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Bias-preserving computation with the bit-flip code
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We explore the feasibility of fault-tolerant quantum computation using the bit-flip repetition code in a biased
noise channel where only the bit-flip error can occur. While several logic gates can potentially produce phase-flip
errors even in such a channel, we propose bias-preserving implementation of S, H , controlled-Z (CZ), and Rz

gates. We demonstrate that our scheme improves the computational precision in several tasks such as the time
evolution of quantum systems and variational quantum eigensolver.

DOI: 10.1103/PhysRevResearch.6.023290

I. INTRODUCTION

Quantum error correction plays a pivotal role in suc-
cessfully executing quantum algorithms on noisy quantum
computers. Specifically, the surface code [1–3] and its variants
exhibit promising attributes concerning scalability. The family
of quantum low-density parity check codes [4] that outper-
form those codes are also actively being investigated. While
these error-correcting codes hold the potential to be deployed
in fault-tolerant quantum computers in the future, their current
utilization in practical calculations is constrained by existing
technical limitations.

A complete error-correcting code can correct both bit-flip
and phase-flip errors. In actual quantum computers, however,
these errors do not appear with equal probability and are
generally biased [5–10]. For example, phase-flip errors dom-
inate noisy quantum computers employing superconducting
qubits [11] and Rydberg atoms [12]. The same holds true for
cat qubits employed in optical quantum computers [13–17].
Because of these circumstances, analyzing quantum channels
with biased noise forms an important area in fault-tolerant
quantum computation. Error-correcting codes optimized for
biased-noise channels can improve the error threshold com-
pared to conventional ones [18–25], stimulating not only
theoretical but also practical interest.

This paper examines the viability of fault-tolerant quantum
computation in biased noise channels, particularly focusing
on noisy intermediate-scale quantum (NISQ) or early fault-
tolerant quantum computational (FTQC) devices, which are
equipped with many qubits but have limited depth. Specif-
ically, we focus on the repetition code, the simplest error-
correcting code that would be useful in a highly biased envi-
ronment and is feasible with modern technology [26–31]. To
clarify the setup, we will consider a noise model characterized
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exclusively by uncorrelated bit-flip errors; we will ignore
coherent, readout, and other error types. The following argu-
ment holds true for a noise model in which only phase-flip
errors occur. The question here is whether a universal quan-
tum computation is possible in such a setup. This is highly
nontrivial: despite the error channel being restricted to bit-flip
errors, it remains possible for phase-flip errors to arise dur-
ing the course of the computation, which cannot be detected
nor corrected by the bit-flip repetition code. For example, a
naively implemented Hadamard gate converts the bit-flip error
to the phase-flip error. Consequently, achieving fault-tolerant
quantum computation demands the implementation of logical
gates that preserve the bias of the error channel. Such gates,
known as bias-preserving gates [13,14,16], must be designed
to avoid converting bit-flip errors into other types of errors.

To address this issue, we propose a set of novel bias-
preserving gates: S, H , controlled-Z (CZ), and Rz gates. Our
central concept is that phase-flip errors occurring in the middle
of the circuits can be intentionally correlated with bit-flip
errors. Consequently, this correlation enables the detection
of the phase-flip errors emerging within these Clifford gates
through usual syndrome measurements. While errors in the
Rz gate can no longer be Pauli errors, the bias-preserving Rz

gate can be implemented based on the same idea. While our
implementation approach entails the drawback of requiring
postselection, it offers the advantage of bypassing the need
for the Toffoli gate in Hadamard gate implementation [13].
Another previous study proposed a bias-preserving imple-
mentation for a class of operators called X -type unitaries [10].
In contrast, a notable feature of this study is incorporating
analog rotation gates that allow arbitrary unitary operations.

This paper is organized as follows. In Sec. II, we define
our noise model and show the details of implementing fault-
tolerant and bias-preserving gates. In Sec. III, we show several
numerical demonstrations of our scheme. In Sec. IV, we dis-
cuss the effects of phase-flip error. Section V is devoted to the
discussion and concluding remarks.

