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fidelity in the Jaynes-Cummings model
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Quantum computers are operated by external driving fields, such as lasers, microwaves, or transmission lines,
that execute logical operations on multiqubit registers, leaving the system in a pure state. However, the drive and
the logical system might become correlated in such a way that, after tracing out the degrees of freedom of the
driving field, the output state will not be pure. Previous works have pointed out that the resulting error scales
inversely with the energy of the drive, thus imposing a limit on the energy efficiency of quantum computing. In
this study, focusing on the Jaynes-Cummings model, we show how the same scaling can be seen as a consequence
of two competing phenomena: the entanglement-induced error, which grows with time, and a minimal time for
computation imposed by quantum speed limits. This evidence is made possible by quantifying, at any time, the
computation error via the spectral radius associated with the density operator of the logical qubit. Moreover,
we also prove that, in order to attain a given target state at a chosen fidelity, it is energetically more efficient to
perform a single driven evolution of the logical qubits rather than to split the computation in subroutines, each
operated by a dedicated pulse.
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I. INTRODUCTION

Quantum computing is the science of performing logical
operations using quantum states living in a Hilbert space.
These logical operations are carried out by unitary gates,
in principle in a fully reversible way [1–3]. Real quantum
computations, however, are limited in practice by the fidelity
of quantum operations [4,5], a problem that is transversal to
several quantum platforms [6–9]. Quantifying the resources in
terms of time, energy, and space—required to perform a cer-
tain gate within a prescribed fidelity—is a task of paramount
importance [3,10,11]. We can thus ask, both from a funda-
mental and operational point of view, whether the resources
in realizing quantum gates with a certain fidelity can be
bounded.

Recently, some theoretical [12–16] and experimental
[17,18] studies have put the effort in understanding the re-
sources needed to perform a quantum logical operation by
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means of an external drive [19]. It is known that the entan-
glement between a driving system, like a laser or an electrical
transmission line, and an information-storing logical system,
a register of qubits, leads to a fidelity loss when tracing out the
drive’s degrees of freedom (DOF). Previous works have quan-
tified qubit-drive entanglement under a Jaynes-Cummings
interaction [20], as well as the fidelity loss that it entails
[21]. Others have studied the error arising in two-qubit gates
[12] and have investigated whether efficient driving protocols
exist [22]. Moreover, Ozawa proved that conservation laws
also imply fidelity losses [23], which has subsequently been
investigated for general unitaries and CPTP maps [24–27].
These results impose some minimal energy requirements for
quantum computation; for example, in [12,21,22], it has been
determined that the computation error scales as 1/n̄, with n̄
being the initial average number of photons (or even phonons)
in the drive. This scaling is important as it can have conse-
quences to energy-efficient computation [28–30].

In this work we (re-)derive and interpret the 1/n̄ scaling
from fundamental principles in the Jaynes-Cummings model.
We do so by showing that such a scaling is a consequence
of two competing phenomena. On the one hand, the drive-
qubit entanglement induces a minimal error that grows with
time. We show that this fundamental error is independent of
any target logical state, as it can be quantified via the spectral
radius of the density operator of the logical qubit (Sec. III). On
the other hand, quantum speed limits (QSLs) [31,32] impose a
minimal evolution time to attain the target state. The balance
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between the entanglement error, growing with time, and the
minimal time imposed on the dynamics results precisely in a
1/n̄ scaling (Sec. IV).

We also study the error induced by the composition of
several quantum gates (Sec. V). We show that, in order to
reach a given target state with a fixed fidelity, it is energetically
favorable to use a “single-pulse” evolution, instead of splitting
the computation in subroutines, each operated by a dedicated
pulse.

II. DRIVEN QUANTUM SYSTEMS

Let us consider a driven quantum system by which we
aim to perform logical operations. The drive is modeled as
an auxiliary quantum system, e.g., a laser field or an elec-
trical transmission line, such that the logical system and the
drive constitute a bipartite quantum system, with local Hilbert
spaces Hlogical and Hdrive, respectively. The state of the bipar-
tite system is denoted by |�(t )〉 ∈ Hdrive ⊗ Hlogical. Thus, at
any time t , the logical state is described by the reduced density
operator ρ(t ) that is obtained by tracing out the DOF of the
drive:

ρ(t ) = trdrive|�(t )〉〈�(t )| =: Et [ρ(0)], (1)

where Et [·] is a completely positive trace-preserving (CPTP)
quantum map [33]. In quantum information theory, Et [·] is
commonly denoted as a quantum channel [34].

In the remainder of the text, we will assume that the initial
logical state is pure so that ρ(0) = ρα := |α〉〈α|, for some
state |α〉, in the density operator formalism.

A. Jaynes-Cummings model

In this paper we will study the paradigmatic example of
the Jaynes-Cummings (JC) model. The Hamiltonian of the
bipartite system is given by

H = h̄ω b†b + h̄ω �†� + h̄gi(b�† − b†�), (2)

where b, � are the ladder operators for the drive and the logical
system, respectively. For the states of the bipartite system, we
adopt the notation |n, m〉 := |n〉drive ⊗ |m〉logical.

In an appropriate rotating frame, the terms proportional to
h̄ω disappear, and we are left with the interaction Hamiltonian

Hint = h̄gi(b�† − b†�).

From here on, we will work in such a frame. Note that Hint

fixes the rotation axis (here the y axis) of the logical qubit
along with the interaction through which the driving fields
acts. This choice, however, is arbitrary and is connected to
the choice of an arbitrary phase of the driving field. The anal-
ysis that follows does not take into account any phase-related
arguments but just the average number of photons injected by
the drive to the logical system.

We assume that the drive starts in some initial state
|ϕdr (0)〉 =∑∞

n=0 bn|ndr〉, which we can control. The lev-
els |n, 0〉 and |n − 1, 1〉 span an invariant subspace of
H , with respect to which it is convenient to solve the
Schrödinger equation that models the whole evolution of the
JC model. In this subspace the dynamics oscillate between
|n, 0〉 and |n − 1, 1〉 at the frequency ωn := g

√
n. It is then a

straightforward matter to calculate |�(t )〉. The logical density
operator ρ(t ) can be fully described as a linear combination
of the operators Ei j := Et [|i〉〈 j|] at any time t . Each Ei j , in
turn, is provided by the average of the 2 × 2 operators Fi j (for
the sake of completeness we recall their explicit expression in
Appendix A) over the energy levels distribution of the initial
drive state. Formally, it means that Ei j =∑∞

n=0 |bn|2Fi j (n) =
Edr[Fi j], with Edr[·] denoting the average over the set of drive
coefficients {bn}. Thus, Ei j is returned by a series that, in the
general case, one is not able to solve.

