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Symmetry, topology, and geometry: The many faces of the topological magnetoelectric effect
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A delicate tension complicates the relationship between the topological magnetoelectric effect (TME) in
three-dimensional (3D) Z2 topological insulators (TIs) and time-reversal symmetry (TRS). TRS underlies a
particular Z2 topological classification of the electronic ground state of crystalline band insulators and the
associated quantization of the magnetoelectric response coefficient calculated using bulk linear-response theory
but, according to standard symmetry arguments, simultaneously forbids a nonzero magnetoelectric coefficient
in any physical finite-size system. This contrast between theories of magnetoelectric response in formal bulk
models and in real finite-sized materials originates from the distinct approaches required to introduce notions of
(electronic) polarization and orbital magnetization in these fundamentally different environments. In this work
we argue for a modified interpretation of the bulk linear-response calculations in nonmagnetic Z2 TIs that is
more plainly consistent with TRS and use this interpretation to discuss the effect’s observation—still absent
over a decade after its prediction. Our analysis is reinforced by microscopic bulk and thin-film calculations
carried out using a simplified but still realistic effective model for the well established V2VI3 [V = (Sb, Bi)
and VI = (Se, Te)] family of nonmagnetic Z2 TIs. When a uniform dc magnetic field is included in this
model, the anomalous n = 0 Landau levels (LLs) play the central role, both in thin films and in bulk. In the
former case, only the n = 0 LL eigenfunctions can support a dipole moment, which vanishes if there are no
magnetic surface dopants and is quantized in the thick-film limit if magnetic dopants at the top and bottom
surfaces have opposite orientation. In the latter case, the Hamiltonian projected into the n = 0 LL subspace is a
one-dimensional Su-Schrieffer-Heeger model with ground-state polarization that is quantized in accordance with
the bulk linear-response coefficient calculated for (a lattice regularization of) the starting 3D model. Motivated
by analytical results, we conjecture a type of microscopic bulk-boundary correspondence: a bulk insulator with
(generalized) TRS supports a magnetoelectric coefficient that is purely itinerant (which is generically related to
the geometry of the ground state) if and only if magnetic surface dopants are required for the TME to manifest
in finite samples thereof. We conclude that in nonmagnetic Z2 TIs the TME is activated by magnetic surface
dopants, that the charge-density response to a uniform dc magnetic field is localized at the surface and specified
by the configuration of those dopants, and that the TME is qualitatively less robust against disorder than the
integer quantum Hall effect.
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I. INTRODUCTION

One of Peierls’ surprises in theoretical physics [1] is that
the orbital magnetization of metals can be correctly calculated
using infinite lattice models that neglect the surfaces of re-
alistic material samples, even though that magnetization can
be understood to arise from bound currents at those surfaces.
This mysterious success is now often taken for granted. In
recent times, strong interest in the multitude of topological
insulators (TIs) and the linear response thereof has high-
lighted similar issues, in particular when disentangling the
roles played by the topology ascribed to the bulk electronic
ground state and by topologically protected electronic surface
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states. The integer quantum Hall effect (IQHE) provides a
familiar example. In a two-dimensional (2D) crystalline band
insulator the IQHE occurs when the vector bundle of occupied
electronic Bloch states over the Brillouin zone (BZ) torus is
characterized by a nonzero Chern invariant [2–4]. Meanwhile,
experiments are often interpreted in terms of the gapless chiral
edge states [5–9] whose presence is more immediately related
to charge conduction. In the IQHE, it is generally accepted
that this bulk topology of a band insulator implies a quantized
bulk Hall conductivity but also implies the existence of chiral
edge states that yield a consistent conductance in finite-size
samples thereof, unifying the two interpretations. Notably,
breaking time-reversal symmetry (TRS) is necessary for a
nonzero Chern invariant and, by the usual symmetry argu-
ments, for a nonzero Hall conductivity in finite-sized systems.
The topological magnetoelectric effect (TME) presents an
even more stark puzzle. In three-dimensional (3D) crystalline
band insulators, TRS leads to a Z2 topological classification
of the electronic ground state and in Z2-odd phases to a mag-
netoelectric linear-response coefficient that is argued [10,11]
to equal (n + 1/2)e2/hc for n ∈ Z. On the other hand, in
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FIG. 1. Relationship between αCS in bulk insulators that exhibit
time-reversal symmetry (TRS) and αme in thin films thereof. In the
bulk, TRS leads to a Z2 topological classification of the electronic
ground state, to which αCS is sensitive. In three-dimensional Z2-odd
phases, αCS is quantized at e2/2hc up to an integer multiple of e2/hc.
In nonmagnetic thin films, however, the physically realized magne-
toelectric response αme is nonzero only when the energy dispersion
of the topologically protected surface states is everywhere gapped by
magnetic surface dopants which break TRS locally.

any finite-sized system with TRS, the usual symmetry argu-
ments dictate that the magnetoelectric coefficient must vanish.
Indeed, the requirement of magnetic surface dopants for real-
ization of the TME has been noted previously [10–14]. There
is no physical bulk response directly related to the 3D Z2

invariant, but a nontrivial Z2 invariant implies the existence
of surface states that can then be gapped to activate the TME.
This more convoluted connection has implications for the
experimental robustness of the effect, making it qualitatively
less robust against disorder compared with the IQHE.

It seems therefore that the magnetoelectric response of
nonmagnetic Z2 TIs is a rare violation of the Peierls principle
referred to above, i.e., that evaluating a quantity using a band
theoretic description does not always correctly produce the
value of that quantity in a large finite-sized sample thereof
(see Fig. 1). In this paper we explicitly address the relation-
ship between the magnetoelectric linear-response coefficient
of a bulk insulator that exhibits TRS and that of a finite-size
sample counterpart. As always, the bulk crystal is merely
a convenient theoretical construct. Our interest is in under-
standing when it yields the physically correct magnetoelectric
response. In Sec. II we describe this conundrum in more detail
and highlight the main results of the calculations that follow.
We argue for a slightly different interpretation of the bulk
magnetoelectric coefficient derived in previous work [15],
which is informed by the relationship (see Fig. 1) between
particular linear-response coefficients in finite-sized samples
and bulk that we explicitly establish in Secs. III and IV. Since
the magnetoelectric coefficient lacks physical significance in
macroscopically uniform bulk insulators that exhibit TRS, the
bulk interpretation that we propose implicitly involves the

consideration of surfaces, a seemingly unavoidable feature.
In this interpretation the magnetoelectric coefficient adheres
to the Peierls principle and we reach a conclusion that is
manifestly consistent with TRS; in nonmagnetic Z2 TIs, mag-
netoelectric response occurs only when the surface states are
gapped by magnetic dopants, the magnetoelectric coefficient
is quantized only when the surface magnetization configura-
tion satisfies stringent conditions, and currents proportional
to the magnetic field can flow through the material when the
surface magnetization profile is changed.

In Sec. III we extract the magnetoelectric coefficient for
thin-film and bulk samples of nonmagnetic Z2 TIs in the
V2VI3 family of materials by directly including a uniform
dc magnetic field in a coupled-Dirac cone model of the low-
energy electronic states, then computing the polarization of
the occupied energy eigenfunctions. In the case of thin films,
we find that when the Dirac cones associated with the top and
bottom surfaces are gapped by magnetic dopants of opposite
magnetization, the magnetoelectric coefficient αme is nonzero
and approaches a quantized value as the film thickness is in-
creased. The induced polarization is sensitive to the magnetic
dopant configuration and αme moves continuously through
zero to −αme as the component of magnetization perpen-
dicular to the surface is continuously taken to its opposite
value. When there is no surface magnetization, there is no
magnetoelectric response. We show that the quantization of
αme in the thick film limit can be understood in terms of the
topological properties of a Su-Schrieffer-Heeger model that
arises in the bulk description.

In Sec. IV we employ the 3D tight-binding model that we
obtain from a lattice regularization of the coupled-Dirac cone
model used in Sec. III and calculate αCS, the purported magne-
toelectric coefficient in crystalline band insulators that exhibit
TRS, semi-analytically using the well-known bulk linear-
response expression; we reproduce the expected quantization.
Calculating αCS is technically challenging because it must be
evaluated with respect to a smooth global gauge of the vector
bundle of occupied Bloch states over the 3D BZ. Generically,
Bloch energy eigenvectors that are smooth over the entire BZ
do not exist in a Z2 TI [16] and a Wannierization-like pro-
cedure [17] is required to obtain an adequate gauge choice.1

Fortunately, the model we employ exhibits a fermionic time-
reversal symmetry and an inversion symmetry, thus each
energy band is at least twofold degenerate over the BZ.
In fact, the energy bands are everywhere pairwise isolated.
Thus there exists a smooth global Hamiltonian gauge, and
with respect to such a gauge we make our calculations. In
Sec. V we analytically demonstrate that, in a particular smooth
global Hamiltonian gauge, αCS is entirely attributed to the
itinerant portion of the electric-field-induced orbital magne-
tization, and speculate that this is a universal feature unique to
nonmagnetic Z2 TIs. Our calculations explicitly demonstrate
that for Z2 TIs, the bulk theory of magnetoelectric response
does not always capture the properties of large finite-size
samples.

1See, e.g., Essin et al. [11].
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II. LINEAR-RESPONSE THEORY

The interaction between macroscopic electromagnetic
fields and the charged constituents of material media is of-
ten described at the level of linear response by introducing
phenomenological susceptibility tensors that are nonlocal in
space and time, and relate changes in the (macroscopic)
charge �(r, t ) and current J(r, t ) densities of the material
to the applied electric E(r, t ) and magnetic B(r, t ) Maxwell
fields that induce those changes. The charge and current den-
sities and the Maxwell fields are understood to be coarse
grained2 over a length scale intermediate between the atomic
spacing and the wavelength of light; indeed local field cor-
rections, which can be important, are not of interest here and
are neglected. It can often be assumed that a bulk material is
spatially uniform at that intermediate length scale, in which
case the susceptibility tensors are translationally invariant.
Then, for example, the linear response of J(r, t ) is of the form

Ji(1)(q, ω) = σ il (q, ω)El (q, ω), (1)

where σ il (q, ω) is the effective conductivity tensor, q and ω

are respectively the wave vectors and frequencies that arise in
the Fourier transforms of E(r, t ) and B(r, t ), and superscript
indices here and below identify Cartesian components that
are summed over when repeated. If E(r, t ) and B(r, t ) only
involve wavelengths in the optical regime, then σ il (q, ω) can
be expanded in powers of q,

σ il (q, ω) = σ il (ω) + σ il j (ω) q j + · · · , (2)

where σ il (ω) ≡ σ il (0, ω) and σ il j (ω) ≡ (∂σ il (q, ω)/
∂q j )|q=0. Using Eq. (2) in (1) and performing a Fourier
transform to coordinate space yields

Ji(1)(r, ω) = σ il (ω)El (r, ω) − iσ il j (ω)
∂El (r, ω)

∂r j
+ · · · .

(3)

The first term in Eq. (3) is the familiar long-wavelength
frequency-dependent conductivity tensor. Using Faraday’s
law, the second term can be shown to include contributions
that involve B(r, ω) and symmetrized spatial derivatives of
E(r, ω). Any susceptibility in a material that is uniform at the
course grained length scale can be analyzed in this way.

Physical insight into the distribution and dynamics of the
charged (quasi-)particles that constitute a material medium
can be gleaned by identifying bound and free contribu-
tions to �(r, t ) and J(r, t ), and associating the former with
macroscopic polarization P (r, t ) and (orbital) magnetization
M (r, t ) fields3 such that

�(r, t ) = −∇ · P (r, t ) + �F (r, t ),

J(r, t ) = ∂P (r, t )

∂t
+ c∇×M (r, t ) + JF (r, t ). (4)

For a given �(r, t ) and J(r, t ) there is always ambiguity
in defining P (r, t ), M (r, t ), �F (r, t ), JF (r, t ) that satisfy
Eq. (4). Nevertheless, let us assume that definitions for

2See, e.g., Chap. 2 of Swiecicki [18] and references therein.
3See, e.g., Chap. 6.7 of Jackson [19] or Chap. 2 of Swiecicki [18].

P (r, t ) and M (r, t ) in a bulk material have been made and
that the applied Maxwell fields are in the linear-response
regime so that expansions of the electric and magnetic dipole
moments4 as sums of spontaneous and field-dependent contri-
butions,

Pi(r, ω) = Pi(0) + χ il
E (ω)El (r, ω) + αil

P (ω)Bl (r, ω) + · · · ,

Mi(r, ω) = Mi(0) + αil
M (ω)El (r, ω) + · · · , (5)

are justified.5

At low frequencies ω, αil
P (ω), and αil

M (ω) are well approx-
imated by their static ω = 0 values, which are in fact related
by a thermodynamic Maxwell relation

αil
P (ω = 0) = αli

M (ω = 0) ≡ αil . (6)

In this case, using Eq. (5) in (4) and comparing with Eq. (2)
yields

σ il j = −icαikεk jl + icεi jbαbl + · · · , (7)

where “· · · ” denotes purely electric contributions to σ il j .
Explicit forms for phenomenological susceptibilities can

be obtained from quantum linear-response theory. The semi-
classical Hamiltonian of the coupled light-matter system
consists of electron and Maxwell contributions, and an in-
teraction term that results from minimal coupling. The latter
involves the electromagnetic scalar and vector potentials
multiplied by charge and current-density operators that are
obtained from components of the Noether 4-current of the
electron theory. In a finite sized material those charge and
current densities are nonzero only in a localized region of
space, in which case there exists well-motivated definitions
for polarization and magnetization fields developed by Power,
Zinau, and Wooley (PZW),6 Healy,7 and others. This approach
begins with a unitary transformation of the minimal-coupling
Hamiltonian (differential operator) to yield the physically
equivalent PZW Hamiltonian. After defining the polarization
and magnetization fields, the interaction of the electronic de-
grees of freedom with the electromagnetic field as described
in the PZW Hamiltonian involves terms in which the po-
larization and magnetization fields are multiplied by E(r, t )
and B(r, t ), respectively;8 notably this formulation does not

4In writing Eq. (4), P (r, t ) and M (r, t ) can be understood as
an infinite sum of electric and magnetic multipole moments (see,
e.g., Chap. 6.7 of Jackson [19] or Chap. 2 of Swiecicki [18]). It is
often taken implicitly that it is the spontaneous electric and magnetic
dipole moments and their linear response that is of primary interest.
Of course, this is not always true. In fact, the electric-quadrupole
response contributes to the linear response of charge and current
densities at first-order in q, just like the magnetoelectric response.
Nevertheless, in this work we will not explicitly consider response
beyond that of the dipole moments.

5Here “· · · ” denote other contributions to the linear response of
the electric and magnetic dipole moments. For example, the linear
response of P to the symmetrized spatial derivative of E and of M to
B are contained in “· · · .”

6See, e.g., Ref. [20] and references therein.
7See, e.g., Ref. [21] and references therein.
8For an overview of this procedure, see, e.g., Chap. 2 of

Swiecicki [18].

023289-3



MAHON, LEI, AND MACDONALD PHYSICAL REVIEW RESEARCH 6, 023289 (2024)

require an explicit choice of the electromagnetic gauge. When
a multipole expansion of those polarization and magnetization
fields is made, the PZW Hamiltonian takes the classically
anticipated form of a multipole Hamiltonian.9 Thus, the PZW
definitions for polarization and magnetization fields are phys-
ically reasonable, and from them the (minimally coupled)
electronic charge and current-density expectation values, and
thus the finite-size sample analog of the susceptibility tensors
mentioned above (which are position dependent), can be rig-
orously obtained. Moreover, that multipole expansion results
in Hermitian operators in the electronic Hilbert space; that
is, the electric and magnetic multipole moments are genuine
physical observables. For example, the ground-state expecta-
tion value of the electronic contribution to the PZW electric
dipole moment per unit volume (which is equal to the interior
polarization of the material) is

P(0)
el = − e

	

∑
E<EF

∫
r|
E (r)|2dr, (8)

where e > 0 is the elementary charge, 	 is the finite vol-
ume of the sample, EF is the Fermi energy, and 
E (r)
are the electronic energy eigenfunctions of the unperturbed
Hamiltonian.10

Unfortunately the PZW approach cannot be directly ap-
plied to crystalline solids since, even in the absence of
electromagnetic fields, the electronic charge and current-
density expectation values are expressed in terms of Bloch
energy eigenfunctions, the support of which is all of space.11

Indeed, this is related to the property that the usual position
operator is not well-defined in the Hilbert space of Bloch func-
tions [22]. There are a variety of different approaches [22–27]
that can be used to extend the notions of polarization and
magnetization to bulk crystals. Inspired by the PZW approach,
Sipe et al. have developed a formalism [27–29] applicable to
general extended systems, crystalline or otherwise, which has
been employed to account for spatial variation of electromag-
netic fields in crystal insulators [30,31], and more [32–36].
However, none of these bulk crystal approaches are able to
define electric and magnetic multipole moments as genuine
physical observables in the PZW sense.

The most commonly used approach to sidestep difficul-
ties in defining the electric and magnetic dipole moments
in crystalline insulators is the so-called modern theories of
polarization [23,37] and (orbital) magnetization [24,25]. Fo-
cusing on the former, one aims to deduce an electric dipole
moment from calculation of the current density, rather than to
propose a general definition for it. To do so, the macroscopic
free current density [appearing in the second of Eq. (4)] is as-
sumed to vanish at linear response in typical insulators, which

9Compare, e.g., Eqs. (4.24) and (5.72) of Jackson [19] with
Eq. (2.86) of Swiecicki [18].

10In Sec. III we do not consider the static magnetic field as a
perturbation and therefore P(0)

el will there involve B.
11In deriving the PZW Hamiltonian, it is assumed that the charge

and current densities do not extend to infinity so integrals involving
these quantities and spatial derivatives may be integrated by parts and
the surface terms can be taken to vanish.

seems to be a sensible assignment, thus the current density
is related only to the polarization and magnetization fields.
It is less obvious that this assignment is sensible in Chern
insulators, but materials of that type are not considered here.
Next, focus is restricted to describing the influence of electric
and magnetic fields that are spatially uniform, in which case
all of the macroscopic densities appearing in Eq. (4) are also
expected to be uniform. Thus the polarization and magnetiza-
tion fields are entirely described by their dipole moments, and
J(t ) = ∂P(t )/∂t .

The magnetoelectric susceptibility αil can generally be
written as the sum of an isotropic δilαθ and a traceless contri-
bution [15]. Examining Eq. (7) makes it evident that in a static
and macroscopically uniform bulk material, the σ il j tensor is
insensitive to the former. That is, αθ cannot be determined by
calculating the wave-vector-dependent optical conductivity. In
other words, the physical implications of αθ are not equivalent
to those of a wave-vector dependent conductivity.