II. FAULT-TOLERANT AND BIAS-PRESERVING
LOGICAL GATES

Throughout this paper, X , Y , and Z denote Pauli matri-
ces. The Pauli matrix P that acts on ith qubit is denoted by
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Pi ≡ I ⊗ · · · ⊗ P ⊗ · · · ⊗ I , where I is the identity matrix.
The eigenstates of X and Y gates are denoted by |±〉 and |±i〉,
respectively, i.e., X |±〉 = ±|±〉 and Y |±i〉 = ±|±i〉.

First, we define our noise model and clarify the mean-
ing of fault-tolerance and bias-preserving gates in Sec. II A.
In the next Sec. II B, we remind well-known fault-tolerant
error-correcting circuit and a slightly modified version. In the
remaining Secs. II C and II D, we propose fault-tolerant and
bias-preserving logic gates.

A. The noise model and fault-tolerant operations

We discuss quantum circuits in a noisy environment where
only bit-flip error occurs. We assume that elemental gate sets
consist of single and two-qubit gates. Let ρ0 and ρ be the
ideal initial and final density matrices of the system, and U
be a unitary gate. The state after a noisy single-qubit unitary
operation is given by Ep(Uρ0U †) = Ep(ρ), where Ep denotes
the quantum operation that describes the bit-flip error after a
single qubit with probability p:

Ep(ρ) =
∑
j=0,1

Ej (p)ρE†
j (p), E0 =

√
1 − pI, E1 = √

pX.

(1)

The noisy two-qubit gate is given in a similar manner, but the
noise channel is replaced by

(Ep ⊗ Ep)(ρ) =
3∑

j=0

Ej (p)ρE†
j (p), (2)

E0(p) = (1 − p)I, (3)

E1(p) =
√

(1 − p)pX1, (4)

E2(p) =
√

(1 − p)pX2, (5)

E3(p) = pX1X2. (6)

Unless otherwise noted, we do not consider other types of
errors: phase-flip error, coherent error, readout error, and so
on. We also assume that we can always prepare clean |0〉.1

Encoding qubits in the bit-flip code is the simplest way
to protect qubits from the bit-flip error. In the bit-flip code
with distance d = 3, we make each qubit redundant with three
qubits as

|ψ〉 ≡ a|0〉 + b|1〉 −→ |ψ〉L ≡ a|000〉 + b|111〉,
(|a|2 + |b|2 = 1, a, b ∈ C). (7)

Note that the encoded state, or the logical qubit, is denoted as
|·〉L from now on. Each qubit that constitutes a logical qubit
is called a physical qubit. This code can correct a single-qubit
bit-flip error but cannot correct further errors, which we call
logic errors.

1Actual quantum devices may not satisfy this assumption. Even in
that case, though, one can prepare the state in a fault-tolerant manner.
A method is discussed in Appendix C.

TABLE I. In the first and second columns, we show the eigen-
value of Z1Z2 and Z2Z3. The feedback operation to correct the error
is shown in the third column.

Z1Z2 Z2Z3 Feedback

1 1 I
−1 1 X1

−1 −1 X2

1 −1 X3

Let N be the number of logical qubits, and Xa, j be an X
gate that acts on jth physical qubit of the ath logical qubit.
An operation is called a fault-tolerant and bias-preserving
operation if, after performing the operation, the density matrix
is given by

(1 − c0 p)ρ +
N∑

a=1

3∑
j=1

ca j pXa, jρX †
a, j + O(p2), (8)

where ρ is the density matrix for the noiseless case, and c0

and ca j are O(1) constants. The definition of the fault-tolerant
operation requires that logic errors do not occur with proba-
bility O(p). In other words, terms like pX1,1X1,2ρX1,2X1,1 are
not allowed. At the same time, Eq. (8) also requires that the
phase-flip error does not appear with probability O(p). As we
will see below, the phase-flip error inevitably appears during
several logical gates, even for our noise model, if we imple-
ment these logical gates naively. Constructing bias-preserving
logical gates, which only cause a bit-flip error, is a central
issue of the following sections.

B. Error correction

A bit-flip error in the code Eq. (7) can be detected by the
measurement of the stabilizers Z1Z2 and Z2Z3, and it can be
corrected by the subsequent feedback operation of Xi. For
completeness, we show the relation between the error syn-
drome and the feedback operation required in Table I. The
eigenvalues of the stabilizers can be obtained by measuring
ancilla qubits connected by CNOT gates with the logical qubit
as shown in Fig. 1.