The operators Fi j (n) can be expanded in Taylor series
around n̄ := 〈b†b〉,
Fi j (n) = Fi j (n̄) + F ′

i j

∣∣
n=n̄

(n − n̄) + 1
2 F ′′

i j

∣∣
n=n̄

(n − n̄)2 + · · · ,

with (·)′ and (·)′′ denoting, respectively, the first and second
derivatives of (·) with respect to n. As a result, by recalling
that Edr[n − n̄] = 0, one gets

Ei j = Edr[Fi j] ≈ Fi j (n̄) + 1
2 F ′′

i j

∣∣
n=n̄

�n2, (3)

where �n2 := Edr[(n − n̄)2] is the variance of n. The validity
of this second-order expansion is ensured by taking the initial
state of the drive so that �n � n̄, thus meaning that the initial
distribution of the driving field is mostly concentrated around
the mean value (e.g., mean number of photons) n̄.

In order to provide results with an operational meaning, we
are going to consider two different cases for the initial state
of the drive: a coherent state (thus, with Poisson distribution)
with mean n̄, and a binomial-distribution state with mean n̄
and standard deviation �n. Both the Poisson and binomial dis-
tributions are concentrated around the mean value n̄, and the
coefficients bn of the initial state of the drive are respectively
equal to

bPois.
n = 1

en̄/2

n̄n/2

√
n!

and bBin.
n = 1

2N/2

√(
N

kn

)
. (4)

In Eq. (4), N := 2�n2 is the width of the binomial distribution
and kn := n − (n̄ − N ). At any time t , we can estimate each
Ei j in second-order approximation as given by Eq. (3).

III. ENTANGLEMENT-INDUCED ERROR

As stated in the Introduction, the aim of this section is to
provide a bound on the computation error that is made by the
logical system due to the presence of “residual” drive-qubit
entanglement, still present after tracing out the DOF of the
drive. Such an error induced by the drive-qubit entanglement
is independent of any target logical state.

In general, the fidelity between the output logical state
Et [ρα] and some target density operator ρδ := |δ〉〈δ| is

F (ρ(t ), ρδ ) = 〈δ|Et [|α〉〈α|]|δ〉. (5)

In fact, since the target density operator ρδ represents a pure
state, F (ρ(t ), ρδ ) corresponds to the Uhlmann fidelity [35,36].
The latter is inversely proportional to the Bures angle that
separates ρδ to Et [|α〉〈α|], in the space of density operators
pertaining to the quantum logical system. On the other hand,
Et contains information about the evolution of the dynamics
developed by the logical system, and about quantities that are
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representative of the amount of energy that is injected by the
drive.

First, we introduce some quantities that provide fundamen-
tal bounds to the fidelity F (ρ(t ), ρδ ) that is associated with
the target transformation |α〉 → |δ〉 with |α〉, |δ〉 pure states.
These bounds do not depend on the specific choice of the ini-
tial and target states |α〉 and |δ〉. However, we can characterize
the intrinsic error due to the loss of purity of the reduced states
of both the logical system and the drive. In addition, we man-
age to obtain predictions that impart valuable insights into the
best-case scenario for the computation fidelity, thus offering a
glimpse into the potential upper limits of attainable accuracy
due to fundamental limitations. Furthermore, by removing the
knowledge of the target state |δ〉, we obtain a quantity that can
be measured directly from ρ(t ), and possibly scaled to large
quantum systems where the knowledge of the target state is
computationally unfeasible.

A. State eigenfidelity

The first quantity we introduce is the state eigenfidelity.
For this purpose, let us consider the following proposition (the
proof is in Appendix B).

Proposition 1. The closest pure states to a generic density
operator 
 are the eigenstates (or eigenstate, in the nondegen-
erate case) |ψ〉 corresponding to the largest eigenvalue r(
) of

, also denoted as its spectral radius. Formally,

F (
, ρϕ ) � r(
) (6)

for any pure state ρϕ := |ϕ〉〈ϕ|, and F (
, ρϕ ) = r(
) if and
only if 
|ϕ〉 = r(
)|ϕ〉.

Hence, the error done at any time t while performing
the transformation |α〉 → |δ〉 through the quantum channel
Et —truly implemented in a real context—is at least equal
to 1 − r(Et [|α〉〈α|]). For the fidelity F (
, ρϕ ), the spectral
radius r(
) is a bound that stems from the lack of purity of

. For this reason, we denote r(
) as the eigenfidelity of 
,
and ε(
) := 1 − r(
) the corresponding eigenerror. Although
this definition suffices for our purposes, we note that the
eigenfidelity cannot be taken in the general case as a guarantee
of how good is a given quantum gate, but as a limit of how
good a given quantum gate could be in the best-case scenario.
In this regard, see Refs. [37,38] for an example of a nonunitary
process where the eigenfidelity is nonetheless high.

In the following, we are going to provide lower and upper
bounds for the eigenerror ε(
). In doing this, we start by
considering the Schatten p-norm of a linear operator. For a
density operator 
, the Schatten p-norm is defined as ‖
‖p :=
( f p

1 + · · · + f p
n )1/p = (tr
p)1/p, where fi is the ith eigenvalue

of 
 and p is a positive real number. We thus obtainthe follow-
ing proposition.

Proposition 2. For any p > 1, spectral radius of a density
operator 
 is bounded from below and above as

‖
‖q
p � r(
) � ‖
‖p, (7)

where q is such that 1/q + 1/p = 1.

The proof is in the Appendix B and exploits the fact that the
spectral radius of a generic density operator 
 is a lower bound
of any matrix norm (expressed in terms of p) of 
. Moreover,
from the proof, one can also deduce that the bounds in Propo-

sition 2 become tighter and converge to the eigenfidelity r(
)
as p goes to infinity. For applications in quantum technologies,
just the Frobenius norm ‖
‖F :=

√
tr
2 = ‖
‖2 suffices. In

this way, by making the first-order expansion in Taylor series
of the upper bound in (7) around tr
2 = 1, for r(
) we get the
following bounds with an operational meaning

Theorem 1. The eigenfidelity r(
) and eigenerror ε(
) of

 are bounded from below and above as

γ � r(
) � 1 + γ

2
and

SL

2
� ε(
) � SL, (8)

where γ := tr
2 and SL := 1 − γ denote, respectively, the
purity and the linear entropy of 
.