If the isotropic magnetoelectric response cannot be calcu-
lated from the bulk current response to nonuniform electric
fields, how can it be found? Two independent strategies that
can be used to obtain αθ have been identified in the liter-
ature: (i) Essin et al. [15] consider an insulating state of a
Bloch Hamiltonian that is adiabatically varied in time, such
that αil becomes time-dependent and there is an additional
contribution to Eq. (7) (originating from ∂P/∂t) proportional
to (∂αil/∂t )Bl ; (ii) Malashevich et al. [38] consider a finite
sized material, in which case αil becomes position-dependent
and there is an additional contribution to Eq. (7) (originating
from ∇×M) that is proportional to (εiab∂αbl/∂ra)El . Both
approaches reach the same conclusion, which is that in a
crystalline insulator initially occupying its zero-temperature
electronic ground state

αil = αil
G + δilαCS, (9)

where the explicit form of αil
G resembles that of a con-

ventional linear-response tensor, involving cross-gap matrix
elements between Bloch states that are initially occupied and
unoccupied, and αCS (the Chern-Simons contribution) can be
expressed in terms of occupied Bloch states alone. If the
bulk insulator exhibits TRS then αil = δilαCS and is quantized
since αCS evaluates to an element of a discrete lattice of values
[10], which does not include zero in the case of Z2 TIs. It is at
the step that the conundrum mentioned in the introduction is
introduced, since this is where the conclusion is reached that
αii mod e2/hc12 can be nonzero in insulators with TRS.

The strategy (i) of Essin et al. [15] considers a 3D crys-
talline insulator described by a Bloch Hamiltonian that varies
in time via adiabatic variation of the crystal Hamiltonian.
They show that in the presence of a static and uniform mag-
netic field B, adiabatic linear response to slow changes in
the crystal Hamiltonian induces a spatially uniform macro-
scopic (minimal-coupling) electronic current density of the
form J (B)(t ) = J (B)

G (t ) + J (B)
CS (t ).13 Unlike above, where the

12For a discussion on the physical basis of the discrete ambiguity
that is inherent to αii, see, e.g., Chap. 6.2 of Vanderbilt [39].

13Importantly, J (B)(t ) is not the magnetic-field-induced electronic
current in a material with unperturbed electrons governed by the

023289-4



SYMMETRY, TOPOLOGY, AND GEOMETRY: THE MANY … PHYSICAL REVIEW RESEARCH 6, 023289 (2024)

time dependence of J (1)(t ) resulted from that of the dynamical
electromagnetic field, B is here taken to be static and the
t-dependence results from that of the Bloch Hamiltonian it-
self; t-dependence manifests implicitly in the Bloch energy
eigenvectors and eigenvalues. Although their strategy applies
more generally, we focus on the special case in which the
Bloch Hamiltonian exhibits TRS at every instant t . Then
J (B)

G (t ) = 0 and [15,40]

J (B)(t ) = J (B)
CS (t ) = −e2B

2hc

∫
BZ

(
∂

∂t
Q3(k; t )

)
d3k. (10)

The explicit expression for Q3(k; t ), the Chern-Simons
3-form14 at instant t , is discussed in Sec. IV. It is important
to note that Q3(k; t ) explicitly involves only the Berry con-
nection and curvature that are defined on the vector bundle of
occupied Bloch states over the Brillouin zone torus at instant
t . That is, at every t , Q3(k; t ) is a purely geometrical quantity.
In Ref. [15] the derivative with respect to time in Eq. (10) is
taken outside of the Brillouin zone integral to obtain

J (B)(t ) = ∂P(B)(t )

∂t
= B

∂

∂t
αCS(t ), (11)

where

αCS(t ) ≡ − e2

2hc

∫
BZ

Q3(k; t )d3k. (12)

At each instant t , ∫
BZ

Q3(k; t )d3k ∈ Z (13)

is determined (modulo 2) by the TRS-induced Z2 topological
classification [10,42,43] of the electronic ground state15 and
the value of αCS(t ) is therefore fixed (modulo e2/hc) by that
topology; if the ground state is Z2-even then αCS evaluates
to 0 mod e2/hc and if it is Z2-odd then αCS evaluates to
e2/2hc mod e2/hc [10,11]. Importantly, Q3(k; t ) and indeed
αCS(t ) are gauge dependent—they are both sensitive to the
smooth global frame of the vector bundle of occupied Bloch
states over the Brillouin zone torus that is used for their
evaluation—which leads to the above described discrete am-
biguity. Therefore, even when considering instants t1 and t2
between which a band insulating ground state remains in the
same topological class, αCS(t1) need not equal αCS(t2) since at

Bloch Hamiltonian evaluated at t ; this would be given by J (B)
G (t ).

Instead, J (B)(t ) also involves Streda-type transport, which manifests
through the time-dependence of the ground-state density matrix and
leads to J (B)

CS (t ) [see Eqs. (35b) and (35c) of Ref. [15]].
14See, e.g., Chap. 11 of Nakahara [41].
15More precisely, TRS induces a topological classification of the

vector bundle (for reference, see, e.g., Chap. 10 of Lee [44] or
Chap. 9.3 of Nakahara [41]) that is naturally constructed using the
Bloch states that are occupied in the ground state of a band insulator
[45,46]. We adopt the common terminology that ascribes the topol-
ogy of that vector bundle to the ground state itself. In this context, the
Z2 topological classification of the ground state is most intuitively
understood in terms of the types of gauge choices (frames) of that
bundle. If there exists a smooth global TRS frame of that bundle then
the ground state is called Z2-even, otherwise it is called Z2-odd.

each t one has the freedom to choose one of many gauges and
with respect to each of those gauge choices a different value
of αCS(t ) ∈ (e2/2hc)Z can result; in this scenario it is only
guaranteed that αCS(t1) mod e2/hc equals αCS(t2) mod e2/hc.

To obtain Eq. (10) it must be assumed that the gauge choice
used to express Q3(k; t ) is smooth in k ∈ BZ for each t . And
in order to move from Eq. (10) to (11), that gauge choice
must also be continuous in t .16 The latter condition implies
that αCS(t ) is continuous in t . If there is TRS at each t then
αCS(t ) ∈ (e2/2hc)Z and thus αCS(t ) must be constant in t .
Indeed our explicit calculations in Sec. IV demonstrate that
once a gauge choice is made at any t , the value of αCS(t ) is
fixed for all t if that gauge is continuous in t . Then under any
TRS preserving adiabatic variation of the Bloch Hamiltonian
in time, the right-hand side of Eq. (11) evaluates to zero; no
bulk currents flow when the parameters of the Hamiltonian
change within the space of a given topological phase and the
adiabatic approximation is valid. Indeed this result should be
expected since Eq. (11) is consistent with TRS only if nonzero
values for ∂αCS(t )/∂t are activated by some time-reversal
symmetry-breaking perturbation.

If a Bloch Hamiltonian is adiabatically varied in t with-
out necessarily exhibiting TRS at each t , then αCS(t ) need
not evaluate to an element of (e2/2hc)Z for each t [10]
and therefore αCS(t ) is not necessarily constant in t . For
example, if there is TRS at some initial ti and final t f

times, then αCS(ti ), αCS(t f ) ∈ (e2/2hc)Z and if the elec-
tronic ground state at ti (t f ) is Z2-even (Z2-odd), then∫ t f

ti
J (B)(t )dt mod e2B/hc equals e2B/2hc. Crucially, this am-

biguity in
∫ t f

ti
J (B)(t )dt is not a consequence of the gauge

dependence of αCS, but rather a manifestation of the fact that
the current pumped through the material depends on how the
model parameters are changed in time. Indeed if the Bloch
Hamiltonian evaluated at ti and at t f equal, then one can define
a vector bundle of occupied electronic states over BZ × S1

and the topology of this structure is characterized by a second
Chern invariant which determines

∫ t f

ti
J (B)(t )dt [10,47]. A

similar situation arises in the case of the unperturbed bulk 1D
polarization, where a certain first Chern invariant determines
the bound charge [39,48].

The linear-response result (11) for crystalline insulators
that exhibit TRS has been interpreted [15] by identify-
ing the magnetic-field-induced bulk polarization P(B)(t ) with
αCS(t )B. For a static insulator of interest, its bulk P(B) is then
obtained by evaluating αCS(t )B at any time t at which the
time-dependent Bloch Hamiltonian describes that insulator.
If we accept this identification, then P(B) can differ from the
physically realized electric dipole response in a large but finite
sample [49]. For example, consider a finite crystallite of a
nonmagnetic Z2 TI that has TRS everywhere. TRS implies
that there is no electric dipole induced by B in linear re-
sponse. The bulk expression for the polarization is evidently

16For there to exist a smooth global gauge of the vector bundle
of occupied Bloch states over BZ at instant t implies that the bulk
bandgap does not vanish at that t . Therefore, this assumption can
only be satisfied if the bulk bandgap is nonzero throughout the
duration of time during which the crystalline parameters are varied.
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misleading in the absence of magnetic dopants somewhere.
Because this identification of P(B) does not imply induced
bulk charge or current densities it is still technically accept-
able as a bulk quantity, but associating physical significance
with it requires additional insight. Indeed the necessity of
magnetic surface dopants for the topological magnetoelec-
tric effect to manifest in nonmagnetic TIs has been noted
[10,11,49,50] previously. A ubiquitous aspect of bulk theories
of polarization and orbital magnetization is the importance
of interpretation [39]. We believe it is useful to formulate
an alternative, physically equivalent, perspective to that of
Ref. [49]. By combining the known topological constraints
in bulk with the known symmetry constraints in finite-sized
systems, we produce below a physically meaningful notion
of P(B) in bulk insulators that exhibit TRS, one that adheres
to the Peierls principle and implicitly accounts for additional
surface-related criteria. To that end, the V2VI3 family of TIs
are an ideal test bed on which to develop that notion.

We have argued above that even in the strategy (i) of
Ref. [15], wherein the Bloch Hamiltonian for a bulk insulator
involves crystal parameters that depend on time, αCS(t )B lacks
physical consequences if that Hamiltonian exhibits TRS at
each t . Thus, in this setting any physically significant identi-
fication of P(B)(t ) must involve the consideration of surfaces.
As a result, any such identification will be ad hoc in that one
has to artificially include the role played by the surface in a
proposed bulk quantity. This is an aesthetically unappealing,
but a seemingly unavoidable, feature of any physically mean-
ingful identification of P(B)(t ) in bulk insulators with TRS.

One such identification of P(B)(t ) could be obtained in a
manner similar to that of Essin et al. [15]—by considering the
magnetic-field-dependent current J (B)(t ) that flows in a mate-
rial as its properties are changed—but, rather than considering
a time-dependent Bloch Hamiltonian, consider a Hamiltonian
that describes a macroscopically large but finite-sized material
with time-dependence only at its surfaces, where magnetic
moments order to break TRS and open gaps in the Dirac-like
energy dispersion of the surface states. (TRS is maintained in
the interior region.) If the effect of interactions that break TRS
is local [51], then the charge-density response to B can only
occur near the surfaces. Our interpretation for nonmagnetic
Z2 TIs,17 which is supported by later calculations in this
paper, imagines replacing the bulk quantity αCS(t ) by a new
function αexpt(t ) that compares more directly to experiment18

by implicitly accounting for the role of surface magnetic
dopants. The (physically meaningful) bulk polarization in
these materials is

P(B)(t ) = αexpt(t )B, (14)

where αexpt(t ) must have the following properties:

17In other bulk insulators that exhibit an effective TRS, such as
antiferromagnetic Z2 TIs [52], that symmetry is typically broken
merely by the existence of a surface. In that case the following
is unnecessary since there is no conundrum related to TRS and
magnetoelectric response, and the consideration of magnetic surface
dopants seems unnecessary.

18In principle, experiments only probe polarization differences
(see, e.g., Chap. 4.4 of Vanderbilt [39]).

FIG. 2. Relationship between the bulk magnetoelectric coeffi-
cient αexpt(t ) (black line) that we propose and αCS(t ) (blue line)
as obtained from a simple interpretation of the bulk current that
is adiabatically induced by slow changes of a Bloch Hamiltonian
describing a nonmagnetic bulk Z2 TI. The illustrated time interval is
imagined to be one over which the magnetization describing a con-
figuration of surface magnetic dopants that initially gaps the energy
dispersion of the surface states is changed to its opposite. The red
region, where this magnetization vanishes, is given finite width for
illustrative purposes. We imagine making a particular gauge choice
at some initial time such that αCS(t ) exactly agrees with αexpt(t )
until a surface gap closes. A purely bulk linear-response calculation
[15] uses the adiabatic approximation to show that αCS(t ) is time-
independent and the (magnetic field dependent) bulk current J (B)(t )
vanishes (no currents flow) when an instantaneous band insulating
state is varied in a manner that maintains TRS. We argue that in
finite samples

∫
J (B)(t )dt is insensitive to gapped surfaces and is

therefore given correctly by the bulk linear-response calculation at
early and late times within the illustrated time interval. The adiabatic
approximation fails to describe finite samples when the surface gap
vanishes, in which case the physically realized J (B)(t ) is nonzero and
the polarization can change. In practice, the subinterval within which
J (B)(t ) �= 0 will always be finite because of disorder at the surface.
We argue that the interior polarization at a particular point along
the surface is a local quantity [10] that changes sign with the local
orientation of magnetic dopants, in agreement with TRS.

(1) In the absence of magnetic surface dopants J (B)(t )
vanishes in finite samples, which is consistent with the bulk
prediction (11). In this case, TRS dictates that αexpt(t ) ≡ 0 and
the identification of P(B)(t ) with αCS(t )B for Z2 TI materials
is incorrect.

(2) (Green regions in Fig. 2). During time intervals over
which the magnetic dopant configuration on top and bottom
surfaces is opposite and such that the energy dispersion of
the surface states remains gapped, the physically realized
response is that of the bulk; the prediction (11) that J (B)(t )
vanishes and the identification of P(B)(t ) with αCS(t )B are cor-
rect (the latter modulo e2B/hc), i.e., αexpt(t ) = αCS(t ). P(B)(t )
is constant in t as long as the surface states remain gapped.

(3) (Red region in Fig. 2). During time intervals over
which the magnetic dopant configuration is such that there
is a finite surface density of states, a current proportional
to B flows through the material. Indeed, the bulk prediction
(11) using the adiabatic approximation fails to describe these
finite-size samples and αexpt(t ) �= αCS(t ). That current, and
the pattern of polarization that develops, is sensitive to the
magnetic configuration of the surface dopants. For realistic
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samples with potential and magnetic disorder, the surface gaps
will remain closed over a finite range of dopant configurations.
Under surface magnetization reversal, currents proportional
to B will flow through the material during the time interval
over which there is no surface energy gap. αexpt(t ) now has
a contribution that is sensitive to the surface magnetization,
which allows the polarization to interpolate between the topo-
logically allowed values of gapped states.

Our interpretation is that during time intervals t ∈ [ti, t f ]
over which the surface magnetization is reversed, the value
of P(B)(t ) changes and these changes are associated with the
flow of currents through the bulk of the material. Varying the
configuration of magnetic surface dopants in such a way that
the total magnetization always vanishes but that surface gaps
close then reopen induces bulk currents in much the same way
that varying crystal parameters such that at intermediary times
TRS is broken in the bulk19 does; notably, neither mechanism
yields a bulk charge density. The change in polarization may
be obtained by integrating [∂αexpt(t )/∂t]B over time, which,
due to TRS in the bulk, will integrate to the difference20

between two quantized values of αCS(t ) that differ in sign.
Since in our interpretation we assume that the TRS-induced
bulk topology is unaffected by the manipulation of the mag-
netic surface dopants, αexpt(t f ) − αexpt(ti ) ∈ (e2/hc)Z. If the
magnetization of the dopants at t f is opposite to that at ti, we
require αexpt(t f ) = −αexpt(ti ).

Under this identification, the magnetoelectric response in
nonmagnetic Z2 TIs is nonzero only when magnetic surface
dopants are present, solving the TRS conundrum. If there
is no surface magnetization, then there will never be a sur-
face energy gap everywhere and no bulk current flows in
linear response to a magnetic field. In the following sec-
tions of this paper we describe electronic polarization (orbital
magnetization) calculations in model nonmagnetic Z2 TIs
subject to a uniform dc magnetic (electric) field, which sup-
port this interpretation. In particular, in sufficiently thick
films the polarization changes and interior currents flow only
when the surface-normal magnetization component is varied
through zero.

III. MAGNETOELECTRIC RESPONSE IN Z2

TOPOLOGICAL INSULATOR THIN FILMS

In this section we employ a simplified but realistic model
of the electronic states near the Fermi energy in thin films

19See, e.g., the discussion at the beginning of Sec. 3 of Ref. [15]
or Chap. 6.4.2 of Ref. [39]. If the crystalline parameters are adiabat-
ically varied such that the infinite material remains macroscopically
uniform, then ∂αii/∂t could be nonzero throughout the material.
Indeed, as described above, if there is TRS at ti and t f , and if the
adiabatic approximation applies, then ∂αii/∂t equals ∂αCS/∂t , which
can only be nonzero if TRS is broken at intermediary times.

20This assumes nonpathological variation of the magnetization pro-
file in time such that the jumps of |P(B)(t )| do not resemble, for
example, a Cantor ternary function. If it did, then even though P(B)(t )
is continuous almost everywhere (except possibly on a set of measure
zero) the integral of the derivative of P(B)(t ) is not equal to the
difference of P(B)(t ) evaluated at the endpoints.

of V2VI3-type nonmagnetic Z2 TIs in which it is possible
to account for the presence or absence of magnetic surface
dopants. We calculate the magnetoelectric coefficient αme by
introducing a magnetic field that is perpendicular to the thin
film and accounting for the Landau quantization it produces.
We begin in Sec. III A by considering a toy version of this
model in which the only electronic states retained are the
topologically protected surface states modeled by two cou-
pled two-dimensional (2D) Dirac cones, one associated with
each surface. The surface magnetic dopants couple to these
Dirac-like states separately via an exchange mass m, and
for finite-thickness films those states are hybridized by an
intersurface tunneling parameter . This model is amenable
to analytic analysis, from which it is found that in the limit
m → 0 αme → 0, as expected for finite-sized material samples
with TRS, and in the limit  → 0 αme → e2/2hc, as expected
for bulk Z2 TIs. In Sec. III B we consider a more realistic
model, which involves many coupled Dirac cones, and reach
the same conclusions. We show that the quantization of αme

in the thick film limit can be understood in terms of the
topological properties of a Su-Schrieffer-Heeger model that
arises in the bulk description.

A. Simplified toy model of the surface states

The analytic calculations in this section illustrate the es-
sential microscopic physics of magnetic-field-induced charge
redistribution in finite-thickness thin-films of nonmagnetic
Z2 TIs. In materials of this type, the electronic states that
are nearest to the Fermi energy occur about the k� point
(k�,x, k�,y ) = (0, 0) and are localized at the surface of the
sample [53,54]. Indeed the bulk topology of a Z2 TI implies
the existence of an odd number of Dirac points at each surface
of a finite sample thereof [55,56]. A model of a thin film can
therefore be constructed using two copies of a 2D k · p Dirac
Hamiltonian, one associated with each surface. We account
for the (finite) film thickness in the surface-normal direction
(taken to be z) by hand by endowing the basis states of each
copy of the k · p Hamiltonian with z-dependence to encode its
association with a particular surface.

