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Trapping polar molecules by surface acoustic waves
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We propose a method to trap polar molecules with the electric force induced by the surface acoustic wave
(SAW) on piezoelectric materials. In this approach, the electric force is perpendicular to the moving direction of
the polar molecules, and is used to control the positions of trapped polar molecules in the direction orthogonal to
the acoustic transmission. By virtue of an external electric force, the SAW-induced electric field can trap the polar
molecules into single-layer or multilayer lattices. The arrangement of molecules can affect the binding energy
and localization of the molecule array. Then the one- or two-dimensional trapped polar molecule arrays can be
used to construct the Bose-Hubbard (BH) model, whose energy and dynamics are affected by the localizations
of the trapped molecules. We find that the phase transitions between the superfluid and Mott insulator based on
trapped polar molecule BH model can be modulated by the SAW-induced electric potential.
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I. INTRODUCTION

Polar molecules have many potential applications such
as in quantum computation [1–6] and simulations [7–10].
The first step towards manipulating polar molecules is to
decelerate and trap them for further operations [11]. It has
been shown that polar molecules can be trapped by magnetic
[12–14], optical [15–19], or electric fields [19–25]. For ex-
amples, in the magneto-electrostatic trap, polar molecules can
be stably trapped by the magnetic quadrupole after deceler-
ation [13]. By additionally applying both dc and ac electric
fields, the molecules can also be trapped through mechanical
equilibrium [24,26,27]. Once successfully trapped, the inter-
nal rovibronic state, center of mass, and interactions among
different polar molecules can be further modulated via ad-
ditional control fields [28–30]. Variational efficient trapping
approaches allow for more possible applications by control-
ling the trapped molecules [7,31].

The interaction between electric fields and polar molecules
can be examined via the Stark effect, where the electric field
modulates the spectral properties of polar molecules [32–35].
Based on this, polar molecules can be controlled or rotated by
an electric field because of asymmetric structure and larger
dipole moments, and this is different from the behavior of
neutral atoms [5]. The doublet splitting of polar molecules in-
duced by the electric field can affect the Stark potential, which
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can further determine the mechanical potential, mechanical
force, and mechanical motions of polar molecules [36–39].

Surface acoustic wave (SAW) devices have been exten-
sively applied to classical information processing [40,41].
The SAW, a kind of mechanical wave within the piezoelec-
tric materials, is excited by an external ac voltage source
upon the interdigital transducers (IDTs), which can transform
the electrical energy to the mechanical energy in the form
of propagating acoustic wave on the surface of the piezo-
electric substrate or reversely transform the acoustic wave
to the electrical energy. The induced electric potential by
SAW can drive electrons to generate zero-resistance states
[42], acousto-electrical currents [43], and metal-Mott insu-
lator phase transitions [44]. With the tunable external ac
source, the SAW in the piezoelectric materials can provide a
well-controlled time-dependent moving electric potential, and
can be designed to control electronic [45] or polar particles
[43,46].

In this paper, we propose a method to trap polar molecules
using the electric field in the free space carried by the SAW
propagating along the surface of the piezoelectric substrate
materials. To trap and control the polar molecule by the
electric force via its dipole moment [5,47,48], we consider
that the surface acoustic wave can induce electric potential
both in the piezoelectric material and in the free space over
electrodes [45,49–51]. This is similar to the situation where
polar molecules can be modulated by the electric forces ap-
plied by the electrodes with periodic voltages [20,52].

The remainder of this paper is organized as follows. In
Sec. II, we explore the possibility that polar molecules are
trapped as one-, two-, and three-dimensional arrays by the
electric field induced by IDTs of SAW combined with another
externally applied electric force. In Sec. III, we study how the
trapping approach can affect the property of the multilayer
trapped polar molecules. In Sec. IV, we clarify the spatial dis-
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FIG. 1. (a) Schematic diagram for a setup of trapping polar
molecules with SAW-induced fields and the external electric force.
(b) The energy level structure of CO with different quantum num-
bers [20,52]. (c) The energy level structure of OH molecule with
a stronger polarity [34]. (d) The energy level structure of OH
molecule affected by the electric field when E� = 1.65 GHz, | �μ| =
1.67 Debye valued by Debye length, J ′ = 3/2 and m = � = 1 [34].

tribution of the single-layer trapped molecules. In Sec. V, we
study the dynamics and phase transition of the Bose-Hubbard
model based on polar molecules, which are trapped in lattices
by SAW. Finally, conclusions are presented in Sec. VI.

II. THEORETICAL MODEL FOR TRAPPING POLAR
MOLECULES

As schematically shown in Fig. 1(a), polar molecules trans-
mit between two layers of piezoelectric materials after being
slowed down by a decelerator. In each piezoelectric layer,
both the input and output IDTs consist of two comb-shaped
arrays of metallic electrodes [i.e., the blue electrodes in the
two SAW layers in Fig. 1(a)]. The primary functions of IDTs
are to convert electric signals to SAW, or convert SAW back
to the electrical signal via piezoelectric effect. Driven by
the external electric fields ũ1(t ) and ũ2(t ), the input IDT
excites acoustic waves and the output IDT converts SAW
into electrical signals. In the middle trapping IDT, the three
electrodes [i.e., two red electrodes and one green electrode
in the upper layer of Fig. 1(a)] in each unit can transfer the
mechanical oscillation of the SAW to the electric field in the
open space, during which the propagation of the acoustic wave
remains unaffected by canceling out the reflection waves
in the piezoelectric material [40,53]. Besides electric field
from the trapping IDT, externally designed electric fields,
represented with the blue down arrows in Fig. 1(a), can
also be applied to the space between two layers of SAWs.
The external electric fields can be realized and modulated
by a three-dimensional electrode array as in Ref. [54] or
Appendix A 3. Additionally, to enhance the efficiency of in-
teractions, the two piezoelectric layers face each other with
the electrodes exposed to the open space between them. This
set up allows the energy of polar molecules, i.e., CO with the

energy structure as in Fig. 1(b) or hydroxyl radical (OH) as
in Fig. 1(c), to be affected by the electric field generated by
SAW as follows.

A. Interaction between polar molecules and the electric field
by SAW

According to the calculations shown in Appendix A, in the
free space between two piezoelectric layers, the electric field
converted by the trapping IDT in the middle part of each layer
can be represented as

E ( j)
x (x, z, t ) = Mūjke−kz̃ j sin

[
k
(
x − 2λ

3 − vt
)]

,

E ( j)
z (x, z, t ) = (−1) j−1Mūjke−kz̃ j cos

[
k
(
x − 2λ

3 − vt
)]

,
(1)

where j = 1, 2 represent the electric fields induced
by the lower and upper SAW layer respectively, x represents
the propagation direction of the acoustic wave, z represents
the vertical direction to the surface distinguished by (−1) j−1

for the positive and negative directions, M is the number of
units for the trapping IDT [i.e., M = 3 in Fig. 1(a)], ū j is the
amplitude of the voltage between the red and green electrodes
of the trapping IDT, λ is the wavelength of the acoustic wave
that is equal to the periodicity of IDT stripes [53], z̃ j is the
distance to the lower or upper SAW layer with z̃1 = z and
z̃2 = D − z where D is the distance between two layers of
piezoelectric materials, v is the velocity of the acoustic wave,
and k is the wave number. More details on the architecture
design, the realization of external electric force represented
by the down arrows in Fig. 1(a), and the solutions of the
acoustic waves are given in Appendix A.

When there is no external electric force applied to the
polar molecule, the molecular dynamics is governed by the
Hamiltonian H0 = BJ2, where J is the rotational angular mo-
mentum and B is the rotational constant [55]. When the polar
molecules are over the IDT array of the surface acoustic wave,
the electric field induced by the SAW in the jth layer can be
coupled to the polar molecule via electric dipole interactions,
described by the Hamiltonian as [7,55]

HI = −�μ · �E ( j)(x, z, t ), (2)

where �μ is the dipole moment of the polar molecule, and
the field �E ( j)(x, z, t ) = [E ( j)

x (x, z, t ), E ( j)
z (x, z, t )]T given in

Eq. (1) is from the trapping IDTs (for more details see
Appendix A). When the electric field by SAW is weak, the
polar molecules {i.e., OH in Ref. [34], KCs in Ref. [3], CaBr
in Ref. [5], deuterated ammonia (ND3) in Ref. [23], CO in
Refs. [6,20,52]} can be regarded as a two-state system. The
electric field along different directions has different coupling
strengths with the dipole moments even for a given quantum
number [36]. Here we consider the case in which the dipole
moments of polar molecules are along the z direction, then
Eq. (2) is further written as [20,36,52,56]

H =
[

ω2 −|�μ|E ( j)
z (x, z, t ) m�

J ′(J ′+1)

−|�μ|E ( j)
z (x, z, t ) m�

J ′(J ′+1) ω1

]
, (3)

where we consider two energy levels of the polar molecule as
h̄ωl with l = 1, 2, ω2 − ω1 = Ē� is the �-doublet splitting;
E ( j)

z (x, z, t ) is given in Eq. (1); J ′, �, and m are the quantum
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FIG. 2. (a) The dependence of the energy levels of polar
molecules on the electric field with different quantum numbers,
where the distance between the molecules and the lower SAW layer
is z = 0.01 m, E� = 0.4 GHz, | �μ| = 0.167 Debye and the wave
number k = 10. (b) The energy level of polar molecules CO evalu-
ated by max(Uj (ū j, z)) with j = 1, 2 representing the lower or upper
SAW when k = 50, E� = 0.4 GHz, | �μ| = 0.167 Debye, J ′ = m =
� = 1 [36].

numbers according to the energy level structure of a polar
molecule, i.e., J ′ is the index of the energy level, � and m
with the values −1, 0, 1 represent quantum numbers for the
basis state of the molecule wave function [36].