Thus, if 
 represents a pure quantum state, then r(
) =
γ = 1. Instead, if 
 is a maximally mixed state, then r(
) =
γ = 1/d , with d the dimension of the quantum logical system.
In these two cases, the bounds of r(
) in Eq. (8) become
trivial. However, in full generality, the upper bound (1 + γ )/2
of the eigenfidelity r(
) is as much tight as the error in per-
forming the desired logical operation is small. We can thus
affirm that r(
) ∼ (1 + γ )/2 becomes a good approximation
when γ is close to 1, i.e., when 
 is nearly a pure state, as
all the higher-order corrections (1 − γ )2, (1 − γ )3, . . . to r(
)
are vanishing. Clearly, these considerations also hold for the
eigenerror ε(
) but with a reversed meaning.

We conclude our analysis by providing a different interpre-
tation of the eigenfidelity that links to a series of recent works
dealing with the purification of states [39] and the effects
entailed by the presence of an external environment [40–42].
Let us thus take the definition of ergotropy [43], whereby any
density operator 
 =∑i si|si〉〈si| can be unitarily mapped into
the corresponding passive state σ :=∑i si|ei〉〈ei|, where {|ei〉}
is the energy basis of the quantum system with Hamiltonian
H =∑i ei|ei〉〈ei| such that e1 < e2 < · · · < ed . By construc-
tion, a passive state is diagonal in {|ei〉}, and with s1 > s2 >

· · · > sd . From these definitions we can see that s1 is exactly
the eigenfidelity. Consequently, we can state that different
density operators 
 that share the same passive state have
the same eigenfidelity.

B. Channel eigenfidelity

Let us now apply the concept of eigenfidelity to bound the
performance of a quantum channel Et over a complete set of
input and target pure states. Thus, for any time t , we average
the eigenfidelity r(Et [ρα]) over any initial pure states ρα =
|α〉〈α| sampled in accordance with the (normalized) Haar’s
measure μ(ρα ):

r̄(Et ) :=
∫

dμ(ρα ) r(Et [ρα]). (9)

We denote r̄(Et ) as the channel eigenfidelity that is inde-
pendent of both the initial and final pure quantum states.
The quantity 1 − r̄(Et ) corresponds to the error committed
by a quantum channel while approximately operating a de-
sired logical quantum operation; we thus call it the channel
eigenerror. Such an error is proportional to the impurity of
Et [ρα] averaged over all possible ρα . In this regard, due to
Theorem 1, also the channel eigenfidelity can be bounded
from below and above.
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(a) (b)

FIG. 1. Channel eigenerror of the quantum logical system operated by the JC model with Hamiltonian (2), for the reduced interaction time
τ = π/2. (a) Eigenerror as a function of the average number of photons in the initial state of the drive, for different values of s ∈ [0.02, 0.25]
(colored solid lines). The dash-dot line corresponds to a Poisson distribution for the drive state, which has s = 1. (b) Eigenerror as a function
of the Fano factor �n2/n̄ of the initial state of the drive, for different values of n̄ ∈ [50, 1000]. The gray dashed line denotes the reference
scaling of 1/n̄ (a) and 1/s (b), respectively.

Corollary 1. The channel eigenfidelity r̄(Et ) of a quantum
channel Et , for any time t , is bounded as

γ̄t � r̄(Et ) � 1 + γ̄t

2
, (10)

where γ̄t is the average of the purity trEt [ρα]2 over all input
pure states ρα .

Moreover, we have the following proposition.
Proposition 3. For qubits, γ̄t has a closed-form expression:

γ̄t = 1
3 tr
(
E2

00 + E00 E11 + E2
11 + E01 E10

)
, (11)

where, we recall, Ei j = Et [|i〉〈 j|] with i, j = 0, 1.
While the derivation of the Corollary 1 is not needed being

a direct application of Theorem 1, the proof of Proposition 3
is in Appendix B.

C. Channel eigenerror of the Jaynes-Cummings evolution

In the JC setting, the channel eigenerror ε̄t = 1 − r̄(Et ) can
be studied in the asymptotic limit n̄ → ∞ with the constraint
that the Fano factor s := �n2/n̄ is kept constant. Specifically,
one can analytically determine that

ε̄t � S̄L

2
∼
{

τ 2+sin(τ )2

6n̄ (Poisson)
τ 2

6
�n2

n̄2 + sin(τ )2

6 �n2 (Binomial)
(12)

by having the initial state of the drive in a Poisson or bino-
mial distribution, respectively. In Eq. (12), τ := ωn̄t = g

√
n̄ t

denotes the reduced interaction time, expressed in radians.
These bounds follow from the explicit computation of Eq. (11)
applied to the JC model under the approximation of Eq. (3),
which we have carried out via the symbolic software Sage-
Math [44]. As a remark, it is worth observing that, since s
is kept constant, the assumption that the distribution of the
drive state is concentrated around its mean remains valid in
the n → ∞ limit, in line with the Taylor expansion in (3). We
also note that the approximation (12) holds for short times
only due to the presence of the quadratic term ∝ τ 2. More-
over, �n2 = n̄ for the Poisson distribution; so, making this
substitution in (12), the bound for the binomial distribution

reduces to the one of the Poisson distribution, such that both
expressions are consistent.

We illustrate in Fig. 1 the scaling of the channel eigenerror
ε̄t as provided by Eq. (12) as a function of n̄ and s = �n2/n̄,
for the reduced interaction time τ = π/2. In Fig. 1(a) we
see that the channel eigenerror decreases as 1/n̄ by taking
constant the Fano factor s, for both the initial states given by
a Poisson and binomial distribution. In Fig. 1(b), instead, ε̄t

decreases as 1/s for constant n̄. Notice that the latter behavior
can be only inferred from the binomial distribution, being
s = 1 for the Poisson one. Interestingly, Eq. (12) suggests that
s = sin(τ )/τ minimizes the error for a given τ , in line with
previous observations using squeezed states [16], although—
strictly speaking—the binomial distribution does not allow for
values of s larger than 1/2.