We therefore consider two Dirac Hamiltonians written in
a basis of states |ū(α,σ ),k=k�

〉 that are orthogonal linear com-
binations of the k · p basis states and are associated with
the bottom (α = 0) and top (α = 1) surfaces of the film.
At k� , the k · p Hamiltonian will commute with sz, thus the
corresponding spin-up and spin-down eigenvalues σ = ±h̄/2
(≡ ↑, ↓) can be used to identify Hilbert space basis states at
k� (and therefore label basis states of any k · p Hamiltonian
about k�). We include an exchange coupling mα associated
with each surface, here describing the effect of magnetic
dopants at that surface, that couples to the sz spin components
of the states at the surface α; this interaction breaks TRS.
We take the exchange mass to be of opposite21 value at the
top and bottom surfaces, m0 = −m1 ≡ m [50,58]. We also
include an intersurface hybridization parameter . In the basis
(|ū(0,↑),k�

〉, |ū(0,↓),k�
〉, |ū(1,↑),k�

〉, |ū(1,↓),k�
〉), the Hamiltonian

21When the two exchange masses have the same sign, the model
describes a quantum anomalous Hall insulator [57].
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is specified by [59]

Heff(k) =

⎛
⎜⎜⎝

m ih̄vDk−  0
−ih̄vDk+ −m 0 

 0 −m −ih̄vDk−
0  ih̄vDk+ m

⎞
⎟⎟⎠,

(15)

where k± ≡ kx ± iky.
To account for the presence of a uniform dc magnetic

field that is parallel to the surface-normal of the thin film, we
first implement the usual prescription22 to obtain an envelope
function approximated (EFA) Hamiltonian that is related to a
given k · p Hamiltonian. Following this, we minimally couple
the electronic degrees of freedom to the corresponding vector
potential. That is, first take h̄k → p(r) ≡ −ih̄∇ followed by
p(r) → pmc(r) = −ih̄∇ + e

c A(r), where −e is the electronic
charge. We take B = (0, 0,−B) and in the Landau gauge
A(r) = (0,−Bx, 0). The 2D EFA Hamiltonian that is obtained
by employing this prescription to Eq. (15) is invariant under
translations along y within the film. Thus, we seek energy
eigenfunctions of the form


E ,qy (x, y) = eiqyy�E ,qy (x)√
Ly

. (16)

Introducing the usual differential ladder operators a ≡
1√
2
(x̃ + ∂

∂ x̃ ) and a† ≡ 1√
2
(x̃ − ∂

∂ x̃ ),23 where x̃ ≡ lBqy − x/lB,

l2
B ≡ h̄c/eB, and [a, a†] = 1, the EFA Hamiltonian that is

related to (15) acts on the �E ,qy (x) via

HEFA

(
x,

∂

∂x
; qy

)
= h̄ωcτz ⊗

(
0 a†

a 0

)

+ mτz ⊗ σz + τx ⊗ σ0, (17)

where ωc ≡ √
2vD/lB, τa are the Pauli matrices acting on the

surface label (i.e., orbital type) degree of freedom, and σa are
the Pauli matrices on spin degree of freedom.

A general eigenfunction of Eq. (17) has the form
�En,qy (x) = �n(x̃), where

�n(x̃) =
(
Cn,(b,↑)χn(x̃), Cn,(b,↓)χn−1(x̃),

Cn,(t,↑)χn(x̃), Cn,(t,↓)χn−1(x̃)
)

(18)

for integers n > 0 and

�0(x̃) = (
C0,(b,↑)χ0(x̃), 0, C0,(t,↑)χ0(x̃), 0

)
(19)

for n = 0, where χn,qy (x) = χn(x̃) are normalized eigenfunc-
tions of a†a. The corresponding eigenvalues are

E±
n = ±

√
h̄2ω2

c n + m2 + 2, (20)

with the n = 0 eigenvalues nondegenerate and the n > 0
eigenvalues each twofold degenerate. We adopt the nota-
tion �±

0 (x̃) and �±,1
n (x̃), �±,2

n (x̃) for the corresponding
eigenfunctions.

22See, e.g., Chap. 2 of Winkler [60].
23See, e.g., pp. 89–94 of Sakurai [61].

We endow the 
±
n,qy

(x, y) with z dependence by multiply-
ing the components of (18) and (19) that are associated with
the top (bottom) surface of the thin film by δ(z − zt(b) ), where
zt = a/2 and zb = −a/2. Then, taking EF = 0 such that the
(
+

n,qy
(r)) 
−

n,qy
(r) are (un)occupied, and using

∑
qy

(1) =∑
qy

(
∫ |χn(x̃)|2dx) = eBLxLy/hc, the number of qy per Lan-

dau level n, employing Eq. (8) yields

Pz
el = −e2B

2hc

∑
n�0

σ∈{↑,↓}

(|C−
n,(t,σ )|2 − |C−

n,(b,σ )|2
)
, (21)

from which we can identify αme ≡ αzz via Pz
el = αzzBz.

The n = 0 anomalous Landau levels �±
0 (x̃) are spin po-

larized, and the action of (17) on (19) simplifies such that
(C±

0,(b,↑),C±
0,(t,↑) ) is obtained by diagonalizing mτz + τx. At

half filling, the occupied n = 0 eigenfunction is

�−
0 (x̃) = N

(
−χ0(x̃), 0, (m +

√
m2 + 2)χ0(x̃), 0

)
,

where

N = 1/

√
2(m2 + 2 + m

√
m2 + 2).

Using (21), the contribution to the magnetoelectric coefficient
αme from �−

0 (x̃) is then

αn=0
me = e2

2hc

m√
m2 + 2

. (22)

In the bulk limit of this toy model, the top and bottom surface
states decouple and  → 0, in which case Eq. (22) yields the
quantized magnetoelectric coefficient e2/2hc independent of
m. Meanwhile in thin films with TRS, which implies m = 0,
Eq. (22) gives that αn=0

me vanishes.
Of course, the occupied n > 0 Landau levels may also

contribute to (21). Unfortunately, the eigenvector-eigenvalue
equations are not as simple as the n = 0 case. Moreover,
due to the twofold degeneracy of each eigenvalue, the energy
eigenvectors are nonunique. One convenient non-orthogonal
pair is24

(
C±,1

n,(α,σ )

)
α,σ

=N±,1
n

(
 ± h̄ωc

√
n

E±
n − m

,±1, 1,
± − h̄ωc

√
n

E±
n − m

)
,

(
C±,2

n,(α,σ )

)
α,σ

=N±,2
n

(
±1,

 ± h̄ωc
√

n

E±
n + m

,
± − h̄ωc

√
n

E±
n + m

, 1

)
,

where N±,1
n and N±,2

n are normalization factors. These eigen-
vectors can be orthogonalized and their contributions to the
induced polarization calculated. In the limit  → 0, which is
of primary interest, these eigenvectors are indeed orthogonal
and are moreover equally weighted combinations of states that
are associated with the top and bottom surfaces. Thus, at half
filling and in the limit  → 0, it is only the �−

0 (x̃) anomalous
Landau level that contributes to the magnetic-field-induced
polarization.

24Here we denote (Cn,(b,↑),Cn,(b,↓),Cn,(t,↑),Cn,(t,↓) ) by (Cn,(α,σ ) )α,σ .
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B. Coupled Dirac cone model of layered thin films

The results for αme obtained using the simple model de-
scribed in Sec. III A can be confirmed by considering a more
realistic model for finite thickness films of V2VI3-type TIs.
Materials in this family consist of many stacked 2D layers.
They are more accurately modeled by introducing a pair of
Dirac cones for each layer, one associated with its top and
bottom surface, then coupling the Dirac-like states within the
same layer via S and coupling those associated with the
closest surfaces of the nearest-neighbor layers via D [57,62].
This model has the merits that it is readily solved numerically
for films that contain many van der Waals layers and that it
is readily solved in the presence of a perpendicular external
magnetic field, allowing the magnetic-field dependence of the
electronic polarization to be evaluated explicitly.

The influence of a static and uniform magnetic field that
is parallel to the surface-normal of the thin film is accounted
for layer by layer; a 2D EFA Hamiltonian that is minimally
coupled to B is assumed to describe the electronic dynamics
within an isolated layer, and is taken as Eq. (17) with  → S

and m → Mlz for lz ∈ {1, . . . , N} a layer index. We then cou-
ple N copies (each indexed by an lz) of this 2D isolated layer
Hamiltonian via D as described above. We take Mlz �= 0 only
if lz = 1 or N to account for the presence of magnetic dopants
only in the outermost top and bottom layer. As in Sec. III A,
we take the orientation of the magnetization describing the
configuration of dopants at the top and bottom surface to be
opposite (M1 = −MN ≡ m).25

This model can be solved numerically for a varying num-
ber N � 2 of layers, which we always take to be even, and
a general energy eigenfunction is again of the form [63]

r

n,qy
(x, y) = eiqyy�r

n(x̃)/
√

Ly, where

�r
n(x̃) =

∏
j∈{0,...,2N−1}

(
Cr

n,( j,↑)χn(x̃), Cr
n,( j,↓)χn−1(x̃)

)
(23)

for n > 0 and

�r
0(x̃) =

∏
j∈{0,...,2N−1}

(
Cr

0,( j,↑)χ0(x̃), 0
)

(24)

for n = 0, and even (odd) values of j identify components
that are associated with the bottom (top) surface of layer
number j/2 [( j − 1)/2] enumerated in ascending order along
the stacking axis z. We again endow the 
r

n,qy
(x, y) with z

dependence by taking Cr
n,( j,↑) → Cr

n,( j,↑)δ(z − z j ); choosing
the origin to be at the center of the material, for even values
of j we have z j = a( j − N )/2 and z j+1 = z j + a (see Fig. 1
of Lei et al. [57]). The electronic polarization (8) can then be
written as

Pz
el = − e2B

aNhc

∑
j∈{0,...,2N−1}

∑
En,r<0

σ∈{↑,↓}

z j |Cr
n,( j,σ )|2. (25)

The results are shown in Fig. 3. In particular, as found in
Sec. III A, if m = 0 then αme = 0 any N , whereas if m �= 0
then αme approaches the expected quantized bulk value for

25In future studies of antiferromagnetic materials we consider
Mlz = Mlz+1 for lz ∈ {1, . . . , N − 1}.

FIG. 3. Magnetoelectric coefficient αme vs film thickness and the
distribution of the electronic charge density in the stacking direction
(z). (a) αme vs film thickness for various D. Here the exchange split-
ting m of the Dirac cones associated with the top and bottom layers
(resulting from the presence of surface magnetic dopants) is taken
to be 0.1S and taken to vanish for all other layers. (b) Distribution
of the electronic charge density along the stacking direction for the
same values of D used in panel (a), with the film thickness taken to
be 20 layers and z = 0 taken to coincide with the middle of the center
layer. The dotted (solid) lines identify the contribution of the n = 1
(n = 0) Landau levels to this distribution, which is (anti-)symmetric
in z. (c) αme vs film thickness for various exchange splittings m, with
D taken as 1.5S. (d) Distribution of the electronic charge density
in the stacking direction for the same values of m used in panel (c) for
a 20-layer thin film. (e) αme vs exchange splitting m due to magnetic
surface dopants for films of varying thickness.

N → ∞. That is, αme → e2/2hc for |D| > |S| (in the
Z2-odd regime of the model) and αme → 0 for |D| < |S|
(in the Z2-even regime). Moreover, numerical sums of the
n > 0 (n = 0) energy eigenfunction distributions below the
Fermi energy at half filling show that the charge density is
(anti-)symmetric across the thin film, leading to a
(non)vanishing contribution to the ground-state dipole
moment and thus to αme. This is shown for n = 1 (n = 0) by
the dotted (solid) curves in Figs. 3(b) and 3(d).

The quantization of αme in thick films can be understood by
formally examining the model for an infinite number layers.
In this case the analog of Eq. (17) is

HEFA

(
x,

∂

∂x
; qy, kz

)

=

⎛
⎜⎜⎜⎜⎝

0 h̄ωca† ∗
kz

0

h̄ωca 0 0 ∗
kz

kz 0 0 −h̄ωca†

0 kz −h̄ωca 0

⎞
⎟⎟⎟⎟⎠, (26)

where kz ≡ S + eikzaD. To obtain Eq. (26) we have taken
the basis states |ū(α,↑),(kx,ky )〉 → |ū(α,↑),(kx,ky,R)〉 for R ∈ aZ
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as hybrid WFs [17] (in R3) that are spatially localized in
z about the surface α in the unit cell at Rz. In the nonmagnetic
bulk there is one layer per unit cell and therefore α ∈ {0, 1}.
Again projecting into the n = 0 subspace, Eq. (26) acts on
(Cr

0,(b,↑), Cr
0,(t,↑) ) via

Hn=0(kz ) =
(

0 ∗
kz

kz 0

)
, (27)

which is a Su-Schrieffer-Heeger (SSH) model with S and
D playing the role of the hopping parameters. This model
has particle-hole symmetry: U †

CHn=0(−kz )∗UC = −Hn=0(kz )
for UC = τz and therefore at half filling supports topolog-
ically distinct ground states characterized by a Z2-valued
invariant,26 which happens to be obtained by performing the
BZ1D-integral in the expression for the one-dimensional (1D)
bulk electronic ground-state polarization [23,48]. Indeed, the
n = 0 contribution to the bulk polarization Pz of Eq. (26)
(which is related to adiabatically induced electronic currents
in z27) is proportional to that 1D polarization and, in-line with
the well-known results of the usual SSH model, at half filling
we find

Pz
n=0 mod

e2

hc
Bz =

{
0 if |S| > |D|
e2

2hc Bz if |S| < |D|. (28)

In contrast, the projected Hamiltonian in the n > 0 subspace
is symmetric under 1D center-of-inversion (about the layer
center) times spin-flip transformation and therefore does not
support an electronic polarization [63].

IV. SEMI-ANALYTIC CALCULATION OF αCS IN
A 3D TIGHT-BINDING MODEL

In this section our primary aim is to calculate the Chern-
Simons coefficient αCS in bulk 3D nonmagnetic V2VI3-type
insulators. Effective models for the electronic states near
the Fermi energy in these materials have been developed
[54,57,62], but since effective models are not generally de-
fined over the entire BZ, they are inadequate for this purpose.
The reason for this can be understood by noting that the
topology of the vector bundle of occupied Bloch states over
the Brillouin zone torus constructed for the true Hamilto-
nian H (x,p(x)) of a crystalline insulator manifests as an
obstruction to the existence of a smooth global gauge thereof
[16,45], but smooth local gauges always exist.28 In particular,
as explained previously, the linear-response expression for

26See Sec. 2D of Ref. [10] and Ref. [64].
27See, e.g., Chap. 4 of Ref. [39] and Ref. [65].
28This follows immediately from the definition of the vector bundle

of occupied states as a vector bundle [45,73].

αCS as a BZ-integral of the Chern-Simons 3-form is valid
only in a smooth global gauge of that bundle. We emphasize
this issue in Appendix A, where we explicitly show that in
a low-energy effective model an incorrect half quantization
of αCS can occur, which is reminiscent of the situation that
arises when attempting to calculate the first Chern invariant of
a 2D k · p model. Thus, lattice regularization of the previously
developed effective models is required, and that is where we
begin.

A. Construction of a 3D tight-binding model

In this subsection we construct a lattice regularization of a
previously presented [62] effective model for the low-energy
electronic states in bulk 3D V2VI3-type band insulators. Since
a formally similar effective model describes antiferromag-
netic Z2 TIs including Mn(SbxBi1−x )2X4 (where X = Se, Te)
[57], which will be the focus of future work, we in fact
construct a sufficiently general lattice regularization scheme
that can be applied to both families of materials. Notably,
both families of materials can be viewed as layered com-
pounds, with each layer having threefold rotational symmetry
about the stacking (z) axis and twofold rotational symmetry
about an axis perpendicular to the stacking axis [54,66]. The
bulk crystal structure of the nonmagnetic (magnetic) fam-
ily of materials consists of stacked five-atom (seven-atom)
layers, called quintuple (septuple) layers, and has a center-
of-inversion symmetry within each such layer [54,66]. That
layered structure motivated the development of low-energy
effective models [57,62] in which discrete 2D k · p con-
tinuum models in the planes perpendicular to the stacking
axis are coupled to one another with interlayer hopping pa-
rameters D to yield a 1D tight-binding model along the
stacking axis for each 2D momentum (see Appendix A);
these models can be thought of as the 3D bulk limit of
the quasi-2D Hamiltonian employed in Sec. III B. Since the
electronic states within each layer are Dirac-like, effective
Hamiltonians of this type are called coupled-Dirac cone mod-
els. We construct 3D tight-binding models to describe both
families of materials by first developing a 2D lattice regu-
larization of the k · p model of an isolated layer (obtained
by taking D = 0), then re-introduce D as in those past
works.

1. A lattice regularized description of an isolated 2D layer

Two proposed low-energy effective models of 3D V2

VI3-type insulators include the above described coupled-
Dirac cone model [57,62] and a traditional 3D k · p model
[54]. When restricted to a single layer (i.e., the kx-ky plane),
the 2D k · p models that result from these descriptions are
unitarily equivalent to first order in kx and ky (when cer-
tain parameter values are taken to coincide), as one would
expect. Furthermore, it has been observed [67] that the re-
striction of the 3D k · p model to the kx-ky plane is unitarily
equivalent to the Bernevig-Hughes-Zhang (BHZ) model [68]
for certain parameter values. Thus, when the coupled-Dirac
cone model is employed for an isolated layer of a non-
magnetic material (i.e., D = 0 and Mlz = 0), it is unitarily
equivalent to the BHZ model to first order in kx and ky.
In fact, in this limit of the coupled-Dirac cone model, ex-
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act unitary equivalence with the BHZ model occurs if we
generalize S → S − B(k2

x + k2
y ) and if S equals M of

BHZ. Rather than generalizing S → S − B(k2
x + k2

y ), we
could instead obtain exact unitary equivalence by restricting
the BHZ model to first order in kx and ky by taking B = 0.
However, doing so would result in the lattice regularization
that we employ below to admit bandgap minima at points in
the BZ2D in addition to that at (kx, ky) = (0, 0), in contrast
with the known monolayer band structure [69]. Indeed, it will
turn out that the parameter regime of immediate interest is
B/S < 0.

