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Anomalous Fraunhofer-like patterns in quantum anomalous Hall Josephson junctions
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The intriguing interplay between topology and superconductivity has attracted significant attention, given its
potential for realizing topological superconductivity. In the quantum anomalous Hall insulators (QAHIs)-based
junction, the supercurrents are carried by the chiral edge states, characterized by a 2�0 magnetic flux periodicity
(�0 = h/2e is the flux quantum, h the Planck constant, and e the electron charge). However, experimental obser-
vations indicate the presence of bulk carriers in QAHI samples due to magnetic dopants. In this study, we reveal a
systematic transition from edge-state to bulk-state dominant supercurrents as the chemical potential varies from
the bulk gap to the conduction band. This results in an evolution from a 2�0-periodic oscillation pattern to an
asymmetric Fraunhofer pattern. Furthermore, a Fraunhoher-like pattern emerges due to the coexistence of chiral
edge states and bulk states caused by magnetic domains, even when the chemical potential resides within the
gap. These findings not only advance the theoretical understanding but also pave the way for the experimental
discovery of the chiral Josephson effect based on QAHI doped with magnetic impurities.

DOI: 10.1103/PhysRevResearch.6.023293

I. INTRODUCTION

In recent decades, research on quantum anomalous Hall
insulators (QAHIs) has flourished, driven not only by the
intriguing physical phenomena they exhibit but also by
their potential for various technological applications [1–4].
These applications include serving as platforms for realizing
topological quantum computation, resistance standards, and
dissipation-free interconnects [3]. In a QAHI, the bulk be-
haves as an insulator, while electrons can propagate along
the edges of the sample. These edge states, termed chiral
edge states, propagate unidirectionally along the edge. Con-
sequently, QAHI is distinguished by a quantized Hall effect,
even in the absence of external magnetic fields. The existence
of QAHI states has been theoretically predicted in a range
of materials [5–7] and experimentally verified in Cr-doped
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topological insulator films for the first time [8]. Subsequently,
QAHI has been experimentally demonstrated in various mate-
rials, including Cr-doped (Bi, Sb)2Te3 films [9–17], V-doped
(Bi, Sb)2Te3 films [10,18–22], MnBi2Te4 [23–25], and re-
cently, moiré superlattice systems [26–28]. Remarkably, the
proximity of a QAHI to an s-wave superconductor (SC) was
predicted to potentially realize a chiral topological supercon-
ductor within these heterostructures via the superconducting
proximity effect [29,30]. Therefore, QAHI/SC heterostruc-
tures have garnered considerable attention as promising
platforms for realizing topological superconductors [29,31–
42]. More interestingly, when a QAHI is sandwiched by two
QAHI/SC heterostructures, supercurrent is carried by the chi-
ral edge states, termed a chiral Josephson junction (JJ) in
our paper. Investigating JJs based on QAHIs provides insight
into the interplay between topology and superconductivity,
offering the potential for novel phenomena and applications
in quantum information processing and topological quantum
computing [43–46].

Generally, the supercurrent in JJs is generated by the An-
dreev reflection process, which involves the conversion of an
electron into a hole at the superconductor interface [47]. This
process is accompanied by the creation of a Cooper pair in the
superconducting region. As shown in Fig. 1(d), local Andreev
reflections (LARs) occur uniformly in a conventional JJ. Thus,
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FIG. 1. (a) Schematic diagram of a QAHI-based JJ. The QAHI is
partially covered by two superconducting electrodes, both composed
of QAHI/SC heterostructures. The central region and the supercon-
ducting region have sizes of W × L and W × Ls, respectively. (b) The
QAHI energy spectrum with a length of L = 40a is calculated us-
ing a lattice model described by Eq. (2). μ1 = 0 and μ2 = 0.42�

are the chemical potentials, indicated by the green dashed lines.
(c) Schematic diagram of CARs in real space, where Andreev pairs
are constituted by electrons and holes propagating along opposing
edges. (d) Schematic diagram of LARs in real space, where Andreev
pairs formed by bulk carriers exhibit uniform distribution within the
central region. In (b)–(d), we use purple (gray) lines to represent edge
(bulk) carriers, respectively.