The bounds in Eq. (12) capture the interesting worst-case
scenario of �n → 0 for the JC model. Consider, for example,
the initial bipartite state |N, 0〉, and require that at τ = π/4 the
logical state is (|0〉 + |1〉)/

√
2, as a π/2-pulse was applied. In

such a case, the density operator of the logical system is the
maximally mixed state, no matter how high N is, as long as
�n = 0. Hence, the error of the computation turns out to be
the worst possible one. Likewise, the error bounds in Eq. (12)
(correctly) diverge when �n goes to zero.

The bounds in Eq. (12) reproduce previous results for the
error done by the X and

√
X gates [21], where the error com-

mitted in realizing a driven single-qubit operation operated by
a JC Hamiltonian scales as ε � (�n/n̄)2. As noted in [21],
this has implications for the energetics of quantum compu-
tation: in order to lower the eigenerror, we need to increase
n̄, which means using a driving system with more average
injected energy. Moreover, the scaling in Eq. (12) has also
been found for two-qubit gates [12], and for the inaccuracy
of generating entanglement from a bipartite system under the
JC Hamiltonian (2) [20].

In summary, the bounds of the channel eigenerror ε̄t con-
tain the same characteristic features of other scaling laws
previously determined in the literature. Such bounds mainly
depend on the intensity and the shape of the interaction terms
between the drive and the quantum logical system, according
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to the JC model. The error figures we have determined capture
an “intrinsic” error that is due to the average output state not
being pure, and the resulting bounds are more accurate as long
as the reduced interaction time τ is small. However, it is worth
stressing that a low channel eigenerror is not a guarantee of a
quantum operation with high fidelity. Conversely, a high chan-
nel eigenerror entails that the implemented quantum operation
has a low fidelity.

In the next section, we are going to show a clear connection
of the channel eigenerror with quantum speed limits. This will
allow us to understand how the energetic cost of a quantum
logical computation is fundamentally based on a trade-off
between two factors: the bare error that remains after making
the partial trace with respect to the drive state, and users’
requirements about the minimal time needed to carry out the
computation.

IV. QUANTUM SPEED LIMITS AND ENERGETICS
OF QUANTUM COMPUTATION

In the previous section, we have evaluated the error that
a quantum channel intrinsically introduces in the attempt to
return as output a pure state that is the solution of a given
quantum computation. In the limit of a small computation
time, our analysis does not take into account whether the
implemented quantum operation returns the target output
state. For the logical operation operated by the JC dynamics,
we have shown that in the short timescales before the state
collapse, the eigenerror grows as a function of the elapsed
time t .

However, in practice, one aims to understand what are the
constraints imposed by quantum mechanics to the scaling of
the computation error in the attempt to apply a certain unitary
gate within a fixed time interval (possibly chosen by the user).
We would also like to determine the energetic cost associated
to respecting such constraints. We are going to introduce these
additional notions by appealing to quantum speed limits.

The Mandelstamm-Tamm (MT) and Margolus-Levitin
(ML) QSLs [32] provide restrictions on the minimal time
needed for a quantum system to perform unitary evolutions.
Specifically, the time t required for a ϑ rotation in the Hilbert
space of the system is bounded, respectively, as

t � tMT := h̄ϑ

�Hint
and t � tML := h̄ϑ

〈Hint〉 , (13)

where Hint is the Hamiltonian of the quantum system, 〈X 〉
denotes the expectation value of X , and �X 2 := 〈X 2〉 − 〈X 〉2.
All the averages 〈·〉 are performed with respect to the initial
state of the bipartite quantum system. Note that, since the
QSLs in Eq. (13) are defined for unitary evolutions, we can
apply them only to the whole bipartite system. Thus, the
quantity ϑ refers to angles in the Hilbert space comprising
both the logical and the driving system, and the QSLs depend
on the bipartite interaction Hamiltonian Hint .

However, we are interested in the evolution of the logical
(sub-)system, and thus to link the QSLs to such reduced
dynamics. For this purpose, suppose we aim to bring a pure
logical state |a〉 to another pure logical state |b〉, such that
|〈b|a〉| =: cos θ , with θ ∈ [0, π/2] in order to avoid issues
with the sign of the cosine function. Hence, the bipartite

system consisting of the logical qubit and the drive should go
from the initial pure state |ψ〉 = |ψa〉|a〉 to a final pure state
|ψ ′〉 = |ψb〉|b〉. The angle ϑ between the initial and final states
of the bipartite system fulfils the inequality

cos ϑ = |〈ψ ′|ψ〉| = |〈ψb|ψa〉| cos θ � cos θ. (14)

This implies that ϑ � θ , since θ , ϑ ∈ [0, π/2]. As a result,
the angle θ and the QSLs for tMT, tML find direct connection
through the inequality

t � max

{
h̄θ

�Hint
,

h̄θ

〈Hint〉
}
, (15)

which establishes a geometric constraint on the driving of
the logical system, which fixes the whole energy resources at
disposal.

A. Jaynes-Cummings Hamiltonian

For the sake of clarity we provide more analytical argu-
ments still using the JC model. In doing this, let us suppose
the drive is initialized in a coherent Poisson state |ψa〉 with
average photon number n̄. In such a case, we have 〈Hint〉 ≈
�Hint ∼ h̄ ωn̄, with ωn̄ = g

√
n̄. Moreover, in the large n̄ limit,

the Poisson and binomial distributions tend to coincide when
�n = √

n̄. Therefore, both the MT and ML QSLs (15) impose
the following lower bound for the gate operation time (driving
field included):

t � θ

ωn̄
= θ

g
√

n̄
. (16)

On the other hand, still for a Poissonian drive, Eq. (12)
predicts a minimal average eigenerror that grows with time
that explicitly reads as

ε̄t � g2t2

6
+ sin2(

√
n̄gt )

6n̄
. (17)

We note that the QSL times are of the order of a single Rabi
oscillation (thus before a collapse in the reduced logical state
of the JC dynamics), where this scaling is valid.

