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Effects of forward disorder on quasi-one-dimensional superconductors
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We study the competition between disorder and singlet superconductivity in a quasi-one-dimensional (1D)
system. We investigate the applicability of the Anderson theorem, namely that time-reversal conserving (non-
magnetic) disorder does not impact the critical temperature, by opposition to time-reversal breaking disorder
(magnetic). To do so, we examine a quasi-1D system of spin 1/2 fermions with attractive interactions and forward
scattering disorder using field theory (bosonization). By computing the superconducting critical temperature
(Tc), we find that, for nonmagnetic disorder, the Anderson theorem also holds in the quasi-1D geometry.
In contrast, magnetic disorder has an impact on the critical temperature, which we investigate by deriving
renormalization group equations describing the competition between disorder and interactions. Computing the
critical temperature as a function of disorder strength, we observe different regimes depending on the strength
of interactions. We discuss possible platforms where this can be observed in cold atoms and condensed matter.
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I. INTRODUCTION

Competition between superconductivity and disorder is
a very important and fundamental problem. By nature, su-
perconductivity would naively be expected to be robust to
disorder. One important question, addressed from the early
days of superconductivity [1,2], is whether the presence of
disorder in the normal phase can impede the occurrence of
the superconducting phase transition or drastically change its
critical temperature. The result, known under the name of
Anderson’s theorem [2], is that for a singlet superconductor
obeying the Bardeen-Cooper-Schrieffer (BCS) mechanism,
nonmagnetic impurities have no effect on the critical tem-
perature, while magnetic impurities decrease the critical
temperature, effectively “destroying” superconductivity. This
behavior was explained very clearly by Anderson through a
symmetry argument. As long as the disorder still respects
time-reversal symmetry (as nonmagnetic disorder does), it is
possible to form a pair of eigenstates that are the time-reversal
partners of each other, instead of the usual k and −k states
forming a Cooper pair in the pure system. However, as soon
as the disorder breaks time-reversal symmetry (as magnetic
disorder does), there is no way of forming an equivalent of
the Cooper pair and superconductivity is destroyed. For mag-
netic disorder, formulas giving the reduction of Tc with the
concentration of disorder were given [1].

This dramatic difference in behavior extends to other types
and pairing natures of superconductivity, where both kinds of
disorder can significantly decrease the critical temperature.
The robustness of the superconducting transition to disorder
has thus been seen as a probe of the nature and pairing sym-
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metry of the superconducting order parameter in materials as
varied as heavy fermions [3], organic superconductors [4],
high Tc superconductors [5], and multiband superconductors
[6]. The combined problem of disorder and interactions has
also been studied theoretically in different settings including
the three-dimensional (3D) Hubbard model framework (both
repulsive and attractive) to compare the competition between
different orders in the presence of disorder [7,8] or 2D super-
conductors [9,10].

However, the situation was realized to be more complicated
than predicted by simple applications of the BCS mean-field
equation to disordered systems. This is particularly the case
when dimensionality allows the disorder to have a strong
effect, such as, e.g., leading to Anderson localization [11]. In
such cases, since the very nature of the eigenstates is affected
by the disorder, the symmetry argument does not suffice and
even nonmagnetic disorder can potentially affect Tc. This was
indeed shown to be the case for systems made of coupled 1D
chains with attractive interactions. In such a case nonmagnetic
disorder is able to destroy even s-wave pairing [12] or in some
regimes even enhance it [13].

One could argue that such results are the direct conse-
quence of the existence of the rather drastic phenomenon of
Anderson localization, quite efficient in one dimension, but
much easier to reduce strongly in higher dimensional cases.
Even in one dimension, since Anderson localization is inti-
mately linked to the presence of backscattering due to disorder
[14–16], one could expect to recover an Anderson theorem if
such backscattering is suppressed and if only forward scatter-
ing exists from the disorder.

Such questions have become timely since recently cold
atomic systems have provided excellent experimental real-
izations in which both disorder and interactions could be
controlled [17,18]. In such systems, localization of one parti-
cle in quasiperiodic or speckle potentials [19–22], disordered
interacting bosons [23,24], and fermions [25,26] have been re-
alized. More generally, cold atoms have proven to be excellent
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FIG. 1. Fermionic tubes of spin 1/2 particles which can tunnel
between the tubes. The particles experience a contact attractive in-
teraction U (see text), leading to a singlet superconducting ground
state. The tubes can be continuous or have their own lattice, in which
case the model is the attractive Hubbard model with anisotropic
hopping t‖ along the chains and t⊥ between the chains. We are in
a situation where t⊥ � t‖. Additionally, along the chains, there is
either a random chemical potential μi or a random magnetic field hz

i .

systems to probe or think of combined effects of interactions
and disorder or quasiperiodicity in a large variety of situations
[27–29].

In this paper, we thus examine the effects of nonmagnetic
and magnetic disorder on a system made of coupled one-
dimensional fermionic chains with attractive interactions. To
avoid or minimize effects due to Anderson localization, we
restrict ourselves only to long wavelength disorder having
Fourier components much smaller than 2kF , where kF is the
Fermi wave vector of the chains. In Sec. II, we present the
model, the bosonized formalism, and the observables that
we will look at in order to compute the critical temperature.
In Sec. III, we examine nonmagnetic disorder and find that
forward nonmagnetic disorder has no impact on the critical
temperature. In Sec. IV, we instead study the case of magnetic
disorder. First, we look at the case where we neglect the
spin gap in the spin sector of the Hamiltonian, which sim-
plifies the problem and allows us to treat it almost completely
analytically. We find that disorder here weakens the supercon-
ductivity until it destroys it. Secondly, we treat the case of a
finite spin gap. To deal with the corresponding “sine-Gordon”
term in the Hamiltonian, we use a renormalization group (RG)
technique. In this case, while we still find that disorder will ul-
timately lead to the destruction of superconductivity, we also
see that depending on the strength of interactions we get two
very distinct regimes arising from the competition of the dis-
order with the spin gap due to the interactions. In Sec. V, we
discuss several aspects of our results and also how they could
be practically implemented in a cold atom or condensed mat-
ter realization. Finally, a conclusion can be found in Sec. VI
and more technical details can be found in the Appendixes.

II. MODEL

A. General microscopic model

We consider a fermionic spin 1/2 model with attractive
contact interaction U < 0, made of several 1D tubes arranged
in a 3D lattice. The system is schematically shown in Fig. 1.
The ground state of the pure system is thus a singlet supercon-
ductor with, in particular, a gap in the spin excitations [30].
The 1D tubes can be continuous or with a lattice; both cases
can be treated similarly.

We consider two types of disorder. One is nonmagnetic
disorder where a random chemical potential couples to the

total density

ρn(x) = c†
↑,n(x)c↑,n(x) + c†

↓,n(x)c↓,n(x), (1)

where c†
σ,n(x) creates a fermion with spin σ at point x on chain

n. The corresponding disorder term is

Hdis,ρ = −
∑

n

∫
dx μn(x)ρn(x). (2)

The second type is a random magnetic field coupling to the
spin density along z

σ z
n (x) = c†

↑,n(x)c↑,n(x) − c†
↓,n(x)c↓,n(x) (3)

leading to
Hdis,σ = −

∑
n

∫
dx hz

n(x)σ z
n (x). (4)

Both the chemical potential μn(x) and random magnetic
field hz

μ(x) are taken to be uncorrelated from chain to chain.
For the correlation of the disorder along the chains, we wish
to avoid the dominant effects of Anderson localization, which
is produced by the backscattering on the disorder and which
is anomalously strong in one dimension. As discussed in
Refs. [12,13], this has a drastic effect even on plain vanilla
singlet superconductors. We thus restrict the disorder to have
only Fourier components much smaller than 2kF , where kF

is the Fermi wave vector of one chain. We will discuss the
consequences of such a restriction on disorder in more detail
in Sec. V C, but we just note here that such a limitation of the
spectrum of disorder is quite natural with speckle disorder
[31].