If the error syndrome is measured only once, bit-flip errors
can accumulate in two physical qubits with probability p. This
event is caused by a bit-flip error after the second CNOT gate.
To evade this problem, it is well known that we need to take a
majority vote on multiple syndrome measurements to obtain
the correct error syndrome, known as Shor’s fault-tolerant
scheme [32]. Here, we revisit the three-round scheme [33]
(Sec. 10.6). If all three syndrome measurements differ from
each other and the majority vote cannot be taken, no feedback
is manipulated. In this implementation, there are 24 different
failure patterns such that the probability of occurrence is p
within our noise model. These errors can be recovered or give
at most one bit-flip error in the final state. The density matrix
after the fault-tolerant error correction is

(1 − 8p)ρ + 2pX1ρX †
1 + 4pX2ρX †

2 + 2pX3ρX †
3 + O(p2).

(9)
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FIG. 1. A quantum circuit for the fault-tolerant error correction.
The part of the circuit enclosed by the dotted line forms the syndrome
measurement. It should be repeated twice or more. The X gates con-
nected by double wires means the operating an X gate to a physical
qubit with a suspicious bit-flip error identified by the results of the
syndrome measurement.

This parametrization can be slightly improved by reduc-
ing the number of syndrome measurements to two. Two
syndrome measurements are sufficient to distinguish bit-flip
errors occurring after the second CNOT gate, making the
circuit non-fault-tolerant from other events. Proof of this and
a lookup table for the feedback operations are shown in Ap-
pendix A. We find that the state after this shorthand error
correction circuit is given by

(1 − 7p)ρ + 3pX1ρX †
1 + 2pX2ρX †

2 + 2pX3ρX †
3 + O(p2).

(10)

Below, we use this shorthand circuit to correct bit-flip errors.

C. Clifford gates

Logical Pauli and CNOT gates are straightforwardly im-
plemented as fault-tolerant gates. They are shown in Figs. 2
and 3. On the other hand, the implementation of logical S and
H gates are involved. While the logical S gate could naively
be thought to be implemented as SL = S1, it is no longer bias
preserving. When it comes to the H gate, it is not possible to
implement it transversely.

To evade these difficulties, we examine gate teleportation,
which is an essential building block of fault-tolerant quantum
computation [5,34]. One way to achieve S and H gates via

FIG. 2. Logical X , Y , and Z gates.

FIG. 3. The fault-tolerant logical CNOT gate. The controlled and
target logical qubits are denoted by |ψc〉L and |ψt 〉L , respectively.

teleportation is shown in Fig. 4. We note that the gate tele-
portation of S† gate is obtained by replacing |+i〉 by |−i〉 in
Fig. 4(a). In both circuits, the Pauli gate connected to the meter
by the double line is meant to operate when the result −1 is
obtained.

Our goal is to prove each component in these circuits,
state preparation, CZ gate, and measurement in the X basis,
can be implemented as a fault-tolerant and bias-preserving
operation.

1. Preparation of |+〉L

Within our noise model, the eigenstate of logical X can be
prepared directly by the circuit in Fig. 5. Noting that CNOT
gates do not amplify the bit-flip error since the error after the
H gate does not change the state (X |+〉 = |+〉), the final state
reads

(1 − 4p)ρ + pX1ρX †
1 + 2pX2ρX †

2 + pX3ρX †
3 + O(p2).

(11)

2. Preparation of |+i〉L

The eigenstate of logical Y is prepared by the circuit shown
in Fig. 6. This circuit consists of |+〉L-preparation followed
by the S gate. Note that |−i〉L can be obtained by replacing
the S gate by S† gate in this circuit. A bit-flip error on the
first physical qubit before the S gate is converted to a Y error,
and thus, it breaks the bias preservation. However, the possible
Y error can be detected by the measurement of the stabilizer
Z1Z2 depicted by SM12 in Fig. 6, and eliminated by postse-
lection. The output of this circuit after such postselection is

FIG. 4. (a) S-gate teleportation. (b) H -gate teleportation. In these
figures, Y and X gates connected by double lines to the meter are
activated only when the result −1 is obtained.
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FIG. 5. A quantum circuit to prepare |+〉L .

given by

(1 − 3p)ρ + pX1ρX †
1 + pX2ρX †

2 + pX3ρX †
3 + O(p2). (12)

