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Solid-state elastic-wave phonons are a promising platform for a wide range of quantum information applica-
tions including facilitating quantum transduction from microwave to optical electromagnetic fields, long-lived
quantum memories, in addition to potentially acting as qubits themselves. An outstanding challenge and enabling
capability in harnessing phonons for quantum information processing is achieving sufficiently strong nonlinear
interactions between them. To this end, we propose a general architecture for generating strong quantum
phononic nonlinearity using piezoelectric-semiconductor heterostructures consisting of a piezoelectric acoustic
material hosting phononic modes that is in direct proximity to a two-dimensional electron gas (2DEG). Each
phonon in the piezoelectric material carries an electric field, which extends into the 2DEG. The fields induce
polarization of 2DEG electrons, which in turn interact with other piezoelectric phononic electric fields. The net
result is coupling between the electric fields associated with the various phonon modes. We derive, from first
principles, the nonlinear phononic susceptibility of a piezo-2DEG system and provide a prescription to calculate
all orders of the susceptibility in a perturbative expansion. We show that many nonlinear processes are strongly
favored at high electron mobility, motivating the use of the 2DEG to mediate the nonlinearities. We derive
the first, second, and third-order susceptibilities and calculate them for the case of a lithium niobate surface
acoustic wave interacting with a GaAs-AlGaAs heterostructure 2DEG. We show that, for this system, the strong
third-order phononic nonlinearities generated could enable single-phonon Kerr shift in an acoustic cavity that
exceeds realistic cavity linewidths, potentially leading to a new class of acoustic qubit. We further show that the
strong second-order nonlinearity could be used to produce a high-gain, traveling-wave parametric amplifier to
amplify—and ultimately detect—the outputs of the acoustic cavity qubits. Assuming favorable losses in such a
system, the combination of these capabilities, combined with the ability to efficiently transduce phonons from
microwave electromagnetic fields in transmission lines, thus hold promise for creating all-acoustic quantum
information processors.
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I. INTRODUCTION

Quantized elastic waves in solids, or phonons, have
become increasingly ubiquitous in quantum information
processing applications. For example, they can act as a
nearly “universal” quantum bus [1,2], allowing coupling to
many useful solid-state qubit modalities. Phonons naturally
couple to optomechanical cavities [3–7], which provide a
means for optical generation of nonclassical phonon states
[8–11] and optical teleportation of quantum information
[12,13]. Moreover, piezoelectric elastic wave phonons can
be used to efficiently couple to traveling wave [14–18]
and standing wave [19,20] microwave fields in important
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quantum phononic materials, couple to superconducting cir-
cuits [21–26], or potentially act as quantum memories to
store quantum information from superconducting circuits due
to their long lifetime [21,22,27–31]. If those piezoelectric
phonons are stored within optomechanical cavities, then they
provide a means for optical addressing of quantum infor-
mation in superconducting qubits [32–36]. Phonons also can
couple to solid-state color centers and their spin degrees of
freedom [2,37–46].

The ability of phonons to act as a universal quantum bus
or even as a qubit in universal linear acoustics are undoubt-
edly useful, but these abilities would be far more useful if
one could perform quantum logic operations on the phonons,
themselves. This, of course, requires single-phonon nonlin-
earities that are large compared to system losses. No material
currently possesses such strong nonlinearities and low losses;
thus, it is imperative to explore other means for generat-
ing these properties. Recently, we have demonstrated that
phononic nonlinearities can be increased by orders of mag-
nitude by mediating them with electronic nonlinearities in
a piezoelectric-semiconductor heterostructure [47]. Classical
theories of such nonlinearities [48–50] show that the non-
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FIG. 1. Diagram of a system consisting of an acoustic Kerr cavity (left) coupled to a degenerate traveling-wave parametric amplifier (right).
The coupling in the acoustic cavity between the 2DEG (red) and the piezoelectric material (blue) gives rise to a Kerr nonlinearity and in turn
a qubit. The qubit is then amplified by the 3-wave-mixing in the parametric amplifier due to the coupling between the 2DEG there (red) and
the piezoelectric material (blue), before being transduced into a microwave field at the system output. Note that the thin waveguide carries the
pump phonons.

linearity depends directly on the mobility. Thus, one must
wonder what would be possible in materials with ultrahigh
mobilities, such as two-dimensional electron gasses (2DEGs),
which can attain mobilities multiple orders of magnitude
higher than bulk semiconductors [51,52].