the critical Josephson current Ic, which is carried by bulk
carriers, oscillates with the external magnetic flux � due to the
interference of the supercurrents flowing through the junction
in the presence of the magnetic flux. This oscillatory behavior
gives rise to a quantum interference pattern known as the
Fraunhofer pattern. The Fraunhofer pattern is characterized
by a central lobe with a width of 2�0 and decaying side
lobes. Here, �0 = h/2e is the flux quantum, h the Planck con-
stant, and e the electron charge. When time-reversal symmetry
is preserved, the Fraunhofer pattern is symmetric, meaning
Ic(�) = Ic(−�).

On the other hand, in a chiral JJ depicted in Fig. 1(a), the
presence of gapped bulk states inhibits the bulk supercurrent.
However, supercurrents can propagate through the chiral edge
states even when the chemical potential resides within the
bulk gap. Due to the chiral nature of edge states, electrons
on the top edge are transformed into holes propagating along
the bottom edge [see Fig. 1(c)]. This conversion of electrons
and holes takes place in the spatially separated edges, known
as crossed Andreev reflections (CARs) [48–52]. This process
is reminiscent of the Aharonov-Bohm (AB) oscillations [53],
where electrons traveling along different paths enclose a mag-
netic flux �, causing resistance to oscillate with the magnetic
flux exhibiting a periodicity of 2�0 [54]. Consequently, the
critical Josephson current Ic in response to the external mag-
netic flux � can be described theoretically by the periodicity
of 2�0 [48,49,52,55–59]. On the other hand, experimental
observations have confirmed the importance of the bulk states,
induced by magnetic dopants, on the transport properties of
QAHIs [2,3]. However, previous studies did not consider the
effects of these bulk states on the quantum interference pat-
terns in chiral JJs. Therefore, research addressing this question
is highly desirable.

In this work, we systematically explore a JJ based on a
QAHI with magnetic dopants, aiming to address the above
question. The Josephson current Is is calculated by the re-
cursive Green-function method. First, we present the critical
Josephson current Ic as a function of the magnetic flux �

for various chemical potentials μ. We find an evolution of
quantum interference patterns from a 2�0-periodic oscillation
pattern to an asymmetric Fraunhofer pattern. The two typical
interference patterns result from different Andreev reflection
processes as shown in Figs. 1(c) and 1(d). Second, we simu-
late the effects of magnetic domains on the two interference
patterns. We find that the asymmetric Fraunhofer pattern is
very robust against the domains, while the 2�0-periodic oscil-
lation pattern is susceptible to modest magnetic fluctuations.
Remarkably, a different Fraunhofer-like pattern, with periods
twice those of the conventional one, emerges when the chiral
edge state and magnetic domain states coexist at μ = 0. The
observed Fraunhofer-like pattern is expected to extend beyond
our model and could be prevalent in materials doped with
magnetic impurities, suggesting potential for further experi-
mental verification.

The paper is organized as follows. We introduce the model
and methods employed in this work in Sec. II. Section III
presents the key findings of our calculations and the corre-
sponding remarks. More specifically, Sec. III A discusses two
distinct quantum interference patterns. The effects of mag-
netic domains, which are covered in Sec. III B, inevitably
occur in the magnetically doped topological insulators. We
find that the 2�0-periodic oscillation effect is destroyed by
modest magnetic fluctuations. A different Fraunhofer-like
pattern is observed even when μ = 0. Section IV is the
conclusion.

