(�a + �b) + 8S2(Jz
d + Jz

h ) cos φa cos φb + 32S2J sin φa sin φb − Ea
B − Eb

B
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FIG. 5. Possible configurations during the perturbation process for (a)kinked and (b)stripe states. For the ground state there are two
configurations in kinked state and thus their evolving must be considered separately. Different configurations that give equal denominator
contribution are labeled with the same �.

Finally, through considering all possible intermediate pro-
cesses akin to the one in Fig. 2(b), we obtain the energy
correction. For the kinked state,

δE (4)
kinked =

(
Jd (1)

1

)2(
Jd (2)

3

)2

(�1)2�4
+

(
Jd (1)

2

)2(
Jd (2)

3

)2

(�2)2�4

+
(
Jd (1)

3

)2(
Jd (2)

1

)2

(�3)2�4
+

(
Jd (1)

3

)2(
Jd (2)

2

)2

(�3)2�4

+ 4Jd (1)
1 Jd (1)

3 Jd (2)
1 Jd (2)

3

�1�3�k ( 4©)
+ 4Jd (1)

2 Jd (1)
3 Jd (2)

2 Jd (2)
3

�2�3�
′
k ( 4©)

+ 2Jd (1)
1 Jd (1)

3 Jd (2)
1 Jd (2)

3

�1�3�4
+ 2Jd (1)

2 Jd (1)
3 Jd (2)

2 Jd (2)
3

�2�3�4
,

(A4)

and for stripe state,

δE (4)
stripe = 2

(
Jd (1)

3

)2
Jd (2)

1 Jd (2)
2

(�3)2�4
+ 2Jd (1)

1 Jd (1)
2

(
Jd (2)

3

)2

�1�2�4

+ 2
(
Jd (1)

3

)2
Jd (2)

1 Jd (2)
2

(�3)2�5
+ 2Jd (1)

1 Jd (1)
2

(
Jd (2)

3

)2

�1�2�5

+ 2Jd (1)
1 Jd (1)

3 Jd (2)
2 Jd (2)

3

�1�3�4
+ 2Jd (1)

2 Jd (1)
3 Jd (2)

1 Jd (2)
3

�2�3�5

+ 2Jd (1)
1 Jd (1)

3 Jd (2)
2 Jd (2)

3

�1�3�5
+ 2Jd (1)

2 Jd (1)
3 Jd (2)

1 Jd (2)
3

�2�3�4
,

(A5)

where δE (4) is the energy correction per site. Eqs. (A4) and
(A5) will then be used for studying the degeneracy lifting.

APPENDIX B: INFINITE PROJECTED ENTANGLED-PAIR
STATE

To study our effective model when the fluctuation is strong,
we have no other option but to turn to the assistance of nu-
merical tools. Due to the frustration that hinders the usage
of quantum Monte Carlo, we adopt the infinite projected
entangled-pair state (iPEPS) [91–93,125] for our purpose.
There are two parts for the iPEPS tensor network. One is the
tensors within the repeating unit cell, where each composing
unit is a rank-5 tensor with four auxiliary bonds (dimension
D) and one physical bond representing the size of local Hilbert
space (dimension d = 2 for S = 1/2). Since originally iPEPS
was designed for the square lattice, in the triangular lattice
the coordinate number for each site is equal to 6. Instead of
increasing the number of auxiliary bonds which would make
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FIG. 6. (a) Composition of the rank-5 tensors into the formation
of triangular lattice. Grey solid bonds represent the auxiliary bonds
with dimension D, and blue open legs are the local indices with
dimension d = 2 for the S = 1/2 system. Dashed bonds are not the
real legs for the tensors but we apply Hi j = Ŝ+

i Ŝ−
j + Ŝ−

i Ŝ+
j on these

bonds too for simulating the triangular lattice. (b) The double layered
tensors with bond dimension D2 in the bulk, enclosed by the blue
dashed box, and the environment tensors. The dimension of bonds
interconnecting C and T tensors is labeled by χ , with χ � D2 to
guarantee accuracy.

the computation cumbersome, however, we apply the local
Hamiltonian also along the virtual bonds [dashed bonds in
Fig. 6(a)] when calculating the energy. As a result, the over-
all lattice structure is effectively equivalent to the triangular
lattice.