B. Bosonized representation

To deal with the interactions in each chain, we use the
bosonization technique [30] and introduce collective variables
φρ,n (φσ,n) linked to the fluctuations of charge (spin) density
on chain n by

ρn(x) = −√
2

π
∇φρ,n(x),

σ z
n (x) = −√

2

π
∇φσ,n(x). (5)

These variables are conjugate to variables θν,n (with ν = ρ, σ )
linked to the phase fluctuations and which obey the canonical
commutation relations [φν,n(x),∇θν (x′, n)] = iπδ(x − x′).

After bosonizing each chain individually, we obtain the
following Hamiltonian:

H =
∑

n

H1D,n +
∑
〈n,l〉

H⊥,nl , (6)

where 〈n, l〉 denotes chains that are nearest neighbors on a
lattice. The Hamiltonian of a single chain is

H1D,n = 1

2π

∫
dx

[
uρ

Kρ

(∇φρ,n)2 + uρKρ (∇θρ,n)2

]

+ 1

2π

∫
dx

[
uσ

Kσ

(∇φσ,n)2 + uσ Kσ (∇θσ,n)2

]

+ 2g

(2πα)2

∫
dx cos(

√
8φσ,n)

+ Hdis,n,ρ/σ . (7)
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The parameters Kρ , Kσ , uρ , and uσ are the Luttinger parame-
ters and contain the effects of the interactions and the kinetic
energy. α is linked to the ultraviolet cutoff of our bosonic
theory.

The forward disorder Hamiltonian reads in bosonized form

Hdis,n,ρ = −
√

2

π

∫
dx ηn(x)∇φρ,n, (8)

Hdis,n,σ = −
√

2

π

∫
dx γz,n(x)∇φσ,n, (9)

where γz and η are two random Gaussian fields with cor-
relations γz,n(x)γz,m(x′) = D f ,eδ(x − x′)δn,m, ηn(x)ηm(x′) =
D f ,mδ(x − x′)δn,m characterizing the forward magnetic and
nonmagnetic disorders,

Finally, we have to consider the interchain coupling. The
elementary coupling between the chains should be produced
by single particle hopping. However, we consider in this paper
a different coupling between the chains—namely, we retain
only the tunneling of pairs by Josephson coupling. The corre-
sponding part of the Hamiltonian is thus

H⊥,nl = −J
∫

dx
[
c†
↑,n(x)c†

↓,n(x)c↓,l (x)c↑,l (x)
]
, (10)

where n, l are the 1D chains indexes and J the Josephson cou-
pling between the chains. We take J here as an independent
parameter.

We will come back in Sec. V B to this point. Note that
retaining only the Josephson coupling and discarding the sin-
gle particle tunneling is usually justified by the presence of
a gap in the spin sector (�σ ) for attractive interactions [30].
We will take (10) as the interchain Hamiltonian for our study,
while still noting that in the case of a magnetic disorder,
which can potentially break the spin gap, the situation is more
delicate. For large negative U , one has the usual estimate of
the Josephson coupling J ∼ t2

⊥/|�σ |, where �σ ∼ U , while
another intermediate regime where the Josephson coupling
has a different dependence on the spin gap (J ∼ t2

⊥/|�σ |2)
exists [32]. By taking J constant, we potentially ignore pos-
sible effects of having a Josephson coupling reinforced by the
disorder if the spin gap decreases.

The physical properties of the system are thus controlled
by the above Hamiltonian and thus depend crucially on the
Luttinger liquid parameters. In order to work with a specific
example, we focus in the following on the parameters corre-
sponding to the case of tubes with a lattice that realizes the
fermionic spin-1/2 Hubbard model with the Hamiltonian

H = −
∑

〈i, j〉,σ
ti, jc

†
i,σ c j,σ + H.c. + U

∑
i

c†
i,↑ci,↑c†

i,↓ci,↓ + Hdis,

(11)

where ti, j is the hopping amplitude from site i to site j,
ci,σ , c†

i,σ are the destruction/creation operators at site i and
spin σ , U is the on-site interaction, and 〈i, j〉 denotes nearest
neighbors on a cubic lattice. By a quasi-1D system, we mean

that the hopping ti, j is small in all but one direction tz = ty �
tx. Hdis encodes the disorder part of the Hamiltonian.

For a clean 1D attractive Hubbard model, the spin sector
is gapped and the parameters of the charge sector can be
computed perturbatively in U [30,33] and lead to

Kρ,σ = [1 ± U/(πvF )]−1/2,

uρ,σ = vF [1 ± U/(πvF )]1/2,

g = U,

(12)

where the upper sign is for ρ (the lower sign is for σ ) and vF

is the Fermi velocity vF = 2t‖ sin(kF ).

C. Observables

Since our main goal is to compute the effect of the disorder
on the superconducting critical temperature, a central part of
our calculations is the pair correlation function.

We treat the interchain Hamiltonian (10) in mean field

c†
↑,n(x)c†

↓,n(x) = 〈c†
↑,n(x)c†

↓,n(x)〉 + δ(c†
↑,n(x)c†

↓,n(x)) (13)

and retain only the terms linear in the fluctuation part
around the mean value. Note that here the order parameter
〈c†

↑,n(x)c†
↓,n(x)〉 is dependent on space for a single realization

over the disorder. However, once we do the average over the
different disorder realizations, since the disorder is decoupled
between the different chains, we recover an order parameter
which will be space invariant.

The mean-field approximation leads to

H⊥,MF = −2zJ

πα
�

∑
n

cos[
√

2θρ,n(x)] cos[
√

2φσ,n(x)], (14)

where z is the number of neighboring chains and

� = 1

πα
〈ei

√
2θρ cos(

√
2φσ )〉, (15)

where we will choose the gauge where � is real.
The critical temperature is given by the divergence of the

pair susceptibility χ (T ), which is given in the mean-field
(RPA) approximation by

χ (β ) = χ0(β )

1 − 2zJ
(πα)2 χ0(β )

, (16)

where χ0(β ) is the uniform and static susceptibility in the
absence of interchain coupling at the temperature T = 1/β.
The superconducting critical temperature Tc is thus given by
the condition

1 = 2zJ

(πα)2
χ0(βc), (17)

where

χ0(β ) =
∫

dx
∫ β

0
dτ

× 〈Tτ cos[
√

2θρ (x, τ )] cos[
√

2φσ (x, τ )]

× cos[
√

2θρ (0, 0)] cos[
√

2φσ (0, 0)]〉H1D . (18)
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Since the Hamiltonian (7) is separated between the charge and
spin sectors we obtain

χ0(β ) = 1

uσ

∫∫
�(β )

dx d (uσ τ )

× 〈Tτ cos[
√

2θρ (x, uρτ )] cos[
√

2θρ (0, 0)]〉Hρ

× 〈Tτ cos[
√

2φσ (x, uσ τ )] cos[
√

2φσ (0, 0)]〉Hσ
,

(19)

where we have used the fact that, for distances which are
larger than uσ β, the correlations decay exponentially in 1D.
Therefore, we can neglect this part and integrate on a disk of
radius uσ β denoted �(β ).

Note that this mean-field solution is linked to the quasi-
one-dimensional nature of the problem and is different from
the usual BCS mean-field calculation that was used to es-
tablish the Anderson theorem [1,2]. In the latter case one
computes the pair susceptibility with the full kinetic energy
(thus including the transverse hopping as well) but in an RPA
approximation in the interaction U . At Tc, the gap is thus
automatically zero in the BCS approximation. In the quasi-
one-dimensional situation we consider here, the situation is
different since even for decoupled chains, for which the Tc

is zero even in the absence of disorder, due to the quantum
fluctuations, a strong spin gap can exist for the spin sector. We
discuss these differences more in Sec. V A.