In their seminal work on 2D Z2 TIs [68], BHZ present a
square lattice regularization of their k · p Hamiltonian. Thus,
we seek a square lattice regularization of Eq. (1) of Lei
et al. [57] [generalized by taking S → S − B(k2

x + k2
y )]

that, when restricted to the nonmagnetic case and applied to a
single layer, is unitarily equivalent to Eq. (5) of BHZ [68]. In
doing so, we generally consider Hamiltonian operators of the
form

Ĥ (d ) =
∫

BZd

ĉ†
kH

(d )(k)ĉkdd k, (29)

where d is the spatial dimension of the crystal, k ∈ BZd

for BZd a d-dimensional first Brillouin zone of �∗
H —

�H ⊂ Rd is the Bravais lattice of the spatially periodic
Bloch Hamiltonian under consideration and �∗

H ⊂ Rd its
dual—and ĉk ≡ (ĉ(0,↑),k, ĉ(0,↓),k, ĉ(1,↑),k, ĉ(1,↓),k )T and ĉ†

k ≡
(ĉ†

(0,↑),k, ĉ†
(0,↓),k, ĉ†

(1,↑),k, ĉ†
(1,↓),k ) are tuples of fermionic opera-

tors that act in the electronic Fock space. Products in Eq. (29)
are the usual matrix multiplication. The fermionic operators
involved in Eq. (29) are of the form ĉI,k, ĉ†

I,k, for I a general
Wannier-type label. We require those operators to be such
that the following is satisfied: |ψ̄I,k〉 ≡ ĉ†

I,k|vac〉 are Bloch-
type vectors29 that are smooth over BZd , orthonormal such
that 〈ψ̄I,k|ψ̄J,k′ 〉 = δI,Jδ(k − k′), and constitute a basis of the
“relevant” electronic Hilbert space.30 The penultimate and
final criteria imply that {ĉI,k, ĉ†

J,k} = δI,Jδ(k − k′), which

29We require that the position space representation ψ̄I,k(r) ≡
〈r|ψ̄I,k〉 of each vector |ψ̄I,k〉 to be of Bloch’s form ∀ R ∈ �H :
ψ̄I,k(r + R) = eik·Rψ̄I,k(r). In general, any such |ψ̄I,k〉 need not be
an energy eigenvector.

30In general, all tight-binding constructions aim to model the elec-
tronic energy eigenvalues and eigenvectors within some “relevant”
subspace of the full Hilbert space. This space can either be thought
of as spanned by a set of “relevant” WFs or equivalently a set
of “relevant” Bloch functions. Typically one aims to model those
eigenvalues and vectors near the Fermi energy, usually starting
with a representation in terms of the former (e.g., include only
“nearest-neighbor hopping,” etc.) then mapping to the latter before
diagonalizing the model Hamiltonian.

follows from the anticommutation of the electron field opera-
tors themselves. These are the usual criteria that are employed
when constructing a tight-binding model and, for a given
crystal, there are many sets of vectors |ψ̄I,k〉 (and therefore
operators ĉI,k, ĉ†

I,k) that satisfy them. An equivalent descrip-
tion can be obtained by noting that a set of Bloch-type
vectors |ψ̄I,k〉 that satisfy the above criteria bijectively maps
to a set of exponentially localized Wannier functions (WFs)
[17,46,70],

|WI,R〉 =
√

	uc

(2π )d

∫
BZd

dd ke−ik·R|ψ̄I,k〉, (30)

where R ∈ �H . We emphasize that in order for the WFs
WI,R(r) ≡ 〈r|WI,R〉 to be well localized, the |ψ̄I,k〉 must be
smooth over BZd [17]. Typically it is with respect to the
fermionic operators ĉI,R, ĉ†

I,R defined by |WI,R〉 ≡ ĉ†
I,R|vac〉

that a tight-binding Hamiltonian is specified.
In-line with typical tight-binding approaches, we further

assume the existence of a Wannier-type label I of the form
I = (α, σ ), where α ∈ {0, 1} is an orbital index that identifies
WFs of distinct spatial distribution and σ ∈ {↑,↓} identifies
the sz spin component.31 To coincide with those coupled-
Dirac cone effective models [57,62] for which we develop this
lattice regularization, we take α = 0 (1) to label states that are
associated with the bottom (top) surface of a layer; this identi-
fication will not explicitly enter calculations in this paper, but
will provide physical motivation for the terms that appear in
the 3D Hamiltonian of the following subsection. We further
discuss (see preceding footnote) the topological implications
related to the assumed existence of a Wannier-type label of the
form I = (α, σ ) in the following subsections, where we also
address additional ubiquitous constraints that are imposed on
the WFs (30).

A 2D low-energy effective model for the electronic states
in a single layer of a MnV2VI4 magnetic (V2VI3 nonmag-

31We simply include the spin degree of freedom as an additional
component σ of the Wannier index I , and associate spin-up and
spin-down components with the corresponding eigenvectors of sz. In
particular, we assume that the Hermitian bundle constructed using
all relevant states can be decomposed as a product of Hermitian
bundles corresponding with spin-up and spin-down sectors [71], and
that each of these subbundles is topologically trivial [45,73] such that
they each admit smooth global frames (see, e.g., Theorem 4.2.19 of
Hamilton [72]). One instance of a smooth global frame for one such
subbundle is our (|ū(α,σ ),k〉)α∈{0,1} for a given σ . Therefore, the WFs
{|W(α,σ ),R〉}α∈{0,1} exist and can be obtained via Eq. (30). Since the
eigenvectors of sz are an orthonormal basis of the “spin space,” the
set of such WFs that result is orthonormal and complete.

023289-11



MAHON, LEI, AND MACDONALD PHYSICAL REVIEW RESEARCH 6, 023289 (2024)

netic) van der Waals semiconductor is obtained by taking
D = 0 (and Mlz = 0) in Eq. (1) of Lei et al. [57]. A lattice

regularization thereof is motivated by BHZ [68], and is speci-
fied by taking d = 2 and the general H(d )(k) of (29) to be

H(2D)
reg (k; lz ) =

⎛
⎜⎜⎜⎜⎝

JSMlz iA(skx − isky) S(kx, ky ) 0

−iA(skx + isky) −JSMlz 0 S(kx, ky)

S(kx, ky) 0 JSMlz −iA(skx − isky)

0 S(kx, ky) iA(skx + isky) −JSMlz

⎞
⎟⎟⎟⎟⎠, (31)

where A is related to h̄vD and fixed later by fitting the 2D band
structure to the k · p dispersion near � and

S(kx, ky) ≡ S − 2B(2 − ckx − cky), (32)

where skx ≡ sin(kx ), ckx ≡ cos(kx ), etc. We have also intro-
duced a layer index lz ∈ Z in anticipation of the generalization
to 3D in the following subsection. This is a square lattice reg-
ularization since H(2D)

reg (k + G; lz ) = H(2D)
reg (k; lz ) for any G ∈

�∗
2D ≡ spanZ({2πx, 2πy}), thus �2D = spanZ({x, y}); the 2D

lattice constant is taken to unity, and kx, ky are taken to be
dimensionless. Of course, in the physical materials under
consideration �2D is a triangular lattice [54,66]. Thus, there
likely exists a lattice regularization that better captures the
lattice-scale physics, but for our purposes a square lattice
regularization is sufficient.

In Eq. (31) the terms involving Mlz act to generate an ex-
change mass within the layer lz in the magnetic case, and arise
from the exchange interactions of the dynamical electronic
degrees of freedom deemed relevant with those well below the
Fermi energy and thus approximated as static. We assume that
this interaction is approximated by a Heisenberg interaction
between dynamic spins and the quenched magnetic moments.
We assume the direction of the static magnetization is parallel
to the stacking axis (the z direction) [57]. The terms involving
A and S can be understood as arising from spin-preserving
electronic transitions between some relevant WFs of the layer
that are associated with its top and bottom surfaces.

The eigenvalues of the single-layer Hamiltonian (31)
demonstrate that it is indeed unitarily equivalent to that of
BHZ [68] when our Mlz = 0, their C = D = 0, and our S

equals their M. If Mlz = 0, then we similarly find that all of the
energy bands of (31) are degenerate at � when S = 0. Sim-
ilar degeneracies appear at the other high-symmetry points
(kx, ky) = (π, 0) and (0, π ) when S − 4B = 0, and at (π, π )
when S − 8B = 0. Indeed it was previously found [57] that
the materials of immediate interest, for which the bandgap at
half filling is about �, are described by S > 0 and thus B <

0. At half filling, BHZ find that the zero-temperature ground
state of their model is insulating and in a Z2-even (odd) phase
for M < 0 (0 < M/2B < 2) [68]; varying M/2B across 0 (2)
closes and re-opens the bandgap(s) at � (at (π, 0) and (0, π )),
and a topological phase transition occurs. However, this 2D
topology is not directly related to that captured by αCS in 3D,
which will vanish in the limit of isolated layers independent of
the parameters of a single-layer, even though the symmetries
on which the classification is based are the same. Our focus in
this paper is on the properties of the 3D crystals formed when
these 2D layers are stacked and their states hybridized, not on
the properties of individual layers.

2. A nonmagnetic 3D multi-layer Hamiltonian

We consider 3D models in which the electronic states as-
sociated with adjacent surfaces of nearest-neighbor layers are
hybridized by a phenomenological interlayer hopping param-
eter D:

Ĥ (3D)
reg =

∑
lz∈Z

Ĥ (2D)
reg (lz )

+ D

∑
R∈�2D×{0}

lz∈Z
σ∈{↑,↓}

(
ĉ†

(0,σ ),R+(lz+1)azĉ(1,σ ),R+lzaz + H.c.
)
,

(33)
where we have assumed that all layers are identical apart from
a layer-dependent Mlz , that each layer is described by the
2D Hamiltonian (31), and that each pair of nearest-neighbor
layers are separated by the same distance a in the z direction.
In writing Eq. (33) we have assumed a nonmagnetic or fer-
romagnetic configuration of the static magnetic moments, in
which case D is always identified with a hopping parameter
between WFs associated with different unit cells. For general
magnetic configurations there are two issues that need be
addressed related to the precise definition of the WFs implicit
in defining fermionic operators ĉ(α,σ ),R+lzaz, ĉ†

(α,σ ),R+lzaz that
involve the layer label lz. First, depending on {Mlz}lz∈Z, the
group of translations �H under which a single-particle 3D
Bloch Hamiltonian H (r,p(r))—from which the tight-binding
model might be obtained—is invariant may not be equal to the
group of translations �3D ≡ �2D × aZ under which the mul-
tilayer crystal lattice is invariant (�H ⊆ �3D). Then, although
R + lzaz ∈ �3D for all lz ∈ Z, generically R + lzaz /∈ �H and
therefore cannot be used to label WFs or their corresponding
operators. In the nonmagnetic (Mlz = 0) and ferromagnetic
(Mlz = Ml ′z ) cases, the magnetic and chemical unit cells
coincide, �H = �3D, and R + lzaz ∈ �H for all lz ∈ Z. How-
ever, in the antiferromagnetic case (Mlz = −Mlz±1) this is not
so and, strictly speaking, Eq. (33) requires modification. For
completeness, we present the tight-binding Hamiltonian for
the antiferromagnetic case in Appendix B and focus on the
nonmagnetic case in the remainder of this paper. Second, a
set of 3D WFs of a multilayer crystal [whose corresponding
operators appear in Eq. (33)] is not generally equal to the set of
all lza3-translated 2D WFs of an individual layer [whose cor-
responding operators appear in Eq. (31)] thereof. In principle,
to construct an accurate 3D tight-binding model one indeed
requires WFs of the 3D Bloch Hamiltonian H (r,p(r)). How-
ever, such details will not be relevant in our calculation of αCS

as we will not employ actual WFs but rather make simplifying
approximations regarding their form. Consequently, this sec-
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FIG. 4. Energy dispersion of the 3D tight-binding model of bulk V2VI3-type insulators for (somewhat arbitrary) parameters A = 52.7 meV,
B = −25 meV, S = 190 meV, D = −160 meV. (a) The value of A was chosen to fit −ε(k) (orange surface) to the in-plane dispersion of a
single layer of Bi2Te3 near (k�,x, k�,y ) = (0, 0) (blue surface) when the regularizing lattice has a lattice constant of 1 nm. (b) Bulk 3D energy
dispersion along the high-symmetry axes.

ond type of imprecision in writing Eq. (33) is inconsequential
to our calculation. Meanwhile the line of reasoning leading to
Eq. (33) yields a physically well-motivated form of Ĥ (3D)

reg .
Focusing on the nonmagnetic case (Mlz = 0) such that

Eq. (33) is valid, we use Eqs. (30) and (31) and

	uc

(2π )d

∑
R∈�H

ei(k−k′)·R = δ
(
k − k′) (34)

for d = 3 and k, k′ ∈ BZ3D to recast Eq. (33) as a BZ3D-
integral of the form (29). In this case the general H(d )(k) is
taken to be

H(3D)
reg (k) =

⎛
⎜⎜⎜⎜⎝

0 iA(skx − isky) ∗
k 0

−iA(skx + isky) 0 0 ∗
k

k 0 0 −iA(skx − isky)

0 k iA(skx + isky) 0

⎞
⎟⎟⎟⎟⎠, (35)

and k ≡ S(kx, ky) + eiakzD. The eigenvalues of Eq. (35) are E1,2(k) = −ε(k) and E3,4(k) = ε(k) (see Fig. 4), where

ε(k) ≡
√

1
2 A2(2 − c2kx − c2ky) + |k|2. (36)

Crucially, in this model there is a twofold degeneracy at each k ∈ BZ3D, which is a consequence32 of a center-of-inversion
symmetry and a (fermionic) time-reversal symmetry of (35); we explicitly demonstrate these symmetries in Appendix C.
Consequently, eigenvectors of (35) are highly nonunique, in a more general sense than the usual k-dependent phase ambiguity
associated with Bloch’s theorem. However, as described in Appendix A, the coupled-Dirac cone effective model that motivated
(35) has a natural set of eigenvectors, and under the substitutions h̄vDka → Aska and S → S(kx, ky), those eigenvectors are
related to a set of orthogonal eigenvectors of (35),

|ψ1,k〉 = 1√
2

(
− ∗

k

ε(k)
|ψ̄(0,↑),k〉 + |ψ̄(1,↑),k〉 − iA(skx + isky)

ε(k)
|ψ̄(1,↓),k〉

)
,

|ψ2,k〉 = 1√
2

(
− iA(skx − isky)

ε(k)
|ψ̄(0,↑),k〉 + |ψ̄(0,↓),k〉 − k

ε(k)
|ψ̄(1,↓),k〉

)
,

|ψ3,k〉 = 1√
2

(
∗

k

ε(k)
|ψ̄(0,↑),k〉 + |ψ̄(1,↑),k〉 + iA(skx + isky)

ε(k)
|ψ̄(1,↓),k〉

)
,

|ψ4,k〉 = 1√
2

(
iA(skx − isky)

ε(k)
|ψ̄(0,↑),k〉 + |ψ̄(0,↓),k〉 + k

ε(k)
|ψ̄(1,↓),k〉

)
, (37)

32See, e.g., Chap. 2 of Vanderbilt [39].

written here in the basis of Bloch-type vectors |ψ̄(α,σ ),k〉
that are assumed smooth over BZ3D [recall the discussion
below Eq. (29)]. The energy eigenvectors in (37) are of
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Bloch’s form, satisfying |ψn,k〉 = |ψn,k+G〉 for any G ∈ �∗
3D =

spanZ({2πx, 2πy, 2π
a z}). When ε(k) > 0 for all k ∈ BZ3D,

i.e., when the model is a band insulator at half filling (the case
of primary interest), these |ψn,k〉 are smooth over BZ3D. We
can also identify from Eqs. (37) a �∗

3D-periodic unitary matrix
T (k) relating Wannier and energy Bloch-type vectors,

|ψ̄(α,σ ),k〉 =
4∑

n=1

|ψn,k〉Tn,(α,σ )(k). (38)

Since both ψ̄(α,σ ),k(r) ≡ 〈r|ψ̄(α,σ ),k〉 and ψn,k(r) ≡ 〈r|ψn,k〉
are of Bloch’s form, they have associated �3D-periodic func-
tions ū(α,σ ),k(r) ≡ 〈r|ū(α,σ ),k〉 = (2π )3/2e−ik·rψ̄(α,σ ),k(r) and
un,k(r) ≡ 〈r|un,k〉 = (2π )3/2e−ik·rψn,k(r), respectively, which
are similarly related to one another by that T (k) and are
smooth (modulo exp(−iG · r) for all G ∈ �∗

H ) over BZ3D.
The Bloch energy eigenvectors could alternately be chosen

to simultaneously diagonalize the symmetry operators and
the Hamiltonian itself. However, topological considerations
forbid one from making that choice if the goal is to compute
αCS in a gauge defined by those energy eigenvectors, as we
now describe.

Many of the surprising single-particle properties of the
various types of topological insulators can be understood by
studying the structure of a particular (complex) vector bundle
[16,45,73], the Hermitian bundle of occupied Bloch states
over the Brillouin-zone torus denoted V πV−→ BZd . Band insu-
lators are special in that the Hilbert space of occupied Bloch
states at k ∈ BZd , Vk ≡ spanC ({|ψn,k′ 〉 : k′ = k and En(k′) <

EF }), has a dimension that is constant through BZd , thus Vk
∼=

Vk′ holds for all k, k′ ∈ BZd . If there are N fully occupied
energy bands then Vk

∼= CN for all k ∈ BZd . The essen-
tial mathematical object is (isomorphic to)

⋃
k∈BZd

{k} × Vk,
which is the smooth manifold that is obtained by attaching
to each k ∈ BZd the corresponding Vk and equipping this set
with a topology and smooth structure such that the natural
projection map (k, |ψk〉) �→ k is smooth33. Although this con-
struction is intuitive, it is convenient to instead consider an
isomorphic bundle over BZd

34 with total space defined by

V ≡ {
[κ, |u〉]�∗ ∈ (Rd × H)/ ∼�∗ : |u〉 ∈ RanPV (κ)

}
,

33This is a typical approach to construct a vector bundle given a
collection of desired fibers, one associated with each point of the base
manifold, and is employed in the textbook example of the tangent
bundle (see, e.g., Chapter 3 of Lee [44]). However, in that prescrip-
tion an additional choice is required, specifically a local frame (see
Local and Global Frames in Chapter 10 of Lee [44]) that is desired
to be smooth is identified and the result is that the natural projection
map is smooth (Proposition 10.24 of Lee [44]). In the case of the
tangent bundle a natural choice exists, but that is not so in our case.
To make technical progress, researchers have found it convenient
to identify the desired fibers via a family of projectors P(k) that is
associated with a particular set of energetically isolated bands since
any such P(k) is always smooth over the Brillouin zone torus.