To this end, we study a heterostructure consisting of a
2DEG bonded to a strongly piezoelectric elastic slab waveg-
uide substrate (e.g., thin-film LiNbO3 on Si, sapphire, or SiC
or thin-film Al1-xScxN on SiC). Only the critical layers of the
2DEG remain on the surface of the piezoelectric substrate,
which can be achieved with modern heteroepitaxy and chem-
ical etching (e.g., in a GaAs/AlGaAs heteroepitaxial stack).
Similar piezoelectric-semiconductor phononic heterostructure
systems have been realized in the classical regime utiliz-
ing bulk semiconductors to achieve phonon amplification
[14,53–55], phononic switches [56], phononic circulators
[53], phononic mixing [47], and acoustoelectrically Brillouin
optomechanical processes [57]. A 2DEG-piezoelectric het-
erostructure has itself been experimentally realized in the
context of measuring a large acoustoelectric effect [58], while
more recently, a quantum-dot-piezoelectric heterostructure
has been realized for optomechanical applications [59]. In all
these cases, including the one at-hand, the acoustic field in
the piezoelectric material takes the form of a slab waveguide
mode or surface acoustic wave. As in the case of the classical
systems, an evanescent electric field associated with the elas-
tic wave phonons extends into the 2DEG, where it induces
the polarization of 2DEG electrons. The polarized electrons,
in turn, interact with other electric fields stemming from other
elastic wave phonon excitations in the system, yielding mixing
of multiple phonons mediated by the 2DEG electrons.

Here, we theoretically analyze the electron-phonon inter-
actions in the above system and perform ab initio quantum
calculations of the resulting acoustic nonlinearities and

multiphonon mixing processes that result from them. This
allows for the exact calculation of phononic mixing processes
such as second harmonic generation, parametric amplifi-
cation, Kerr nonlinearity, etc. We find, for example, that
these kinds of systems could produce high-gain and low-
loss quantum-limited degenerate parametric amplification via
three-wave mixing with only nanowatts of acoustic pump
power; we also find that the effective Kerr nonlinearity in
the system could be sufficient to produce an effective two-
level system in a wavelength-scale cavity with sufficiently low
losses, given a high-Q acoustic cavity, which has recently been
achieved [60]. Thus, our results allow one to imagine a new
class of quantum information processing tools for phonons
based on electronically mediated nonlinearity in heterostruc-
tures and calculate the exact details of these processes.

Such a system is illustrated in Fig. 1. Here, a 2DEG in a
nearly single-mode cavity—the qubit cavity—creates a qubit
at frequency (wave vector) ω0 (k0) via four-wave phononic
Kerr nonlinearity. The qubit cavity is coupled to a tunable
readout cavity that allows adiabatic transfer of the qubit state
into a purely phononic state of the readout cavity. The read-
out cavity is strongly coupled to an output phononic bus
waveguide that leads to a degenerate, traveling wave para-
metric three-wave mixing phononic amplifier. A pair of pump
waveguides inject and extract the pump field at frequency
(wave vector) wω0 (2k0) via acoustic evanescent coupling.
The amplified phononic field at ω0 can then be transduced
into a microwave field at the system output, to be measured
by room temperature electronics after a series of progres-
sively higher temperature amplifiers. Note that elastic waves
with highly restricted transverse dimensions can be efficiently
excited (low microwave insertion loss and low elastic wave
loss) by focusing transducers [61–63], phononic negative re-
fraction in phononic crystals [64,65], and phononic crystal
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gradient-index (GRIN) lenses [66]. Essentially, with the inclu-
sion of 2DEGs playing the role of spatially selective sources
of single-phonon nonlinearities, one can imagine circuit QED
for phonons that mimic the functionalities of those of super-
conducting circuit QED.