III. NONMAGNETIC DISORDER

Let us first consider the case of nonmagnetic disorder. The
Hamiltonian to consider at the single chain level, in particular
to solve (17) giving Tc, is (7) with the disorder (8).

Since the charge sector part of the Hamiltonian is purely
quadratic, the disorder can be absorbed by a simple redefini-
tion of the field φ(x) [16]

φρ → φ̃ρ = φρ −
√

2Kρ

uρ

∫ x

0
dx′η(x′). (20)

This leads to a Hamiltonian for the charge sector of the form

H = 1

2π

∫
dx

uρ

Kρ

(∇φ̃ρ )2 + uρKρ (∇θρ )2

− Kρ

uρπ

∫
dx η2(x). (21)

Note that this transformation does not affect the
field θ (x), which remains conjugate to the field φ̃(x).
The calculations of the susceptibility, which depends on
〈Tτ cos[

√
2θρ (x, uτ )] cos[

√
2θρ (0, 0)]〉Hρ

, and the spin part
are thus not affected by the disorder either and yield an iden-
tical result with or without forward disorder.

An analogous result to the Anderson theorem, namely that
a nonmagnetic forward disorder has no impact on the crit-
ical temperature of superconductivity [Tc(D f ,e)/Tc(0) = 1],
is recovered. This result can also be viewed directly in the
fermion language since the transformation (20) corresponds
to a redefinition

ψR,L (r) → ψR,Le±i
Kρ

uρ

∫ x
−∞ dy η(y)

, (22)

where R (L) denotes the right and left movers and in (22) the
upper sign refers to R. Similarly to the Anderson theorem, one
can thus see that it is possible to create new objects that are
still related by time reversal symmetry, even in the presence of
disorder. When pairing these objects, the disorder totally dis-
appears, leading to the invariance of the critical temperature.
However, the forward scattering disorder will still affect other
correlations in this model, for example, the density-density
ones (basically anything which involves the field φσ ).

Note that this result is modified if the backward scattering
is present [12]. The Anderson localization that it induces leads
to an exponential decay of the pair correlation functions and
thus competes with the superconductivity. Therefore, one can
expect drastically different effects of nonmagnetic disorder
on the superconductivity depending on which Fourier compo-
nents are present. This can, in principle, be tested by changing
kF with respect to an upper cutoff in the disorder spectrum.

IV. MAGNETIC DISORDER

We now turn to the case of magnetic disorder. For this, we
employ (7) with the disorder (9). Two significant differences
are immediately noticeable compared to the case of nonmag-
netic disorder. First, the spin sector of the Hamiltonian (7)
is not simply quadratic but has a sine-Gordon form. Thus
an analogous transformation to (20) done for the spin sector
does not allow one to get rid of the magnetic disorder in the
Hamiltonian. This reflects the competition between the ran-
dom magnetic field and the cosine term that creates the spin
gap. A corresponding term would exist in the charge sector
only if the system is in a Mott state with a commensurate
filling [34,35].

Secondly, the pair susceptibility (19) depends on the field
φσ for the spin sector. This contrasts with the charge sector
where the dual field θρ appears. Thus performing the afore-
mentioned transformation introduces a disorder dependence
in the pair susceptibility, regardless of the presence of the
cos(

√
8φσ ) term in the Hamiltonian. This indicates from the

start that magnetic disorder affects the correlations and conse-
quently the critical temperature.

In the calculation of the pair susceptibility, the charge sec-
tor Hamiltonian is quadratic. Therefore, the charge part of the
correlations is [30]

Rθ (r) = 〈Tτ cos[
√

2θρ (x, uτ )] cos[
√

2θρ (0, 0)]〉Hρ

� 1

2

(α

r

) 1
Kρ

, (23)

where r is given by (x, uρ/σ τ ) depending on where we are
computing correlation functions (charge or spin sector) and
r2 = x2 + (uρ/σ τ )2.

Due to the sine-Gordon form of the spin part of the Hamil-
tonian (7), the full calculation of the spin sector is more
involved and we analyze it in the next two sections.

A. Spin sector with g = 0

Let us start in this section by setting g = 0 in the Hamilto-
nian. This amounts to a scenario where the spin gap opened
by the presence of the cosine term is so small that it can be
neglected. This corresponds typically to the case of attractive
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interactions very small compared to the kinetic energy in the
chain since, in such cases, it is well known that the spin gap is
exponentially small in the ratio t‖/|U |. This simplified model
allows one to disentangle the effects produced by the magnetic
disorder on the pair susceptibility from the robustness of the
finite pairing gap.

It is important to note that setting g = 0 does not necessar-
ily imply that Tc itself is small, since Tc is given by Eq. (17)
and χo depends mostly on Kρ and Kσ . Although in this case
we can formally take any value for Kσ , we restrict ourselves to
Kσ = 1, which corresponds to a spin rotation invariant Hamil-
tonian with g → 0 [30]. Our study can be readily extended to
any value of Kσ when g = 0.

Furthermore, as mentioned in the previous section, we still
consider, even if we take a zero spin gap, that the interchain
coupling is of the Josephson form, with a fixed J . We come
back to this approximation in Sec. V B.

The dephasing induced by the disorder (9) can be readily
computed in the case of g = 0. It affects the spin part of
the correlations and consequently Tc. For g = 0, a change of
variables similar to the one performed in the charge sector is
made:

φσ → φ̃σ = φσ −
√

2

uσ

∫ x

0
dx′γz(x′). (24)

The transformation removes the disorder from the Hamilto-
nian. Unlike the case of nonmagnetic disorder, the change of
variables (24) modifies the susceptibility (19). After perform-
ing the ensemble averaging over disorder, these correlations
become

〈Tτ cos[
√

2φσ (x, uτ )] cos[
√

2φσ (0, 0)]〉Hσ

� 1

2

(α

r

)
e
− 2D f ,m

u2
σ

|x|
. (25)

The forward magnetic disorder thus leads to an exponen-
tial decay of the spin part of the correlation function with
a characteristic length scale related to the disorder strength.
Consequently, one can expect a strong impact of magnetic
impurities on Tc, roughly resulting in a suppression of the
superconducting critical temperature when the thermal length
associated with the temperature Tc becomes larger that the
length associated with the disorder.

More quantitatively, to determine Tc we solve (17), which
with g = 0 is

1 = 2zJ

(πα)2

∫
dx

∫ βc

0
dτ

1

4

(α

r

) 1
Kρ

+1
e
− 2D f ,m

u2
σ

|x|

= zJ

uσ (2πα)2
α

1+ 1
Kρ

∫ u/Tc

α

dr r− 1
Kρ 2πF

(
2D f ,m

u2
σ

r

)
, (26)

where F (x) = [Io(x) − Lo(x)] and Io (Lo) is a modified Bessel
function of the first kind (a modified Struve function). For
simplicity we have assumed in the above formula that the
charge velocity uρ and the spin one uσ are identical so we
can use the same r for the spin and charge sector. These two
velocities are in general different [30]. The generalization of
(26) to the case of two different velocities is straightforward
but does not change fundamentally the results, albeit at the
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FIG. 2. Tc/Tc(0) as a function of the ratio of characteristic
lengths for different interactions U . The inset shows the same quan-
tity as a function of the disorder normalized by the critical value of
the disorder Dc at which superconductivity is destroyed.

cost of not having analytically closed expressions. We discuss
this in Appendix C.

To compute numerically the integrals (26), one has to be
especially cautious. Indeed, while the difference of Bessel and
Struve functions is well behaved, these two functions indi-
vidually diverge exponentially. One has to implement a series
expansion of the difference at large argument to compute the
integrals accurately. To achieve a good numerical convergence
we first perform the integral on r and only in a second time the
integral on the angle θ , using polar coordinates for (26).