34In this paper, as is typical in condensed matter physics, we use
the symbol BZd to denote both the Wigner-Seitz cell of �∗ and
Rd/ ∼�∗∼= T d constructed using the equivalence relation for κ, κ′ ∈
Rd that κ ∼�∗ κ′ : ⇐⇒ κ′ = κ + G for some G ∈ �∗.

where H is the Hilbert space of �-periodic functions,
PV (κ) = ∑N

n=1 |unκ〉 ⊗ 〈unκ| is the projector onto the space
of �-periodic parts of occupied Bloch functions associ-
ated with κ ∈ Rd , and the equivalence class [κ, |u〉]�∗ ⊂
Rd × H is defined by (κ, |u〉) ∼�∗ (κ′, |u′〉) : ⇐⇒ κ′ = κ +
G and u′(r) = e−iG·ru(r) for some G ∈ �∗. The bundle projec-
tion map πV : V → BZd is defined by πV ([κ, |u〉]�∗ ) ≡ [κ]. It
has been proved [45,73] that in any band insulator V πV−→ BZd

is a vector bundle (in particular, a Hilbert bundle) and is there-
fore locally trivial: for every k ∈ BZd there exists an open
neighborhood U ⊆ BZd of k over which (π−1

V (U )
πV−→ U ) ∼=

(U × CN pr1−→ U ) holds. In general, V need not be globally
trivial; the above is not necessarily satisfied for U = BZd .
However, it has been shown [45,46,73] that time-reversal
symmetry implies (V πV−→ BZd ) ∼= (BZd × CN pr1−→ BZd ) is
satisfied.35

In physics, the topology of V often manifests through the
possible frames (also called gauge choices) thereof. A local
frame of V over an open subset U ⊆ BZd can be obtained
from a collection of maps ũi in U ⊂ Rd (the complete set
of representatives of U that is contained in the Wigner-Seitz
cell of �∗) defined by ũi(κ) ≡ (κ, |ũi,κ〉) that satisfies ∀κ ∈
U : (|ũi,κ〉)i∈{1,...,N} is a basis of RanPV (κ) (i.e. the related
Bloch-type functions |ψ̃i,k〉 are a basis of Vk for k ∈ [κ]);
if the |ũi,κ〉 are energy eigenvectors then the gauge is called
Hamiltonian. A general result36 is that a vector bundle E

π−→
M is locally trivial over an open subset U ⊆ M if and only
if there exists a smooth frame of π−1(U )

π−→ U . Then, about
every k ∈ BZd a smooth local frame of V always exists and
if there is TRS then a smooth global frame of V exists. For
example, if a 2D insulator is characterized by a nonzero first
Chern invariant C, then V is not globally trivial; nonzero C
acts as an obstruction to the existence of a smooth global
gauge [45]. In this case, that V is not globally trivial can be
understood to manifest in calculations though the fact that
the Berry connection cannot be made smooth over BZ2D
and the integral expression for C then returns a nonzero
value. The Z2 invariant relevant in this work is more sub-
tle. TRS implies that V is globally trivial, but it has been
shown [16,17,49,73] that a nontrivial Z2 invariant acts as an
obstruction to the existence of a global gauge that is both
smooth and time-reversal-symmetric. Thus, there need not
exist a smooth global Hamiltonian frame of V .37 And since
αCS must be calculated with respect to a smooth global gauge
of V , in a Z2-odd insulator the components of that gauge
are topologically forbidden to be energy eigenvectors that
simultaneously diagonalize the time-reversal operator. Indeed,
the generic nonexistence of a suitable Hamiltonian gauge

35For example, when d = 2 this is equivalent to the vanishing of

the first Chern invariant associated with V πV−→ BZ2D.
36See, e.g., Proposition 10.19 and Corollary 10.20 of Lee [44].
37If the energy bands are not degenerate anywhere in k then the

energy eigenvectors necessarily diagonalize the symmetry operators
and are not be continuous over BZd in a Z2-odd phase. And if there
were degeneracies, but not over the entire BZd , then only linear
combinations of the energy eigenvectors could be smooth in k [17],
regardless of the Z2 classification of the ground state.
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means that to compute αCS requires [11] the employment
of a Wannierization-like process [17] in order to construct
Bloch-type functions |ψ̃i,k〉 that constitute a smooth global
frame of V . Within the model we employ, at half filling and in
the case of a band insulator, time-reversal and inversion sym-
metry together imply that the two occupied Bloch states are
globally degenerate. Any frame associated with these bands is
therefore Hamiltonian; every smooth global gauge of this V is
Hamiltonian.

3. Band number truncation in tight-binding models and
crystal-momentum dependence of basis states

Before we can employ this model to compute αCS, there
is one more issue to address. Like most tight-binding mod-
els that appear in the literature, the Hamiltonian operator
identified by Eq. (31) and (33) is not fully defined since the
Bloch-type vectors |ψ̄(α,σ ),k〉 that correspond with the opera-
tors ĉ(α,σ ),k, ĉ†

(α,σ ),k are not completely specified.38 This can
be particularly problematic when calculating, for example,
band-diagonal components of the Berry connection, in which
case one must explicitly take k-derivatives of the cell-periodic
part of Bloch energy eigenvectors. (In k · p models this issue
is avoided by construction, since these models are formulated
with respect to a constant frame of the space of relevant Bloch
states over the subset of BZd for which the model is accu-
rate [74,75].) In analytical calculations using tight-binding
models it is almost always39 assumed that the WFs (here the
|W(α,σ ),R〉) with respect to which the model is specified are
atomic-like, with negligible overlap between WFs that are
associated with different unit cells. In this case, the variation
of |ū(α,σ ),k〉 with k is negligible (within the above defined
equivalence classification), allowing it to remain unspecified.
In this work we assume that the Hamiltonian operator (33)
is written in a basis of Bloch-type functions |ψ̄(α,σ ),k〉 with
corresponding |ū(α,σ ),k〉 that are constant (modulo a phase)
over BZ3D, ∂

∂ka |ū(α,σ ),k〉 ≡ 0 for a = x, y, or z (≡1, 2, or 3).40

While this may seem to be a drastic approximation, and in
many cases it is indeed too drastic, we provide a physically
motivated justification and argue that it is (at least) not math-
ematically inconsistent with the assumptions already inherent
to our model.

A condition that one could potentially require of tight-
binding models, in which the full electronic Hilbert space
of a crystal is truncated to include only the states associated
with a finite number of bands around the Fermi energy, is that
the k dependence of the Bloch states be accurately captured

38For example, even in the case of graphene where it is said that
the model is written with respect to pz orbitals, one centered at the
position of each ion core, this is not sufficient because pz orbitals
centered at different lattice sites are generally nonorthogonal if they
have common support. So these at least need to be orthogonalized. In
this sense there is an important distinction between mathematically
consistent tight-binding Hamiltonians constructed via WFs and the
physically motivated ones constructed from a linear combination of
atomic orbitals.

39See, e.g., Sec. II.C.1 of Xiao et al. [40].
40In a related work Ref. [63] in which we consider the TME in anti-

ferromagnetic TIs, this approximation requires further consideration.

throughout the Brillouin zone. The local k dependence of the
|un,k〉 around some k0 can be calculated using k · p perturba-
tion theory, which yields

∂

∂ka
|un,k〉 = h̄

me

∑
m �=n

〈
un,k0

∣∣pa
∣∣um,k0

〉
En,k0 − Em,k0

∣∣um,k0

〉
, (39)

where me is the electron mass. It follows from Eq. (39) that
a good criteria for the reliability of a tight-binding model
is that all momentum matrix elements between the |um,k0〉
corresponding with included bands and neglected bands are
small at all k0 of interest. When such a set of bands that
are dissociated in this sense across the entire Brillouin zone
can be identified,41 we say that they satisfy a global isolation
condition. When this global isolation condition is satisfied, we
can always choose the finite-dimensional basis vectors of the
included bands to be independent of k, for example they could
be the eigenstates at one particular k0. Our expectation is that
global isolation holds only when it is implied by chemistry,
i.e., the set of energy bands derives from a linear combination
of atomic or molecular orbitals.

This global isolation condition is probably difficult to sat-
isfy in practice and probably unnecessary for many physically
relevant calculations, but it greatly simplifies calculations of
Berry connections and related quantities. When we start from
a phenomenological tight-binding model, as in this calcu-
lation, we know nothing about momentum matrix elements
between included and neglected bands, so we have little
choice but to assume the global isolation condition. It is prob-
ably common in ab initio DFT-derived models that global
isolation is not satisfied. In particular, for Z2 TIs, in which
level inversion at one point in the Brillouin zone plays the
essential physical role, it will never be possible for the set of
occupied bands to satisfy the global isolation condition.

To consider the mathematical implications of taking
∂

∂ka |ū(α,σ ),k〉 ≡ 0 over BZ3D, we return to the bundle-theoretic
framework. In this paper we always consider the model at
half filling. Thus, at any k ∈ BZ3D, the |ū(α,σ ),k〉 (|ψ̄(α,σ ),k〉)
need not be contained in RanPV (k) (Vk). Therefore, assum-
ing the global isolation condition for (the space spanned by)
the |ū(α,σ ),k〉 does not constrain the topology of V πV−→ BZ3D.
However, this does have implications for the topology of the
vector bundle of all relevant Bloch states, which we denote
B πB−→ BZ3D. The total space B of that bundle is constructed
in a manner similar to V , but now with the fiber at each k ∈
BZ3D isomorphic to Bk ≡ spanC ({|ψ̄(α,σ ),k′ 〉 : k′ = k and α ∈
{0, 1}, σ ∈ {↑,↓}}). (That B πB−→ BZ3D is a vector bundle fol-
lows from an analogous argument [45,73] to V πV−→ BZ3D,
which can indeed be applied to any set of isolated energy
bands). In constructing the model, we have already explic-
itly assumed, as one always does in employing tight-binding
models, that B πB−→ BZ3D has a smooth global frame and is
therefore globally trivial.

41If the states associated with all of the energy bands are employed,
then in any material a k · p over the entire Brillouin zone exists (see,
e.g., Chap. 2 of Winkler [60]) since the set {|um,k0 〉}n∈Z at any k0

span the space of �-periodic functions [76]. In the application of k · p
theory it is typically assumed (often accurately; see, e.g., Cardona
et al. [77]) that the truncation of that basis is possible.
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The assumption that we can label the WFs (30) by I =
(α, σ ) implies the existence of a smooth global frame of
the form (|ū(α,σ ),k〉)α∈{0,1},σ∈{↑,↓}. In particular, this means

that B πB−→ BZ3D can be decomposed as a product of vector
bundles that correspond with spin-up (σ =↑) and spin-down
(σ =↓) sectors,42 and that each sector admits a smooth global
frame (|ū(α,σ ),k〉)α∈{0,1} for a given σ . Thus the triple of Chern
numbers (since d = 3) that characterizes each sector vanishes
and B πB−→ BZ3D is characterized by a trivial Z2 invariant
[78,79]. Therefore, the topology of B πB−→ BZ3D does not for-
bid the existence of a smooth and symmetric global frame.
In addition, if we assume the global isolation condition then
for any k, k′ ∈ BZ3D we have RanPB(k) = RanPB(k′). Then,
while we do not make a general existence argument for a
frame with components |ū(α,σ ),k〉 that are constant over BZ3D,
assuming one to exist is (at least) not generically forbidden
by the topology of B πB−→ BZ3D. This argument applies to
any tight-binding model that is specified with respect to WFs
whose type labels are assumed to involve a spin index and
satisfies the global isolation condition.

B. Calculation of αCS

As mentioned above, in order to compute αCS as the
BZ3D-integral of the Chern-Simons 3-form, which is valid

strictly for band insulators with corresponding V πV−→ BZ3D

that is globally trivial, one is required to work in a smooth
global gauge of V . Since Bloch energy eigenvectors are
not generically smooth over BZ3D, particularly in Z2 TIs,
a Hamiltonian gauge choice is not typically viable. In past
works [11,15,30,38], a gauge of that type is induced by the
choice of WFs, where WFs are there assumed to be con-
structed from the (un)occupied energy eigenvectors alone.
However, the WFs employed to construct tight-binding mod-
els are not typically of this type. In particular, the gauge
(|ū(α,σ ),k〉)α∈{0,1},σ∈{↑,↓} is not valid for this calculation.

As described in Sec. IV A 2, the model we employ has
the positive feature that we are guaranteed a smooth global
Hamiltonian gauge due to the combination of TRS and each
set of isolated bands being completely degenerate over the
entire BZ3D. Using the |un,k〉 related to (37), we can de-
fine a suitable frame u of B πB−→ BZ3D pointwise by uk ≡
(|un,k〉)n∈{1,2,3,4}; although u is technically a frame of B, since
it is Hamiltonian it projects to a frame of V . This gauge
choice corresponds to taking the bulk electronic polariza-
tion and orbital magnetization to be defined with respect to
the set of WFs |Wn,R〉 = [	uc/(2π )3]1/2

∫
BZ3D

e−ik·R|ψn,k〉d3k.
It has been shown [10,11,15,30,38] that, with respect to
any smooth global Hamiltonian gauge u defined by uk ≡
(|un,k〉)n∈N ,

αu
CS = − e2

2h̄c
εabd

∫
BZ3D

d3k

(2π )3

⎛
⎝∑

vv′
ξ a
vv′ (k)

∂

∂kb
ξ d
v′v (k) − 2i

3

∑
vv′v1

ξ a
vv′ (k)ξ b

v′v1
(k)ξ d

v1v
(k)

⎞
⎠, (40)

where the sums are over the initially occupied band indices (here v, v′, v1 ∈ {1, 2}) and ξ a
nm are the components of the non-

Abelian Berry connection induced by u,

ξ a
nm(k) ≡ i〈un,k| ∂

∂ka
um,k〉. (41)

Although Eq. (40) is gauge dependent, transforming from one appropriate gauge of V to another, be it a Hamiltonian gauge
or otherwise, can only change its value by an integer multiple of e2/hc [10,11]; that is, there is a quantum of indeterminacy
associated with αCS.

We now calculate αu
CS via Eq. (40). Assuming that ∂

∂ka |ū(α,σ ),k〉 ≡ 0 (see Sec. IV A 3), Eq. (41) becomes

ξ a
nm(k) = −T a

nm(k), (42)

where we have used |un,k〉 = ∑
α,σ |ū(α,σ ),k〉T †

(α,σ ),n(k) (obtained from (38) for α ∈ {1, 2} and σ ∈ {↑,↓}) and defined the
Hermitian matrix T a populated by elements

T a
nm(k) ≡ i

∑
α,σ

(
∂

∂ka
Tn,(α,σ )(k)

)
T †

(α,σ ),m(k). (43)

Using Eqs. (37) and (38) in Eq. (43), we obtain

T x
11(k) = −A2ckxsky + 2BDskxsakz

2ε(k)2
, T y

11(k) = A2skxcky − 2BDskysakz

2ε(k)2
, T z

11(k) = −aD[D + S(kx, ky)cakz]

2ε(k)2
,

42To construct these bundles, the prescription of Prodan [71] could be followed. Here, however, we are interested in spin sectors of both the
total Bloch bundle and its valence subbundle. In the language of Prodan, the former corresponds with the projector being the identity map and
the latter with the projector mapping to the occupied states of the electronic ground state.
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T x
12(k) = A[2B + ckx(eiakzD + S − 4B + 2Bcky) − 2iBskxsky]

2ε(k)2
,

T y
12(k) = − iA[2B + cky(eiakzD + S − 4B + 2Bckx ) + 2iBskxsky]

2ε(k)2
, T z

12(k) = −aAeiakzD(iskx + sky)

2ε(k)2
. (44)

All other components are related to those given above. Note in particular that T a is Hermitian, T a
nm = (T a

mn)∗, and that by explicit
calculation it can be shown that

T a
11 = T a

33, T a
22 = T a

44, T a
11 = −T a

22,

T a
13 = −T a

11, T a
24 = −T a

22, T a
34 = T a

12, T a
14 = T a

32 = −T a
12. (45)

The relations (45) need not be satisfied for a different choice of energy eigenvectors. Using Eqs. (42), (44), and (45), the integrand
of the first term of Eq. (40) is here found to be

εabc
2∑

v,v′=1

ξ a
vv′

∂

∂kb
ξ c
v′v = −3aA2D{Dckxcky + [2B(ckx + cky) + (S − 4B)ckxcky]cakz}

ε(k)4
. (46)

The integrand of the second term of Eq. (40) is (in this case) −1/3 of the first. Indeed, applying the general relation
εabc∂bξ

c
nm = iεabc

∑
r ξ b

nrξ
c
rm (we now adopt the shorthand ∂a ≡ ∂/∂ka) to this case (such that r ∈ {1, 2, 3, 4}) in combination

with the relations (45), one can explicitly show that εabc
∑2

v,v′=1 ξ a
vv′∂bξ

c
v′v = 12iεabcξ a

11ξ
b
12ξ

c
21 = 2i(εabc

∑2
v,v′,v1=1 ξ a

vv′ξ
b
v′v1

ξ c
v1v

).
With this, we obtain the final expression

αu
CS = e2

h̄c

∫ π/a

−π/a

d (akz )

2π

∫ π

−π

dkxdky

(2π )2

′
D{′

Dckxcky + [2B′(ckx + cky) + (′
S − 4B′)ckxcky]cakz}

ε′(k)4
. (47)

We have noted that αu
CS is invariant under a change in energy

scale and used this to remove the explicit dependence on
A in Eq. (47) through the introduction of scaled parameters
B′ ≡ B/A, ′

D ≡ D/A and ′
S ≡ S/A, and ε′(k) ≡ ε(k)/A.

In Table I we list values of αu
CS obtained by extrapolating

numerical estimates of the integrals over BZ3D in Eq. (47) to
convergence for various combinations of model parameters;
we were not able to perform an analytical integration. We
are careful to avoid sets of parameters for which the bandgap
(at half filling) vanishes since Eq. (40) applies only to band
insulators.

TABLE I. Representative set of values of αu
CS obtained from

numerical integration of Eq. (47) for (arbitrarily chosen) S =
190 meV. From these data the topological phase diagram (Fig. 5)
can be deduced. When the values of the crystal parameters are varied
such that the bandgap does not close, the value to which αu

CS evaluates
is unchanged.