In the rotating reference frame (RRF) with the rotating
wave approximation (RWA) [57,58], the Hamiltonian repre-
senting the interaction between the polar molecule and electric
field can be simplified as

H ′ =
[

ω̄ + Ē�−kv
2 (−1) j | �μ|m�

2J ′(J ′+1)E∗
x Ē ( j)

z

(−1) j | �μ|m�

2J ′(J ′+1)ExĒ ( j)
z ω̄ − Ē�−kv

2

]
, (4)

where Ē ( j)
z = Mūjke−kz̃ j , Ex = e−ik(x− 2λ

3 ), ω̄ = (ω1 + ω2)/2
(more details are given in Appendix B). Then the energy levels
of the polar molecule affected by the electric field produced by
the SAW in the jth layer are

E j = ω̄ ±
√(

E�

2

)2

+ μ2
eff M

2ū2
j k

2e−2kz̃ j

≡ ω̄ + Uj, (5)

where E� = Ē� − kv, Uj = ±
√

(E�/2)2 + μ2
eff |Ē ( j)

z |2 rep-
resenting the modulation of energy levels by the SAW
provided electric field, the effective dipole strength μeff =
±|�μ|m�/2J ′(J ′ + 1), which can be positive for the high-field
seeking states or negative for the low-field seeking states
[36,59]. Obviously, E j is independent of Ex in the RRF. In
the following, we take M = 1 for simplification.

The energy levels of the polar molecule in Fig. 1(d) are
with the parameters in Ref. [34] and in Fig. 2 with the
parameters in Refs. [20,36,52], which are affected by the
electric field along the z direction. We find that the energy gap
strongly depends on the quantum number and the amplitude
of voltage.

B. Trapping polar molecules into one-, two-,
and three-dimensional lattices

If we want to trap the polar molecule at �r = [x0, z0], the
joint electric force applied to the polar molecule �F (x0, z0, t )

must satisfy the following conditions [25,60,61]:

�F (x0, z0, t ) ≡ 0,
(6)

�∇ · �F (x0, z0, t ) < 0,

where the first line is for the mechanical equilibrium, and the
second line represents the occurrence of resilience effect once
the molecules escape from the trapped site (x0, z0).

As a component of �F (x0, z0, t ), the electric force from the
trapping IDT of the jth SAW layer can be represented as
�F ( j)(x, z, t ) = [F ( j)

x (x, z, t ), F ( j)
z (x, z, t )]T when the molecule

moves slowly along the x direction after deceleration, and
�F ( j)(x, z, t ) is determined by the strength of the electric field
from the trapping IDTs and the quantum number of the polar
molecule. With the energy Uj in Eq. (5), the electric force
produced by SAW upon polar molecules reads [20]

�F ( j)(x, z, t ) = − dUj

d
∣∣Ē ( j)

z

∣∣ �∇∣∣Ē ( j)
z

∣∣
= −1

2

1∣∣Ē ( j)
z

∣∣ dUj

d
∣∣Ē ( j)

z

∣∣ �∇∣∣Ē ( j)
z

∣∣2, (7)

where

dUj/d
∣∣Ē ( j)

z

∣∣ = μ2
eff

∣∣Ē ( j)
z

∣∣/√(E�/2)2 + (
μeff

∣∣Ē ( j)
z

∣∣)2
,

then

F ( j)
x (x, z, t ) = 0, (8a)

F ( j)
z (x, z, t ) = μ2

eff ū
2
j k

3e−2kz̃ j√(E�

2

)2 + (
μeff

∣∣Ē ( j)
z

∣∣)2
. (8b)

Additionally, we can also have

�∇ · �F ( j)(x, z, t )=−
μ2

eff

[(
∂2φ

∂x2

)2
+
(

∂2φ

∂z2

)2
+ 2

(
∂2φ

∂z∂x

)2
]

√(E�

2

)2 + (
μeff

∣∣ �E ( j)
∣∣)2

<0,

(9)
where φ = φ j (x, z) is the electric potential produced by trap-
ping IDTs in the jth SAW layer (more details are given in
Appendix C). Equation (9) indicates that the electric field
induced by SAW can trap the polar molecules if the condition
of the equilibrium in Eq. (6) can be satisfied.

When ū1 and ū2 are nonzero and there are no external
forces, the polar molecules can be trapped by the electric
forces of IDTs between two piezoelectric materials, and the
trapped location z0 of molecules is determined by the equi-
librium with ū2

1e−2kz0 = ū2
2e−2k(D−z0 ), where ū1 and ū2 are

proportional to the amplitudes of u1(t ) and u2(t ) in Fig. 1(a),
respectively. Then we can obtain the trapping location z0 =
ln(ekDū1/ū2)/2k, the relationship e−kD < ū1/ū2 < ekD always
holds because 0 < z0 < D, and this agrees with the fact that
larger D induces more robust parameter settings of ū1 and ū2

for trapping the molecules. As shown in Fig. 3(a), the trapping
locations are closer to the lower SAW layer when ū1 > ū2 and
are closer to the upper SAW layer when ū2 > ū1. In this way,
a single layer of polar molecules can be trapped at arbitrary
locations of the height z0. Besides, here the potential applied
on the polar molecules is the joint potential generated by
the trapping IDTs of the upper and lower SAW layers. Then
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FIG. 3. (a) Trapping locations with two layers of surface acoustic
waves, where k = 50, D = 0.02 m, and z0/D are evaluated. The
blank area represents that the molecules cannot be trapped for val-
ues of ū1 and ū2. (b) Fz(x, z, t ) represents the force of the lower
SAW with different locations of z, the dashed or dotted curves
represent the force of different external electric fields represented as
Ẽ (z) = fE zn. The electric forces are valued by the unit amu m/s2

as in Ref. [54] with amu representing the atomic mass unit [62].
When the dashed curve and the solid curve intersect once, it means
that the molecules can be only trapped in the single layer with the
value of z at the crossover point. When the dotted curve and the
solid curve intersect twice as the red curve, the polar molecules
can be trapped in two layers at the two crossover points. (c) Green-
dashed curve represents the electric field Ẽ (z) = (−2.42 × 104z3 +
5201z2 − 389.6z + 10.5)(1 + sin(πz/0.02)) with an envelope of
a sine function to trap within the desired layers, and the trap-
ping by the black-dotted curve with a cosine envelop is more
stable because the joint force has different restoring directions be-
low or over the desired layers. (d) Nonuniform trapping of polar
molecules with the external electric field Ẽ (z) = fE sin(nz) with
different values of n and fE , and the force upon the polar molecule
reads Fn = |n f 2

E sin(nz) cos(nz)/(| fE sin nz| + ε̃)| where we take ε̃ =√
(E�/2/μeff )2 + |Ẽ (z)|2 − |Ẽ (z)| ≈ 0.01 and is close to zero [36].

(e) Comparison of the binding energy with different trapped locations
of layers with α = 8. (f) The distribution of trapped locations of
polar molecules along the z direction in different layers, which can be
valuated with Rj in Eq. (14) with R0 = 0.04, ξ = 0.01m2, z2 = 0.5D,
and �z2 = 0.4D. The parameters in (e) and (f) are chosen according
to Refs. [62,63].

Eq. (C1) in Appendix C reveals that the molecules can be
stably trapped at the equilibrium positions.