The manuscript is organized as follows. In Sec. II, we
derive the electric field per phonon experienced by the 2DEG
electrons based on the piezoelectric material’s properties, as
well as the 2DEG electric field screening. In Sec. III, we
derive the susceptibility of the 2DEG to the electric fields as-
sociated with the elastic wave phonons. In Sec. IV, we present
numerical and analytical results for the 2DEG susceptibility
in certain relevant limits. In Sec. V, we combine the suscep-
tibility values from Sec. IV with the electric-field-per-phonon
values from Sec. II to calculate the resulting phononic sus-
ceptibility of the system and multiphonon mixing dynamics.
As a check on validity, in Sec. VI we derive the classical
susceptibilities up to second order based on our quantum
susceptibility model and compare to existing classical results
in the literature.

II. DERIVING THE ELECTRIC FIELD PER PHONON

We start with the critical task of deriving the electric field
per phonon from the elasticity, dielectric coupling, and piezo-
electric coupling tensors given a shear-wave surface acoustic
field. In general, the following relationships must hold for any
piezoelectric material [67]:

Ti j =
∑
k,l
l�k

(ci jkl Skl − eki jEk ), (1)

Di =
∑

j,k
k� j

(εi jE j + ei jkS jk ), (2)

where c, ε, and e are the elasticity, dielectric, and piezoelectric
coupling tensors, respectively, while T , S, E , and D represent
the stress, strain, electric field, and electric displacement field,
respectively.

Our first goal is to determine the electric field for a given
strain. In the absence of an external electric field, the electric
displacement field D goes to 0 regardless of how the coor-
dinate system is defined, yielding the following relationship
between the electric field and the strain field based on Eq. (2):

Ei = −
∑
j,k,l
l�k

(ε−1)i je jkl Skl . (3)

The electric field per phonon can thus be calculated from the
strain amplitude per phonon.

We thus turn to solving the strain amplitude for a given
mode as a function of phonon number in that mode. In general,
for a surface acoustic wave propagating along the plane of
the surface, the displacement amplitude will vary along the
axis perpendicular to the surface. Defining the x axis as the
direction of propagation and the z axis as the axis perpendic-
ular to the surface, we can express the displacement field as a
superposition of modes as follows:

u(r) = un,q fn,q(z)(ei(qx−ωt ) + e−i(qx−ωt ) )

= 2un,q fn,q(z) cos (qx − ωt ), (4)

where the functions fn,q are orthogonal for a given wave
vector q: ∫

dz fn,q(z) fm,q(z) = Lzδm,n. (5)

The strain components corresponding to the displacement
u(r) are calculated as follows:

Si j (r) = ∂ui

∂r j
(r) + (1 − δi, j )

∂u j

∂ri
(r)

= un,q(gi j,n,q(z)ei(qx−ωt ) + g∗
i j,n,qe−i(qx−ωt ) ), (6)

where gi j,n,q is defined as follows:

gi j,n,q(z) = iq fn,q(z)(cos θn,q,iδ j,x + cos θn,q, j (1 − δi, j )δi,x )

+ f ′
n,q(z)(cos θn,q,iδ j,z + cos θn,q, j (1 − δi, j )δi,z ),

(7)

where θn,q,m is defined as the angle between the displacement
vector un,q and the m axis.

The goal is to determine the global amplitude un,q as a
function of the number of phonons N in the mode (n, q). To
that end, we relate the rate of change of the displacement u̇
to the kinetic energy T and use the fact that the total mode
energy Nh̄ω is twice the kinetic energy for a simple harmonic
oscillator:(

N + 1

2

)
h̄ω = 2T

= 2
∫

d3r
1

2
ρ

∑
i

u̇i
2(r)

= 4ρω2u2
n,q

∫
dy

∫
dx sin2 (qx − ωt )

×
∫

dz f 2
n,q(z)

= 4ρω2u2
n,qLy

Lx

2
Lz,

un,q =
√

(N + 1/2)h̄

2ρωV
, (8)

where V = LxLyLz is the mode volume in the piezoelectric
material. Note that if the displacement consists of a superpo-
sition of modes, then there will be no direct coupling between
the modes, due to two factors. First, if the modes are of
different wavelengths, then the integral of the product of the
amplitudes over the x axis (i.e., the propagation axis) will go
to zero. Second, even for two modes of the same wavelength,
the fact that the z-varying functions f are orthogonal to one
another ensures that the integral of the product of the ampli-
tudes over the z axis will go to zero.