II. MODEL AND METHODS

As depicted in Fig. 1(a), the QAHI-based junction com-
prises three parts: two superconducting electrodes and a
central region with QAHI. The 4 × 4 low-energy effective
Hamiltonian describing magnetic topological insulator thin
films in the central region is given by [7,60]

H (k) = h̄vF (kyσxτz − kxσyτz ) + m(k)τx + Mzσz (1)

in the basis of ψk = [ψk,t↑, ψk,t↓, ψk,b↑, ψk,b↓]T with the
wave vector k. ↑ (↓) represents the spin direction, and t
(b) denotes the top (bottom) layer. The symbols σx,y,z and
τx,y,z correspond to the Pauli matrices for spin and layer,
respectively. Mz represents the exchange field along the z
axis induced by the ferromagnetic ordering. The term m(k) =
m0 − m1k2 describes the coupling between the top and bottom
layers. The system is in the QAHI phase with the Chern
number C = sgn(Mz ) when |Mz| > |m0|, while it is a normal
insulator with C = 0 when |Mz| < |m0|.

In our numerical simulations, we discrete the Hamiltonian
in Eq. (1) to a tight-binding model in a square lattice as [44]

H =
∑

i j

(ψ†
i t0ψi + ψ

†
i txψi+x̂ + ψ

†
i tyψi+ŷ + H.c.), (2)
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where x̂ (ŷ) is the unit vector along the x (y) axis and i is the
site index. The 4 × 4 matrices t0,x,y are given by

t0 =
(

m0 − 4
m1

a2

)
τxσ0 + Mzτ0σz,

tx =
(

m1

a2
τxσ0 + ivF

2a
τzσy

)
eiφi,i+x̂ ,

ty = m1

a2
τxσ0 − ivF

2a
τzσx, (3)

where tx gains a phase φi j = π
∫ j

i A · dl/�0 due to the mag-
netic field B in the z direction with the vector potential
A = (−yB, 0, 0), and �0 = h/2e is the flux quantum with
the Planck constant h and the elementary charge e. Here,
σ0 (τ0) denotes the 2 × 2 identity matrix. The total magnetic
flux of the central region is denoted as �. Utilizing Eqs. (2)
and (3), we can visualize the energy spectrum in the QAHI
when � = 0, depicted in Fig. 1(b). The bulk states (gray) are
gapped, accompanied by the gapless edge states (purple).

In proximity to an s-wave SC, a finite pair amplitude
is induced in the QAHI. The Bogoliubov–de Gennes
(BdG) Hamiltonian of QAHI/SC heterostructures in
Nambu space is given by HSC = ∑

k 	
†
kHSC(k)	k/2 with

	k = [(	k,t↑, 	k,t↓, 	k,b↑, 	k,b↓), (	†
−k,t↑, 	

†
−k,t↓, 	

†
−k,b↑,

	
†
−k,b↓)]T, and

HSC(k) =
(

H (k) − μs �

�† −H∗(−k) + μs

)
,

� =
(

ieiϕL(R)�tσy 0

0 ieiϕL(R)�bσy

)
. (4)

Here, μs is the chemical potential of the superconduting
regions, and ϕL and ϕR are the superconducting phases in
the left and right sides of the junction. The physical prop-
erties only depend on the superconducting phase difference
ϕ = ϕL − ϕR. �t and �b denote the induced superconducting
pairing potentials on the top and bottom layers, respectively.

The QAHI regions in Nambu space can be represented as

HBdG(k) =
(

H (k) − μ 0

0 −H∗(−k) + μ

)
. (5)

Here, μ is the chemical potential of the QAHI region. For
simplicity, the parameters are set as follows: lattice constant
a = 1, Fermi velocity υF = 1, �t = 0.5 and �b = 0, m1 =
2�t a2, and m0 = −0.2�t in this work, and both the QAHI
and superconducting regions have dimensions W × L(Ls) =
100a × 40a. In the following calculations, we use � instead
of �t .