When ū1 	= 0 and ū2 = 0, the polar molecules can be
trapped at (x0, z0) by the electric field induced by the trapping
IDT in the lower SAW layer and the external electric force
F̃z(x0, z0, t ), which satisfies the equilibrium condition, that is

F̃z(x0, z0, t ) = F (1)
z (x0, z0, t )

= μ2
effM

2ū2
1k3e−2kz0√

(E�/2)2 + (
μeff

∣∣Ē (1)
z

∣∣)2

� f1k2e−kz0 ,

(10)

with f1 ≈ μeffMū1. F̃z(x0, z0, t ) can be used to cancel
F (1)

z (x0, z0, t ) based on the approximation E� 
 |Ē (1)(x, z, t )|
[46].

The external electric force F̃z(x0, z0, t ) can be realized
with the external electric field Ẽ (z) applied upon the polar
molecule array, then the mechanical equilibrium along z di-
rection can be realized when [36]

1

2|Ẽ (z)|
∂|Ẽ (z)|2

∂z
= f1k2e−kz, (11)

by representing F̃z(x0, z0, t ) in Eq. (10) with the format of
Ẽ (z), and the equation is independent of x. Mathematically,
different Ẽ (z) can induce different trapping results for polar
molecules. For example, when D = 10 cm and k = 50, vari-
ous trapping approaches are compared in Figs. 3(b)–3(d).

Unlike trapping with two SAW layers, where the molecules
can be trapped at arbitrary horizontal locations at z0 with an
unlimited number of trapped molecules, the polar molecules
can only be trapped at the location where an external force for
the equilibrium exists, as shown in Fig. 1(a) when only one
SAW layer is used for trapping. Then the molecules can be
trapped in a lattice with external electric force at the height
z determined by the one or several different intersections as
shown in Figs. 3(b)–3(d).

Further for the simulations in Fig. 3(b), the red curve
denoting external electric force has two intersection points
P and Q with the SAW-induced electric force. For the lower
intersection point P at the height zp, the combined force is
downward when z < zp and upward when z > zp, thus the
trapped polar molecules can easily escape from the trapped
site at zp. However, for the upper intersection point Q at the
height zq, the combined force is upward when z < zq and
downward when z > zq, and this provides a resilience along
the z direction to make sure that the polar molecules are stably
trapped at zq. This is why in Fig. 3(c), the black-dotted curve
can trap the polar molecules at the desired layers more stably
than the green-dashed curve. Although the black-dotted curve
can simultaneously introduce unstable trapped intersections,
while the number of trapped polar molecules is much less than
that by the stable intersections.

Once the polar molecules are stably trapped by the elec-
tric force, the interactions among molecules are affected by
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their locations and external electric potentials. In the follow-
ing, we discuss three different cases: The first is that the
polar molecules are trapped as a three-dimensional array,
where the lattice sites in each layer are remotely separated in
the horizontal direction and the horizontal hoppings are not
considered. The second case is that a single layer of polar
molecules is trapped and the horizontal hoppings are consid-
ered. The third case is that the polar molecules are trapped by
one SAW layer (i.e., the upper layer) and the external force in
lattices, but their quantum dynamics are also affected by the
electric potential induced by the other SAW layer, so that the
lattice dynamics can be influenced by the lower SAW.

III. THREE-DIMENSIONAL TRAPPED POLAR
MOLECULE ARRAY WITH MULTIPLE LAYERS

When the polar molecules with a three-dimensional struc-
ture are trapped at different heights, as schematically shown
in Fig. 1(a), the number of trapped molecules in each layer is
the same. This is because the external electric forces Fn are ap-
plied along the z direction across each molecule layer, where
Fn is similarly calculated as �F ( j)(x, z, t ) in Eq. (7) by replacing
Ē ( j)

z with Ẽ (z) under the approximation E� 
 max |Ẽ (z)|.
For example, in Fig. 3(b) when n = 3 and fE = 0.001, the po-
lar molecules can be trapped in a single layer that corresponds
to the intersection point between the black and green curves.
By multiplying Ẽ (z) with an envelope function, i.e., fev =
1 +∏N

j=1(z − z j ) or fev = 1 + sin(πz/�z ) with �z = 0.02
as shown in Fig. 3(c), the polar molecules can be evenly (green
dash) or not evenly [Fig. 3(d)] trapped at the designed heights
with z1, z2, · · · , zN . The method can also be generalized to the
case of ū1 = 0 and ū2 	= 0, representing that molecules can be
trapped with the upper SAW layer and the external electric
field.

When the polar molecules are trapped as a three-
dimensional array, the attractive interactions among
molecules in different trapped layers can bind them into
chains along z direction, and the molecular attraction can be
evaluated with the binding energy depending on the number
and height of trapped layers. The Hamiltonian of the trapped
polar molecules along z direction reads [62]

HL =
L∑

l=1

(
P2

l

2m0
+ m0ω

2r2
l

2

)
+ 1

2

L∑
q 	=l

V|q−l|(|zi − zl |), (12)

where m0 is the mass of the trapped polar molecules in each
layer, L is the number of trapped layers, Pl and rl are the
momentum and the position of the center-of-mass of the
molecules in the lth layer, respectively, ω ∝ k is the trapping
frequency of the molecules, and V|q−l| is the dipole-dipole
interaction between molecules in the qth and lth layers de-
termined by the trapped height zq and zl respectively. The
variational wave function of the L layers of trapped polar
molecules is [62]

ψL(r1, · · · , rL ) =
L∏

l=1

exp
(− |rl |2/2R2

l

)
√

πRl
, (13)

where the standard deviation Rl of the normal distribution is
determined by the equilibrium of the attractive forces between

the polar molecules in the layers on its upper and lower
sides. When the molecules are uniformly trapped along the
z direction, as in Ref. [62], Rl is the smallest at the middle
layer. However, when the polar molecules are not uniformly
trapped, Rl should be proportional to 1 + ξ |F l

↑ − F l
↓| where

F l
↑ = ∑L

q=l+1 dV|q−l|/d|zq − zl | is the attractive force by the

upper trapped polar molecules, F l
↓ = ∑l−1

q=1 dV|q−l|/d|zq − zl |
is the attractive force by the lower trapped polar molecules,
and ξ is a chosen parameter. Then, we have

Rl = R0

⎛
⎝1 + ξ

∣∣∣∣∣∣
L∑

q=l+1

1

|zq − zl |2 −
l−1∑
q=1

1

|zq − zl |2

∣∣∣∣∣∣
⎞
⎠ (14)

as a generalization of the formula in Ref. [62], and the parame-
ter Rl is determined by the trapped locations of different polar
molecule layers. For the multilayer trapped molecules, the
binding energy representing the required energy to separate
the layers reads Eb = ∑

q 	=l Eql
b ≈ −∑

q 	=l exp(−α(zq − zl )2)
[63].

Consider the case where three molecules layers are trapped
at the heights z1 < z2 < z3 as an example. Denote �z1 = z2 −
z1 and �z2 = z3 − z2. The comparisons of the binding energy
and the oscillations of polar molecules in different layers are
shown in Figs. 3(e) and 3(f) with the parameters chosen ac-
cording to Ref. [62]. The absolute value of the binding energy
for the multilayer polar molecule array is larger when the
molecules are closely trapped along the z direction. When the
layers are uniformly trapped with �z1 = �z2, the oscillation
of the center layer is reduced. However, when the layers are
nonuniformly trapped in dispersed locations, the oscillation
of polar molecules is stronger due to the unequalizing of the
attractive force along the z direction. Besides, the distributions
of polar molecules in different layers are influenced by the
thermal effect, as discussed in detail in Ref. [62].

IV. SPATIAL DISTRIBUTION OF TRAPPED MOLECULES

In a single trapped polar molecule layer, the polar
molecules can hop among different localized lattice sites via
quantum jumps, which can be called the Anderson localiza-
tion [64,65]. When the molecules are trapped by the lower
SAW as shown in Fig. 1(a) and an external electric field as
shown in Figs. 3(b)–3(d), the molecules can be further trapped
in 1D or 2D lattices, and the locations of the lattices are
determined by the spatial distribution of the external electric
fields in the plane orthogonal to the z axis. We denote the
probability amplitude as pn that a molecule is trapped at the
lattice labeled with n, where n = n when the molecules are
trapped in a 1D lattice and n = (nx, ny) for a 2D lattice. We
use the one-dimensional trapped polar molecules along the x
axis as an example, the external electric field for trapping is
imposed at x1, x2, · · · , xN , the evolution of pn reads [64]

ṗn(t ) = −iU0 pn(t ) − i
∑
j 	=n

vn j p j (t ), (15)

where U0 is the energy of the polar molecules, vn j ∝ |xn −
x j |−3 represents the dipole interaction between the polar
molecules trapped at the nth and jth lattices, and 1 � n,

j � N .
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Applying the Laplace transform to Eq. (15), we have

Pn(s) = pn(0) − i
∑

j 	=n vn jPj (s)

s + iU0

= ipn(0)

is − U0
+
∑
j 	=n

1

is − U0
vn jPj (s), (16)

where Pj (s) is the Laplace transformation of p j (t ).