Finally, having solved for the strain amplitude per phonon,
we calculate the electric field per phonon at the surface. In
general, the electric field amplitude corresponding to a plane
wave of frequency ω and wave vector q propagating in the
m̂ direction can be expanded in a manner analogous to the
displacement and strain amplitudes:

E(r) = En,q(z)ei(qxm−ωt ) + E∗
n,q(z)e−i(qxm−ωt ). (9)
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We solve for the z-dependent electric field amplitude En,q as a function of the phonon numbers in the respective modes using
Eq. (3) as follows:

En,q,i(z) = −
∑
j,k,l
l�k

(ε−1)i je jkl un,qgkl,n,q(z)

= −
√

(N + 1/2)h̄

2ρωV

∑
j,k,l
l�k

(ε−1)i je jkl (iq fn,q(z)(cos θn,q,kδk,x + cos θn,q,l (1 − δk,l )δk,x )

+ f ′
n,q(z)(cos θn,q,kδl,z + cos θn,q,l (1 − δk,l )δk,z )). (10)

We can assume that a surface acoustic wave exponentially decays into the bulk with a decay length similar to the wavelength,
yielding fn,q(z) ∝ e−qz. Then, given a diagonal dielectric tensor (i.e., εi j = εiiδi, j), the electric field amplitude at the surface
(which we define as z = 0) reduces to the following:

E = −C

ε

√
h̄ω

vs
Aph, (11)

where C is the effective ratio between the piezoelectric coupling coefficient and the square-root of the elasticity (i.e., in a linear
piezoelectric material, C = e/

√
κ , where e and κ are the piezoelectric coupling and elasticity coefficients, respectively), ε is

the effective dielectric constant, and Aph is a measurement of the square-root of the propagating strain field power density (i.e.,
power per unit area) in units of h̄ω. Each of these parameters is defined in the following manner:

C = fn,q(0)√
2v2

s ρ

∑
k,l
l�k

eikl (i(cos θn,q,kδk,x + cos θn,q,l (1 − δk,l )δk,x ) − (cos θn,q,kδl,z + cos θn,q,l (1 − δk,l )δk,z )), (12)

ε = εxx, (13)

Aph =
√

vs
(N + 1/2)

V
. (14)

For the electron-phonon interaction, we use the dielectric ten-
sor for the 2DEG as ε, instead of the dielectric tensor for
the piezoelectric material. In Sec. V, we will use Aph as a
measurement of the overall field amplitude for each mode.

III. GENERAL DERIVATION OF HIGHER-ORDER
SUSCEPTIBILITIES

Having determined the electric field amplitude per phonon,
we now derive the general N th-order susceptibility of the
2DEG electrons as a function of the input electric field ampli-
tudes. By definition, the N th-order susceptibility corresponds
to the average electron dipole moment (normalized to ma-
terial volume and amplitude of each input field) induced
by N field modes simultaneously interacting with the elec-
trons. We specifically consider the interaction at a quantum
level: i.e., how N phonons simultaneously polarize a single
electron via the electric field amplitudes associated with the
respective phonons. First, we calculate the amplitude for a
single electron-phonon interaction, which is proportional to
the strength of an electron’s dipole moment if it successfully
interacts with N phonons. Then, we derive the probability (as
a function of the field amplitudes) that the electron success-
fully interacts with N phonons, which yields the N th-order
susceptibility.