The Josephson current I in the QAHI region can be calcu-
lated by the recursive Green-function method and expressed
as [61–63]

I = − ieKBT

h̄

∑
n

Tr[T̂xĜx+1,x(iωn) − T̂ †
x Ĝx,x+1(iωn)], (6)

where e is the electron charge, kB is the Boltzmann constant, h̄
is the reduced Planck constant, and T is the temperature. The
hopping term T̂x in Nambu space is given by T̂x = (tx

−t∗
x
),

FIG. 2. Quantum interference patterns in different regimes. The
critical Josephson current Ic vs the magnetic flux � in the unit of
�0. (a) CARs happen when only chiral edge states are included with
μ = 0. Ic exhibits the AB oscillation characterized by a periodicity
of 2�0. (b)–(e) The behavior of Ic deviates from the 2�0-periodic
oscillation as μ takes on values of 0.2�, 0.42�, 0.8�, and 1.4�,
respectively. (c) LARs take place in the JJs, and the 2�0-periodic
oscillation is destroyed. (d) The emergence of central and side lobes
is a consequence of the interference pattern transitioning toward a
regime dominated by bulk carriers. (f) Ic displays the typical asym-
metric Fraunhofer pattern with μ = 2�. In this regime, the bulk
carriers uniformly flow through the whole QAHI region. In all cases,
the blue (orange) solid lines represent Ic curves corresponding to
Mz = ±0.6�, μs = μ, and the temperature T = �/200.

where tx originates from Eq. (3). The Green function is
expressed as Ĝ(iωn) = (iωn − HBdG − 
L − 
R)−1 with the
Matsubara frequency ωn = (2n + 1)πkBT . The index n in
the sum represents a summation over Matsubara frequencies,
where n spans all integer values. Here, 
L(R) denotes the
self-energy induced by the coupling between the left (right)
superconducting leads and the QAHI region, which can be
calculated numerically [64].

III. NUMERICAL RESULTS

A. Evolution of quantum interference patterns

In this section, we investigate the evolution of the quantum
interference patterns within the QAHI-based junction as the
chemical potential varies. At a chemical potential of μ = 0, as
depicted in Fig. 2(a), the QAHI region exclusively accommo-
dates chiral edge carriers. At the interface between the QAHI
and the SC, an electron from one chiral edge mode can tunnel
into a hole on the opposite edge through the CAR process.
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Similarly, the holes are then reflected as electrons along the
other QAHI-SC interface. This entire process forms a loop,
completing the transfer of the supercurrent, and leading to
an intriguing AB oscillation pattern. This interference pattern,
a hallmark of chiral edge states, exhibits two distinctive fea-
tures: (1) Unlike the conventional �0 periodicity, the critical
Josephson current Ic has a periodicity of 2�0. (2) The minima
of Ic are nonzero. These findings align with prior research
studies [48,49,52,55–59]. Furthermore, by shifting the chem-
ical potential to μ = 0.2�, an observed phase shift arises
from the finite chemical potential. This occurrence is tied to
the sustenance of the Josephson current by Andreev bound
states forming a closed loop. Consequently, the product of the
Fermi wavelength and the circumference, kF ∗ Ld , introduces
a phase shift, resulting in current oscillations relative to the
chemical potential. The results depicted in Figs. 2(a) and 2(b)
demonstrate that nonvanishing supercurrent can be sustained
by the chiral edge states even in the absence of bulk carriers,
exhibiting a periodicity of 2�0. Such a supercurrent feature
of the chiral edge state is very distinct from the behaviors of
bulk states in the conventional JJs. Interestingly, when μ is
0.42�, the chemical potential touches with the bottom of the
conduction band [see Fig. 1(b)]. Thus, bulk carriers begin to
participate in the transport process, leading to the disruption
of the 2�0-periodic oscillation.

To trace the evolution of the Josephson current from edge
states to the bulk further, we continue to increase the chemical
potential to μ > 0.42�, disrupting the previously observed
2�0 periodicity. Interestingly, the Fraunhofer pattern with a
distinct central peak of width 2�0 forms when μ > 0.8�

[Figs. 2(d)–2(f)], signaling the increased dominance of bulk
states in the transport process. This occurrence correlates
with the population of bulk carriers within the QAHI region,
leading to a consistent appearance of LARs at QAHI-SC
interfaces as μ increases [refer to Fig. 1(d)]. Due to the
increase in bulk carriers, a noticeable enhancement in the
maxima of Ic is also observed, as seen in Figs. 2(a)–2(f),
exceeding hundreds of times. Furthermore, the Fraunhofer
pattern displays an asymmetric feature due to broken time-
reversal symmetry, namely, Ic(Mz,�) �= Ic(Mz,−�) when
the magnetic field direction is reversed. Besides, the inver-
sion symmetry invariance of the QAHI’s Hamiltonian H (k)
leads to the relationship Ic(Mz,�) = Ic(−Mz,−�) [65,66].
The inversion symmetry holds because PH (−k)P−1 = H (k)
with P = σzτ0, where σz and τ0 are the Pauli matrix and
the unit matrix in spin space and layer space, respectively.
In the subsequent calculations, we focus exclusively on the
scenario where Mz = 0.3 due to the aforementioned relation-
ship between Ic(Mz ) and Ic(−Mz ). In summary, Ic of the
QAHI-based JJs undergoes a transition from a 2�0-periodic
oscillation pattern to an asymmetric Fraunhofer pattern by
tuning the chemical potential μ. Note that we do not discuss
the case where the chemical potentials μ and μs are different
here because the periodicity of 2�0 remains consistent when
the difference is not large (see Appendix for more
information).

To further reveal the origin of different interference pat-
terns, we investigate the distribution of current jc in the
QAHI region when the total current has its maximum value
[61–63]. The local critical current is usually used to repre-

FIG. 3. The spatial distribution of current (a and c) in the QAHI
region and (b and d) at the QAHI-SC interface when the total current
at its maximum value is examined under varying chemical potentials:
(a and b) μ = 0 and (c and d) 2�. In all cases, Mz = 0.6�, � = 0,
μs = μ, and the temperature T = �/200.

sent the current distribution of various systems, e.g., quantum
Hall systems [67]. Figure 3 demonstrates the distribution of
current along the x direction, jc(y), corresponding to the
superconducting phase difference ϕ, precisely when the to-
tal current

∑W
y=1 jc(y) reaches its maximum. At μ = 0, the

current predominantly flows along the QAHI region’s two
edges, as evidenced in the spatial distribution of jc displayed
in Figs. 3(a) and 3(b). This observation aligns with the phe-
nomenon depicted in Fig. 1(c), where transport within the
central region is solely governed by the propagation of chi-
ral edge carriers. Additionally, this distribution of current is
consistent with the quantum interference pattern shown in
Fig. 2(a), characterized by a periodicity of 2�0. Moreover,
Figs. 3(c) and 3(d) show a bulk-dominated transport process,
as the μ value is increased to 2�. Thus, local Andreev pairs
become uniformly distributed across the QAHI region [see
Fig. 1(d)], resulting in a Fraunhofer pattern, as observed in
Fig. 2(f).

B. Effects of magnetic domains

Given the inevitable appearance of domains in magneti-
cally doped topological insulators, we utilize a percolation
model to simulate the effects of random domains on quantum
interference patterns [68]. In realistic samples, domains typi-
cally exhibit irregular shapes. However, the specific shapes of
domains are not of particular importance to our study. The
bulk carriers induced by domains that are essential to the
physics discussed in this section. Therefore, for the sake of
simplicity, we model domains as rectangular in shape.

Figure 4(a) demonstrates the division of the central region
into multiple blocks, each consisting of specific unit cells
sized d1 × d2. The magnetization within each block is ran-
domly chosen to potentially flip with a probability of P, while
the flipped magnetization strength is uniformly distributed in
the range of [−w/2,w/2] with the disorder strength w.