Putting both inequalities together, we determine that to
perform a rotation θ on the logical qubit using a JC interaction,
the lower bound of the channel eigenerror entailed by the QSL
scales as

ε̄θ � θ2 + sin2(θ )

6n̄
(18)

that, for small angles (sin θ ∼ θ ), becomes

ε̄θ ∼ θ2

3n̄
. (19)

Note that the average number of driving photons n̄ is propor-
tional to the initial energy put into the system by the driving
system, since the Hamiltonian of the latter is Hdrive = h̄ωb†b.
Our derivation thus encloses the findings of previous works
[12,23] stating the following: if one aims that the average error
in performing a single-qubit computation is smaller than ε,
then a driving pulse with energy E = n̄h̄ω scaling as 1/ε has
to be employed. This analysis provides us that the energetic
requirement to drive a quantum logical system, at least in the
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(a) (b) (c)

FIG. 2. Channel eigenerror in concatenating a quantum operation. In the numerical simulations, the concatenated quantum gates are
enabled by a JC Hamiltonian, and the drive is initialized in a binomial state with n̄ = 25 and Fano factor s = �n2/n̄ = 0.2. (a) The channel
eigenerror grows monotonically with the number of concatenations, increasing faster for greater values of τ . (b) Channel eigenerror as a
function of the channel reduced time τ . Each line corresponds to a fixed number C of concatenations. See the main text for the explanation
of the behavior of the channel eigenerror around τ = π/2. (c) Channel eigenerror as a function of the concatenations number. Each line
corresponds to a constant cumulative evolution time Cτ . For the same cumulative evolution time, we achieve a lower channel eigenerror for
the concatenation of a larger number of gates (larger C) but with a shorter reduced interaction time τ . However, this comes with a larger
energetic cost; see Fig. 3 for details.

JC model, comes from the balance of two competing phe-
nomena: (1) the entanglement-induced error from Eq. (17),
increasing with time, that suggests one should use shorter
gate times and (2) the QSLs of Eq. (16), which tell us that
shorter gate times come at the cost of increasing the number
of photons n̄. This implies that, in the case we considered (i.e.,
the JC model), the strength of the driving field needs to have
enough photons (i.e., energy) according to Eqs. (18) and (19)
in order to make negligible the error due to inefficient use of
the laser-qubit entanglement.

V. QUANTUM GATE CONCATENATIONS

In this section, we generalize the error bounds introduced
in the previous sections for the case of C successive applica-
tions of a quantum channel Et , which for simplicity we will
call “shot” or “pulse shot.” As in Eq. (1), each shot Et results
from (1) preparing the driving system in some initial pure state
with average number of photons n̄, (2) letting the bipartite
system evolve according to the Jaynes-Cummings evolution
for some time t , and (3) tracing out the DOFs of the driving
system. In this section we are going to quantify the channel
eigenerror of a multiple shot evolution:

EC
t = Et ◦ Et ◦ · · · ◦ Et︸ ︷︷ ︸

C times

. (20)

Physically, this implies to restart the driving state C times,
each time introducing n̄ new photons into the system and
discarding the old ones.

Let ε̄τ,C be the average eigenerror of EC
t . For simplicity

of notation, we use the reduced time τ = g
√

n̄t . In the large
n̄ limit, τ is approximately equal to the rotation angle of the
logical state; thus, after C applications of Et , we expect the
logical state to rotate by the total angle Cτ . Our aim is to

understand—from first principles—whether it is better to im-
plement fewer times a quantum operation of longer duration,
or more times a gate whose duration is shorter.

For the purposes of this section, we assume that the driving
system is initialized in a state with a binomial distribution,
also denoted as “binomial state” for simplicity. In Appendix D
we prove that the channel eigenerror approximately reads as

ε̄τ,C ≈ 1 − λC

2
, (21)

where λ is the spectral radius of the 3 × 3 submatrix in the
representation of E in terms of the Pauli transfer matrix (PTM)
formalism. For more details, see the Appendix D where ana-
lytical expressions are provided. This formula is tested with
numerical simulations, setting n̄ = 25 and the Fano factor
s = �n2/n̄ = 0.2. Notice that our interest in considering a
binomial distribution stems from showing a peculiar behavior
(a dip) of the channel eigenerror when plotted as a function of
the reduced interaction time τ .

From Fig. 2(a), showing numerical results, one can observe
that the channel eigenerror increases monotonically with the
number of concatenations C, no matter the reduced interaction
time τ . Hence, the repeated application of the same gate
operated by a short interaction with the driving system seems
to reduce the channel eigenerror.

On the other hand, Fig. 2(c) shows how a greater number
of concatenations, for the same total evolution time Cτ , leads
to a smaller channel eigenerror. In other words, if one wishes
to implement a given quantum operation, it is beneficial to
break the target quantum operation in many dynamical cycles
of a shorter duration τ . However, such division comes with
a higher energetic cost, since every time a gate is applied,
one needs to prepare the initial state of the drive from scratch
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FIG. 3. In each level curve, we present the eigenerror of im-
plementing an X gate by concatenating C pulse shots—each
implementing C

√
X—using the same total amount of energy (mea-

sured in total number of used driving photons, n̄). Each shot is
achieved using the JC interaction, with the driving system initialized
in a coherent state with an average of n̄/C photons. Thus, each curve
is associated with the drive energy n̄h̄ω. For the same amount of total
energy, using more shots increases on average the channel eigenerror.

(thus, with new photons ready to use), such that in total Cn̄h̄ω

of energy is used.
Figure 2(b) shows a dip in the channel eigenerror at τ =

π/2. This behavior does not occur if the driving system is
initialized with a Poisson distribution, and it has to be con-
sidered a hallmark of the quantum nature of the initial state
of the driving field. In fact, by taking the limit s → 0 (for
the case of binomial state) with a value of n̄ sufficiently
large, the channel eigenerror at τ = π/2 is 0.25 and becomes
independent from the number C of concatenations. This dip
in the channel eigenerror at τ = π/2 can be observed until
values of s up to s = 0.2. Instead, for all the other values of τ ,
the state of the logical system rapidly approaches the mixed
state under performing quantum gate concatenation, and the
channel eigenerror generally increases.

As briefly introduced above, one would ask whether, for
the same target eigenerror, there is an energetic advantage
from subdividing a given pulse shot E into a concatenation
of multiple shots of shorter duration. To answer this question,
suppose that we want to rotate the logical state by an angle θ ,
by having at our disposal a total of n̄ photons. To do this, we
can either perform a single shot evolution of the angle θ—via
a driving field using all the n̄ available photons—or we can
implement C shots, each using n̄/C photons and each rotating
the logical state by the angle θ/C. Note that, in the latter case,
each pulse must be applied for the time t = θ/g

√
Cn̄.