A. Deriving the electron-phonon interaction amplitude

Here, we derive the electron-phonon interaction Hamil-
tonian from first principles, ultimately yielding the effective
electron dipole moment as a function of the acoustic field
wavelength. As previously discussed, the phonon acts on the
electron through the piezoelectric field associated with the
phonon. Generically defining the effective electron dipole mo-
ment along the axis of field polarization as deff and the electric
field amplitude as E , we apply the standard dipole interaction
Hamiltonian:

Hint = −deff E . (15)

To solve for the dipole matrix elements, we thus need to cal-
culate the Hamiltonian matrix elements. The reason for using
this indirect method is that given the longitudinal nature of
the electric field associated with the acoustic field, the dipole
moment cannot be separately promoted to operator form in the
basis of 2DEG electronic states, since the electric field also
spatially varies along the axis of propagation. We therefore
start with the fundamental piezo-2DEG interaction Hamilto-
nian, given an electric field polarized in the x direction:

Hint = −
∫

d3rExPx, (16)

where P is the 2DEG polarization. For an acoustic field (and
thus an associated piezoelectric field) propagating in the x
direction with a wave vector q, the electric field Ex takes the
following form in terms of the acoustic field latter operators
b(†):

Ex = Ezpf beiqx + E∗
zpf b

†e−iqx, (17)
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where Ezpf is the zero-point piezoelectric field amplitude.
Note that the spatial dependence of the field is entirely isolated
to the phases e±iqx.

Next, we express the polarization Px in the basis of 2DEG
electronic states. Here, we assume that the spacing between
consecutive impurities is significantly smaller than the y di-
rection span of the 2DEG, yet much larger than the z-direction
span (which represents the axis perpendicular to the piezo-
2DEG interface). Consequently, the Fermi level cuts through
several subbands in the ky direction, while cutting through
only the lowest subband in the kz direction (with the next kz

subband being located a vast distance from the lowest subband
in phase space). We can therefore ignore kz and index all
states as (kx, ky). The polarization Px can thus be expanded in
terms of the carrier transitions between any initially occupied
ground state (ki, ky) and an initially unoccupied excited state
(ki + 	k, ky) [68]:

Px = |φ(z)|2
Ly

∑
ki,	k,ky

qeh̄

2mωki+	k,ki

× (ξki+	k,ki (x)c†
ki+	k,ky

cki,ky + ξ ∗
ki+	k,ki

(x)c†
ki,ky

cki+	k,ky ),

(18)

where c(†)
kx,ky

is the fermionic annihilation (creation) operator
for the electronic state at (kx, ky), ωki+	k,ki = ωki+	k − ωki is
the change in carrier energy (this is independent of ky), φ(z) is
the wave function along the z axis, Ly is the span of the 2DEG
along the y axis, and ξ is defined as follows:

ξki+	k,ki (x) = 1

L
(e−i(ki+	k)x∂xeikix − (∂xe−i(ki+	k)x )eikix )

= i
2ki + 	k

L
e−i(	k)x, (19)

where L is the waveguide length. It is worth noting that
ωki+	k,ki can be solved as follows:

ωki+	k,ki = ωki+	k − ωki

= h̄

2m

(
(ki + 	k)2 − k2

i

)
= h̄	k(2ki + 	k)

2m
. (20)

Substituting the above expressions into the Hamiltonian in
Eq. (16), we express the Hamiltonian in electron-phonon in-
teraction form as follows:

Hint =
∫

dx(Ezpf beiqx + E∗
zpf b

†e−iqx )
∑

ki,	k,ky

i
qe

L	k
(e−i(	k)xc†

ki+	k,ky
cki,ky − ei(	k)xc†

ki,ky
cki+	k,ky )

∫
dz|φ(z)|2

∫
dy

Ly

= i
∑

ki,	k,ky

qe

L	k

(
Ezpf bc†

ki+	k,ky
cki,ky

∫
dxei(q−	k)x + E∗

zpf b
†c†

ki,ky
cki+	k,ky

∫
dxe−i(q+	k)x

)

= qeEzpf

q
(c†

ki+q,ki
bδq,	k + b†cki+q,kiδq,−	k ). (21)

As desired, the spatially varying phases in the field and the
polarization combine to enforce momentum conservation. The
effective dipole matrix element thus becomes a function of the
phonon wave-vector amplitude q:

deff,kx+	k,kx (q) = −qe

q
δq,	k, (22)

for any initial wave vector kx. This implies that the matrix
element amplitude is inversely proportional to the phonon
momentum, and hence directly proportional to the acoustic
wavelength.