In Figs. 4(b) and 4(c), we display the domain-averaged
critical Josephson current, denoted as Ic. Initially, focusing
on the case with μ = 0 in Fig. 4(b), it is observed that Ic

remains relatively stable [in comparison with Fig. 2(a)] when
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FIG. 4. (a) Schematic diagram of a QAHI-based JJ with a ran-
dom magnetic domain structure (top view). The domain size is
denoted by d1 × d2. The quantum interference patterns are affected
by the different strengths of magnetic disorder w when (b) μ = 0 and
(c) μ = 2�. In all cases, the domain size is d1 × d2 = 10a × 4a, and
the domain probability P = 0.5. The remaining parameters are set as
Mz = 0.6�, μs = μ, and the temperature T = �/200. We average
over 50 random domain configurations [69].

w = 0.4�, indicating the robustness of chiral edge states
against weak magnetic disorder (w). Then, at w = �, the
partial destruction of chiral edge modes diminishes the peak
of the critical Josephson current Ic. Despite domains causing
the emergence of some bulk carriers in the QAHI region, the
2�0 periodicity remains notably stable, owing to the domi-
nance of transport by chiral edge modes. After that, increasing
w to 1.6� initiates two simultaneous processes: the break-
down of chiral edge modes and a comparable contribution
of bulk carriers to that of chiral edge carriers. Consequently,
both the 2�0 periodicity and the characteristic shape of the
quantum interference pattern are lost. Conversely, at μ = 2�,
we observe remarkable stability in the interference pattern
of bulk carriers, maintaining the shape of the asymmetric
Fraunhofer pattern even at w = 1.6�. This suggests that the
unconventional 2�0-periodic oscillation is more susceptible
to disruption compared to the resilient nature of the asymmet-
ric Fraunhofer pattern under domain structures. Furthermore,
the values of Ic gradually decrease with increasing w in
Figs. 4(b) and 4(c), manifesting the influence of disorder
effects.

Next, we examine the spatial distribution of current jc
within the QAHI region and at the QAHI-SC interface when
the total current has its maximum value in Fig. 5, considering
the existence of domain structures. In our calculation, we
maintain a constant total magnetic flux � = 0 and compute
the distribution of current jc(y) along the x direction when
the total current

∑W
y=1 jc(y) reaches its maximum. Due to

the presence of domain structures, the distribution of current
jc exhibits static eddy-like currents in addition to constant
currents. In Figs. 5(a) and 5(b) at μ = 0, it is evident that
the chiral edge modes are disrupted, and some bulk carriers
emerge within the inner QAHI region due to the random
distribution of domains across the QAHI region. This

FIG. 5. The spatial distribution of current (a and c) in the QAHI
region and (b and d) at the QAHI-SC interface when the total current
has its maximum value affected by the domain structure is examined
under varying chemical potential values: (a and b) μ = 0 and (c
and d) 2�. In this case, the domain size is d1 × d2 = 10a × 4a, the
magnetic disorder strength w = 1.6�, and the domain probability
P = 0.5. In all cases, Mz = 0.6�, � = 0, μs = μ, and the tempera-
ture T = �/200.

observation aligns with the behavior depicted in the curve
corresponding to w = 1.6� in Fig. 4(b). Conversely, when
μ = 2�, the distribution of jc exhibits characteristics akin to
typical bulk transport, facilitating the stability of the asym-
metric Fraunhofer pattern within domain structures. Notably,
in Figs. 5(c) and 5(d), jc values oscillate more prominently
compared to Figs. 3(c) and 3(d).