3. CZ gate

The CZ gate is not bias preserving due to the relation
CZi jXi = XiZ jCZi j . On the other hand, the phase-flip error
does not appear alone but together with a bit-flip error. This
feature enables us to detect the phase-flip error indirectly. We
show a fault-tolerant and bias-preserving logical CZ gate in
Fig. 7 that consists of a CZ gate between the first physical
qubits followed by syndrome measurements. Note that if the
ancilla can be recycled, only one ancilla is needed for the syn-
drome measurement, so only one |0〉 is depicted in the figure.
To see how this circuit works, assume that the incoming first
logical qubit |ψ1〉L has a bit-flip error on the first physical
qubit. Propagating the bit-flip error forward, a phase-flip error
appears in the second logical qubit |ψ2〉L while the bit-flip
error remains. Thus, the syndrome measurement for the first
logical qubit can detect the phase-flip error in the second
logical qubit. Eliminating such events by postselection, the
final state reads

(1 − 10p)ρ +
2∑

a=1

(2Xa,1ρX †
a,1 + 2Xa,2ρX †

a,2 + Xa,3ρX †
a,3)

+ O(p2). (13)

4. Measurement in the X basis

Measurement of the logical state in the X basis can be
performed by the circuit shown in Fig. 8, where the set of gates
enclosed by the dotted line should be repeated three times. The
probability of obtaining an incorrect measurement is O(p2) by
taking a majority vote on the results of three measurements.

The probability that an uncorrectable error accumulates
on the output state is also O(p2). This can be seen from the
fact that any error in the ancilla is not spread over more than

FIG. 6. A quantum circuit to prepare |+i〉L . The SM12 gate de-
notes the indirect measurement of Z1Z2.

FIG. 7. A fault-tolerant and bias-preserving logical CZ gate. The
first and second logical qubits are denoted by |ψ1〉L and |ψ2〉L ,
respectively. The SM gate denotes the syndrome measurement.

two physical qubits by noting that the bit-flip error does not
change |+〉.

5. S gate

Encoding each component in Fig. 4(a), we obtain a quan-
tum circuit of logical S gate teleportation. We show the entire
circuit in Fig. 9. Note that the preparation of |+i〉L needs
appropriate postselection to eliminate phase-flip errors as we
saw before. However, if we allow a repeat-until-success ap-
proach to prepare the state, the postselection is no longer
mandatory. The logical S gate teleportation requires seven
qubits in total: one logical data qubit, one logical resource
qubit, and one ancilla if the ancilla can be recycled. The
parametrization of the output state depends on the result of
the measurement of the logical data qubit. If ancilla is |0〉 (in
the sense of the majority vote), the output state reads

(1 − 6p)ρ + 2pX1ρX †
1 + 2pX2ρX †

2 + 2pX3ρX †
3 + O(p2).

(14)

FIG. 8. A quantum circuit to measure a logical state in the X basis.
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FIG. 9. A quantum circuit of logical S-gate teleportation.

If |1〉 is measured and the logical Y gate is operated, we obtain

(1 − 9p)ρ + 3pX1ρX †
1 + 3pX2ρX †

2 + 3pX3ρX †
3 + O(p2).

(15)

6. H gate

Encoding each component in Fig. 4(b), we obtain a quan-
tum circuit of logical H-gate teleportation. We show the entire
circuit in Fig. 10. This circuit needs postselection to eliminate
phase-flip errors that can appear after the CZ gate. The logical
H-gate teleportation requires at least seven qubits, assuming
that ancilla can be recycled. The parametrization of the output
state depends on the result of the measurement of the logical
data qubit. If |0〉L is observed, the output state reads

(1 − 9p)ρ + 3pX1ρX †
1 + 4pX2ρX †

2 + 2pX3ρX †
3 + O(p2),

(16)

FIG. 11. A quantum circuit to operate Rz gate.

otherwise

(1 − 12p)ρ + 4pX1ρX †
1 + 5pX2ρX †

2 + 3pX3ρX †
3 + O(p2).

(17)
D. Rotation gates

We discuss the implementation of rotation gates, namely
the Rz gate. Once the Rz gate is made, the rotation gate in
other bases can be constructed using fault-tolerant Clifford
gates. We start by pointing out that the Rz gate can be operated
indirectly, as shown in Fig. 11. The conditional Z gate acts on
the target state only when the result −1 is obtained.