Let us assume initially that p1(0) = 1 and pn(0) = 0 for
n = 2, 3, · · · , N , that is, only molecules at the first lattice are
initially trapped. Equation (16) with n = 1 reads [64]

P1(s) = i

is − U0
+

N∑
j=2

1

is − U0
v1 jPj (s), (17)

and

Pn(s) =
∑
j 	=n

1

is − U0
vn jPj (s) = 1

is − U0
vn1P1(s) +

n−1∑
j=2

1

is − U0
vn jPj (s) +

N∑
n+1

1

is − U0
vn jPj (s), (18)

for n = 2, 3, · · · , N.

Using Eq. (18), Eq. (17) becomes

P1(s) = i

is − U0
+

N∑
j=2

1

is − U0
v1 j

⎡
⎣ 1

is − U0
v j1P1(s) +

j−1∑
j′=2

1

is − U0
v j j′Pj′ (s) +

N∑
j+1

1

is − U0
v j j′Pj′ (s)

⎤
⎦

= i

is − U0
+ P1(s)

(is − U0)2

N∑
j=2

v2
1 j + 1

(is − U0)2

N∑
j=2

v1 j

⎡
⎣ j−1∑

j′=2

v j j′Pj′ (s) +
N∑

j+1

v j j′Pj′ (s)

⎤
⎦

≈ i

is − U0
+ P1(s)

(is − U0)2

N∑
j=2

v2
1 j + 1

(is − U0)3

N∑
j=2

v1 j

⎡
⎣ j−1∑

j′=2

v j j′v j′1P1(s) +
N∑

j+1

v j j′v j′1P1(s)

⎤
⎦, (19)

where Pj′ (s) ≈ 1
is−U0

v j′1P1(s) has been used. Then

P1(s) ≈ i

is − U0
+
∑N

j=2 v2
1 j

(is − U0)2
P1(s) + 1

(is − U0)3

N∑
j=2

v1 j

⎛
⎝ j−1∑

j′=2

v j j′v j′1 +
N∑

j+1

v j j′v j′1

⎞
⎠P1(s). (20)

Denoting α = ∑N
j=2 v2

1 j and β = ∑N
j=2 v1 j

(∑ j−1
j′=2 v j j′v j′1 +∑N

j+1 v j j′v j′1
)
, then we have

P1(s) = i(is − U0)2

(is − U0)3 − α(is − U0) − β

= i(is − U0)2

−is3 + 3U0s2 + i
(
3U 2

0 − α
)
s − U 3

0 + αU0 − β
.

(21)

For most of the case U 3
0 − αU0 + β 	= 0, thus limt→∞ p1(t ) =

lims→0 sP1(s) = 0.
The trapped molecule array in Fig. 3(a) can be regarded

as a lattice network with infinite number of sites and the
spatial distribution of trapped localizations converges with the
increase of N , as shown in Figs. 4(a) and 4(b).

A. Comparison of diffusion based on the single-layer trapped
polar molecules

Generalized from the case in Eq. (15), when the po-
lar molecules are trapped by two SAW layers as shown in
Fig. 1(a) without the external electric force, the molecules

can be trapped at arbitrary locations along the x direction, the
spatial distribution of the molecules is governed by

ṗx(x, t ) = − iU0 px(x, t ) − i
∫ x−

0
vxx′ px′ (x′, t )dx′

− i
∫ Mλ

x+
vxx′ px′ (x′, t )dx′, (22)

where px(x, t ) and px′ (x′, t ) are the probability amplitudes of
the trapped molecules at x and x′, respectively; vxx′ ∝ |x −
x′|−3 represents the interaction between the sites at x and x′;
the parameters M and λ are the same as that in Eq. (1).

The continuous model in Eq. (22) can be approximated by
the discrete model in Eq. (15) when N → ∞ and �x = xn −
xn−1 ≈ 0 for n = 2, 3, · · · , N . Then by Eqs. (20) and (21),
considering that the condition U 3

0 − αU0 + β = 0 can almost
never be satisfied, we have limt→∞ p1(t ) = lims→0 sP1(s) =
0. This agrees with the case in Fig. 4(a) when N = 500.

B. Cooperative shielding

Together with the long range interactions, the evolution of
the quantum states |ψ (t )〉 = ∑N

n=1 cn(t )|n〉 is governed by the
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FIG. 4. (a) Comparison of the probability of trapping at differ-
ent localized sites with two different single-layer trapping methods.
U0 = 2 in both of simulations, vn j = 0.4|xn − x j |−3, xn = 0.1n, N =
5 for discrete trapping, and the discrete trapping converges to the
continuous case when N = 500. (b) The blue-dashed circle evaluated
by the left y axis represents the steady value of P1 between maxn(Pn)
and minn(Pn) with the same parameters as (a), and decreases with the
increase of lattice sites. The diamond is for the cooperative shield-
ing that |ψ (0)〉 = 1/

√
N
∑N

n=1 |n〉, the asterisk is for that |ψ (0)〉 =
1/

√
5
∑5

n=1 |n〉, and both of the two simulations are evaluated by the
right y axis. (c) Comparison of cooperative shielding with |cn(T )|
when |ψ (0)〉 = 1/

√
N
∑N

n=1 |n〉 between N = 100 (almost continu-
ous trapping) and N = 10 (inset, discrete trapping). (d) Comparison
when |ψ (0)〉 = 1/

√
5
∑5

n=1 |n〉. In (b)–(d), V = 1 and U0 = 0.1.

initial state |ψ (0)〉 and the Hamiltonian [66,67]

HN = −V
∑

n

(|n〉〈n + 1| + H.c.)

−
∑
n 	= j

γn j |n〉〈 j| − U0

∑
n

|n〉〈n|, (23)

where V is the amplitude for nearest-neighbor hopping, γn j

denotes long-range interactions between the nth and jth lat-
tices, and U0 is the energy of the polar molecules on the site
n. The influence by γn j can be evaluated with the cooperative
shielding effect [66–68], which can also be assessed by the
occupation cn(T ) at the terminal time point T .

We first consider a simplified case that γn j ≡ γ , and then
consider a general case. As shown in Fig. 4(b), where cn(T ) is
for γ 	= 0 and c′

n(T ) is for γ = 0 [66], the effect of γ can be
evaluated with maxn ||cn(T )|2 − |c′

n(T )|2|. The comparisons
shown in Figs. 4(c) and 4(d) reveal that the long-range in-
teractions among trapped polar molecules can be canceled
out when the number of trapped sites is large based on the
designed initial condition.

According to the conclusion in Refs. [66,67], we choose
the initial quantum state as a random superposition. For the
Hamiltonian given in Eq. (23), the quantum states with N

FIG. 5. ||cn(T )|2 − |c′
n(T )|2| varies with the number of cites N ,

where cn(T ) represents the terminal values in Eq. (25) with γn j = 0
at T = 10 s, and c′

n(T ) represents that when γn j 	= 0. In all the
simulations, V = 1 and U0 = 0.1. In (a)–(c), γn j ≡ γ = 2, and in
(d)–(f), γn j = V |n − j|−3. In (a) and (d), cn(0) = 1/

√
N . In (b) and

(e), cn(t ) and c′
n(t ) are randomly initialized. In (c) and (f), c1(0) =

c2(0) = 1/
√

2 and cn(0) = 0 for n > 2.

localized sites can be represented as

|ψ (t )〉 =
N∑

n=1

cn(t )|n〉, (24)

where cn(t ), as a generalization of pn in Eq. (15), repre-
sents the amplitude when the nth site is occupied. For the
single-layer trapped polar molecules with a single SAW layer
and external electric fields, N can be finite. When the polar
molecules are trapped with two SAW layers, as in Fig. 3(a), N
can be infinitely large.