In Fig. 3 we show numerical results of this analysis done
on the X gate, which can be realized through a single JC shot
with τ = π/2. We can see that, from an energetic point of
view, subdividing a quantum operation increases the channel
eigenerror, when the state of the driving system is taken as a

Poisson distribution, namely, a coherent state. In Appendix D
we analytically derive that such an error approximately scales
as

ε̄θ,C ≈ 1

6n̄

[
θ2 + C2 sin2

(
θ

C

)]
. (22)

In conclusion, the strategy of breaking the target operation in
many cycles is not optimal for the eigenerror-energy balance
when using a fixed amount of total energy in the driving
system. Therefore, it appears better to carry out a “single
shot” evolution that is powered from the beginning by all the
available energy, in terms of the number of photons.

VI. CONCLUSIONS

In this paper we provide analytical bounds for the error that
inevitably arises when one performs a quantum computation
by processing the information stored in a quantum logical
system via a drive, operated, for example, by a laser.

First, we introduce from first principles practical quan-
tifiers for the performance of a quantum operation, the
eigenfidelity and the channel eigenfidelity. They provide upper
bounds to the fidelity of the operation in terms of the spectral
radius and the purity of the computation output state. From
this point of view, these bounds make one understand whether
a quantum gate—driven by an external field—is close to its
maximum fidelity value, given the characteristics of the drive
itself. In particular, the upper bound (1 + γ̄t )/2 of the channel
eigenefidelity can be accounted as a best-case gate fidelity in
using Et to approximate a target unitary logical operation.

Second, we show how the eigenfidelities are deeply con-
nected with the energetics of the quantum logical operation
of interest. In accordance with Refs. [12,20,21], we are able
to derive the minimal energy requirements for implementing
a logic operation within a given target fidelity. Such mini-
mum energy cost arises as a trade-off between two opposing
constraints: (1) the entanglement between the drive and the
quantum logical system, whose presence can entail a decrease
in the logical state’s fidelity, and (2) the minimal time required
for the computation, which is bounded by quantum speed
limits. In our case study (the Jaynes-Cummings model), we
show with analytical and numerical derivations how to bal-
ance these constraints in order to attain a minimal fidelity.
Specifically, we compute the scaling of the channel eigenfi-
delity (representing the quality of the gate that realizes the
computation) in performing a given Hilbert-space rotation
(space), as a function of the number of photons carried by
the drive (energy), the duration of the driving pulse (time),
and the number of splitting with which the computation can
be achieved (concatenations). As shown above, not all these
requirements can be fulfilled at maximum efficiency, and
trade-off conditions have to be established for any quantum
gate one aims to implement via a driving system.

As an outlook, it might be interesting to determine whether
an exact scaling of the channel eigenfidelity, in relation to
the QSLs, holds for even more complex models (in terms
of interaction terms) than the JC model, and possibly if
an experimental validation is feasible. Nevertheless, these
energetic bounds may be improved upon by introducing a
further correction system made of ancillary qubits and a
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supplementary drive, as proposed in [16]. We expect that
our results can find application to quantum technologies, and
especially to quantum computing where linking the fidelity of
computation with the needed resources (the time and energy
injected by the drive) to achieve it is of fundamental impor-
tance for proper engineering of the technology [45]. As we
go towards working with better and more qubits than ever, the
bounds discussed in this paper could become a fundamental
challenge at the core of the development of large-scale quan-
tum devices operated by external drives.
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APPENDIX A: EVOLUTION OF A LOGICAL STATE
UNDER THE JAYNES-CUMMINGS INTERACTION

Let Et be the quantum channel that approximately maps
an initial logical state ρ(0) =∑i, j ri j |i〉〈 j| to another logical
state at time t , by following the JC evolution and tracing out
the drive’s DOF. Since Et is a linear CPTP map, one has that
ρ(t ) = Et [ρ] =∑i j ri j Et [|i〉〈 j|]. Therefore, the evolution of
a generic initial logical state can be described by knowing how
the operators Ei j = Et [|i〉〈 j|] change over time. The explicit
expression of these operators are given by the averages Ei j =
Edr[Fi j] =∑n |bn|2Fi j (n) over the set of drive coefficients,
where the operators Fi j (n) are, in the computational basis,
represented by

F00(n) =
(

c2
n

bn+1

bn
cnsn+1

bn+1

bn
cnsn+1 s2

n

)
,

F11(n) =
(

s2
n+1 − bn+1

bn
sn+1cn+2

bn+1

bn
sn+1cn+2 c2

n+1

)
,

F01(n) =
⎛
⎝− bn+1

bn
cn+1sn+1 cn+1cn+2

bn+2

bn
sn+1sn+2

bn+1

bn
cn+1sn+1

⎞
⎠,

F10(n) = F01(n)†,

with ωn = g
√

n, cn := cos(ωnt ), sn := sin(ωnt ), and z is the
complex conjugate of z. The averages are taken element-wise.

APPENDIX B: PROOFS FOR EIGENFIDELITY
OF QUANTUM STATES AND CHANNELS

Proposition 1. The closest pure states to a generic density
operator 
 are the eigenstates (or eigenstate, in the nondegen-
erate case) |ψ〉 corresponding to the largest eigenvalue r(
) of

, also denoted as its spectral radius. Formally,

F (
, ρϕ ) � r(
) (B1)

for any pure state ρϕ := |ϕ〉〈ϕ|, and F (
, ρϕ ) = r(
) if and
only if 
|ϕ〉 = r(
)|ϕ〉.

Proof. Let 
 =∑i fi|ψi〉〈ψi| be the spectral decomposi-
tion of 
, with

∑
i fi = 1 and f1 � · · · � fn. Thus, the fidelity

with which 
 ‘approximates’ the density operator |ϕ〉〈ϕ| given
by the outer product of a generic state |ϕ〉 is

〈ϕ|
|ϕ〉 =
∑

i

fi|〈ψi|ϕ〉|2 � f1

∑
i

|〈ψi|ϕ〉|2 = f1 = r(
).