To obtain the fault-tolerant version of this circuit, we em-
ploy the same strategy as the fault-tolerant S and H gates
construction, detecting unacceptable events by the syndrome
measurement. In this case, the event we should detect is that a
bit-flip error arises before the Rz gate. Such an error changes
the sign of the rotation angle since Rz(θ )X = XRz(−θ ). If
this happens, the encoded ancilla will be |100〉, which the
syndrome measurement can detect. Thus, we reach the circuit
shown in Fig. 12. This circuit needs at least seven qubits if the
ancilla can be recycled. The output state is

(1 − 3p)ρ + pX1ρX †
1 + pX2ρX †

2 + pX3ρX †
3 + O(p2), (18)

if 0 is measured in the ancilla side, otherwise

(1 − 4p)ρ + pX1ρX †
1 + pX2ρX †

2 + 2pX3ρX †
3 + O(p2).

(19)

FIG. 10. A quantum circuit of logical H -gate teleportation.
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FIG. 12. A quantum circuit of the fault-tolerant logical Rz gate.

III. NUMERICAL DEMONSTRATIONS

We apply our scheme to several problems to demonstrate
the effectiveness of fault-tolerant computation in a noisy
environment.

A. Benchmark

Let us consider a benchmark circuit as shown in Fig. 13,
which consists of X and CNOT gates. We repeat the part of
the circuit enclosed by the dotted line d times. One can easily
verify that the final state will be |00〉 regardless of d in a
noiseless environment. To quantify the effect of bit-flip noise,
we define the average squared fidelity F by

F = 1

N

N∑
i=1

|〈00|ψi〉|2, (20)

where N denotes the number of shots and |ψi〉 denotes ith
sampled state vector. For comparison, we also consider the
following circuits.

(i) An encoded circuit: Logically same as that shown in
Fig. 13, but each qubit is encoded by the bit-flip code.

(ii) An encoded circuit with error correction: Insert d
error-correction circuits to the end of each layer of the above-
mentioned circuit.

We perform numerical simulations of these circuits us-
ing Qiskit. We set the gate error to p = 10−3. We consider
d = 20, 21, . . . , 29 for each circuit and take 105 shots for each
simulation. In Fig. 14, we show the average squared fidelity as

FIG. 13. A benchmark circuit.

a function of the depth for the bare (nonencoded), encoded cir-
cuits, and the circuit equipped with the error correction (EC).
While the encoded circuit without EC improves the scaling
of the fidelity from 1 − O(p) to 1 − O(p2), it shows poor
performance as the depth increases. In particular, at d = 512,
it is almost entirely randomized, i.e., F = 1/4 indicated by
the dotted line. In contrast, the encoded circuit with EC keeps
fidelity high even at d = 512. This result clearly shows that
the error correction is mandatory in deep circuits.

B. Dynamics of quantum system

We consider the time evolution of a spin-chain model as
an example of a deep nontrivial circuit. Let us consider the

FIG. 14. Average squared fidelity of the benchmark circuits. The
dotted line indicates F = 1/4, which means that the bit-flip noise
totally randomizes the circuit. The star, triangle, and circle symbols
correspond to the average fidelity of bare, encoded circuits, and
encoded circuits with EC.
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FIG. 15. Repeating this circuit M times gives the Trotterized time-evolution operator Eq. (22) for N = 2.

transverse-field Ising model

Ĥ =
N∑

i=1

(ZiZi+1 + hXi ), (21)

with the periodic boundary condition ZN+1 = Z1. The time
evolution of this model is approximated by the Suzuki-Trotter
decomposition as

U = e−iĤt 	
(

N∏
i=1

e−iZiZi+1
t

M

N∏
i=1

e−iXi
t

M

)M

. (22)

Below, we set N = 2 for simplicity. The time-evolution op-
erator is implemented as shown in Fig. 15, where δ = t/M.
Note that ten physical qubits are needed to make this circuit
fault-tolerant.