Given the Hamiltonian as Eq. (23), the evolution of the
amplitudes can be written according to the Schrödinger equa-
tion |ψ̇ (t )〉 = −iHN |ψ (t )〉 as [66]

ċn(t ) = iV cn+1(t ) + iV cn−1(t ) + i
∑
n 	= j

γn jc j (t ) + iU0cn(t ),

(25)
with h̄ = 1. In Fig. 5, we compare the dynamics of Eq. (25)
with different number of sites and different initial conditions.
The simulations clarify that the long-range interactions can
affect the dynamics of the lattices, but it is related to the
initial condition and number of sites. If the lattices are initially
random or uniformly occupied, the influence of long-range
interactions is much smaller or better shielded than the case
that a small subset of lattices are initially occupied.
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V. BOSE-HUBBARD MODEL FOR TRAPPED MOLECULES

When ū2 � ū1 > 0, the polar molecules can be trapped
in the single-layer lattices by ū2 and external electric force.
This is similar to the purple-dashed curve shown in Fig. 3(b)
by replacing z with D − z. The energy of the molecules is
affected by electric potential of the lower SAW, and the
one-dimensional lattice of trapped polar molecules can be
described by the Bose-Hubbard model with the Hamiltonian
[69–71]

H =
∫

�†(�r)

[
− h̄2∇2

2m0
+ Ve(�r)

]
�(�r)

+
∫

�†(�r)�†(�r′)V (�r − �r′)�(�r′)�(�r)d3�rd3 �r′, (26)

where m0 is the mass of the polar molecule, Ve(�r) is the
electric potential by the lower SAW, and �(�r) is a boson field
operator for the trapped polar molecules. The field operator
�(�r) can be represented as a superposition of Wannier func-
tions localized at the trapped lattice sites as

�(�r) =
∑

μ

âμw(�r − �rμ), (27)

where the operator âμ annihilates a polar molecule at the
μth site with �rμ, and w is the Wannier function, which is
determined by the distance between �r and �rμ.

When we only consider the nearest-neighbor interaction
between lattices, the trapped polar molecules can be described
by the one-dimensional Bose-Hubbard model as [43,72–76]

HB = −J
∑
μ,ν

â†
μâν + U

2

∑
μ

n̂μ(n̂μ − 1) +
∑

μ

εn̂μ, (28)

where âμ(â†
μ) annihilates (creates) a polar molecule at the μth

site obeying the canonical commutation relation [âν, â†
μ] =

δνμ, n̂μ = â†
μâμ, J represents the hopping amplitude between

two lattice sites [77], U is the on-site repulsion, and ε rep-
resents the energy offset of each lattice site affected by ū1

[43,71,75].
The parameters in Eq. (28) are determined by different

lattice sites μ and ν, and can be given as [71]

Jμν =
∫

w∗(�r − �rμ)

[
− h̄2∇2

2m0
+ Ve(�r)

]
w(�r − �rν )d3�r,

U = 4π

m0

∫
|w(�r)|4d3�r,

εμ =
∫

Ve(�r)|w(�r − �rμ)|2d3�r, (29)

where Ve(�r) is the electric potential induced by the trapping
IDT as in Eqs. (A46) and (A48) (see Appendix A). The
Wannier function can be approximately simplified with the
Gaussian function as w(x) = e−x2/2 [78–80]. When |μ − ν| =
1 in Eq. (29), Jμν reduces to J for the simplified nearest-
neighbor case in Eq. (28).

Above all, the lattice network is determined by the spatial
distribution of the external force, and the number of lattice

FIG. 6. (a) J/U and ε/U affected by the trapped height z of
polar molecules. The distance between two nearest-neighbor sites
is � = 0.005/Nm with N = 5, 10, 15 representing the number of
lattice sites, δJ = δε = 0, m0 = 0.1, B̃0 = 100 and k = 50. (b) The
phase transition evaluated by J/U between the Mott insulator and
superfluid affected by the trapped height and the number of lattice
sites. In the simulation, k = 50, the polar molecules are trapped
by the IDT array with a horizontal width of 0.005 m, n0 = 1 and
fn0 = 0.085786.

sites can be arbitrarily manipulated. If we only consider a
short timescale that k(x − vt ) varies a little, as the practical
case in Refs. [20,36,52,56], or the theoretical estimation in
Ref. [43] that the tunneling time among lattices and the time
for the occurrence of lattice dynamics vary from 10 ps to
15 ns, then Eq. (29) can be simplified to

Jμν =
∫

e−(x−xμ)2
/2

{
− h̄2∇2

2m0

+B0e−kz cos [k(x − vt )]

}
e−(x−xν )2/2dx

≈ �

(
1 − �2

2m0
+ B0e−kz cos [k(x − vt )]

)
e−�2

≈ �
(
B̃0e−kz + δJ

)
e−�2

� J, (30)

where � is the distance between two nearest-neighbor lattice
sites, h̄ = 1 for simplification, then we regard the time-domain
evolution as a bounded perturbation as δJ [77]. Similarly,

U = 4π

m0

∫
e−2x2

dx,

(31)
ε = B0e−kz cos[k(xν − vt )] ≈ (B̃0 + δε )e−kz,

where δε is a bounded perturbation similarly as in Eq. (30)
within a short timescale. In the following, we first study a
simplified case with δJ = δε = 0 and then generalize to the
case that δJ , δε 	= 0.

In Fig. 6, J/U and ε/U are plotted as functions of z, which
is the distance between the trapped polar molecules and the
lower SAW. It can be seen that both J/U and ε/U decrease
with the increase in z. This is because of the fact that the
electric potential by the lower SAW decreases with the in-
crease in z. Using this, we can modulate the transition between
different phases of the Bose-Hubbard model as follows.
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FIG. 7. (a) Phase transition boundaries when n0 =
1, 4, 7, 10, 13, 16 and fn0 = 0.085786, 0.027864, · · · , 0.0075775,
respectively. (b) The parameters of the Bose-Hubbard model
affected by random components δJ ∈ [−5, 5] and δε ∈ [−100, 100].
(c) The phase transition between superfluid (red) and Mott
insulator (blue) evaluated by J/U with the uncertain parameters
in (b). (d) J/U affected by the wave number k when N = 5 and
δJ ∈ [−5, 5]. In all the simulations, B̃0 = 100, the distance between
two nearest-neighbor trapped polar molecules is 0.005/Nm, and
k = 50 in (a)–(c).

The transition between the superfluid and Mott insulator
is determined by J/U and the average number of molecules
n0 at each lattice site [81]. According to the conclusion in
Refs. [81,82], the transition boundary between the superfluid
and Mott insulator occurs when ε/U − n0 = −1/2 − J/U ±√

(J/U )2 − (2n0 + 1)J/U + 1/4, then the polar molecule gas
will be superfluid when J/U > n0 + 1/2 − √

n0(n0 + 1) �
fn0 , where n0 = 1, 2, · · · represent the mean polar molecule
number in the trapped lattice sites. For example, when n0 = 1,
fn0 = 0.085786, corresponds to the case in Fig. 6(b). The
relationship between the designed J/U and ε can affect the
transition between the superfluid (J/U > fn0 ) and Mott insu-
lator (J/U < fn0 ) [75,83–85]. Thus by controlling the trapped
position of polar molecules along z direction and the number
of lattice sites, the transition between the superfluid and Mott
insulator can be manipulated as in Fig. 6(b). In this transition,
the exponential decay of the electric potential induced by
SAW in the open space along the z-direction plays a crucial
role, and makes it possible for the transition occurrence with
varied numbers of lattice sites, which is the special property
provided by the acoustic wave when compared with tradi-
tional modulating methods [21–24].

Additionally, the transition process is also affected by n0

and the uncertainties induced by time dependent potential if
we only consider a quite short time period. In such cases,
the molecules are trapped in the lattices as in experimental
circumstance in Ref. [20], and are also affected by the thermal
effect determined by the environment temperature. The phase
transition needs to be further analyzed as follows.

FIG. 8. (a) JT /U affected by the temperature when N = 10 and
other parameters are same as Fig. 6(a). (b) The phase transition
boundary between superfluid and Mott insulator for n0 = 1 affected
by different temperatures with β�U = 0.1U (solid-red), U (dashed-
blue), and 2U (dotted-black), respectively.

A. Influence of n0, uncertainties, and thermal effects

For a general case of n0, the contours in Fig. 7(a) represent
the phase transition boundary when n0 = 1, 4, 7, 10, 13, 16,
where fn0 decreases with the increase of n0. Thus when
n0 is larger, it is easier to generate the superfluid state.
Figure 7(b) shows the parameters with random oscillations,
and Fig. 7(c) shows the phase transition affected by the pa-
rameters in Fig. 7(b) when n0 = 1. It can be seen that the
parameter oscillations can induce some errors but not destruct
the overall transition property mainly affected by the trapped
height of the polar molecule array and the number of lattice
sites.

Besides, the thermal effects can affect the hopping of polar
molecules among different lattice sites, and this will further
affect the parameter J in the Bose-Hubbard model in Eq. (28)
as JT = Je−β�U [86–88], where β is the temperature, �U

is a constant, and β�U can be evaluated according to U in
the Bose-Hubbard model. Then the evolutions of lattices are
governed by Eq. (28) after replacing J with JT . As illustrated
in Fig. 8(a), the thermal effect can affect the parameter JT /U ,
together with the trapped height, and this can further affect
the phase transitions of the trapped polar molecule gas. As
compared in Fig. 8(b), the lower temperature is easier for the
construction of superfluid state, and stronger thermal effect
can induce Mott insulator.