Moreover, if 
|ψ〉 = f1|ψ〉, then 〈ψ |
|ψ〉 = f1 and |ψ〉〈ψ | is
one of the density operators, given by the outer product of a
pure state, that is closest to 
. �

Proposition 2. For any p � 1, spectral radius of a density
operator 
 is bounded from below and above as

‖
‖q
p � r(
) � ‖
‖p, (B2)

where q is such that 1/q + 1/p = 1.

Proof. The fact that ‖
‖p := ( f p
1 + · · · + f p

n )1/p is an up-
per bound of r(
) is an already known property of the spectral
radius. The spectral radius r(
), indeed, is a lower bound of
any matrix norm (expressed in terms of p) of 
. This is a
consequence of the Gelfand’s formula, which states that

r(A) = inf
p>0

‖Ap‖1/p = lim
p→∞ ‖Ap‖1/p

for any bounded operator A in a Banach space (see, for in-
stance, Example 7.1.4 of Ref. [46] or Theorem 10.13 of [47]).

The lower bound is actually an improvement over the more
familiar bound ‖
‖p/n1/p. In fact, we can prove the following
chain of bounds for p > 1:

‖
‖p

n1/p
� ‖
‖q

p � r(
),

where q, also called the Hölder’s conjugate of p, is such that
1/p + 1/q = 1, i.e., q = p/(p − 1). Suppose that f1 � · · · �
fn are the eigenvalues of 
; then we shall have

‖
‖q
p = ( f p

1 + · · · + f p
n

) 1
p−1

�
(

f p−1
1 ( f1 + · · · + fn)

) 1
p−1

= f1 = r(
).

We thus need to prove the inequality ‖
‖p/n1/p � ‖
‖q
p.

In doing this, first we claim that the maximally mixed state

̃ := diag(1/n, . . . , 1/n) minimizes the p-norm over all the
density operators:

‖
‖p � ‖
̃‖p = n1/p

n
for all 
.

This result can be proved by using the Hölder’s inequal-
ity on the vectors of eigenvalues f = ( f1, . . . , fn) and
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e = (1/n, . . . , 1/n), leading to

‖ f · e‖1 � ‖ f ‖p‖e‖q,

where here · denotes the element-wise product. On the one
hand, ‖ f · e‖1 = 1/n, since ‖ f ‖1 = 1. On the other hand, it
can be shown that also ‖e‖p‖e‖q = 1/n. Hence,

‖e‖p‖e‖q = 1

n
= ‖ f · e‖1 � ‖ f ‖p‖e‖q.

Dividing both sides by ‖e‖q, we get

‖e‖p � ‖ f ‖p ⇐⇒ ‖
̃‖p � ‖
‖p,

with ‖ f ‖p and ‖e‖p identically equal to ‖
‖p and ‖
̃‖p respec-
tively. This proves the statement above about the maximally
mixed state 
̃. Finally, we carry out the calculation

‖
‖q
p = ‖
‖p‖
‖− 1

(1−p)
p � ‖
‖p‖e‖− 1

(1−p)
p = ‖
‖p

n1/p
,

which concludes the proof. �
Theorem 1. The eigenfidelity r(
) and eigenerror ε(
) of


 are bounded from below and above as

γ � r(
) � 1 + γ

2
and

SL

2
� ε(
) � SL,

where γ := tr
2 and SL := 1 − γ denote, respectively, the
purity and the linear entropy of 
.

Proof. Let f1 � · · · � fn be the eigenvalues of 
 with f1 =
r(
). On the one hand, being f 2

i � f1 fi, we get that

tr
2 = f 2
1 + · · · + f 2

n � f1( f1 + · · · + fn) = f1 = r(
),

i.e., γ � r(
). On the other hand, using the inequality of
arithmetic and geometric means (AM-GM inequality), it holds
that

1 + γ

2
= 1 + tr
2

2
�
√

tr
2 � r(
),

as 0 � γ � 1. We have thus derived the lower and upper
bounds of r(
). Then the bounds of the eigenerror ε(
) are di-
rectly obtained from making the substitution ε(
) = 1 − r(
).
�

Proposition 3. For qubits, γ̄t has a closed-form expression:

γ̄t = 1
3 tr
(
E2

00 + E00 E11 + E2
11 + E01 E10

)
,

where, for simplicity, we defined Ei j := Et [|i〉〈 j|] with i, j =
0, 1.

Proof. We have to compute the average value of the purity
γt := trEt [ρ]2 over all possible pure initial states ρ. For a
qubit, the density operator of a generic initial pure state |α〉 =
eiϕ cos α|0〉 + e−iϕ sin α|1〉 is represented, in the |0〉, |1〉 basis
as

ρ = 1

2

(
1 + cos(2α) ei2ϕ sin(2α)
e−i2ϕ sin(2α) 1 − cos(2α)

)
.

Moreover, the value of ρ(t ) = Et [ρ] can be written as a linear
combination of the evolved elements Ei j := Et [|i〉〈 j|] with
i, j = 0, 1. Hence, γt is a function of α and ϕ. As a result,
taking the average value over 0 � α � π/2 and 0 � ϕ � π

yields the desired result, which was checked using Sagemath
[44]. �

APPENDIX C: BOUNDS ON QUANTUM GATES FIDELITY

The results in Sec. III can be specialized to provide lower
and upper bounds to the fidelity of a quantum gate that we
wish to implement. In doing this, we take the quantum gate U
that brings |α〉 to |δ〉, i.e., |δ〉 = U |α〉, so that Eq. (5) becomes

F (Et [ρα],UραU †) = 〈α|U †Et (|α〉〈α|)U |α〉
= tr[(|α〉〈α|T ⊗ |α〉〈α|)SU,t ], (C1)

with SU,t denoting the Choi matrix [48] associated with the
transformation ρα → U †Et [ρα]U . Using Eq. (C1) and the
linearity of the trace, one can compute the average fidelity
associated with the quantum gate U ,

F̄ (Et ,U ) :=
∫

dμ(ρα )F (Et [ρα],UραU †) = tr(ASU,t ),

(C2)
where A is a d2 × d2 matrix obtained by averaging ρT

α ⊗ ρα

over all the pure states ρα . For example, for a logical state
encoded in a qubit,

A = 1

6

⎛
⎜⎜⎝

2 0 0 1
0 1 0 0
0 0 1 0
1 0 0 2

⎞
⎟⎟⎠.

The value F̄ (Et ,U ) is the average fidelity with which the
quantum channel Et “approximates” the quantum gate U .
Equation (C2) equals the average quantum gate fidelity,
Eq. (18), in [49].