As for the previous subsection, we measure the perfor-
mance of this circuit in a noisy environment. For comparison,

we also consider the encoded circuits with or without EC.
The fault-tolerant Rx gate is implemented by decomposing the
Rx gate as Rx = HRzH . The EC is inserted every time after
each fault-tolerant Hadamard gate. We do not use such de-
composition for the bare circuit. We compute the expectation
value of the total magnetization M(t ) = ∑N

i=1〈ψ (t )|Zi|ψ (t )〉
where |ψ (t )〉 = U |00〉, taking 104 shots at each time under the
transverse magnetic field h = 1. We set the Trotter time slice
to δ = 0.1 and the gate error to p = 10−3.

In Fig. 16(a), we show the total magnetization obtained
from each quantum circuit at each Trotter step. The results of
all circuits appear to deviate from a noiseless one. To quantify
the accumulation of errors, we define the integrated error by

E (Ntrot ) = 1

Ntrot

Ntrot∑
i=1

|M(iδ) − Mnoisy(iδ)|, (23)

FIG. 16. Time evolution of the transverse Ising model. The diamond symbols indicate the noise-free results. Other symbols are the same
as Fig. 14.
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where Mnoisy is the magnetization obtained by noisy quantum
simulations and Ntrot is the number of Trotter steps. We show
the evolution of the integrated error in Fig. 16(b). On a quan-
titative level, the encoded circuits have a clear advantage up to
t ∼ 2. In contrast to the case of the benchmark circuit consist-
ing only of X and CNOT gates, the EC circuit does not reduce
the integrated error compared with the encoded circuit without
EC. In the encoded circuit, Z errors that occur with probability
O(p) are removed by postselection, but those that occur with
probability lower than O(p2) remain unremoved. Figure 16(b)
suggests that the contribution of such uncorrectable errors is
dominant in this simulation.

Finally, we discuss the yield of postselection. In Fig. 16(c),
we show the time dependence of the discard rate of postselec-
tion needed for fault-tolerant H and Rz gates. In both cases,
the discard rate exponentially approaches one. According to
the fitting by the function 1 − e−at with a single parameter
a, it gives a 	 0.59 for the encoded circuit, and a 	 0.66
for the encoded circuit with EC. Postselection exponentially
worsens the efficiency of sampling, making it unsuitable for
running deep circuits. However, if the time is limited to t � 2,
which benefits from encoding, the discard rate is less than
about 70%.

C. Variational quantum eigensolver

We discuss the effectiveness of fault-tolerant computation
in a shallow circuit. To see this, we consider variational
quantum eigensolver (VQE) using a hardware-efficient ansatz
and apply it to quantum chemistry problems. In general,
the Hamiltonian of some molecule has a form of Ĥ = h0 +∑

pq hpqâ†
pâq + ∑

pqrs hpqrsâ†
pâ†

qâr âs, where â(†)
p is the annihi-

lation (creation) operator of an electron in a molecular orbital
p, h0 is the nuclear repulsion energy, hpq is the one-electron
integral and hpqrs is the two-electron integral. The electron in-
tegrals are obtained by the Hartree-Fock method, for instance.

In our demonstration, we aim to compute the ground-state
energy of caffeine (C8H10N4O2) with restricted active space
and the eigenspace of spin so that the Hamiltonian of a
two-qubit system is obtained after the Jordan-Wigner trans-
formation. The concrete form of the qubit Hamiltonian and its
derivation is presented in Appendix B. Since all coefficient
of the Hamiltonian is real, it is sufficient to consider the
following ansatz for VQE:

where {θi} are the real parameters. The fault-tolerant Ry gate is
implemented by decomposing the Ry gate to Ry = SHRzHS†.

We optimize these parameters classically and compute the
ground-state energy using the quantum circuit with those pa-
rameters. The qubit Hamiltonian of the caffeine is divided into
four groups of Pauli strings, and 107 shots are taken to mea-
sure the expectation value of each. The gate error is p = 10−3

as before. The result is summarized in Table II, indicating
that the encoded circuits reproduce the exact value well. On

TABLE II. The ground-state energy of caffeine.

Circuit type Energy [Hartree]

exact −667.7400
bare −667.7394
encoded −667.7397
encoded with EC −667.7396

the other hand, the results are not so different from those of
the bare circuit, so the benefit of encoding would be realized
when better accuracy than chemical accuracy (1 kcal/mol 	
1.6 mHa) is required.