It is also worth noting that, although the disorder leads to an
exponential decay in space, its time independence preserves a
good temporal coherence, leading ultimately after integration
over the polar angle to a power-law decay of the correlation at
large distances limx→∞ F (x) = 2

πx . The decay induced by the
disorder is thus less dramatic than could have been expected.

To understand the results, let us introduce several char-
acteristic lengths. On one hand, ξD = u2

σ

2D f ,m
is the disorder

length, which controls the exponential decay rate in (25). On
the other hand, ξJ = vF

Tc (0) is a length associated to the super-
conducting state in the absence of disorder. We also define
Dc as the critical disorder—the amount of disorder where
there is no finite Tc associated with the superconducting phase
transition.

Figure 2 shows the ratio Tc/Tc(0), the critical temperature
normalized by the one without disorder, as a function of ξJ/ξD

for different values of the attractive interaction U , showing
the destruction of the superconductive state by the magnetic
disorder. The curves depend on the interaction, with the more
attractive cases being slightly more robust to disorder. The
inset shows the same effect as a function of D/Dc. While the
curves do not perfectly collapse on each other, they show an
excellent scaling in these variables.

The limit of g = 0 is thus a simple limit showing clearly the
analogy for the quasi-1D situation of the Anderson theorem.
Although the nonmagnetic (forward) disorder has no effect
on Tc, the magnetic one (time reversal breaking) impacts the
critical temperature. Note that these effects are not connected
to Anderson localization since they are produced by forward
scattering on the disorder.
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B. General case g �= 0

The calculation of the previous section actually overes-
timates the effects of magnetic disorder, because the full
Hamiltonian with a finite attractive interaction creates a spin
gap via the cos(

√
8φσ ) term. This spin gap, which locks the

particles in singlet states, prevents the magnetic field from act-
ing. Note that in the quasi-1D geometry that we consider, the
critical temperature is controlled by the interchain Josephson
coupling, while the spin gap essentially depends on the ratio
t‖/|U |. Thus it is perfectly possible to have a large spin gap
and a small Tc, contrarily to what happens if one computes
the Tc in the BCS approximation, for which the spin gap is
essentially zero close to Tc. This situation is very similar to the
case of the attractive higher dimensional Hubbard model, for
which a large regime of pseudogap can exist above Tc when
|U | is large.

Determining the effect on Tc is more involved in the case
g �= 0. We describe in this section a renormalization group
method allowing the calculation of the correlations in the spin
sector.

To renormalize the susceptibility χo, we follow a similar
procedure to the one used in [36]. The correlation function Rσ

is given for g = 0 by

Rσ (r) = 1

2
e
− Kσ

2 ln
(

x2+(uσ |τ |+α)2

α2

)
e

−2K2
σ D f ,m

u2
σ

|x|
. (27)

For r � α, we have x2 + (uσ |τ | + α)2 ≈ r2. We consider the
function

Hσ (r) = Rσ (r)e
2K2

σ D f ,m

u2
σ

|x|
e

Kσ
2 ln

(
x2+(uσ |τ |+α)2

α2

)
, (28)

with g = 0 and Hσ = 1/2. For g �= 0, we renormalize the
cutoff α until it reaches r in the perturbative expansion of (28)
in powers of g. This multiplicative renormalization procedure
allows one to define a function Iσ (dl, g(l )) such that

Hσ (r, αo, g(αo)) = e
∫ ln(r/α)

0 ln[I (dl,g(l ))]. (29)

1. RG flow

The algebra can be found in Appendix A.
The renormalization equations for the parameters Kσ , g,

and D f ,m read

dKσ

dl
= − g2K2

σ

2π2u2
σ

F

(
8D f ,mK2

σαo

u2
σ

el

)
, (30)

dg

dl
= (2 − 2Kσ )g, (31)

dD f ,m

dl
= −g2Kσ D f ,m

π3u2
σ

G

(
8D f ,mK2

σαo

u2
σ

el

)
, (32)

F (x) = [Io(x) − Lo(x)], (33)

G(x) = −2

3
x + π

I1(x) − L1(x)

x
+ π [I2(x) − L2(x)], (34)
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FIG. 3. (a) RG flow of our model, in red, the separatrix between
the two different regions (disorder dominating vs g dominating);
(b) example of the flow for parameters for which the disorder domi-
nates; (c) example of the flow in the g dominated regime.

where Io, I1, and I2 are modified Bessel functions of the first
kind and Lo, L1, and L2 are modified Struve functions.

Note that, for simplicity, we neglect the renormalization of
the uσ parameter in our calculation. Indeed we do not expect
the renormalization of the speeds to be large and we also do
not expect it to lead to new physical phenomena.

In the limit of no-disorder D f ,m → 0, we recover the usual
RG equations for Kσ , g because F (0) = 1. Here, we directly
see that the disorder and the g term are competing against
each other. The g term controls the decrease of the disor-
der (32). On the other hand, the effect of the disorder on
g is more subtle. The RG equation for g (31) depends only
on Kσ , whereas if Kσ is smaller than 1, g is relevant and
irrelevant otherwise. However, the disorder acts on the RG
equation for Kσ (30) and slows down its decrease [F (x) is
always smaller than 1]. It therefore indirectly opposes itself
to the parameter reaching a regime where g would be relevant
(or at least slow down the g divergence if g is relevant). More
details on the interpretation of the RG equations are given in
Appendix B.

Figure 3(a) shows the RG flow in the D f ,mα − g plane. We
separate it in two zones, delimited by a separatrix (red line),
defined by which one of those quantities (in absolute values)
reaches 1 first.

Below the separatrix, as seen in Fig. 3(c), the term in g
diverges first. This can be interpreted as the system succeeding
in having a spin gap due to the attractive interaction, with
the disorder being too weak to destroy this gap. Furthermore,
in this regime, the disorder is suppressed by the interactions
and D f ,m goes towards 0 (and D f ,mα does not diverge). The
same is true for Kσ , which also goes towards 0. Since the
RG equations are derived perturbatively in g, and similarly
to what is done for the case of the simple sine-Gordon flow
[30], we stop the flow at g = 1, beyond which the RG becomes
unreliable.

On the other hand, if we are above the separatrix, the
disorder wins and manages to destroy the spin gap. Both D f ,m

and Kσ go to constants. Even if g diverges, it has no effect on
the other parameters of the flow. This regime becomes similar
to the study of the previous section, Sec. IV A, where there
was no g term and thus no gap.
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2. Correlation functions

We compute using the same renormalization procedure—
the correlation function Rσ (r). This correlation is given by

Rσ (r) = 1

2
e−Kσ ln(r/α)e

− 2K2
σ D f ,m

u2
σ

|x|
e− ∫ ln(r/αo)

0
g(l )dl
πuσ

× e
∫ ln(r/αo)

0 dl K2
σ (l )g2 (l )

2π2u2
σ

ln(r)F (A(l ))

× e
∫ ln(r/αo)

0 dl
4g2 (l )D f ,m (l )K3

σ (l )

π3u4
σ

|x|G(A(l ))
,

A(l ) = 8D f ,m(l )K2
σ (l )

u2
σ

α(l ). (35)

If g dominates, we have to stop the RG flow when g gets
of order 1. Beyond this point, all the correlations related to
the spin degree of freedom are frozen to a constant. So our
correlation function starts as a power-law-like function whose
exponent is renormalized as we go to larger scales, until the
correlation freezes to a constant.

If the disorder dominates, we do not stop the RG flow,
since the diverging g has no effect anymore on the correla-
tion function and the other parameters. Neglecting g is fully
justified beyond the point for which D f ,mα ∼ O(1). Note,
however, that there is an intermediate regime, due to the term
linear in g in the renormalization of Rσ (r), that is difficult to
control perturbatively, since the renormalized g is large, but
the exponential decay that sets in when D f ,mα ∼ O(1) has not
yet started. This case is similar to the perturbative treatment
of the commensurate-incommensurate phase transition [37]
and ultimately does not affect the physics of the problem. In
this regime we thus qualitatively have a correlation function
which starts as a power law, gets corrected a bit (until g stops
“resisting” the disorder), and finally decays exponentially,
similarly to its behavior in the model without g.