Combining Proposition 1 and Corollary 1 gives us an upper
bound also on F̄ (Et ,U ). Such a bound is provided by the
channel eigenfidelity r̄(Et ), which in turn is bounded from
above by (1 + γ̄ )/2. Hence, for any time t ,

F̄ (Et ,U ) � r̄(Et ) � 1 + γ̄t

2
.

APPENDIX D: BOUNDS ON THE CONCATENATION
OF QUANTUM GATES

For a qubit, any quantum channel E can be represented by
the Pauli transfer matrix (PTM) P ∈ C4×4 given by [50]

P =
(

1 0
v A

)
,

whose elements are Pi j ≡ tr(σi E[σ j]), with σi denoting—as
usual—the 2 × 2 Pauli matrices including the identity. More-
over, A is a 3 × 3 matrix, v is a column vector of dimension 3,
and 0 is a row vector ∈ R of zeros.

In the PTM formalism, a quantum state ρ is represented by
the Bloch vector

b ≡ [tr(ρ σ1), tr(ρ σ2), tr(ρ σ3)],

and the eigenerror is returned by

ε(ρ) = 1 − ‖b‖
2

.

Then the quantum state E[ρ] is represented by the vector

b1 = Ab0 + v.
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FIG. 4. Channel eigenerror committed from concatenating C
identical logical operations operated by the JC evolution. The ini-
tial state of the drive is a binomial distribution with n̄ = 25, s =
�n2/n̄ = 1/2, and the reduced interaction time τ is made to vary in
the interval [0, π/2]. Solid line: numerical simulation; dashed line:
analytical approximation of the channel eigenerror as provided by
Eq. (D4).

Repeated application of the quantum channel E leads the
system to converge to a fixed point, which we can calculate in

FIG. 5. Comparison between the analytical (dashed lines) and
numerical (solid lines) scaling of the channel eigenerror in con-
catenating C logical operations enabled by the JC evolution. The
numerical scaling is exactly the one in Fig. 3, and the analytical
prediction of the scaling is provided by Eq. (D5).

the PTM formalism as b∗ = Ab∗ + v or

b∗ = (I − A)−1v.

Notice that it is implicitly required that (I − A) is invertible,
which is true for the most physical cases. Otherwise, to solve
the equation above, the Moore-Penrose pseudo-inverse can be
used. In terms of this fixed point, concatenating C times the
channel E on the quantum state ρ results in the Bloch vector

bC = ACb0 + A
(
I − AC−1

)
b∗ + v

= ACb0 + (I − AC )b∗,

which indeed approaches b∗ if ‖A‖∞ < 1.
Our goal is to calculate the average of the channel eigen-

error
1 − ‖bC‖

2
over all input pure states b0. For this purpose, we first make the
approximation b∗ ≈ 0 (such that bC ≈ ACb0), which is valid
for short interaction times τ � π . Then, since calculating the
average of ‖ACb0‖ (i.e., ‖ACb0‖) is a hard task, we approxi-
mate ‖ACb0‖ through its root-mean-square:∫

dμ(b0)‖ACb0‖ ≈
√∫

dμ(b0)‖ACb0‖2

=
√

σ 2
1 (AC ) + σ 2

2 (AC ) + σ 2
3 (AC )

3
, (D1)

where σ1(AC ) � σ2(AC ) � σ3(AC ) are the singular values of
AC . It is worth noting that, albeit convenient for computation
purposes, the approximation in the first line of Eq. (D1) is
clearly not valid in general. Thus, before proceeding, we made
sure that in the parameters regime of interest for our case study
involving the JC model, the approximation in (D1) is fulfilled
with negligible error.

At this point, in the case Eq. (D1) is approximately valid,
one needs to determine the singular values of AC , whose
analytical expression is difficult to determine in the gen-
eral case. We thus resort to the Gelfand’s formula whereby
σ3(AC )1/C −→ |λ3(A)|, in the limit of C large (C → ∞),
where λ3(A) refers to the largest eigenvalue (in absolute value)
of A. In the case where the logical qubit is operated by the
JC Hamiltonian, A has a particular block structure (a 1 × 1
and a 2 × 2 blocks, where the two eigenvalues of the 2 × 2
block have the same modulus, as shown below) that makes the
Gelfand’s formula valid for all three singular values, such that
σi(AC ) ≈ |λi(A)|C . If we assume that the drive is initialized in
a state with a binomial distribution, then the eigenvalues of the
matrix A have just two distinct values in modulus:

|λa| = |λb| ≈
√√√√1 − 1

n̄

(
sτ 2 + sin2(τ )

2s

)
,

|λc| ≈
√

1 − sin2(τ )

sn̄
.

Depending on s, either eigenvalue may be dominant. As a
result, using these values and the approximations above, the
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average channel eigenerror is approximately equal to

ε̄τ,C ≈ 1

2
− 1

2

√
|λ1|2C + |λ2|2C + |λ3|2C

3
, (D2)

where, we recall, by definition |λ1| � |λ2| � |λ3|. Under the
additional assumption that the value of the dominant eigen-
value λ3 is, in modulus, larger than the other eigenvalues, then
(D2) can be further approximated as

ε̄τ,C ≈ 1 − |λ3|C
2

, (D3)

which we have used to explain the behaviors shown in Fig. 2
with theoretical arguments. Specifically, for n̄=25 and s=1/2
(as in Fig. 2), (D3) becomes

ε̄τ,C ≈ 1

2
− 1

2

(
1 − sτ 2 + sin2(τ )

2sn̄

)C/2

. (D4)

In Fig. 4 we plot the comparison between the approximated
analytical value of ε̄τ,C as given in Eqs. (D2) and the channel
eigenerror obtained numerically using for the drive state a
binomial distribution with n̄ = 25 and s = 1/2.

In the same way, we can also compare the channel eigen-
error of an evolution with duration τ employing n̄ photons,
against C evolutions of time τ/C and n̄/C photons. For the
case studied in Fig. 3, the dominant eigenvalue (in modulus)
is λc such that the corresponding channel eigenerror follows
the approximate behavior

ε̄τ,C ≈ 1

6n̄

[
τ 2 + C2 sin2

( τ

C

)]
. (D5)

Here (D5) well approximates the behaviors observed in Fig. 3,
as illustrated in Fig. 5.
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