IV. EFFECT OF PHASE-FLIP ERROR

From a practical standpoint, how circuits encoded with
bit-flip codes behave in a general error channel is a question
worth investigating. Here, we perform a numerical simulation
of VQE with the following error channel

Ep,ε (ρ) = (1 − p)ρ + p(1 − ε)X †ρX + pε

2
(Y †ρY + Z†ρZ ).

(24)

We note that ε = 0 corresponds to the bit-flip noise channel
Eq. (1) and ε = 2/3 corresponds to the depolarizing channel.
Other setup details are the same as Sec. III C except the num-
ber of shots to calculate an expectation value of each Pauli
group is 106.

In Fig. 17, we show the absolute difference between the
exact ground-state energy and numerical ones as a function
of the magnitude of the Z error. The encoded circuits are
superior to the bare one when ε = 10−3 = p or smaller. This is
reasonable because the encoded circuits are still fault-tolerant
if the phase-flip error only has O(pε) = O(p2) contribution.

FIG. 17. The absolute energy difference between exact and nu-
merical results of caffeine. The symbols are the same as Fig. 14. The
probability of the bit-flip error is p = 10−3.
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V. DISCUSSION

We have proposed a fault-tolerant and bias-preserving gate
set, namely S, H , CZ, and Rz gates, that do not cause phase-
flip errors at the leading order. We have considered three use
cases of our fault-tolerant computation scheme and found that
the encoding is advantageous when

(i) the circuit is deep and consists mainly of Pauli and
CNOT gates.

(ii) the circuit depth is moderate, but all Clifford gates and
rotation gates are allowed.

(iii) the circuit is shallow, but high precision is needed.
Another notable finding is that error correction is not nec-

essarily mandatory. In fact, except in case (i), error correction
does not reduce the error in the expectation value of physical
observables. This may be related to the inability to correct
phase-flip errors with a probability of O(p2). In addition, it
may also have something to do with the fact that the timing of
error correction is not optimized. Exploring potential accuracy
enhancements via optimization remains a prospect for future
investigation.

Subsequently, we comment on the relationship of our
error-correction scheme to other methods that have been
proposed in recent years. In the realm of fault-tolerant com-
putation under resource constraints, error correction using
flag qubits, where errors on a code of distance three can
be corrected using just two ancillary qubits, is a promising
approach [35]. This has the advantage of requiring fewer
resources than fault-tolerant syndrome measurements using
a Greenberger-Horne-Zeilinger state as employed in Shor’s
scheme. Although we do not employ flag qubits in our
scheme, the minimum number of ancillary qubits required is
one as long as clean |0〉 states are supplied. If such clean states
are not available, at least four ancillary qubits are needed (see
Appendix C). It is interesting whether the flag qubit method
can be used to reduce this amount of resources.

Finally, we discuss the scalability of our proposed scheme.
So far, we have employed a repetition code with a distance of
three, but its extension to arbitrary distances remains straight-
forward. The repetition code with distance d can correct
�(d − 1)/2� bit-flip errors. Using classical-bounded distance
decoding, the logical error rate after a single quantum op-
eration is denoted by pL = 1 − ∑�(d−1)/2�

k=0

(d
k

)
pk (1 − p)d−k .

As d increases, pL diminishes for most values of p, thereby
ensuring fault-tolerant computation with arbitrarily small log-
ical errors. However, the code rate, expressed as 1/d , is
suboptimal.

Certain logical operations necessitate postselection, raising
questions about the scalability in terms of the yield of such
processes. We can show that the yield after postselection does
not decrease with increasing code distance as follows. Con-
sider, for example, the logical S gate. For any code distance,
the logical S gate is basically the same as in Fig. 6. We only
increase the number of physical qubits by d . A Pauli-Y error
may arise solely after the action of the S gate on the first
qubit. Detection of such an error is feasible by measuring a
single syndrome, Z1Z2. The likelihood of detecting the Y error
remains constant regardless of the distance, thus the yield
from postselection shows a robust insensitivity to distance
variations. This characteristic is also observed for H , CZ, and

FIG. 18. A quantum circuit of the (repeated) syndrome measure-
ments. Numbers indicate where bit-flip errors can occur (0 � j �
n − 1).