Another important part for iPEPS lies in the environment
tensors. Since the thermodynamics limit can be extrapolated
through the corner transfer matrix renormalization group
(CTMRG) procedure [126–128], we need to first trace out
the physical legs of each tensor with its adjoint one, forming
the so-called double layered tensor where each bond is of
dimension D2. We then adopt the CTMRG, and after the fixed-
point tensors have been found they act as the effective “bath”
surrounding the bulk tensors, where we label the ones on the
corners with C and ones on the edges with T . One example
with the bulk size equal to 4 × 2 is provided in Fig. 6(b).

Last, we need to optimize the tensors so that the overall
network can represent the ground state ansatz of the target
Hamiltonian. Here we adopt the variational optimization with
the usage of automatic differentiation, first introduced by
Liao et al. [129]. We adopt the widely applicable package,
PEPS-TORCH [130], for our calculation. For readers aiming for
some further information, we refer to our previous works in
Refs. [131,132].

APPENDIX C: CLUSTER MEAN-FIELD THEORY

In this Appendix we briefly introduce the CMFT method
that we use for numerically solving Eq. (23). To adopt this
method, we first divide our Hamiltonian into two parts: HC

within the chosen cluster, and H∂C that contains the terms
connecting the bulk to the environment on the boundary of
the cluster. HC possesses the exact form of Eq. (23), and the
mean-field decoupling only takes place in H∂C , written as

H∂C = − t
∑

i j

′
(b†

i 〈b j〉 + H.c.) +
∑

i j

′
Vi jni〈n j〉, (C1)

where the prime symbol indicates that this summation is be-
tween site i on the boundary of the cluster and site j connected
to i outside the cluster. Our effective Hamiltonian is then writ-
ten as Heff = HC + H∂C . Although we write down the most
general form in Eq. (C1), in this work we apply CMFT for
the case with only the nearest-neighbor coupling. We then
exactly diagonalize the effective Hamiltonian and obtain the
ground state to calculate the mean-field parameters, 〈bj〉 and
〈n j〉, for the following iteration. After the mean-field param-
eters converge to consistent values, our calculation reaches
its self-consistent solution. In CMFT, exact diagonalizations
are performed within the chosen cluster. Therefore, we do
not expect to include the long-range entanglement beyond the
cluster size. To study this finite size effect and infer the phases
in the thermodynamic limit, a common practice is to compute
the order parameters at varying cluster sizes and extrapolate
to infinity.

CMFT is considered to be more accurate than the regular
single-site mean-field theory, in that it can capture the correct
correlation within the selected cluster. Thus it is suitable for
states whose correlation length is small, meaning that deep
inside the ordered phase (or away from transition boundary)
we can use CMFT and obtain quite accurate results. Because
of the above-mentioned reason, for the boundary lines shown
in Fig. 4, we have extrapolated the energies and order param-
eters for both the first- and second-order transition boundaries
to give a better outcome. In addition, due to the randomness
from the initialization process, CMFT could converge to dis-
tinct phases with the same set of parameters. In this case,
one should compare the energies among them to determine
the correct ground state. Accordingly, it becomes a challenge
when two stable phases appear with energy differences less
than or comparable to the finite size effect.

Our CMFT calculation for Eq. (23) provides definitive
results on most of the phases shown in Fig. 4. However, it
is nontrivial to resolve the ground state phase between the
stripe and kinked supersolid due to the fact that the energy
difference between these two lies in the fourth-order energy
correction from the perturbation theory. For the 4 × 4 cluster
we employed, this difference is comparable to the finite size
effect coming from the boundary, as can be estimated by
investigating the changes in energy upon displacements of the
solid patterns. However, by checking the order parameters we
can still diagnose different phases.
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