To gain deeper insights into how domains affect the edge
current, we explore the quantum interference pattern at μ = 0
by varying the sizes of domains under a strong magnetic
disorder strength w = 2�, spanning a wider range of mag-
netic fields. In Fig. 6(a), an emergent central lobe is observed
within the interval �/�0 ∈ (−2, 2), alongside side lobes at
higher values of �. Additionally, the increase in the maxima
of the central lobe is linked to the emergence of bulk carriers
caused by a limited number of domains, particularly when the
domain size is d1 × d2 = 50a × 20a. This interference pattern
remarkably resembles the Fraunhofer pattern illustrated in
Fig. 2(f). The emergence of bulk carriers in the QAHI region
due to the presence of domains is the underlying cause of this
phenomenon. When we decrease the domain size to d1 × d2 =
20a × 10a to allow for a larger quantity of domains, a more
distinct Fraunhofer-like pattern is evident within the Ic values
in Fig. 6(b). Again, the presence of bulk carriers contributes
to the enhancement of maxima of the central lobe, compared
to the scenario depicted in Fig. 2(a). When the domain size
is further decreased to d1 × d2 = 10a × 4a, as depicted in
Fig. 6(c), the increased visibility of the periodicity in the
higher lobes reveals a distinct Fraunhofer-like pattern. In par-
ticular, the periods of the central and side lobes are twice
those of the conventional Fraunhofer pattern. To conclude,
the observed Fraunhofer-like pattern in chiral JJs likely ex-
tends beyond our model and is prevalent in those doped with
magnetic impurities, holding promise for further experimental
verification. In summary, the interference pattern within the
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FIG. 6. The Fraunhofer-like patterns. The quantum interference
patterns are affected by the domain structure at μ = 0 in a larger
magnetic field range with different block sizes d1 × d2: (a) 50a ×
20a, (b) 20a × 10a, and (c) 10a × 4a. In all cases, the magnetic
disorder strength w = 2� and the domain probability P = 0.5. The
remaining parameters are set as Mz = 0.6�, μs = μ, and the tem-
perature T = �/200. In (a)–(c), the orange regions show the central
lobes of the Fraunhofer-like pattern. We average over 15, 25, and 50
random domain configurations in (a), (b), and (c), respectively.

domain structure can be influenced by factors such as mag-
netic disorder strength w and domain size d1 × d2.

IV. DISCUSSION AND CONCLUSION

While QAHIs can manifest in various material classes,
our work focuses exclusively on magnetically doped topo-
logical insulators. The lack of comprehensive experimental
results on QAHI-based JJs is primarily due to the signifi-
cant experimental challenges. This challenge arises from the
difficulty of achieving coexistence among the QAHI and su-
perconductivity. Specifically, realizing the QAHIs requires
magnetic doping within topological insulators. Although
magnetic dopants are crucial for realizing QAHI, they also
pose challenges for maintaining superconductivity. Therefore,
achieving an appropriate magnetic doping ratio is crucial in
experimental setups. Additionally, the presence of magnetic
dopants raises questions regarding the formation of domains,
which is one of the primary aspects addressed in our work.
This results in the appearance of the anomalous Fraunhofer-
like pattern, which is likely widespread in chiral JJs doped
with magnetic impurities.

In this work, we explore the transport properties of the chi-
ral JJs based on the QAHIs connecting to two superconducting
electrodes, through numerical calculation of the Josephson
current (Ic). We present a systematic transition from edge-
state to bulk-state dominated supercurrent as the chemical
potential varies. This transition leads to an evolution from a
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FIG. 7. Quantum interference patterns when the chemical poten-
tials μ and μs exhibit differences. The critical Josephson current Ic vs
the magnetic flux � in the unit of �0 with varied chemical potentials
in the superconducting regions: (a) μs = 0.2� and (b) μs = 0.4�.
In all subplots, we take μ = 0, and the remaining parameters are
consistent with those in Fig. 3(a) in the main text.

2�0-periodic oscillation pattern to an asymmetric Fraunhofer
pattern. Furthermore, we observe the emergence of a different
Fraunhofer-like pattern, characterized by periods twice those
of the conventional pattern. This emergence is attributed to
the coexistence of chiral edge states and bulk states induced
by magnetic domains, even when the chemical potential is
within the gap. This phenomenon is likely widespread in
chiral JJs doped with magnetic impurities. Our findings also
hold promise for direct experimental verification.
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APPENDIX: THE EFFECTS OF THE
MISMATCH BETWEEN μ AND μs

We investigate the effects of the mismatch between μ

and μs on the quantum oscillation patterns. It should be
pointed out that the mismatch in chemical potentials alters
the scattering probability of Andreev reflections, potentially
resulting in three aspects: (1) deviations from the periodicity
of 2�0, (2) the maxima of the critical current occurring not at
� = ±(2n + 1)�0, where n is an integer, and (3) variations
in the values of the critical currents. However, it should be
emphasized that when the difference between μ and μs is not
large, the periodicity of 2�0 remains very steady, as illustrated
in Fig. 7. Consequently, we set μs = μ in the main text.
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