3. Critical disorder

The calculation of the correlation function allows us to de-
termine D f c, the critical disorder at which superconductivity
is killed. To practically evaluate it, we take in this section the
definition that when Tmin = 10−8 in units of αo/uσ we can
consider that this is equivalent to having completely killed the
superconductivity. Furthermore, in this case, given the sudden
changes in the values of χo(0, 0) as we transition from one
regime to the other with large interactions, the best that we
can numerically do is approach D f c from below.

In Fig. 4, we compare the separatrix of our RG flow to
the critical disorder for different interactions U . While for
small interactions, there exists a region where the system
remains superconducting even if disorder dominates the RG
flow, for large interactions the critical disorder coincides with
the separatrix/the change of regimes. This can be interpreted
as follows: when the spin gap is very small, the competition
between disorder and superconductivity is primarily governed
by the competition between the random magnetic field, which
acts as a random chemical potential for each spin species
separately, and the Josephson term that favors a q = 0 like
pairing in a singlet state. When the gap is large, the random
magnetic field must first destroy the gap to be effective, but

Separatrix

Critical disorder

−1 −0.8 −0.6 −0.4 −0.2 0
g

−20
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f
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α
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Superconducting + interactions

Not superconducting + disorder

Superconducting
+ disorder

FIG. 4. Black line is the separatrix between the two RG flow
regions, where either the interactions or the disorder dominate. The
red points correspond to the critical disorder for a given U/(g),
separating the regions with and without superconductivity.

then it very efficiently outcompetes the (small) Josephson
coupling term.

4. Critical temperature

The susceptibility of one chain χo(q = 0, ω = 0) is given
by

χo(0, 0) =
∫

dx
∫ βc

0
dτ Rρ (r)Rσ (r), (36)

where r2 = x2 + (uσ τ )2 and we neglect the factors of α inside
r. We use polar coordinates with uσ τ = y. This leads to

χo(0, 0) = 1

4uσ

α
Kσ + 1

Kρ

∫ uβc

αo

dr r (1−Kσ − 1
Kρ

)e− ∫ ln(r/αo)
0

g(l )dl
πuσ

× e
∫ ln(r/αo)

0 dl
(

K2
σ (l )g2 (l )

2π2u2
σ

ln(r)F (A(l ))
)

×
∫ 2π

0
dθ e

−
(

2K2
σ D f ,m

u2
σ

−∫ ln(r/αo)
0 dl

4g2 (l )D f ,m (l )K3
σ (l )

π3u4
σ

G(A(l ))
)
|x|

.

(37)

After integrating over the angles, we obtain

χo(0, 0) = 1

4uσ

α
Kσ + 1

Kρ

∫ uβc

αo

dr r1−Kσ − 1
Kρ

× e
∫ ln(r/αo)

0 dl
(
− g(l )

πuσ
+ K2

σ (l )g2 (l )

2π2u2
σ

ln(r)F (A(l ))
)

× 2πF

[(
2K2

σ D f ,m

u2
σ

−
∫ ln(r/αo)

0
dl

4g2(l )D f ,m(l )K3
σ (l )

π3u4
σ

G(A(l ))

)
r

]
,

(38)

where the parameters Kσ , D f ,m outside the integrals over l are
the parameters at the beginning of the RG procedure. This
expression is similar to the one for the g = 0 model, with the
main differences being the appearance of a linear term in g due
to the specific correlation function we are considering and the
fact that the parameters Kσ , D f ,m are here renormalized by the
RG flow.
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FIG. 5. Tc normalized as a function of the strength of magnetic
forward disorder normalized over the critical disorder for different
values of U .

The behavior of χo(0, 0) varies depending on the scale and
the regime (interaction or disorder dominated) at which we are
looking. At short scales, in both cases, the integrand of (38) is

proportional to the power law r1− 1
Kρ

−Kσ , since F (r) goes to 1
for small r. At large r, χo(0, 0) behaves differently depending
of which parameter dominates. If g dominates, since Rσ (r) is
now a constant, the integrand of (38) becomes proportional to

r1− 1
Kρ and this power law always increases with r. Therefore,

there is always a finite critical temperature in this regime. On
the other hand, if disorder dominates, the integrand of (38)

behaves as r− 1
Kρ

−Kσ , which decays rapidly enough to ensure
convergence for the interactions considered. This implies that
there may not always be a finite Tc in this regime. This
abrupt change in behavior impacts the critical temperature.
One should note that this sudden change of behavior is at least
partly due to our treatment in the RG procedure of the two
regimes above and below the separatrix as two completely dif-
ferent regimes. This approach allows for a simple estimation
of the complicated integral while retaining the main features
of the solution. A more complete treatment would smoothen
the curve.

Finally, we compute the critical temperature by solving
(17). Figure 5 shows two different regimes in the critical
temperature. To numerically compute those integrals, it is
useful to apply different treatments depending on the RG
regime. Unlike the case g = 0, it is better to perform first the
integration over the angles θ and then integrate over r. For
small enough interactions, we recover a very similar behavior
to the g = 0 case. However, for large interactions, the decrease
of Tc is dramatically slowed by the presence of the finite gap
and then Tc drops rapidly to zero, as explained qualitatively
above.

Figure 6 plots the same quantity as a function of the ratio
of the two characteristic length scales ξJ (characterizing the
superconducting phase in the pure case) and ξD (the length
scale of the exponential decay for the disordered case). As
shown in the figure, when the gap is small (small U ) the
superconductivity is suppressed when these two lengths are
approximately equal. In contrast, when interactions are large
and there is a well formed spin gap, the disorder must first
overcome the spin gap, independently of the scale ξJ which

U = −0.1
U = −0.3
U = −0.5
U = −0.9

0 1 2 3 4 5 6 7
ξJ/ξD
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0.4

0.6
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c
/T
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FIG. 6. Tc as a function of the strength of magnetic forward
disorder for different values of U . The lengths ξJ (ξD) characterize the
superconducting order coming from the transverse coupling J (the
exponential decay due to disorder). This distinguishes two regimes
depending on whether the spin gap of an isolated chain is large or
small.

characterizes the transverse coupling. This leads to the slow
and somewhat linear decrease of Tc. Once the gap is gone the
disorder is at that point large enough to also overcome the
contribution coming from the transverse Josephson coupling.

V. DISCUSSION

A. Comparison with the isotropic BCS solution

From the previous section, we see that, for the quasi-1D
situation, we obtain the equivalent of an Anderson theorem,
originally derived close to the Tc in an isotropic situation with
a solution of the BCS equations. A weak random chemical
potential does not affect Tc or the pairing correlation func-
tions below Tc. However, a disorder breaking the time-reversal
symmetry, such as a random magnetic disorder, has a more
complex effect. Essentially, such a disorder appears in the
pair correlation functions and thus will have an effect on the
superconductivity as indicated in Figs. 5 and 6.

We however consider a situation where Tc and pairing
are essentially controlled by the strength of the interchain
(Josephson) coupling, with the interactions inside a chain
being essentially arbitrary. Thus it is perfectly possible to have
a strong spin gap �σ while having at the same time a small
Tc. In this case, as shown in Fig. 6, the magnetic disorder
must first destroy the spin gap before it can influence Tc or
the pair correlations. For an isotropic case, such a situation
would also occur on a lattice, with, e.g., an attractive Hubbard
model at large |U |. In such a situation, the spin gap scale is
essentially |U |, while the kinetic energy of the pairs becomes
4t2/|U |, leading to a small condensation temperature and thus
to a small Tc. It would be interesting to study the effect of
magnetic disorder in such a system to see if similar effects to
the ones observed here would be found.