B. Influence of the wave number

For different wave numbers of the acoustic wave, the phase
transition boundaries are different. As shown in Eq. (A51)
and Fig. 7(d), the amplitudes of the electric field and the
electric force by SAW decrease along the z direction at the
rate determined by the wave number k. When k is small,
the transition between the Mott insulator and superfluid is
mainly determined by the number of lattice sites, as shown in
Figs. 9(a) and 9(d). In this case, when N is small, the molecule
array can mainly be the superfluid if the molecules are only
trapped close to the electrodes on the piezoelectric material
with surface acoustic waves. However, when k is large, the
electric potential decreases fast with the increase of z. Thus
when N is small, the transition between the superfluid and
Mott insulator can also occur when k is large enough, as
shown in Figs. 9(b)–9(f).
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FIG. 9. The influence on the phase transition by the wave number k of the acoustic wave. (a)–(c) represent the phase transition between
the superfluid (red region) and Mott insulator (blue region) with n0 = 1 and the uncertainties in Fig. 7(b). (d)–(f) represent the phase transition
boundaries with n0 = 1, 4, 7, 10, 13, 16, and different colors represent the regions for the superfluid state separated by the boundaries with
different n0 compared with the white insulator region. In all the simulations, B0 = 100, the distance between two nearest neighbor trapped
polar molecules is 0.005/Nm.

VI. CONCLUSIONS

We have proposed a method to trap polar molecules with
the electric field induced by surface acoustic waves. Assisted
by external electric fields, the polar molecules can be trapped
and arranged into single or multiparallel layers away from
the piezoelectric material. Depending on the uniformity of the
layers in the longitudinal direction, the attractive interactions
among the molecules in each layer can be different, which
can further affect the binding energy of the trapped polar
molecule array. For a single layer of trapped polar molecules,
the final steady distribution of the molecules can be affected
by the trapping approach with finite or infinite lattice sites.
The trapped polar molecules can be used to construct the
lattice based Bose-Hubbard model. The phase transition be-
tween the superfluid and Mott insulator can be controlled
by designing the values and spatial distributions of the ex-
ternal electric force. The advantages of SAW for trapping
polar molecules are that its induced electric field satisfies the
condition of stability for trapping a polar particle, the field
can be real-time modulated by the electric field applied to
the input IDT, and arbitrary three-dimensional polar molecule
lattices can in principle be trapped by tuning another applied
electric force. Our proposal can be more efficient compared
with traditional trapping methods with electric force such as
in Refs. [21–24]. Besides, the exponential decrease of the
electric field produced by SAW along the vertical direction
in the open space can induce the transition between Mott
insulator and superfluid, and the overall architecture can be
fabricated on-chip with extensive possible expansions. From
the perspective of experimental realization, the deceleration
of the molecule gas has been realized in Refs. [20,52,89],
the on-chip design of the surface acoustic wave resonator has

been demonstrated in Ref. [53], and the method of shaping
electric fields in the open space between two SAW layers has
been introduced in Refs. [21,54]. These technologies support
the viability of the proposed trapping method. Our proposal
has potential applications in the construction of superfluid
and Mott insulator [90,91], phase transitions [92–94], lattice
QED [74,95], as well as quantum information processing [96].
This might open an easy way to hybridize molecules with
solid-state quantum devices, in contrast to trapping molecules
using optical lattices.
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APPENDIX A: CALCULATIONS ON THE SURFACE
ACOUSTIC WAVE

Assume the displacement of the piezoelectric material is
u = (u1, u2, u3) at the position �r = [x1, x2, x3]T . When there
are not any strains in the material, the material moves as a
whole and the displacement at �r and �r′ satisfies that

u(�r) = u(�r′), (A1)

and

∂ui

∂x j
= 0, ∀i, j = 1, 2, 3. (A2)
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The strain at �r is defined as

Si j (x1, x2, x3) = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
, i, j = 1, 2, 3. (A3)

If the material is not piezoelectric, the motion of a single
unit satisfies that [40]

ρ
∂2ui

∂t2
=
∑

j

∂Ti j

∂x j
, i, j = 1, 2, 3, (A4)

where ρ is the density, T is the stress. Here T is proportional
to the strain S if the inner force is small, namely

Ti j =
∑

k

∑
l

ci jkl Skl , i, j, k, l = 1, 2, 3, (A5)

where Skl = ∂uk/∂xl , the parameters ci jkl are regarded as the
stiffness tensor and can be replaced with the matrix C as

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44

⎤
⎥⎥⎥⎥⎥⎥⎦

with the corresponding relationship between ci jkl and C intro-
duced in Ref. [40].

1. Solutions for isotropic materials

In the isotropic material

ci jkl = κδi jδkl + μ(δikδ jl + δilδ jk ), (A6)

where κ and μ are positive Lamé constants and the Kronecker
delta function is defined as δi j = 1 when i = j and δi j = 0
when i 	= j. The stress T can be calculated as

Ti j =
∑

k

∑
l

ci jkl Skl

=
∑

k

∑
l

(κδi jδkl + μ(δikδ jl + δilδ jk ))Skl

=
∑

k

∑
l

κδi jδklSkl +
∑

k

∑
l

μ(δikδ jl + δilδ jk )Skl

=
∑

k

κδi jSkk +
∑

k

∑
l

μ(δikδ jl + δilδ jk )Skl

=
∑

k

κδi jSkk + 2μSi j, (A7)

where

Skk = ∂uk

∂xk
. (A8)

Denote � = ∑
k Skk , then

Ti j = κδi j� + 2μSi j . (A9)

Equation (A4) can then be written as

ρ
∂2ui

∂t2
=
∑

j

∂Ti j

∂x j

= ∂κ�

∂xi
+ 2μ

∑
j

∂Si j

∂x j

= κ
∂�

∂xi
+ 2μ

∑
j

1
2

(
∂ui
∂x j

+ ∂u j

∂xi

)
∂x j

= κ
∂�

∂xi
+ μ

∑
j

∂2u j

∂xi∂x j
+ μ

∑
j

∂2ui

∂x2
j

= κ
∂�

∂xi
+ μ

∂
(∑

j ∂u j/∂x j
)

∂xi
+ μ∇2ui

= (κ + μ)
∂�

∂xi
+ μ∇2ui, (A10)

where ∇2 = ∑
i

∂2

∂x2
i

and i, j = 1, 2, 3.
The components of Eq. (A10) read

ρ
∂2u1

∂t2
= (κ + μ)

∂ (S11 + S22 + S33)

∂x1
+ μ∇2u1

= (κ + 2μ)
∂2u1

∂2x1
+ (κ + μ)

(
∂2u2

∂x2∂x1
+ ∂2u3

∂x3∂x1

)

+ μ

(
∂2u1

∂2x2
+ ∂2u1

∂2x3

)
, (A11)

ρ
∂2u2

∂t2
= (κ + 2μ)

∂2u2

∂2x2
+ (κ + μ)

(
∂2u1

∂x2∂x1
+ ∂2u3

∂x3∂x2

)

+ μ

(
∂2u2

∂2x1
+ ∂2u2

∂2x3

)
, (A12)

and

ρ
∂2u3

∂t2
= (κ + 2μ)

∂2u3

∂2x3
+ (κ + μ)

(
∂2u1

∂x3∂x1
+ ∂2u2

∂x3∂x2

)

+ μ

(
∂2u3

∂2x1
+ ∂2u3

∂2x2

)
. (A13)

The vector format of the displacement u = [u1, u2, u3]T

can be represented as [97]

[u1, u2, u3]T = [Ū , V̄ ,W̄ ]T e−kqx3+ik(lx1+mx2−vt ), (A14)

where Ū , V̄ , and W̄ are constants determined by q represent-
ing the possible decay in the direction of x3, k is the wave
number, v is the velocity of the acoustic wave, l = cos θ ,
m = sin θ , θ is the angle between the propagating direction of
the wave front with the x3 axis. Thus l and m can represent the
propagating direction of the acoustic wave. Taking Eq. (A14)
into Eqs. (A11)–(A13), we have P(q)[Ū V̄ iW̄ ]T = 0 with the
matrix [98]

P(q) =
⎡
⎣ P11 (κ + μ)lm (κ + μ)lq

(κ + μ)lm P22 (κ + μ)mq
(κ + μ)lq (κ + μ)mq P33

⎤
⎦, (A15)

where P11 = (κ + 2μ)l2 − v2ρ + μ(m2 − q2), P22 =
(κ + 2μ)m2 − v2ρ + μ(l2 − q2), P33 = (κ + 2μ)q2 +

023292-11



HAIJIN DING, RE-BING WU, AND YU-XI LIU PHYSICAL REVIEW RESEARCH 6, 023292 (2024)

v2ρ − μ(l2 + m2), l2 + m2 = 1. Take det(P(q)) = 0, and
we can denote the solutions of q as q1, q2, q3.