D/S 4B/S αu
CS ( e2

hc ) D/S 4B/S αu
CS ( e2

hc )

All 0 0 0 All 0

±0.1
0.5

−0.5
1/2
0

±0.5
0.3

−0.3
1/2
0

±0.1
0.7

−0.7
0
0

±0.8
0.3

−0.3
−1/2

0

±0.1
1.0

−1.0
−1
0

±1.1
0.3

−0.3
0
1/2

±0.1
1.2

−1.2
0
0

±1.4
0.3

−0.3
0

−1/2

±1.1
1.2

−1.2
−1/2

1/2
±1.7

0.3
−0.3

0
0

To obtain the topological phase diagram (Fig. 5) from the
data in Table I, we use that the numerical value of the αu

CS
integral is piecewise constant in regions of the model’s pa-
rameter space over which the bandgap is nonzero. That value
can change when the parameters are varied in such a way that
the bandgap vanishes at some point in BZ3D. From Eq. (36)
we see that this can happen only when ε(k) = 0, that ε(k)
can vanish only at those k ∈ BZ3D for which kx, ky ∈ {0,±π}
and kz ∈ {0,±π/a}, and that the condition for bandgap clos-

FIG. 5. Phase diagram plotting the Z2 topological classification
of the band insulating electronic ground state of Ĥ (3D)

reg [specified in
Eq. (35) and Sec. IV A 3] at half filling. The darkest (vertical) dashed
lines identify the points in parameter space at which a bandgap
closing occurs due to one of Eqs. (48a) and (49a) evaluating to zero,
the medium dashed lines identify points at which one of Eqs. (48b)
and (49b) evaluates to zero, and the lightest dashed lines identify
points at which one of Eqs. (48c) and (49c) evaluates to zero.
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ings depends only on the ratio of the scaled parameters.
The end result is that bandgap closings occur along lines
in (′

D/′
S)–(B′/′

S) space [equivalently, (D/S)–(B/S)
space]. Specifically, bandgaps close only when at least one of
the following energies vanishes:

ε(0, 0, 0) = |S + D|, (48a)

ε(π, 0, 0) = ε(0, π, 0) = |S + D − 4B|, (48b)

ε(π, π, 0) = |S + D − 8B|, (48c)

ε(0, 0, π/a) = |S − D|, (49a)

ε(π, 0, π/a) = ε(0, π, π/a) = |S − D − 4B|, (49b)

ε(π, π, π/a) = |S − D − 8B|. (49c)

The topological phase diagram in (D/S)–(B/S) space
is plotted in Fig. 5. If D/S = ∓1 then from (48a) and
(49a) ε(k) = 0 at either (kx, ky, kz ) = (0, 0, 0) or (0, 0, π/a).
If D/S = ∓(1 − 4B/S) then from (48b) and (49b)
ε(k) = 0 at either (π, 0, 0) and (0, π, 0) or (π, 0, π/a) and
(0, π, π/a). Finally, if D/S = ∓(1 − 8B/S) then from
(48c) and (49c) ε(k) = 0 at either (π, π, 0) or (π, π, π/a). In
Fig. 5 we use dashed lines to identify the sets of points in pa-
rameter space where at least one of the energies in (48) or (49)
vanishes. In the region of parameter space that we consider,
we find that a topological phase transition can occur only if
a bandgap at (0,0,0) or (0, 0, π/a) closes and re-opens, or
one at (π, π, 0) or (π, π, π/a) closes and re-opens [i.e., only
along the lines defined by the vanishing of Eqs. (48a), (49a))
or (48c), (49c)]. When bandgaps at (π, 0, 0) and (0, π, 0) or
(π, 0, π/a) and (0, π, π/a) close and re-open, the Z2 topo-
logical classification of V πV−→ BZ3D remains unchanged, but
the value of αu

CS can shift by an integer multiple of e2/hc.
In Sec. III, the parameter B did not appear. This can be

understood by recalling that the tight-binding model we em-
ploy was developed as a lattice regularization of an effective
model that assumes that the low-energy states of the materials
of interest are only near (kx, ky) = (0, 0); this is a property
of our lattice model only when B/S < 0 and |S| ≈ |D|.
In that case our expectation is that the largest contributions to
the integrand of (47) come from near the line (kx, ky) = (0, 0),
since ε(k) is smallest there. Expanding our expression (47) for
αu

CS to first order in kx and ky about (0,0), we find that the terms
involving B cancel out and that

αu
CS ≈ e2

h̄c

∫ π/a

−π/a

d (akz )

2π

∫
R2

dkxdky

(2π )2

′
D(′

D + ′
Scakz )(

k2
x + k2

y + |′
kz
|2)2

=
{

0 if |S| > |D|
e2

2hc if |S| < |D|, (50)

where we have artificially extended the domain of integration
for kx, ky from the subset of BZ2D near the expansion line to
R2. For B/S < 0 and |D| ≈ |S|, Eq. (50) is consistent
with Fig. 5. A similar approximate expression for αCS was
previously derived by Rosenberg and Franz [80] for models
hosting Dirac-like low-energy states. We caution, however,
that topological index calculations like this one, which fo-
cus only on contributions from regions near certain lines or
points in k space, can fail. An explicit example is provided in
Appendix A.

V. ATOMIC-LIKE AND ITINERANT CONTRIBUTIONS
TO αCS

In Sec. III we employed a coupled-Dirac cone model of
a multilayer thin film—which had a vanishing magnetic ex-
change mass (i.e., no magnetic dopants) in the interior layers,
but allowed a finite exchange mass in outermost layers—and
found (see Fig. 3) that a perpendicular magnetic field can
induce a charge density only near the surfaces, that this occurs
only in the presence of local magnetic dopants, and that the
corresponding magnetoelectric coefficient is quantized in suf-
ficiently thick films only when the dopant configuration in the
top and bottom layers is opposite. In Sec. II we argued from
physical grounds that a meaningful bulk P(B), particularly in
nonmagnetic Z2 TIs, must (at least) involve an implicit con-
sideration of surfaces to account for these magnetic-dopant
requirements. We now ask whether there is a purely bulk
manifestation of those requirements.

To begin, we recall the equivalence of the susceptibilities
in Eq. (6), which is at least valid in bulk insulators for which
V πV−→ BZ3D is globally trivial. We focus on the macroscopic
electronic orbital magnetization M and recall from the modern
theory [24,25] (or from other formulations of the microscopic
response theory [27]) that

M = M̄ + M̃, (51)

where M̄ is called the atomic-like contribution and M̃ the itin-
erant contribution. (In the modern theory these are typically
denoted MLC and MIC, respectively.) In an unperturbed bulk
insulator, or when the orbital magnetization is induced by a
uniform electric and/or magnetic Maxwell field, M is uniform
and static, as are M̄ and M̃ [31]. In the modern theory it has
been argued [24] that in ferromagnetic (M (0) �= 0) bulk insula-
tors with isolated energy bands, interior and surface currents
in finite samples thereof can be used to uniquely determine
M̄ (0) and M̃

(0)
, respectively;43 we use the superscript (0) to

label spontaneous orbital magnetizations and later use (E ) to
label magnetization that arises in linear response to the electric
field. However, when there are degeneracies within the band
structure, the decomposition of M (0) as a sum of M̄ (0) and
M̃

(0)
is gauge dependent [25]. In this case, interior and surface

currents do not uniquely determine M̄ (0) and M̃
(0)

; additional
data related to the complete set of WFs being employed is
required. Still, the partition into contributions associated with
interior and surface currents may retain meaning. To inves-
tigate this possibility, we explicitly study the expressions for
M̄ (E ) and M̃

(E )
, which, like their unperturbed counterparts, are

individually gauge dependent, but their sum M (E ) is unique
only modulo e2E/hc [10,11].

In the approach of the modern theory, the expressions
for the atomic-like M̄ (E ) and itinerant M̃

(E )
contributions to

M (E ) [Eq. (6) of Malashevich et al. [38]] are given in terms

43In the case of a topologically trivial bulk insulator, the expressions
for the electronic polarization and orbital magnetization that result
from the different approaches [24,25] and [27] agree. However, the
proposed relation to interior and surface currents only arises in the
former.
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of states that implicitly involve the electric field E. This is
inconvenient for our purposes. As mentioned in Sec. II, there
exists a microscopic approach [27], motivated by that of PZW,
that identifies atomic-like and itinerant contributions to M by
different means, but yields the same expressions in an unper-
turbed bulk insulator [30]. Indeed the microscopic approach
reproduces the magnetoelectric susceptibility (9) derived via
the modern theory. At linear response to a uniform dc electric
field the expressions resulting from those distinct approaches
are similar in that M̄ (E ) originates from the effect of E on the
electronic dynamics directly [called dynamical modifications;
see Sec. 3. Chap. 1 of Mahon and Sipe (MS) [30] ], while M̃

(E )

originates from a combination of dynamical modifications
and changes in the form of the relevant matrix elements due
to E (called compositional modifications). A familiar exam-
ple of this is paramagnetic and diamagnetic response of an
atom to an electromagnetic field,44 which can be understood
as arising from dynamical and compositional modifica-
tions, respectively. Below we employ the expressions derived
by MS [30].

Working in the smooth global Hamiltonian gauge u defined
by the Bloch energy eigenvectors (37) and using the degener-
acy of the energy bands [see Eq. (36)], Eq. (70) of MS for the
atomic-like contribution evaluates to45

M̄i(E )
u = e2

2h̄c
εiabE l

∑
cv

∫
BZ3D

d3k

(2π )3

×
(

−
∑
v′

Re
[
iξ a

vv′ξ
b
v′cξ

l
cv

] +
∑

c′
Re

[
iξ a

cc′ξ
b
c′vξ

l
vc

])

= 0, (52)

where v, v′ ∈ {1, 2} and c, c′ ∈ {3, 4}. Here and elsewhere we
often keep the k dependence of quantities implicit. In this
gauge the atomic-like magnetization vanishes as an immediate
result of the relations (45) between the band components
of ξ a. The itinerant contribution M̃i(E ) has both a dynam-
ical modification M̃i(E ;I) and a compositional modification
M̃i(E ;II) [given by Eqs. (72) and (71) of MS, respectively].
In any smooth global Hamiltonian gauge u′ of our model,
M̃i(E ;I)

u′ = 0 since Ec,k + Ev,k is constant over BZ3D. In the
particular Hamiltonian gauge u that we employ, Eq. (71) of

44See, e.g., Sec. 2.2 of Swiecicki [29].
45Working in a smooth and periodic Hamiltonian gauge, which,

we reiterate, need not always exist, amounts to taking U (k) = id4×4

(where v ∈ {1, 2}, c ∈ {3, 4}) and therefore Wa
nm(k) ≡ 0 in the ex-

pressions derived in Ref. [30,31]. In those works it was assumed the
electronic ground state is such that there exists a �∗-periodic unitary
matrix U (k) that maps the (un)occupied Bloch energy eigenvectors
|ψn,k〉 to a set of smooth and orthogonal Bloch-type functions |ψ̃α,k〉
that therefore live in the (un)occupied electronic Hilbert space. In
the present work we find a set of smooth energy eigenvectors, so
we can take that U (k) as identity. That is, in this work the Bloch
energy eigenvectors each map to a WF, with respect to which the
bulk polarization and orbital magnetization are defined.

MS evaluates to

M̃i(E ;II)
u = e2

2h̄c
εiabE l

∑
vm

∫
BZ3D

d3k

(2π )3 Re
[
ξ l
vm∂bξ

a
mv

]
= αu

CSδ
il E l . (53)

To reach the final equality in Eq. (53) (in our case, m ∈
{1, 2, 3, 4}) we have used (44) and (45) for ξ a and recognized
the result as the analytic expression (47) for αu

CS. We find,
therefore, that in the gauge u the topological magnetoelectric
response is entirely itinerant, i.e., that

M (E )
u = M̃i(E ;II)

u . (54)

Now consider working in some other smooth global Hamilto-
nian gauge u′. (Recall the discussion at the end of Sec. IV A 2.)
Then at each k ∈ BZ3D there exists a unitary matrix U (k)
relating the components |u′

n,k〉 and |un,k〉 of the gauges u′ and
u,46

|u′
n,k〉 =

4∑
m=1

|um,k〉Um,n(k), (55)

where Uc,v (k) ≡ 0. The components of the non-Abelian Berry
connection induced by u′ are

(ξu′ )a
nm(k) = i〈u′

n,k|∂au′
m,k〉

and are related to those induced by u [denoted in Eq. (42) as
ξ a

nm ≡ (ξu)a
nm] by

(ξu′ )a
nm(k) =

4∑
l,s=1

U †
n,l (k)

[
ξ a

ls(k) + Wa
ls(k)

]
Us,m(k), (56)

where

Wa
nm(k) ≡ i

4∑
r=1

[∂aUn,r (k)]U †
r,m(k). (57)

Notably, Uc,v (k) ≡ 0 implies Wa
cv (k) ≡ 0. Employing

Eq. (56), we are able to relate the atomic-like and itinerant
contributions to the orbital magnetization that are identified
with respect to the distinct gauges u and u′. In particular,
using Eq. (52) we find

M̄i(E )
u′ = M̄i(E )

u + e2

2h̄c
εiabE l

∫
BZ3D

d3k

(2π )3

× Re

[
i
∑
cvv′

Wb
vv′ξ

a
v′cξ

l
cv − i

∑
vcc′

Wb
cc′ξ

a
c′vξ

l
vc

]

≡ ᾱli
u′El . (58)

In general, the only restriction on U (k) is that it be smooth and
�∗

H periodic, thus there is no reason to expect ᾱli
u′ to vanish.

As an example, consider a gauge transformation U (k)
such that Un,m(k) �= 0 only if n = m = 1. Since U (k) is uni-
tary, there exists a smooth function λ(k) such that ∀ k ∈

46Since the components of these gauges are mutually orthogonal
pointwise over BZ, 〈u′

n,k|u′
m,k〉 = δnm and 〈un,k|um,k〉 = δnm, T (k) is

unitary.
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BZ3D : ∀ G ∈ �∗
H : λ(k + G) = λ(k) + 2π j for j ∈ Z, and

U1,1(k) = e−iλ(k). Taking for example λ(k) ≡ sin(kx ) cos(akz )
results in ᾱzx

u′ �= 0 and taking λ(k) ≡ cos(kx ) sin(akz ) results
in ᾱzz

u′ �= 0. Then, since TRS implies that in any smooth global

Hamiltonian gauge u′ we have M (E )
u′ = M̄ (E )

u′ + M̃
(E )
u′ = αu′

CSE,
it is generally not the case that M̃i(E ;II)

u′ equals αu′
CSδ

ilE l .
The only feature that we might think is special about the

nonmagnetic case considered here is that there exists a smooth
global Hamiltonian gauge u in which M̄i(E )

u = 0 and M̃
(E )
u =

αu
CSE. In a related work [63] we investigate this further by

considering the lattice regularization of the coupled-Dirac
cone model for the MnV2VI4 family of antiferromagnetic Z2

TIs. In that work we show that there does not generically exist
a smooth global Hamiltonian gauge in which the topological
magnetoelectric response is entirely itinerant. Indeed whether
such a gauge exists is related to the geometry of V πV−→ BZ3D

for the insulator under consideration—a smooth global gauge
of a vector bundle is equivalent to a global trivialization.

Given that the topological magnetoelectric response in
nonmagnetic Z2 TIs is (with important qualifications) itin-
erant, from these purely bulk considerations alone we might
expect it to originate entirely from surface currents. In cases
for which this is true, there is good reason to regard the iden-
tification of the physically meaningful bulk magnetoelectric
response as αCS with suspicion, especially when we know that
any finite-size material sample will host gapless surface states
whose role must also be considered. Surface magnetic dopants
can generate gaps in the energy dispersion of the surface states
and puts this identification on safer footing. To generate a gap
everywhere on the surface, it is also required that the out-
ward normal of the magnetization characterizing the dopant
configuration never change sign. For a thin film this leads to
the requirement that this magnetization retains a perpendic-
ular component on the side walls and that it have opposite
orientations on the top and bottom surfaces. Indeed these are
the same magnetic-dopant requirements that were mentioned
at the beginning of this section and it is only when they
are satisfied that microscopic finite-size calculations agree
with the simple interpretation of the bulk magnetoelectric
linear-response calculation. When these requirement are not
satisfied, there is no physically meaningful magnetoelectric
response in nonmagnetic Z2 TIs.

VI. SUMMARY AND DISCUSSION

In this paper we study the topological magnetoelectric ef-
fect in 3D nonmagnetic Z2 topological insulators. We begin
Sec. II with a summary of the considerations that underlie
notions of polarization and (orbital) magnetization in material
media, and of magnetoelectric response. In doing so, we il-
lustrate the precarious relationship between that response and
time-reversal symmetry, in nonmagnetic Z2 TIs in particu-
lar. Focused on materials of that type, we present a slightly
modified interpretation of the argument [15] used to derive
an expression for the bulk topological magnetoelectric coef-
ficient, one that is manifestly consistent with time-reversal
symmetry. We conclude that the polarization adjacent to a
particular surface position is activated locally (see below)
by time-reversal symmetry breaking at that position. This

interpretation is supported by explicit calculations in finite
sized (Sec. III) and bulk (Sec. V) materials. In the process
of formulating this interpretation, we clarify a partially incon-
sistent conclusion related to the adiabatic current expression
from which the magnetoelectric response was previously [15]
deduced. The central difference between our interpretation
and the present one is that ours accounts for the fact that a
quantized magnetoelectric effect occurs in nonmagnetic Z2

TIs only if static magnetic surface dopants are present and are
configured such that their out-of-plane magnetization orienta-
tions at the top and bottom surfaces are nonzero and opposite.
This resolves the tension between the seemingly contradictory
roles played by TRS in finite sized and bulk insulators.

The model that we employ in Sec. III is for an infinite
quasi-2D thin film with two perfectly flat surfaces on top and
bottom. The explicit calculations on which our interpretation
is based show that a magnetic-field dependent charge density
can arise only at those surfaces and depends on the surface
normal of the magnetization on that surface. This conclusion
can be generalized to arbitrary surfaces by noting that only
the sign of the surface normal magnetization component is
important, and that the nonlocality length along lines where
the surface normal changes sign [81], λ = h̄vD/m, is finite.
As long as the typical length scales of surface regions with
a fixed sign of the surface normal of the magnetization is
large compared with λ, the properties we have calculated
for uniform surfaces apply to arbitrary surface magnetization
profiles, and the term local here refers to averages over finite
regions of area λ2. One copy of the infinite flat thin-film model
in Sec. III can be associated with each locally flat spatial
region of the sample. Within each such region, our inter-
pretation of the adiabatic current calculation is that ∂Pi/∂Bi

is constrained by bulk topology to have a quantized value.
The value that is realized at a given position on a sample
boundary is locally determined by the surface magnetization
at the same position on the boundary [10]. The magnitude
of the polarization response to magnetic field tends to be the
smallest allowed quantized value, so changes from position to
position tend to be changes in sign only. Sign changes in the
surface magnetization profile will produce locally ungapped
regions on the surface that will support [81] chiral edge states
that separate polarization domains.

As we have explained, the topological magnetoelectric ef-
fect (TME) in our picture is a local surface charge-density
property. If this is the meaning ascribed to the TME, then the
quantum Hall effect that appears in the film as a whole when
the magnetizations on top and bottom surfaces have the same
orientation can be viewed to be a natural partner of the TME.
This magnetic configuration implies opposite dependence of
polarization on magnetic field on opposite surfaces of the
sample, and via Eq. (4) to a total charge density in the in-
sulator that varies linearly with magnetic field. A dependence
of charge density on magnetic field in a quasi-2D insulator is
equivalent to the quantum Hall effect via the Streda formula.
(The relationship between the quantum Hall effect in TI thin
films observed optically and the TME has been controversial
[82–86].) When the magnetizations are antiparallel on the two
surfaces of a thin film, the same argument implies that in
our interpretation the field-dependent polarization inside the
material is spatially uniform, so that the total charge density
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is independent of magnetic field. Thermodynamic identities
nevertheless imply that the orbital magnetization must vary
with the electric field applied across the system, implying
that the orbital magnetization is sensitive to an energy shift
between top and bottom surfaces in the local density of states
even though no chiral edge states are present at the Fermi
energy, as argued in Ref. [51].