B. Interchain hopping and Josephson coupling

In the model considered in the previous sections, we as-
sumed that the chains were coupled by a Josephson coupling
allowing for the hopping of singlet pairs across the chains. As
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discussed in Sec. II B, most microscopic realizations actually
contain single particle hopping between the chains. In the
presence of a spin gap, due to the attractive interaction, the
single particle hopping is suppressed and replaced by the
Josephson coupling we have considered in this paper.

For the nonmagnetic disorder, keeping only the Josephson
coupling poses no problem since the spin gap is preserved by
the disorder. The results derived in the previous section are
thus directly applicable to systems with single particle hop-
ping and we do not expect any important difference between
the two models.

For the magnetic disorder, on the contrary, the spin gap
is first destroyed by the disorder and it is thus a challenging
and important question to know how the results we obtained
would apply when the system has single particle hopping to
start with. A detailed solution, particularly by renormalization
techniques that have been used to tackle the competition be-
tween the single particle hopping and the particle-particle or
particle-hole hopping [30], is clearly beyond the scope of the
present paper and will be left for a future publication.

However, one can expect the general results derived here
with the Josephson coupling to be largely valid. Indeed,
the main additional effect for magnetic disorder will be the
destruction of the Josephson coupling, leading to singlet
pair hopping. This should naively make the destruction of
the singlet superconductivity even more efficient than in a
model where the Josephson coupling is kept constant. We
can thus expect naively an even stronger effect of the mag-
netic disorder, making the contrast between the magnetic and
nonmagnetic disorder even more marked. Another interesting
possibility when looking at a model containing single-particle
tunneling is that there might also appear some intermediate
region in disorder, where the reduction of the spin gap due to
the disorder could lead to an increase in the coupling J . This
increase would “oppose” the decrease of the pair susceptibil-
ity and therefore might increase Tc.

An interesting possibility for the case of single particle
hopping is the potential to stabilize other phases in the pres-
ence of the magnetic disorder. One order parameter that would
be robust to the magnetic disorder is

OT S,xy(r) ∼ ei
√

2θρ (r) cos[
√

2θσ (r)] (39)

or the equivalent one with a sine. This order parameter corre-
sponds to the x or y component of a triplet order parameter.
A corresponding pair-hopping term is also generated by the
single particle hopping but is subdominant for an attractive
interaction. Indeed, since the field φσ orders, the correlations
of the field θσ decrease exponentially fast. However, in the
presence of the magnetic disorder, the cos(

√
8φσ ) term in

the single chain Hamiltonian (7) is essentially killed and the
θσ are the only correlations without exponential decay. Since
Kρ > 1 due to the attractive interaction, the θρ correlations are
favored in the charge sector.

This would lead to the interesting possibility of replacing
the singlet superconducting phase with a triplet one when
the magnetic disorder becomes large enough. Of course, this
phase will have a lower Tc but should survive even at relatively
large magnetic disorder. This could be a practical possibil-
ity to stabilize a triplet superconducting phase even in the

presence of contact attractive interaction, e.g., in a cold atom
realization.

C. Possible implementations

To test for the the effects investigated here, cold atomic
systems provide a natural potential realization. Several key
ingredients needed could be realized in such systems. The
coupled 1D structures of fermions with attractive interactions
can be readily realized, either in systems made of several tubes
[38] or in systems with quantum microscopes [39,40].

One of the required key ingredients is a disorder that would
be mainly forward. This also can be realized either with
the natural limitation provided by a speckle disorder [31] or
in systems such as quantum microscopes by generating the
disorder via DMD and tuning the Fourier transform of the
disorder so that Fourier components close to 2kF are absent.

Measuring Tc itself might not be experimentally easy to
realize, but a simpler measurement could be provided by the
decay of the pair correlation functions along the tubes, which
are a direct measure of the existence of superconductivity in
the system. In that respect, for quantum microscopes, since the
easily measured quantity is the density, it could be useful to
make use of the relation that exists between the attractive and
repulsive Hubbard models [41]. Such a transformation maps
the attractive model into the repulsive one and the random
chemical potential into a random magnetic field and vice
versa. The observables are directly related by a particle-hole
transformation on spin down only [41]. In particular, a singlet
order parameter would map onto an antiferromagnetic spin
order along the x or y direction.

In the language of the repulsive Hubbard model, one would
thus conclude from the results of the previous sections that a
random magnetic field along z would essentially not affect
the correlation function of the antiferromagnetic fluctuations
along x or y of a half filled system (one particle per site),
leading to a TC for antiferromagnetic order in the plane that is
essentially unchanged. This corresponds to the Anderson the-
orem for the nonmagnetic disorder. On the other hand, putting
a random chemical potential along the tubes would drastically
destroy such correlation, corresponding to the destructive ef-
fects of the magnetic disorder on single superconductivity that
we have found in the present study. The competition discussed
earlier between the magnetic disorder and the spin gap in the
attractive side becomes the competition between the Mott gap
and the random chemical potential on the repulsive side. It
is necessary for the random chemical potential to be stronger
than the Mott gap to locally dope the system. Once this is
reached, however, the spin-spin correlation in the x − y plane
gets very rapidly destroyed.

In condensed matter systems, one would have to use highly
anisotropic systems. Organic superconductors are a good can-
didate [4] and there may also be a possibility of investigation
in some 2D systems where high anisotropy has been re-
ported, such as CrSBr [42]. The easy part here is identifying
superconductivity since simple resistance measurement (and
Meissner effect) are routine experiments. However, the hard
part in this kind of experiment would be controlling the
disorder to keep the backscattering much smaller than the
forward scattering along the chains. One possibility would
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be, like for two-dimensional semiconducting systems, to place
the impurities far from the conducting chains. This, however,
would have the drawback of also leading to quite correlated
potentials from one chain to the next.

VI. CONCLUSION

In this work, we extended the Anderson theorem for super-
conductivity, which states that nonmagnetic impurities do not
impact a BCS superconductor, meaning they do not change its
critical temperature, while magnetic impurities have a dras-
tic effect. We considered a quasi-1D system with forward
scattering disorder, coupled by a Josephson coupling favoring
singlet superconductivity. We showed that, for such a system,
the nonmagnetic forward disorder leaves TC and pair corre-
lations essentially unchanged. On the other hand, magnetic
disorder has a significant impact on the system. Once such
disorder overcomes the spin gap, it starts destroying the pair
correlations and hence the superconductivity very efficiently.
Interestingly, the correlation function that seems to survive the
magnetic disorder and still decays slowly is the xy part of the
triplet superconducting correlation (with a random magnetic
field along z).

We also discussed various possible tests of these predic-
tions in condensed matter and especially in cold atomic gases.
Quantum microscopes provide an ideal system to test for
the predictions of this paper, using an implementation for a
repulsive Hubbard model with one particle per site. In that
case, magnetic disorder would leave the xy antiferromagnetic
spin-spin correlations essentially unchanged, while a nonmag-
netic disorder would rapidly destroy such correlations once it
is able to suppress the Mott gap.

Several extensions of our work would be interesting. In
particular, since chains are coupled by single-particle tunnel-
ing and not just by the pair tunneling, other pair couplings
can be generated. This raises the question of which instability
could be dominant once the singlet superconductivity has
been destroyed. The most likely candidate is a triplet super-

conducting pairing. Whether such pairing, which dominates
for a single chain, could be effectively stabilized in the 2D or
3D case is an interesting question and challenge. Indeed, if
this is the case, it would provide a route to realize triplet su-
perconducting phases with purely contact interactions. These
questions will be examined in future studies.
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APPENDIX A: COMPUTING THE RG EQUATIONS

In this Appendix, we describe in more detail how to com-
pute Hσ (ra) and derive the RG equations (30), (31), (32), and
(35).