2. Solutions for piezoelectric materials

If the material is piezoelectric, the stress is also determined
by the external electric field, namely [40]

Ti j =
∑

k

∑
l

ci jkl Skl −
∑

k

eki jEk, i, j, k, l = 1, 2, 3,

(A16)
where the electric field Ek is applied along the x axis. Assume
the electric potential is �, the electric field satisfies that Ek =
−∂�/∂xk . Thus the motion equation within the piezoelectric
materials reads

ρ
∂2ui

∂t2
=
∑

j

∂Ti j

∂x j

=
∑

j

∂
(∑

k

∑
l ci jkl Skl −∑

k eki jEk
)

∂x j

=
∑

j

∑
k

eki j
∂2�

∂x j∂xk
+
∑

j

∑
k

∑
l

ci jkl
∂Skl

∂x j

=
∑

j

∑
k

eki j
∂2�

∂x j∂xk
+1

2

∑
j

∑
k

∑
l

ci jkl

∂
(

∂uk
∂xl

+ ∂ul
∂xk

)
∂x j

=
∑

j

∑
k

eki j
∂2�

∂x j∂xk

+ 1

2

∑
j

∑
k

∑
l

ci jkl

(
∂2uk

∂xl∂x j
+ ∂2ul

∂xk∂x j

)

=
∑

j

∑
k

eki j
∂2�

∂x j∂xk
+ 1

2

∑
j

∑
k

∑
l

ci jkl
∂2uk

∂xl∂x j

+ 1

2

∑
j

∑
k

∑
l

ci jkl
∂2ul

∂xk∂x j
. (A17)

Because Skl = Slk and Ti j = Tji, then

∂2uk

∂xl∂x j
= ∂2ul

∂xk∂x j
, (A18)

and

ρ
∂2ui

∂t2
=
∑

j

∑
k

eki j
∂2�

∂x j∂xk
+
∑

j

∑
k

∑
l

ci jkl
∂2uk

∂xl∂x j
.

(A19)

The piezoelectric material is considered to be an insulator
with

∫
v
∇ · Ddv = 0, and D = [Di, Dj, Dk] with Di = Dj =

0, then

divD = ∂Di

∂xi
+ ∂Dj

∂x j
+ ∂Dk

∂xk

= −
∑

j

εS
k j

∂2�

∂x j∂xk
+1

2

∑
i

∑
j

ei jk

(
∂2ui

∂x j∂xk
+ ∂2u j

∂xi∂xk

)
,

(A20)

where

Dk =
∑

j

εS
k jE j +

∑
i

∑
j

ei jkSi j

= −
∑

j

εS
k j

∂�

∂x j
+ 1

2

∑
i

∑
j

ei jk

(
∂ui

∂x j
+ ∂u j

∂xi

)
. (A21)

Because i and j are in the symmetric positions as
∂2ui/∂x j/∂xk = ∂2u j/∂xi/∂xk , then

divD = −
∑

j

εS
k j

∂2�

∂x j∂xk
+
∑

i

∑
j

ei jk
∂2ui

∂x j∂xk
. (A22)

Then

∑
k

⎛
⎝∑

i

∑
j

ei jk
∂2ui

∂x j∂xk
−
∑

j

εS
k j

∂2�

∂x j∂xk

⎞
⎠ = 0. (A23)

Because of the piezoelectric property, the boundary condi-
tion reads

Tiz =
∑

k

∑
l

cizkl Skl −
∑

k

ekizEk

=
∑

k

∑
l

cizkl Skl +
∑

k

ekiz
∂�

∂xk

=
∑

k

∑
l

cizkl
1

2

(
∂uk

∂xl
+ ∂ul

∂xk

)
+
∑

k

ekiz
∂�

∂xk
= 0,

(A24)
where i, k, l = 1, 2, 3 and z = 0.

Because Skl = Slk , then

Tiz =
∑

k

∑
l

cizkl
∂uk

∂xl
+
∑

k

ekiz
∂�

∂xk
= 0, (A25)

which means that there are no mechanical forces in arbitrary
directions on the free surface, namely Tzx = Tzy = Tzz = 0 at
z = 0. Then Eq. (A25) can be rewritten as

cizkl
∂uk

∂xl
+ ekiz

∂�

∂xk
= 0, ∀i, k, l = 1, 2, 3. (A26)

Above all, the equations of the acoustic field can be written as

ρ
∂2ui

∂t2
=
∑

j

∑
k

eki j
∂2�

∂x j∂xk
+
∑

j

∑
k

∑
l

ci jkl
∂2uk

∂xl∂x j
,

∑
k

⎛
⎝∑

i

∑
j

ei jk
∂2ui

∂x j∂xk
−
∑

j

εS
k j

∂2�

∂x j∂xk

⎞
⎠ = 0,

cizkl
∂uk

∂xl
+ ekiz

∂�

∂xk
= 0, (A27)

where the second line is the electric boundary condition with
z = 0, and the third line is the mechanical boundary condition
with z = 0, which means that the stress is free at the boundary.
Then in Eq. (A4), Ti3 = 0 when z = 0 for i = 1, 2, 3.

Based on the model above, we have the time-dependent
strain field Skl and the electric potential � satisfying that

∂2�

∂x j∂xk
= −cizkl

ekiz

∂2uk

∂xl∂x j
. (A28)
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The motion of the piezoelectric material reads

ρ
∂2ui

∂t2
= −

∑
j

∑
k

eki j
cizkl

ekiz

∂2uk

∂xl∂x j

+
∑

j

∑
k

∑
l

ci jkl
∂2uk

∂xl∂x j
. (A29)

Besides, Eq. (A16) can also be written as

Si j =
∑

k

∑
l

si jkl Tkl +
∑

k

dki jEk, i, j, k, l = 1, 2, 3,

(A30)
where dki j is given according to e14 in Eq. (A29) and can be
represented with the matrix d with k = 1, 2, 3 for different
lines of the matrix as

d =
⎡
⎣0 0 0 d14 0 0

0 0 0 0 d14 0
0 0 0 0 0 d14

⎤
⎦.

In the piezoelectric material, there are only three indepen-
dent elastic constants for the ci jkl in Eq. (A27) denoted as c11,
c12, c44 [45]. Then the equation in Eq. (A27) can be simplified
and rewritten as

ρ
∂2ux

∂t2
= c11

∂2ux

∂x2
+ c44

(
∂2ux

∂y2
+ ∂2ux

∂z2

)

+ (c12 + c44)

(
∂2uy

∂x∂y
+ ∂2uz

∂x∂z

)
+ 2e14

∂2φ

∂y∂z
,

(A31)

ρ
∂2uy

∂t2
= c11

∂2uy

∂y2
+ c44

(
∂2uy

∂x2
+ ∂2uy

∂z2

)

+ (c12 + c44)

(
∂2ux

∂y∂x
+ ∂2uz

∂y∂z

)
+ 2e14

∂2φ

∂x∂z
,

(A32)

ρ
∂2uz

∂t2
= c11

∂2uz

∂z2
+ c44

(
∂2uz

∂x2
+ ∂2uz

∂y2

)

+ (c12 + c44)

(
∂2ux

∂z∂x
+ ∂2uy

∂z∂y

)
+ 2e14

∂2φ

∂x∂y
,

(A33)

ε�φ = 2e14

(
∂2ux

∂y∂z
+ ∂2uy

∂x∂z
+ ∂2uz

∂x∂y

)
, (A34)

where ux, uy, and uz represent the displacements in the three-
dimensional coordinate system with the mechanical boundary
condition at z = 0 reads

T13 = c44

(
∂uz

∂x
+ ∂ux

∂z

)
+ e14

∂φ

∂y
= 0,

T23 = c44

(
∂uz

∂y
+ ∂uy

∂z

)
+ e14

∂φ

∂x
= 0,

T33 = c11
∂uz

∂z
+ c12

(
∂ux

∂x
+ ∂uy

∂y

)
= 0,

(A35)

FIG. 10. (a) Schematic diagram for the voltage distributions of
the receiving IDT. The polar molecules interact simultaneously with
both the electric field from receiving IDT and externally applied con-
trol electric field. (b) The physical realization of designed external
electric fields in (a) with an array of electrodes. (c) An example of
polar molecules trapped in the lattices constructed by the electrodes.

and the electric boundary condition at z = 0 reads

e14

(
∂ux

∂y
+ ∂uy

∂x

)
− ε

∂φ

∂z
+ ε0kφ = 0. (A36)

When the sample is fabricated on the polished (100) sur-
face, the acoustic wave propagates along the [011] direction,
and is of the format [45,51,98]

ux = u√
2

e−kz+ik(x+y)/
√

2−ivkt ,

uy = u√
2

e−kz+ik(x+y)/
√

2−ivkt ,

uz = ũze
−kz+ik(x+y)/

√
2−ivkt . (A37)

Equation (A34) reads

ε�φ =
{

2e14

(
2 ∂2ux

∂x∂z + ∂2uz

∂x2

)
, 0 < z < H,

0, else,
(A38)

where H represents the thickness of the IDT fingers, and
�φ = ∂2φ/∂x2 + ∂2φ/∂y2 + ∂2φ/∂z2.