In Sec. V we consider whether these surface magnetic-
dopant qualifications on the magnetoelectric response of
nonmagnetic Z2 TIs manifest in the bulk expressions. If they
did, one might guess to use the equivalence of the susceptibil-
ity tensors (6) and investigate the properties of the atomic-like
M̄ and itinerant M̃ contributions to the electric-field-induced
magnetic dipole moment. Indeed M̃ was originally associ-
ated with surface currents [24]. The identification of M̄ and
M̃ is generally gauge dependent, even in unperturbed in-
sulators [25], thus associating any physical meaning with
that partitioning is suspect. Nevertheless, with respect to a
particular smooth global Hamiltonian gauge we analytically
demonstrate that the topological response δilαCS arises en-
tirely through that of M̃ (independent of a particular choice
of parameter values, in all regions of parameter space for
which there is always a bandgap). However, this is not true
in a generic Hamiltonian gauge. In a related work [63] we
consider antiferromagnetic (AFM) Z2 TIs that exhibit a gen-
eralized TRS. In that case we show that no gauge exists for
which the response is entirely itinerant (in the above sense).
In AFM materials, surface magnetic dopants are unnecessary
for a magnetoelectric effect to manifest since the termination
of the material already breaks the generalized TRS. Thus, it
may be the case that the surface magnetic-dopant qualification
in thin films is equivalent to the existence of a smooth global
Hamiltonian gauge with respect to which the bulk response is
entirely itinerant. Indeed, this may be understood as a type
of microscopic bulk-boundary correspondence relating the
bulk geometry of V πV−→ BZ3D to the surface magnetic-dopant
qualifications for the TME to manifest in a particular material.
Although the nonexistence of certain smooth global gauges
has been related [16] to the topology of V πV−→ BZ3D, we do
not suspect this to be the case here; we anticipate that in an
AFM TI there could exist some smooth global gauges u for
which there exists a finely tuned point in the parameter space
where M̃

(E )
u equals αu

CSE. Thus, whether such a gauge generi-

cally exists is taken to be a geometric property of V πV−→ BZ3D.
That magnetic surface dopants activate the topological

magnetoelectric effect in thin films of nonmagnetic Z2 TIs
can be understood on physical grounds, as we now de-
scribe. Assume that the magnetoelectric coefficient in a bulk
nonmagnetic Z2 TI is given by αCS = (n + 1/2)e2/hc for
some n ∈ Z. We seek the corresponding susceptibility ten-
sor αfinite(r) in a finite sample thereof, which we assume
can be partitioned into contributions from the sample’s in-
terior and surface regions, such that αfinite(r) = αCS fint(r) +
αsurf(r) fsurf(r); { fint(r), fsurf(r), fext(r)} is a partition of unity
over R3, where we take fint(r) to have support over the entire
interior region of the sample and decay from 1 to 0 on some
length scale near its boundary, fsurf(r) to be nonvanishing only
near the sample boundary, and fext(r) to identify the region
outside of the material.

If we assume that bulk physics always determines the
properties of finite-sized samples such that αsurf(r) can be
neglected, then αfinite(r) = αCS fint(r). We now show that this
assumption leads to a contradiction. Implementing this as-
sumption in Eq. (4), we find47

Ji(1)
finite(r) = cαCSε

iab ∂ fint(r)

∂ra
Eb(r) + · · · ,

�
(1)
finite(r) = − αCS

∂ fint(r)

∂ra
Ba(r) + · · · .

That is, although in bulk insulators that exhibit TRS the lin-
early induced charge and current densities are insensitive to
αCS, physical consequence of αCS can manifest at the sur-
face of a finite sample thereof. To reach this conclusion we
assumed that J (1)

finite(r) and �
(1)
finite(r) are found by restricting the

bulk P(1)(r) and M (1)(r) to a finite region of space, and not the
bulk J (1)(r) and �(1)(r) themselves. For if it were the latter,
then αCS would again not contribute. This is strange—who
decides which quantity should be restricted? It has also been
pointed out48 that the above expression for J (1)(r) corresponds
to a half-quantized quantum anomalous Hall current at each
surface. But how can this be if the sample exhibits TRS?
Something has gone wrong. Indeed, the result of Sec. III was
that a magnetic-field-induced polarization can only occur in
nonmagnetic TI thin films when TRS is broken by magnetic
dopants at the surface, which is moreover consistent with the
usual symmetry analysis. In particular, if m = 0 in Eq. (22)
prior to taking the bulk limit, then αme = 0.

Thus, the assumption that αsurf(r) can be neglected leads to
contradictions. This illustrates that, while it may be true that
the bulk αCS can manifest at the surface of finite-size samples,
one must also consider the response of the surface states that
exist as a consequence of the bulk topology. This conclusion
is consistent with topological field theoretic considerations,
where it has been demonstrated that the surface states implied
by a nontrivial 3D bulk Z2 invariant (via the topological
magnetoelectric coefficient αCS) are related to the restoration
of the parity anomaly and their response identically cancels
that of the bulk [12–14]. This contrasts the situation for the
integer quantum Hall effect related to a nontrivial 2D bulk
Chern invariant, in which case the bulk and surface responses
add [87–89].

Ultimately, a ubiquitous aspect of theories considering po-
larization and orbital magnetization in crystalline solids has
been the importance of interpretation [39]. This work illus-
trates that in order to have a physically meaningful notion
of bulk magnetoelectric response, in particular in insulators
that exhibit TRS, the implicit involvement of a surface is
unavoidable. Otherwise, as has been the case until now, the
topological magnetoelectric response generally falls outside
of the Peierls paradigm. Our hope is that this work will
help to clarify misconceptions related to the topological mag-
netoelectric effect and thereby assist with its experimental

47Expressions that are similar to the following have been presented
in previous works, including in Sec. IV of Qi et al. [10] and in
Chap. 6.4 of Vanderbilt [39].

48See, e.g., Sec. IV of Qi et al. [10] or Chaps. 6.2.2 and 6.3.2 of
Vanderbilt [39].
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demonstration. We expect that a quantized TME will be ob-
servable in nonmagnetic TI thin films only when the surface
normal of the magnetization does not change direction on
either top or bottom surfaces and the magnetic gap induced at
the surface is larger than the disorder potential on that surface.
Changes in sign of the surface normal and reductions in local
gap size on either surface will generically alter the global
charge at which the density of states reaches a minimum and
make it magnetic field dependent, swamping the topological
magnetoelectric effect. It follows that the robustness against
disorder that is critical to accurate observation of the integer
quantum Hall effect, does not apply to the topological magne-
toelectric effect.
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APPENDIX A: FLAWED ATTEMPT TO CALCULATE
αCS VIA A LOW-ENERGY EFFECTIVE HAMILTONIAN

For illustrative purposes, in this section we perform a too-
simplistic calculation of a low-energy approximation of αCS

using the bulk (i.e., periodic in z) version of the coupled-Dirac
cone model introduced in Sec. III. In contrast with the quasi-
2D models used in that section, this model is genuinely 3D.
Notably, in the smooth local gauge that motivates the eigen-
vectors (37) of the tight-binding model obtained from a lattice
regularization of this model, we find the same result (50).
However, it is generally the case that one does not produce
the correct result for αCS using a low-energy effective model
alone. Indeed if one somehow knows that the local gauge
choice on the BZ3D subset on which the effective model is
valid can be extended to a smooth and periodic gauge over
the entire BZ3D of some lattice regularization thereof, then
the correct quantization can result; this was used implicitly in
past work [80]. Otherwise, incorrect half-quantization of the

susceptibility tensor can arise, similar to the situation when
too-simplistic attempts are made to calculate the 2D Hall
conductivity in a Chern insulator.

The effective low-energy Hamiltonian of 3D bulk nonmag-
netic and magnetic multilayer TIs that was previously studied
by Lei et al. [57] is essentially a k · p model about � in the
b1-b2 (x-y) plane and a lattice model in b3 (z); by construction,
the model is valid only on a subset of the 3D Brillouin zone.
The model is written with respect to operators that generate
basis vectors |v(α,σ ),k〉 that are products of 2D k · p basis
vectors |ū(α,σ ),k0〉, with the k · p expansion point k0 taken to
be (0,0), and 1D Bloch-type functions ψ̄(α,σ ),kz (z) that are
associated with WFs W(α,σ ),na3 (z) that are localized in a3 ‖ z
and taken to coincide with a bottom (top) layer “surface state”
for α = even (odd). Then, in this model the operators generate
vectors |v(α,σ ),k〉 = |v(α,σ ),(0,0,kz )〉 ≡ |v(α,σ ),kz 〉 and, in fact, the
possibility for variation in kz of the associated 1D cell-periodic
functions ū(α,σ ),kz (z) ∝ e−ikzzψ̄(α,σ ),kz (z) is neglected. In the
nonmagnetic case, α ∈ {0, 1} and the effective Hamiltonian
is defined by its matrix representation

H(3D)
eff (k) =

⎛
⎜⎜⎝

0 h̄vDik− ∗
kz

0
−h̄vDik+ 0 0 ∗

kz

kz 0 0 −h̄vDik−
0 kz h̄vDik+ 0

⎞
⎟⎟⎠

(A1)
in the basis (|v(0,↑),kz 〉, |v(0,↓),kz 〉, |v(1,↑),kz 〉, |v(1,↓),kz 〉), where
k± ≡ kx ± iky ≡ k⊥e±iθk⊥ , kz ≡ S + eiakzD; here kx and
ky have units of 1/length. The relevant velocity scale vD of
the individual 2D layers is determined by the material pa-
rameters of one such layer. The eigenvalues of Eq. (A1) are
E1,2(k) = −ε(k) and E3,4(k) = ε(k), where

ε(k) ≡
√

h̄2v2
D

(
k2

x + k2
y

) + |kz |2. (A2)

In this model, the condition of a band insulator at half filling
is ∀ kz ∈ [−π/a, π/a] : kz �= 0. Thus, as the ratio |D|/|S|
is varied, the bandgap can vanish; in particular, if D = −S

then ε(0, 0, 0) = 0 and if D = S then ε(0, 0, π/a) = 0.
These are the points in parameter space at which a topological
phase transition may occur.

Due to the double degeneracy (A2), at every k for which
the model applies, the set of eigenvectors is highly nonunique.
However, (A1) has natural solutions in the ak⊥ → 0, ∞ limits
[k⊥ ≡ (k2

x + k2
y )1/2], which motivates us to make a particular

choice,

|φ1,k〉 = 1√
2

(
− ∗

kz

ε(k)

∣∣v(0,↑),kz

〉 + ∣∣v(1,↑),kz

〉 − ih̄vDk+
ε(k)

∣∣v(1,↓),kz

〉)
,

|φ2,k〉 = 1√
2

(
− ih̄vDk−

ε(k)

∣∣v(0,↑),kz

〉 + ∣∣v(0,↓),kz

〉 − kz

ε(k)

∣∣v(1,↓),kz

〉)
,

|φ3,k〉 = 1√
2

(
∗

kz

ε(k)

∣∣v(0,↑),kz

〉 + ∣∣v(1,↑),kz

〉 + ih̄vDk+
ε(k)

∣∣v(1,↓),kz

〉)
,

|φ4,k〉 = 1√
2

(
ih̄vDk−
ε(k)

∣∣v(0,↑),kz

〉 + ∣∣v(0,↓),kz

〉 + kz

ε(k)

∣∣v(1,↓),kz

〉)
. (A3)
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In the ak⊥ → 0 limit, the Hamiltonian (A1) involves only interlayer transitions and the spin index becomes preserved, while in
the ak⊥ → ∞ limit the spin-orbit interaction dominates and the layer index becomes preserved; these limits are evident in the
chosen form (A3). Notably, the set of vectors (A3) forms an orthonormal basis of the relevant electronic Hilbert space, which
are smooth in k for an insulator [ε(k) > 0].

From (A3) we can identify a unitary matrix T̆ (k) analogous to that appearing in Eq. (38), here with elements T̆n,(α,σ )(k) =
〈φn,k|v(α,σ ),kz 〉 = 〈v(α,σ ),kz |φn,k〉∗. With this we explicitly find the matrices T̆ a(k) ≡ i[∂aT̆ (k)]T̆ †(k) (for a = x, y, or z) analogous
to those appearing in Eq. (43). Unsurprisingly, we find that these matrices satisfy relations analogous to (45), but now we find

T̆ x
11(k) = − h̄2v2

Dky

2ε(k)2
, T̆ y

11(k) = h̄2v2
Dkx

2ε(k)2
, T̆ z

11(k) = −aD(D + Scakz )

2ε(k)2
,

T̆ x
12(k) = h̄vDkz

2ε(k)2
, T̆ y

12(k) = − ih̄vDkz

2ε(k)2
, T̆ z

12(k) = − h̄vDaDeiakz (ikx + ky)

2ε(k)2
. (A4)

Indeed, the matrix elements (A4) are consistent with those
(44) that are obtained from the lattice regularized model;
taking B = 0 and kx, ky to be small, Eq. (44) reduces
to Eq. (A4).

In principle, this model, like any k · p description, is in-
sufficient to compute αCS. That is, while low-energy models
may accurately describe the physics of the states associated
with those crystal momentum k near the k · p expansion point,
the topology of V imposes constraints on global properties
of Bloch energy eigenvectors and of smooth gauge choices
over all of BZd ; those constraints are generally not relevant
on subsets of BZd . Nevertheless, it is insightful to calculate
a low-energy approximation of αCS to see where issues arise.
We take the initial electronic state of the insulator to be the
zero-temperature ground state and there to be two electrons
per unit cell; that is, we take |φ1,k〉 and |φ2,k〉 to be initially
occupied and |φ3,k〉 and |φ4,k〉 to be initially unoccupied. The
components of the Berry connection induced by (A3) can
be found via ξ̆ a

nm(k) = −T̆ a
nm(k) [recall the discussion above

Eq. (A1)]. After some algebra we find

εabc
∑
vv′

ξ̆ a
vv′∂bξ̆

c
v′v = −3

ah̄2v2
DD(D + Scakz )

ε(k)4
,

−2i

3
εabc

∑
vv′v1

ξ̆ a
vv′ ξ̆

b
v′v1

ξ̆ c
v1v

= ah̄2v2
DD(D + Scakz )

ε(k)4
.

(A5)

To calculate quantities that are generally written as Brillouin-
zone integrals [such as αCS (40)] via a k · p description, one
usually restricts the domain of integration to the subset of
BZ3D on which the model is valid [here to a limited range
of kx, ky about (0,0)] based on the assumption that outside
of this region the integrand is negligible. In-line with this as-
sumption, when kx and/or ky are large, the relevant integrand
(A5) tends to zero; consequently, the domain of integration in
the “k · p dimensions” is usually artificially extended to the
entire plane and we do so here. With this, and moving to the
cylindrical coordinates (k⊥, θk⊥ , kz ), we have

αCS
.= e2

hc

∫ π/a

−π/a

dkz

2π

∫ ∞

0
dk⊥k⊥

a′
D(′

D + ′
Scakz )

ε′(k)4
,

(A6)

where ′
S ≡ S/h̄vD, ′

D ≡ D/h̄vD, etc., and
.= denotes an

equality under the above described assumptions of the k · p
approach. Evaluating the integral,

∫ π/a

−π/a

dkz

2π

∫ ∞

0
dk⊥k⊥

a′
D(′

D + ′
Scakz )(

k2
⊥ + |′

kz
|2)2

=
{

0 if |S| > |D|
1
2 if |S| < |D|, (A7)

yields the expected quantization of αCS. This is consistent with
the result of the tight-binding calculation [see Eq. (50) and the
surrounding text].

But what happens under a change of gauge? The result is
that, in general, a change of gauge shifts the value of αCS

by an amount different than n e2

hc for n ∈ Z, in contradiction
to the known behavior for a model defined over the entire
Brillouin zone [10,11]. This is an artifact of the use of a
k · p description, which will not generally yield quantized
topological invariants.49 In the case of αCS in particular, the
issue is that one does not know whether the eigenvectors
employed in the gauge choice on the BZd subset on which
the k · p model is valid extend smoothly and periodically over
the BZd of a lattice regularization thereof. For example, in
the model studied here, consider a gauge constructed from
|v′

n,k〉 = ∑4
m=1 |vm,kz 〉Um,n(k), where

U (k) = U (kz ) =

⎛
⎜⎜⎝

0 kz

/∣∣kz

∣∣ 0 0
−1 0 0 0
0 0 0 kz

/∣∣kz

∣∣
0 0 1 0

⎞
⎟⎟⎠.

(A8)

This appears harmless within the context of the model (A1)
for an insulator (kz �= 0). But, in the lattice regularization
presented in the main text, kz → k and there may exist
k ∈ BZ3D : |k| = 0 in a band insulator. Then attempting to
define Bloch energy eigenvectors over the full Brillouin zone
from the |v′

n,k〉 [as was done in the main text (37) for the |vn,k〉]
is pathological at any k ∈ BZ3D : |k| = 0; those vectors can-
not be used to construct a smooth gauge over BZ3D. Indeed
a calculation of αCS in that gauge would be invalid, since

49See, e.g., Jotzu [90].
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a smooth global gauge was assumed in deriving the BZ3D

integral form of αCS.

APPENDIX B: ANTIFERROMAGNETIC 3D MULTILAYER
TIGHT-BINDING HAMILTONIAN

We now modify the considerations of Sec. IV A 2 to the
antiferromagnetic (AFM) case (Mlz = −Mlz±1). In this case
the magnetic unit cell is twice the volume of the chemical unit
cell. That is, the single-particle Bloch Hamiltonian H (r,p(r))
underlying a tight-binding description would not be invari-
ant under translations by az, but would be invariant under
translation by 2az; it is useful to define �3D ≡ �2D × aZ and
�H ≡ �2D × 2aZ. Then R + az /∈ �H and strictly speaking
Eq. (33) is not valid. Nevertheless we can modify that ex-
pression by relabelling the operators in such a way that the
physical content is unchanged and the operators are identified
in a technically correct manner. This achieved through the
following: for lz ∈ Z and R ∈ �2D × {0}, take

∣∣W(α,σ ),R+lzaz
〉 →

{∣∣W(α,σ ),R+lzaz
〉

for lz even∣∣W(α+2,σ ),R+(lz−1)az
〉

for lz odd.
(B1)

Under this transformation Eq. (33) is consistent; operators that
are associated with WFs are labeled by elements of �H rather
than by elements of �3D. This relabeling results in eight types
(α, σ ) of WFs W(α,σ ),R(r) associated with each Bravais lattice
vector R ∈ �H . Separating out the lz = odd contributions and
implementing the necessary relabeling (B1), the tight-binding
Hamiltonian (33) is rewritten as

Ĥ (3D) =
∑

lz∈2Z

Ĥ ′(2D)(lz )

+ D

∑
R∈�2D×{0}

lz∈2Z
σ∈{↑,↓}

(
ĉ†

(2,σ ),R+lzazĉ(1,σ ),R+lzaz

+ ĉ†
(0,σ ),R+(lz+2)azĉ(3,σ ),R+lzaz + H.c.