Rz gates. This property shows the scalability of our proposed
scheme for arbitrary logical operations.
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APPENDIX A: FAULT-TOLERANT ERROR CORRECTION

We show how to achieve fault-tolerant error correction
based on the double-round syndrome measurements. First,
we remind the reader that error correction is not fault toler-
ant if the error syndrome is measured only once. We show
possible locations where bit-flip errors can arise in Fig. 18
and error syndromes when those errors occur in Table III.
Among these error patterns, the error occurring in location
5 breaks the fault tolerance of error correction. This is be-
cause the syndrome indicates that the error occurs in the
third physical qubit, although the actual error occurs in the
second.

We can eliminate such an unfavorable event when we mea-
sure syndromes twice. Table IV lists possible error patterns

TABLE III. Location of bit-flip errors and error syndromes of
single-round measurement.

Location Z1Z2 Z2Z3

1 −1 1
2 −1 −1
3 1 −1
4 1 1
5 1 −1
6 1 1
7 1 1
8 −1 1
9 −1 1
10 1 −1
11 1 −1
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TABLE IV. Location of bit-flip errors and error syndromes of
double-round measurement.

j = 0 j = 1

Location Z1Z2 Z2Z3 Z1Z2 Z2Z3 Feedback

1 −1 1 −1 1 X1

2 −1 −1 −1 −1 X2

3 1 −1 1 −1 X3

4 1 1 −1 1 X1

5 1 −1 −1 −1 X2

6 1 1 −1 −1 X2

7 1 1 1 −1 I
8 −1 1 1 1 I
9 −1 1 1 1 I
10 1 −1 1 1 I
11 1 −1 1 1 I
12 1 1 1 1 I
13 1 1 1 −1 I
14 1 1 1 1 I
15 1 1 1 1 I
16 1 1 −1 1 X1

17 1 1 −1 1 X1

18 1 1 1 −1 I
19 1 1 1 −1 I

and corresponding syndromes. The bit-flip error at loca-
tion 13, which is problematic in the single-round syndrome

measurement, has a distinctly different syndrome than the
others that trigger feedback control. Thanks to this property,
fault tolerance is manifest in the error-correcting circuit with
double-round syndrome measurement. Note that the 16th and
17th patterns that are indistinguishable from the fourth pat-
tern cause a bit-flip error on the first physical qubit, but it
does not break fault tolerance. Error correction based on the
double-round measurements is not unique. For example, there
is a way not to give feedback for the fourth, 16th, and 17th
patterns.

APPENDIX B: THE QUBIT HAMILTONIAN OF CAFFEINE

We describe the details of the qubit Hamiltonian of caffeine
C8H10N4O2. The geometrical configuration of atoms is opti-
mized using PySCF [36,37]. Within the Born-Oppenheimer
approximation, the second-quantized electronic Hamiltonian
of caffeine is constructed by calculating molecular orbitals
based on the Hartree-Fock method using the STO-3G basis
set. We consider an active space of CAS(2,2) to reduce the
dimension of Hilbert space. The qubit Hamiltonian is obtained
via the Jordan-Wigner transformation using OpenFermion
[38]. Finally, we get a tapered Hamiltonian consisting of 2
qubits specifying the eigenspace of SZ , the z component of the
spin operator. For completeness, we show the concrete form
of the tapered Hamiltonian:

H = −667.4554308557676I − 0.013168856506009949X0 + 0.013168856506009949X1

− 0.1532273887412754Z0 − 0.1532273887412754Z1 + 0.013169112223348517X0Z1

− 0.013169112223348517Z0X1 + 0.025969183085931477Z0Z1 − 0.050192647768994174Y0Y1.

APPENDIX C: FAULT-TOLERANT STATE PREPARATION

When the physical |0〉 state cannot be prepared with high
fidelity, a “|0〉-state factory” is needed to check for errors
and make postselections. Here, we describe a fault-tolerant
way of state preparation, assuming that a bit-flip error occurs
with probability p even in preparing the physical |0〉 state.
We assume that the noise model is identical to what we
introduce in Sec. II A except that clean initial states are not
available.

(i) Prepare three physical |0〉 states.
(ii) Measure Z1Z2 and Z2Z3 once each.
(iii) Take out one of these states in which no bit-

flip error is detected. If not, repeat this procedure until
successful.

The probability that |1〉 is still obtained incorrectly after
this process is O(p2). Therefore, we can prepare |0〉 fault-
tolerant by this method. Note that at least four qubits are
needed in this procedure.
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