Then the electric potential can be represented as

φ = χ (z)eik(x+y)/
√

2−ivkt , (A39)

where χ (z) reads

χ (z) =
⎧⎨
⎩

χp(z) + B1ekz + B2e−kz, 0 < z < H,

B3ekz, z � 0,

B4e−kz, z � H,

(A40)

which is given in Ref. [51] with the detailed format of χp(z)
and Bj with j = 1, 2, 3, 4 are to be determined parameters.

The amplitude of the electric field by SAW can be calcu-
lated as [99]

∣∣ �E (x, y, z)
∣∣ =

√(
∂φ

∂x

)2

+
(

∂φ

∂y

)2

+
(

∂φ

∂z

)2

. (A41)

3. Electrical fields induced by the surface acoustic wave

In this section, we introduce the realization of the electric
fields interacting with the polar molecules in our proposal. As
schematically shown in Fig. 10(a), the polar molecules can
simultaneously interact with the electric field by SAW and
designed external electric fields. Experimentally, the exter-
nal electric field can be realized with the three-dimensional
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electrode array as in Fig. 10(b) or Ref. [54]. Thus the po-
lar molecules can be trapped in the lattices constructed and
controlled by the electric fields of the electrodes such as in
Fig. 10(c). Based on the format of the electric potential given
in Eqs. (A39) and (A40), the polar molecule can be driven by
the electric field with the potential as

φ = R
[
B4e−kzeik(x+y)/

√
2−ivkt

]
, (A42)

which satisfies that �φ = ∂2φ/∂2x2 + ∂2φ/∂2y2 +
∂2φ/∂2z2 = 0 and R represents the real part of a complex
value. The surface acoustic wave and polar molecules are
coupled via the nonreflective IDT, as shown in Fig. 1. We
replace x + y with x in Fig. 10 and the following and the
analysis in the main text for simplification, then [98,100,101]

φ(x, z, t ) = R
[
B4e−kzeik(x−vt )

] = X (x, t )Z (z), (A43)

where

X (x, t ) = R
[
eik(x−vt )

]
,

Z (z) = B4e−kz. (A44)

The period of the receiving IDT is l = 6p′ = λ where p′
is the width of an electrode of the red and green fingers in
Fig. 10. Assume the number of periods is M as in Fig. 10 and
λ is the wave length of the acoustic wave. For the jth finger
in a period with j = 0, 1, 2, when the voltage is 1 V on the
electrode, the induced potential is

φ j (x, z, t ) =
M∑

m=1

φ
(m)
j (x, z, t ), (A45)

where φ
(m)
j (x, z, t ) is as the format of φ(x, z, t ) in Eq. (A43)

and can be induced by v
(m)
j in Fig. 10 in proportion.

When the induced potential by the first finger of a unit in
all the periods reads

φ0(x, z, t ) =
M∑

m=1

φ
(m)
0 (x, z, t ), (A46)

then the potential induced by the other two fingers in a period
reads

φ1(x, z, t ) = φ0(x − 2p′, z, t )

=
M∑

m=1

φ
(m)
0

(
x − λ

3
, z, t

)
,

φ2(x, z, t ) = φ0
(
x − 4p′, z, t

)
=

M∑
m=1

φ
(m)
0

(
x − 2λ

3
, z, t

)
. (A47)

Assume the applied voltage on the jth electrode in a period
is Vj = v

(1)
j = v

(2)
j = · · · = v

(M )
j in Fig. 10 with j = 0, 1, 2,

then the overall acquired potential is

V (x, z, t ) =
2∑

j=0

Vjv j (x, z, t )

= V0

M∑
m=1

φ
(m)
0 (x, z, t ) + V1

M∑
m=1

φ
(m)
0

(
x − λ

3
, z, t

)

+ V2

M∑
m=1

φ
(m)
0

(
x − 2λ

3
, z, t

)
, (A48)

where φ
(m)
0 (x, z, t ) = R[B0e−kzeik(x−vt )] with B0 representing

the amplitude of the potential at z = 0.
Then the induced electric field vector �E (x, z, t ) by

V (x, z, t ) is

�E (x, z, t ) = −∇V (x, z, t ) = [Ex, Ez]
T , (A49)

where

Ex = −V0
∂
∑M

m=1 v
(m)
0 (x, z)

∂x
− V1

∑M
m=1 v

(m)
0

(
x − λ

3 , z
)

∂x

− V2
∂
∑M

m=1 v
(m)
0

(
x − 2λ

3 , z
)

∂x
,

Ez = −V0
∂
∑M

m=1 R
[
B0e−kzeik(x−vt )

]
∂z

− V1
∂
∑M

m=1 R
[
B0e−kzeik(x− λ

3 −vt )]
∂z

− V2
∂
∑M

m=1 R
[
B0e−kzeik(x− 2λ

3 −vt )]
∂z

. (A50)

For the passive receiving IDT in Fig. 10, V0 = V1 	= V2, the
above electric field can be simplified as

Ex = M(V0 − V2)B0ke−kz sin

[
k

(
x − 2λ

3
− vt

)]
,

Ez = M(V2 − V0)B0ke−kz cos

[
k

(
x − 2λ

3
− vt

)]
. (A51)

APPENDIX B: SIMPLIFYING THE INTERACTION
BETWEEN POLAR MOLECULE AND ELECTRIC FIELD

BY SAW WITH ROTATING WAVE APPROXIMATION

Here we introduce in detail the method to simplify the de-
pendence on the time-varying components in the Hamiltonian
in Eq. (3) via rotating wave approximation. We firstly define
a transformed quantum state ket |ψ ′(t )〉 based on the original
ket |ψ̃ (t )〉, then we have [57,58]

ih̄
d

dt
|ψ̃ (t )〉 = H |ψ̃ (t )〉, (B1a)

|ψ ′(t )〉 = eiAt |ψ̃ (t )〉, (B1b)

ih̄
d

dt
|ψ ′(t )〉 = Hω|ψ ′(t )〉, (B1c)

where h̄ = 1 for simplification and U = eiAt represents the
transformation between |ψ̃ (t )〉 and |ψ ′(t )〉, H in Eq. (B1a)
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is given in Eq. (3), and in Eq. (B1c)

Hω = eiAt (H − A)e−iAt

= eiAt

[
ω1 − kv/2 −|�μ|E ( j)

z (x, z, t ) m�
J ′(J ′+1)

−|�μ|E ( j)
z (x, z, t ) m�

J ′(J ′+1) ω2 + kv/2

]
e−iAt

=
[

ω̄ + Ē�−kv
2 − |�μ|m�

J ′(J ′+1) E
( j)
z (x, z, t )eikvt

− |�μ|m�

J ′(J ′+1) E
( j)
z (x, z, t )e−ikvt ω̄ − Ē�−kv

2

]
, (B2)

where A = [kv/2 0
0 −kv/2

]
, ω̄ = (ω1 + ω2)/2, and the time-varying component can be simplified as

−|�μ| m�

J ′(J ′ + 1)
E ( j)

z (x, z, t )e−ikvt = (−1) j | �μ|m�Mūjk

J ′(J ′ + 1)
e−kz̃ j

ei[k(x− 2λ
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e−ikvt ≈ (−1) j | �μ|m�Mūjk
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3 ), (B3)

by neglecting the fast oscillating terms containing e−2ikvt . Then we have Eq. (4) in the main text.

APPENDIX C: ILLUSTRATION ON EQ. (9)

During the trapping of polar molecules, the motion of molecules is determined by the electric force and Newtonian mechanics.
In the longitudinal direction, the molecules can be stable because the direction of the joint force by the IDT-induced electric field
and the external electric force are different at the upper side and the lower side of the trapped points and this can provide the
restoring force. In the horizontal direction, once the polar molecules can escape from the trapped localization, their motion is
only determined by the IDT-induced electric field as Eq. (7) in the main text. Consider the property of the electric force at a point
only affected by the IDT but not by the external force, which satisfies that
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where φ = φ(x, z, t ) is given in Eq. (A43) [59,102].
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