)
,

(B2)

where Ĥ ′(2D)(lz ) is obtained by implementing the relabeling
(B1) in Ĥ (2D)(lz ) + Ĥ (2D)(lz + 1).

There is another, more physical, complication in the case
when Mlz �= 0 in 3D, which is the possibility of exchange
coupling between the dynamical degrees of freedom of a
given layer with the static magnetization of all other layers.
If we assume that the most relevant exchange interactions for
a given WF W(α,σ ),R(r) is that with the static magnetization
of the layer for which it is associated (via JS) and that with
the static magnetization of the layer with which it is nearest
(via JD)—for α = odd (even) this is the layer below (above)
that for which W(α,σ ),R(r) is associated—and we focus on the
AFM case such that both orbitals within a given layer feel
the same Mlz±1 = −Mlz , we can account for this by taking
JSMlz → (JS − JD)Mlz ≡ mlz in Eq. (31). Taking mlz = m for
lz even and = − m for lz odd, writing (B2) as a BZ3D integral
via Eq. (30), and using Eq. (34), we have

Ĥ (3D)
reg =

∫
BZ3D

d3k

(2π )3 ĉ†(k)H(3D)
reg (k)ĉ(k),

which is of the same form as (29), but in this case ĉ(k) ≡ (ĉ(0,↑),k, ĉ(0,↓),k, ĉ(1,↑),k, ĉ(1,↓),k, ĉ(2,↑),k, ĉ(2,↓),k, ĉ(3,↑),k, ĉ(3,↓),k )T and
ĉ†(k) ≡ (ĉ†

(0,↑),k, ĉ†
(0,↓),k, ĉ†

(1,↑),k, ĉ†
(1,↓),k, ĉ†

(2,↑),k, ĉ†
(2,↓),k, ĉ†

(3,↑),k, ĉ†
(3,↓),k ), and the general H(d )(k) is taken to be

H(3D)
reg (k)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m iA(skx − isky ) (kx, ky ) 0 0 0 e−2iakz D 0

−iA(skx + isky ) −m 0 (kx, ky ) 0 0 0 e−2iakz D

(kx, ky ) 0 m −iA(skx − isky ) D 0 0 0
0 (kx, ky ) iA(skx + isky ) −m 0 D 0 0
0 0 D 0 −m iA(skx − isky ) (kx, ky ) 0
0 0 0 D −iA(skx + isky ) m 0 (kx, ky )

e2iakz D 0 0 0 (kx, ky ) 0 −m −iA(skx − isky )

0 e2iakz D 0 0 0 (kx, ky ) iA(skx + isky ) m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(B3)

The eigenvalues of (B3) are

E1,2(k) = − E7,8(k) = −
√

1

2
A2

(
2 − c2kx − c2ky

) + S(kx, ky)2 + 2
D + m2 + 2

√
S(kx, ky)2

(
2

D cos2(akz ) + m2
)
,

E3,4(k) = − E5,6(k) = −
√

1

2
A2

(
2 − c2kx − c2ky

) + S(kx, ky)2 + 2
D + m2 − 2

√
S(kx, ky)2

(
2

D cos2 (akz ) + m2
)
. (B4)

The double degeneracy of the energy bands at each k ∈ BZ follows from the combination of an inversion and a (fermionic) time-
reversal symmetry (see Appendix C). Notice that taking m = 0 in (B4) does not reproduce (A2). This is not surprising because
taking this limit implements an incorrect identification of the Bravais lattice for the nonmagnetic Hamiltonian; in deriving
(B4) we explicitly use �H = �2D × 2aZ rather than the correct �H = �3D = �2D × aZ implemented in deriving (35) in the
nonmagnetic case.
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APPENDIX C: SYMMETRY ANALYSIS OF THE NONMAGNETIC AND ANTIFERROMAGNETIC TIGHT-BINDING MODELS

In this Appendix we demonstrate that both the nonmagnetic and antiferromagnetic tight-binding Hamiltonian operators,
specified by the matrix kernels (35) and (B3), respectively, have a center-of-inversion symmetry and a time-reversal symmetry.
We use the language of Refs. [64,91] and we begin by reiterating (in a loose manner) some contents of those works to set notation.
Starting with a single-particle Hamiltonian H : H → H, which is a linear and self-adjoint operator in the electronic Hilbert
space H, and an orthonormal set of basis vectors |φA〉 of H, for A a general multi-index, we have H = ∑

A,B HA,B|φA〉 ⊗ 〈φB|,
where HA,B ≡ 〈φA|HφB〉 ∈ C for a given pair (A, B). H can be generalized to a single-body operator Ĥ = ∑

A,B HA,Bĉ†
AĉB in

the electronic Fock space F , where ĉ†
A, ĉA are fermionic operators that satisfy {ĉ†

A, ĉB} = δA,B and ĉ†
A|vac〉 ≡ |φA〉, and F is

constructed by antisymmetrizing sums of products of H. Ĥ agrees with H when acting on one-particle states; this will be
assumed of any generalization of an operator on H to one on F . Products of operators on H or F is by composition, which we
usually keep implicit.

Wigner’s theorem dictates that any symmetry transformation S : H → H is either linear and unitary or antilinear and anti-
unitary; we here neglect symmetry transformations that do not preserve particle number, for example, particle-hole symmetry. By
definition, Ŝ is a symmetry of Ĥ if and only if Ŝ Ĥ Ŝ −1 = Ĥ is satisfied, where Ŝ is the generalization of S to an operator
on F . An insight is gained by noting that both Ŝ ĉAŜ −1 and ĉA map H(N ) → H(N−1), and that both Ŝ ĉ†

AŜ −1 and ĉ†
A map

H(N ) → H(N+1) within F . Thus, for every symmetry transformation S there exists collections of numbers (US )A,B, (VS )A,B ∈ C
that satisfy

Ŝ ĉAŜ −1 =
∑

B

(US )A,BĉB, Ŝ ĉ†
AŜ −1 =

∑
B

ĉ†
B(VS )B,A. (C1)

It follows from Ŝ {ĉA, ĉ†
B}Ŝ −1 = Ŝ {ĉ†

A, ĉB}Ŝ −1 = δA,B that the matrices VS and US are each others inverse; that is, the matrices
US and VS constructed from the coefficients in Eq. (C1) satisfy USVS = VSUS = 1, where matrix products are taken as the usual
matrix multiplication. If S is (anti-)unitary, then

δAB = 〈φA|φB〉 = 〈SφA|SφB〉(∗) ≡ 〈vac|(Ŝ ĉ†
AŜ −1)†Ŝ ĉ†

BŜ −1|vac〉(∗)

=
⎛
⎝∑

C,D

(VS )∗C,A(VS )D,B〈vac|ĉC ĉ†
D|vac〉

⎞
⎠

(∗)

=
(∑

C

(V †
S )A,C (VS )C,B

)(∗)

. (C2)

Thus V †
S = US = V −1

S is unitary and (VS )B,A = (US )∗A,B in Eq. (C1). With this, if Ŝ is a symmetry of Ĥ , then

∑
A,B

(Ŝ ĉ†
AŜ −1)(Ŝ HA,BŜ −1)(Ŝ ĉBŜ −1) =

∑
I,J

ĉ†
I

⎛
⎝∑

A,B

(US )∗A,I H
(∗)
A,B(US )B,J

⎞
⎠ĉJ =

∑
I,J

ĉ†
I HI,J ĉ†

J

⇐⇒
∑
A,B

(U †
S )I,AH (∗)

A,B(US )B,J = HI,J , (C3)

where H (∗)
A,B = HA,B (H∗

A,B) for S being (anti-)linear.

Any antilinear and anti-unitary symmetry Ŝ of Ĥ might be called a time-reversal symmetry because of its affect on the
time-evolution operator Û (t ) = e−iĤ t/h̄; if Ŝ is an anti-unitary symmetry, then Ŝ Û (t )Ŝ −1 = Û (−t ). See Footnote 13 of
Ryu et al. [64] for a discussion on uniqueness. Nevertheless, there is typically one physically motivated operator named the
time-reversal transformation. When S is anti-unitary we have

Ŝ 2ĉA(Ŝ −1)2 ≡ Ŝ (Ŝ ĉAŜ −1)Ŝ −1 =
∑
B,D

(US )∗A,B(US )B,DĉD =
∑

D

(U ∗
S US )A,DĉD,

Ŝ 2ĉ†
A(Ŝ −1)2 ≡ Ŝ (Ŝ ĉ†

AŜ −1)Ŝ −1 =
∑
B,D

(US )A,B(US )∗B,Dĉ†
D =

∑
D

(U ∗
S US )∗A,Dĉ†

D. (C4)

It has been shown [64] that in general U ∗
S US ∈ {−1, 1}, thus either Ŝ 2ĉA(Ŝ −1)2 = ĉA and Ŝ 2ĉ†

A(Ŝ −1)2 = ĉ†
A or

Ŝ 2ĉA(Ŝ −1)2 = −ĉA and Ŝ 2ĉ†
A(Ŝ −1)2 = −ĉ†

A are satisfied. This is familiar from the usual analysis on H; i.e., in the case
U ∗

S US = −1, Kramer’s theorem results.
We now identify some symmetry operators Ŝ (and the corresponding US) for which Eq. (C3) is satisfied in the case of the

nonmagnetic (35) or the antiferromagnetic (B3) tight-binding Hamiltonian.

1. Inversion symmetry

An inversion operator I on the relevant electronic Hilbert space H is taken to be linear and unitary and satisfy the physically
motivated relation I2 = idH. Any (anti-)linear operator can be specified by its action on a basis of the space in which it acts. For
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the nonmagnetic Hamiltonian we define

I|W(0,σ ),R〉 = |W(1,σ ),−R〉 ⇐⇒ I|ψ̄(0,σ ),k〉 = |ψ̄(1,σ ),−k〉 (C5)

for σ ∈ {↑,↓} and I = ((α, σ ), k) is the relevant multi-index on the right-hand side. This transformation corresponds to inversion
about the (single) layer center within the unit cell. Equation (C5) can be generalized to a relation involving Fock-space operators
ĉ†

(α,σ ),k,

Î ĉ†
(0,σ ),kÎ

−1 = ĉ†
(1,σ ),−k ⇒ (UI )((α,σ ),k),((β,γ ),k′ ) = (τx )α,βδσ,γ δ(k + k′), (C6)

where the identification of UI follows from comparison with (C1) and using (VS )B,A = (US )∗A,B; equivalently one could consider
relations for the ĉ(α,σ ),k. To ease notation, we do not include factors to make this unitless, and take the unitarity to be
understood as ∑

β∈{1,...,Norb}
γ∈{↑,↓}

∫
BZd

dd k′(US )((α,σ ),k),((β,γ ),k′ )(U
†
S )((β,γ ),k′ ),((μ,λ),k′′ ) = δα,μδσ,γ δ(k − k′′), (C7)

where Norb = 2(4) in the nonmagnetic (antiferromagnetic) case. For the AFM Hamiltonian we define

I|W(0,σ ),R〉 = |W(1,σ ),−R〉 ⇐� Î ĉ†
(0,σ ),kÎ

−1 = ĉ†
(1,σ ),−k,

I|W(2,σ ),R〉 = ∣∣W(3,σ ),−R−a3

〉 ⇐� Î ĉ†
(2,σ ),kÎ

−1 = e−ik·a3 ĉ†
(3,σ ),−k, (C8)

which leads to

(UI )((α,σ ),k),((β,γ ),k′ ) =
((

1 0
0 ei2akz

)
⊗ τx

)
α,β

δσ,γ δ(k + k′), (C9)

where a3 = 2az. This transformation corresponds to inversion about the center of the bottom layer in the unit cell; one could
equally well define an inversion operation with respect to the center of the top layer. Physically, this corresponds to inversion
about the position of a magnetic ion, which is indeed a symmetry of the crystal lattice [66].

Then one can explicitly show that

Î Ĥ (3D)
reg Î −1 = Ĥ (3D)

reg (C10)

is satisfied for the Ĥ (3D)
reg the appropriate nonmagnetic (35) or antiferromagnetic (B3) tight-binding Hamiltonian and Î the

corresponding inversion operator (C6) or (C8) and (C9). In particular, in the nonmagnetic case the inversion operator (C6) is a
symmetry of the Hamiltonian if and only if

(τx ⊗ id2×2)H(3D)
reg (−k)(τx ⊗ id2×2) = H(3D)

reg (k) (C11)

[which plays the role of (C3) in this case], where we have equated Brillouin-zone integrands and taken k → −k in the BZ3D-
integral related to Î Ĥ (3D)

reg Î −1 on the left-hand side (LHS) of Eq. (C10). Given the matrix kernel (35), one can explicitly show
that Eq. (C11) is satisfied. Similarly, given the matrix kernel of the AFM Hamiltonian (B3), the inversion operator (C8) is a
symmetry since one can explicitly show that((

1 0
0 e−i2akz

)
⊗ τx ⊗ id2×2

)
H(3D)

reg (k)

((
1 0
0 ei2akz

)
⊗ τx ⊗ id2×2

)
= H(3D)

reg (−k) (C12)

is satisfied. To arrive at Eq. (C12) we have again equated BZ3D integrands but have here taken k → −k in the BZ3D integral
related to Ĥ (3D)

reg on the right-hand side (RHS) of Eq. (C10). Note that the AFM Hamiltonian (B3) is not symmetric with respect
to inversion about the center point between the two layers within a unit cell.

2. Time-reversal symmetry

a. One option

A time-reversal operator T is always taken to be an antilinear and anti-unitary operator on the electronic Hilbert space H. We
begin by seeking a traditional time-reversal transformation T , which takes a state with spin components (sx, sy, sz ) to one with
(−sx,−sy,−sz ). One option is50

T |W(α,↑),R〉 = −|W(α,↓),R〉, T |W(α,↓),R〉 = |W(α,↑),R〉, (C13)

50See, e.g., pp. 277–280 of Sakurai [61].
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for α ∈ {0, 1} (α ∈ {0, 1, 2, 3}) in the nonmagnetic (AFM) case. A generalization to a Fock-space relation is

T̂ ĉ†
(α,↑),kT̂

−1 = −ĉ†
(α,↓),−k, T̂ ĉ†

(α,↓),kT̂
−1 = ĉ†

(α,↑),−k

⇒ T̂ 2ĉ†
(α,σ ),k(T̂ −1)2 = −ĉ†

(α,σ ),k, (C14)

which is consistent with (C4) for U ∗
T UT = −1. In particular, comparing the second line of (C4) and the second line of (C14)

gives (U ∗
T UT )((α,σ ),k),((β,γ ),k′ ) = −δα,βδσ,γ δ(k − k′). Then from (C1) and the first line of (C14) we identify

(UT )((α,σ ),k),((β,γ ),k′ ) = δα,β (−iσy)σ,γ δ(k + k′). (C15)

With this one can show

T̂ Ĥ (3D)
reg T̂ −1 = Ĥ (3D)

reg (C16)

is satisfied for the nonmagnetic Hamiltonian (35), but not for the antiferromagnetic (AFM) Hamiltonian (B3).
In particular, given the matrix kernel of the nonmagnetic Hamiltonian (35), one can explicitly show that

(id2×2 ⊗ (iσy))H(3D)
reg (−k)∗(id2×2 ⊗ (−iσy)) = H(3D)

reg (k), (C17)

which is (C3) in this case, and again we have equated Brillouin-zone integrands in Eq. (C16).
In contrast, given the matrix kernel of the AFM Hamiltonian (B3), the time-reversal transformation (C13) is not a symmetry

due to the terms related to the exchange interaction. Indeed, upon explicit evaluation one finds

[(id4×4 ⊗ (iσy))H(3D)
reg (−k)∗(id4×4 ⊗ (−iσy))] − H(3D)

reg (k) = −2m(id4×4 ⊗ σz ). (C18)

Nevertheless, there is a different time-reversal-like transformation that is a symmetry of the AFM Hamiltonian (B3).

b. A second option

In the AFM case we are physically motivated to consider an operation that involves a spin flip, as in the preceding section,
followed by a translation by az. This can be obtained by a product of operators, Taz and T , where T is as before [Eq. (C15)] and
we take Taz : H → H to be linear and unitary, and such that

Taz|W(α,σ ),R〉 =
{

|W(α+2,σ ),R〉 if α ∈ {0, 1}
|W(α−2,σ ),R+a3〉 if α ∈ {2, 3} ⇐� T̂azĉ

†
(α,σ ),kT̂ −1

az =
{

ĉ†
(α+2,σ ),k if α ∈ {0, 1}

e−ik·a3 ĉ†
(α−2,σ ),k if α ∈ {2, 3}.

(C19)

Then,

(T̂azT̂ )ĉ†
(α,↑),k(T̂azT̂ )−1 =

{−ĉ†
(α+2,↓),−k if α ∈ {0, 1}

−eik·a3 ĉ†
(α−2,↓),−k if α ∈ {2, 3},

(T̂azT̂ )ĉ†
(α,↓),k(T̂azT̂ )−1 =

{
ĉ†

(α+2,↑),−k if α ∈ {0, 1}
eik·a3 ĉ†

(α−2,↑),−k if α ∈ {2, 3},
(C20)

and thus

(UTazT )((α,σ ),k),((β,γ ),k′) =
((

0 1
e−i2akz 0

)
⊗ id2×2

)
α,β

(−iσy)σ,γ δ(k + k′). (C21)

Then, given the matrix kernel of the AFM Hamiltonian (B3), this time-reversal-like transformation is a symmetry,

(T̂azT̂ )Ĥ (3D)
reg (T̂azT̂ )−1 = Ĥ (3D)

reg , (C22)

since one can explicitly show

((
0 ei2akz

1 0

)
⊗ id2×2 ⊗ (

iσy
))

H(3D)
reg (k)∗

((
0 1

e−i2akz 0

)
⊗ id2×2 ⊗ (−iσy)

)
= H(3D)

reg (−k). (C23)

We have again equated Brillouin-zone integrands and here taken k → −k in the BZ3D-integral related to Ĥ (3D)
reg on the RHS of

Eq. (C22). Indeed, in the AFM case it is this symmetry that leads to a Z2 topological classification of bulk insulating electronic
ground states [52,66] similar to the nonmagnetic case [92,93].

In summary, both the nonmagnetic and antiferromagnetic Hamiltonian operators, specified by their matrix kernels (35) and
(B3), respectively, have a center-of-inversion symmetry and a time-reversal symmetry.
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