We start from

Hσ (ra) = 1

Zφσ

e
2K2

σ D f ,m |xa |
u2
σ e

Kσ
2 ln

(
x2
a+(uσ |τa |+α)2

α2

)

×
∫

Dφσ

∑
ε1,ε2=±1

1

4
eiε1

√
2φσ (ra )eiε2

√
2φσ (0)e−Sφσ ,

(A1)

where Sφσ
is the full 1D action of the spin sector after inte-

grating out the θ degrees of freedom and Zφσ is the partition
function associated with it. We first absorb the disorder terms
of the Hamiltonian in the definition of the field φσ and replace
them by φ̃σ (see also the main text). We then expand the action
to the second order in g. For simplicity of notation, we will
drop the σ of φσ and the m of D f ,m in the following equations.

Integrating over the configurations leads to the expansion
in powers of g:

Hσ (ra) = e
2K2

σ D f |xa |
u2
σ e

Kσ
2 ln

(
x2
a+(uσ |τa |+α)2

α2

)

×
⎡
⎣ ∑

ε=±1

1

4
e−iε 2Kσ

uσ

∫ xa
0 γ (x′ )dx′ 〈eiε

√
2[φ̃(ra )− ˜φ(0)]〉Hoφ̃

− g

8π2α2

∫
dx dτ

∑
ε

e
−iε 2Kσ

uσ

(∫ xa
x + ∫ 0

x

)
γ (x′ )dx′ 〈eiε

√
2[φ̃(ra )+ ˜φ(0)]−2φ̃(x)〉Hoφ̃

+ 1

16

g2

8π4α4

∫
dx1dτ1dx2dτ2

∑
ε1,ε2

e
−i 2Kσ

uσ

(
ε1

∫ xa
0 +2ε2

∫ x1
x2

)
γ (x′ )dx′ 〈eiε1

√
2[φ̃(ra )− ˜φ(0)]eiε2

√
8[φ̃(x1 )− ˜φ(x2 )]〉Hoφ̃

− 1

16

g2

8π4α4

∫
dx1dτ1dx2dτ2

∑
ε1,ε2

e
−i 2Kσ

uσ

(
ε1

∫ xa
0 +2ε2

∫ x1
x2

)
γ (x′ )dx′ 〈eiε1

√
2[φ̃(ra )− ˜φ(0)]〉Hoφ̃

〈eiε2
√

8[φ̃(x1 )− ˜φ(x2 )]〉Hoφ̃

⎤
⎦.

The average on Hoφ̃ is an average on the quadratic part of the Hamiltonian expressed in terms of φ̃.
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1. Disorder averages

To perform the disorder averages in the above expression,
we rewrite the integrals with the help of the Heaviside func-
tion. Completing the square and simplifying the result leads
for the first disorder average to

1

ZD

∫
dγ e

− 1
2D f

∫
dx′γ (x′ )2−i 2Kσ ε

uσ

∫ xa
0 γ (x′ )dx′

= e
− 2D f K2

σ

u2
σ

|xa|
,

where ZD = ∫
dγ e

− 1
2D f ,m

∫
dx′γ (x′ )2

.
The second disorder average (linear term in g) similarly

leads to

e
2K2

σ D f

u2
σ

[|xa−x|+|x|]

× e−2{[min(xa,0−x)]θ (−x)θ (xa−x)+[x−max(0,xa )]θ (x)θ (x−xa )}. (A2)

For the third term (second order in g), we obtain

e
−2K2

σ D f

u2
σ

|xa|− −8K2
σ D f

u2
σ

|x1−x2|

× e
−ε1ε2

8D f K2
σ

u2
σ

[min(x1,xa )−max(0,x2 )]θ (xa )θ (x1 )θ[min(x1,xa )−x2]

× e
−ε1ε2

8D f K2
σ

u2
σ

[min(0,x2 )−max(x1,xa )]θ (−xa )θ (−x1 )θ[x2−max(x1,xa )]

× e
ε1ε2

8D f K2
σ

u2
σ

[min(x2,xa )−max(0,x1 )]θ (xa )θ (x2 )θ[min(x2,xa )−x1]

× e
ε1ε2

8D f K2
σ

u2
σ

[min(0,x1 )−max(x2,xa )]θ (−xa )θ (−x2 )θ[x1−max(x2,xa )]
.

(A3)

2. Further algebra and some tricks

The remaining configuration averages can be easily com-
puted since Hoφ̃ is quadratic. In this case, we use the fact that

〈eA〉 = e
1
2 〈A2〉 and the relation [30]

〈[φ(r1) − φ(r2)]2〉 = Kσ

2
ln

[
x2 + (uσ τ + α)2

α2

]

= Kσ F1(r1 − r2). (A4)

We can then combine the connected and disconnected terms of
the second order expansion since they are similar in all of their
terms except for the cross terms between (0, xa) and (x1, x2),
which appear only in the connected term. This leads to a term
of the form

. . .
[
e2ε1ε2Kσ [F1(ra−r1 )−F1(ra−r2 )−F1(0−r1 )+F1(0−r2 )] − 1

]
. (A5)

From (A3) we obtain

e
−2K2

σ D f

u2
σ

|xa|− −8K2
σ D f

u2
σ

|x1−x2|

×
[(

e
−ε1ε2

8D f K2
σ

u2
σ

[min(x1,xa )−max(0,x2 )]θ (xa )θ (x1 )θ[min(x1,xa )−x2]
e
−ε1ε2

8D f K2
σ

u2
σ

[min(0,x2 )−max(x1,xa )]θ (−xa )θ (−x1 )θ[x2−max(x1,xa )]

× e
ε1ε2

8D f K2
σ

u2
σ

[min(x2,xa )−max(0,x1 )]θ (xa )θ (x2 )θ[min(x2,xa )−x1]
e
ε1ε2

8D f K2
σ

u2
σ

[min(0,x1 )−max(x2,xa )]θ (−xa )θ (−x2 )θ[x1−max(x2,xa )] − 1

)
+ 1

]
, (A6)

which allows us to obtain the renormalization equations for
the interaction terms and for the disorder separately.

3. Interaction renormalization equations

We apply the procedure described in [30] to the sec-
ond term of (A6) multiplied by (A5). In this part of our
equations, no disorder (D f ) appears. Rewriting r1 and r2 as
center of mass (R = [X = (x1 + x2)/2,Y = uσ (τ1 + τ2)/2])
and relative coordinates r, we recognize gradients of F1:
[∇RF1(ra − R)]. In the expansion in small r up to second
order, the ∇2

X − ∇2
Y term renormalizes the velocity uσ . We

neglect this contribution since the change of velocity does not
affect the physics of the problem in an essential way. On the
contrary, we retain ∇2

X + ∇2
Y , which can be simplified using

(∇2
X + ∇2

Y ) log(R) = 2πδ(R).
Using polar coordinates the full term becomes

K2
σ g2

4π2α4u2
σ

e
− 2D f K2

σ

u2
σ

|xa|F1(ra)
∫

r>α

dr e−4Kσ F1(r)r3F

(
8D f K2

σ

u2
σ

r

)
,

(A7)

where F has been defined in (33).

Looking at the contribution of
∫ α+dα

α
dx, where we define

α = αoel , we obtain the RG equations for Kσ (30) and g (31).

4. Disorder renormalization equations

We now look at the first term of (A6) multiplied by (A5).
We discuss the case xa > 0 since the other case can be treated
similarly. Since, for large disorders, the two exponentials

e
−2K2

σ D f

u2
σ

|xa|− −8K2
σ D f

u2
σ

|x1−x2| which we do not expand would sup-
press completely this term, we can expand the exponentials
containing the “crossed” disorder terms and the exponential
containing the F1 terms at first order.

We now also have to separate the integrals on x1 and
x2 to handle all cases arising from the Heaviside func-
tions. Those split into four categories (our chains have
size 2L):

∫ xa

0 dx1
∫ x1

0 dx2,
∫ xa

0 dx1
∫ 0
−L dx2,

∫ L
xa

dx1
∫ xa

−L dx2, and∫ L
xa

dx1
∫ 0
−L dx2.

Since the term is suppressed exponentially in |x1 − x2|, the
fourth category of integrals is negligible since the minimal
interval between x1 and x2 is L, which is half the size of the
system. The most important contribution comes from the first
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term, which covers most of the |x1 − x2| “small” region and
gives us the renormalization that we use. Finally, the second
and third term are “marginally relevant” in the sense that,
while they have also possibilities of having small |x1 − x2|,
they have only one point where x1 and x2 coincide. This last
term would give rise to less relevant terms in the renormaliza-
tion equations.

Another way of looking at it is that we are looking at the
effect of having disorder on two points, x1 and x2, on the
correlations related to two fixed points, xa and 0. Since the
effect of x1 and x2 is suppressed if they are far from each
other, given the splitting of our integral, the importance of
each contribution is related to the amount of possibilities to
have x1 and x2 close together.

We then go to the center of mass and relative coordinates
and perform first the integral on the center of mass coordi-
nates, starting with the integral on the center of mass “time.”
We are now looking at

16
8D f K3

σ

u4
σ

∫
dy

∫ xa

0
dx e

− 8D f K2
σ

u2
σ

|x|
e−4Kσ F1(r)x2

×
∫ x/2

xa−x/2
dX

∫
dY ∇X [F1(−R) − F1(ra − R)], (A8)

which then leads to

16π
8D f K3

σ

u4
σ

∫
dy

∫ xa

0
dx e

− 8D f K2
σ

u2
σ

|x|
e−4Kσ F1(r)x2(xa − x).

(A9)
After converting to polar coordinates and performing the

integration, we end up with

16π
8D f K3

σ

u4
σ

[∫ xa

0
dr r3e−4Kσ F1(r)xaG

(
8D f K2

σ

u2
σ

r

)

−
∫ xa

0
dr r4e−4Kσ F1(r)M

(
8D f K2

σ

u2
σ

r

)]
, (A10)

with

M(x) = 4

3
− π [I3(x) − L1(x)] − π

I2(x) − L2(x)

x
. (A11)

In this last expression, the second term leads to a new RG
equation which is less relevant. The first term instead, when
reexponentiated, leads to the RG equation for the disorder
(32).

5. Correlation function renormalization

The last element that we need comes from the linear term
in g. By splitting the integral on dx to handle the Heaviside
functions, we find that the disorder term can be rewritten

uniformly as e
2K2

σ D f

u2
σ

|xa|. Finally, combining all of these terms
together, we derive the RG equation of the correlation function
(35).

APPENDIX B: DETAILS ON THE INTERPRETATION
OF THE RG EQUATIONS

We can play around a bit with our RG equations (30), (31),
and (32) by noticing that in all of them the disorder strength
D f ,m is accompanied by α. This suggests making a change of

variable D̃ = D f ,mα (the quantity which we compare to g to
decide who wins the RG).

This leads to the following RG equations :

dKσ

dl
= − g2K2

σ

2π2u2
σ

F

(
8K2

σ D̃

u2
σ

)
,

dg

dl
= (2 − 2Kσ )g,

dD̃

dl
=

[
1 − g2Kσ

π3u2
σ

G

(
8K2

σ D̃

u2
σ

)]
D̃.

(B1)

In this form the competition between g and D̃ is evident. Both
would be diverging exponentials if the other is set to 0 and
both are contained (or even suppressed for the equation of D̃)
by the other. The main question which remains at this stage is
which one of the two will diverge first.

Since F and G are complicated functions which have
simple power law behaviors at large argument, we can also
expand them at large argument. Particular attention should be
given that this means that D̃ is large and therefore D �= 0. So
this expansion describes well the case where the disorder wins
while one has to be more careful if g wins the RG. We then
get the following expressions for the RG equations:

dKσ

dl
= − g2

8π3D f ,m

1

α
,

dg

dl
= (2 − 2Kσ )g,

dD f ,m

dl
= − 2g2u4

σ

83π3D2
f ,mK5

σ

1

α3
,

(B2)

where α = αoel . Here we can see clearly the competition be-
tween disorder and g if we do the same variable change as just
above. However, another change of variable illustrates another
aspect of our RG. If we redefine our parameter g → g̃ = g√

α
,

we get for the RG equations

dKσ

dl
= − g̃2

8π3D f ,m
,

dg̃

dl
= (3/2 − 2Kσ )g̃,

dD f ,m

dl
= − 2g̃2u4

σ

83π3D2
f ,mK5

σ

1

α2
.

(B3)

Since these expressions are valid at large D f ,mα, the disor-
der equations show us that the parameter D f ,m is in practice
frozen. But the main interest here is the second equation—the
one for g̃. We see that g̃ is relevant for Kσ > 0.75, which is
reminiscent of the case of a backward disorder that would
exist only in the spin sector [30].

APPENDIX C: DIFFERENT VELOCITIES

1. Model g = 0

For the following, we treat here the charge velocity and
spin velocity as different. The susceptibility of one chain
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FIG. 7. Plots of the behavior of the critical temperature by re-
spect of disorder comparing both treatments of uρ/uσ as described in
the main text and in this Appendix.

χo(q = 0, ω = 0) is then given by

χo(0, 0) =
∫

dx
∫ βc

0
dτ Rρ (rρ )Rσ (rσ ), (C1)

where r2
ρ = x2 + (uρτ )2 and r2

σ = x2 + (uσ τ )2; we neglect the
factors of α inside rρ/σ . We make the change of variables
uσ τ = y, which when passing in polar coordinates leads us
to

χo(0, 0) = 1

4uσ

α
1+ 1

Kρ

∫ uσ βc

αo

dr r− 1
Kρ

×
∫ 2π

0
dθ

e
− 2K2

σ D f ,m

u2
σ

|x|

(
cos(θ )2 + uρ

uσ

2 sin(θ )2
) 1

Kρ

. (C2)

As we can see in Fig. 7, the difference between the cases
where we consider uσ = uρ or where we take their real values
coming from their definition (12) is minimal. So the qualita-
tive behavior can be quite well described analytically by the
expression (26) without taking into account the difference of
the speeds, while if one wants to be slightly more quantitative,
one can refer to the expression tracking the difference between
uρ and uσ .
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FIG. 8. Plots of the behavior of the critical temperature by re-
spect of disorder comparing both treatments of uρ/uσ as described in
the main text and in this Appendix in both regimes of the RG.

2. Model g �= 0

In the same spirit as above, the susceptibility is now given
as a function of two different r: rρ and rσ ,

χo(0, 0) =
∫

dx
∫ βc

0
dτ Rρ (rρ )Rσ (rσ ), (C3)

which then lead by the same change of variables uσ τ = y to

χo(0, 0) = 1

4uσ

α
Kσ + 1

Kρ

∫ uσ βc

αo

dr r1−Kσ − 1
Kρ e− ∫ ln(r/αo)

0
gdl
πuσ

× e
∫ ln( r

αo )

0 dl K2
σ g2

2π2u2
σ

ln(r)F (A(l ))

×
∫ 2π

0
dθ

e
−
(

2K2
σ D f ,m

u2
σ

−∫ ln(r/αo)
0 dl

4g2D f ,mK3
σ

π3u4
σ

G(A(l ))
)
|x|

(
cos(θ )2 + uρ

uσ

2 sin(θ )2
) 1

Kρ

(C4)

and we can again see in Fig. 8 that the qualitative behavior is
the same in both treatments of the speeds for both regimes of
the RG.
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