It is worth analyzing the reason why the dipole moment
is proportional to the acoustic wavelength but independent
of the material length. Intuitively, this results from the alter-
nating nature of the piezoelectric field (as shown in Fig. 2),
which limits the separation of charges to the order of a half-
wavelength, regardless of the material dimensions. As we
increase the number of phonons (corresponding to an increase
in field intensity), the dipole moment per polarized electron
will stay constant, but the number of polarized electrons will
increase, as will be shown in the next subsection.

B. Deriving the higher-order interaction probabilities

We now seek to determine the higher-order electron-
phonon interaction probabilities, which yields the polarization
field as a function of the acoustic (and thus piezoelectric)
field strength, by deriving the generic N th-order susceptibility
in terms of the general electronic decay rate γ = qe/(mμ),

FIG. 2. Conceptual diagram of how the alternating electric field
E associated with the acoustic field induces dipole formation in the
2DEG. Note that the dipole size is limited to the order of a half-
wavelength.
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and from this deriving the conversion efficiency for specific
nonlinear processes. As in the case of an atom interacting with
an optical field [69], the energy conservation requirement for
the intermediate states is relaxed due to the momentary nature
of these intermediate states (per the energy-time uncertainty
principle). However, unlike the atom-optical interaction, the
much slower propagation speed of the acoustic signal ensures
that each phonon features a significant momentum relative to
its energy. The need for momentum conservation thus col-
lapses the range of possible intermediate states, as the results
in this section will show.

We start by considering the self-Hamiltonian of each ex-
cited 2DEG state. We incorporate the decay rate γ as an
anti-Hermitian effective Hamiltonian term [70], yielding the
following unperturbed Hamiltonian for the 2DEG states:

H0 =
∑
l>g

h̄

(
ωlg − i

γl

2

)
|l〉 〈l| , (23)

where ωlg = ωl − ωg represents the energy of the excited state
|l〉 (with the energy of the ground state |g〉 set as the baseline),
and γl = γ for all excited states |l〉 in our system (though
we express the decay rate independently for each state for
the sake of generality). Turning to the piezoelectric field, we
specifically consider a set of waves of varying frequencies
polarized along the x axis and traveling in the +x̂ direction.
The fields interact with the electron dipole moment d via the
following time-dependent interaction Hamiltonian:

Hint (t ) = −dx

∑
p(ωp>0)

(E (ωp)ei(qpx−ωpt ) + E∗(ωp)e−i(qpx−ωpt ) )

= −
∑

p

deff (qp)E (ωp)e−iωpt , (24)

where qp = ωp/vs, and the spatial variation of the field is
incorporated into the effective dipole moment deff [which is
defined as in Eq. (22)]. Note that E (−ωp) = E∗(ωp), ensuring
the realness of the composite field at all points. We can also
express a generic field of frequency ωb > 0 in terms of the cor-
responding ladder operators a(†)

b as E (ωb) = Ezpf (ωb)ab and
E (−ωb) = E∗(ωb) = E∗

zpf (ωb)a†
b. This will play an important

role later in this section when we convert the semiclassi-
cal fields to quantum form for the purpose of deriving the

FIG. 3. Depiction of the ladder of intermediate states for the
N-step transition described by χ (N )(ωp1 , ..., ωpN ), with the horizontal
(vertical) axis representing the wave vector q (frequency ω). Note
that the set of generic modes (r1, ..., rN ) can be composed of any per-
mutation of the set of input modes (p1, ..., pN ), with the requirement
that ωr1 + ... + ωrN = ωp1 + ... + ωpN . Also note that each interme-
diate state is broadened in energy but fixed in momentum.

frequency conversion rate from the Heisenberg equation of
motion.

The interaction Hamiltonian enables us to derive the ex-
pectation value of the effective dipole moment, 〈deff〉, as a
series expansion in the field amplitudes E . Reducing the
expectation value of the interaction Hamiltonian using the
rotating-wave approximation (such that we only consider the
time-independent 〈Hint〉 terms), we express this expectation
value as follows:

〈deff (qp)〉 = ε0V2DEG

∑
n

∑
p1,...,pN

ωp1 +...+ωpN =−ωp

χ (N )(ωp1 , ..., ωpN )

× E (ωp1 )...E (ωpN )eiωpt , (25)

where the N th-order susceptibility χ (n) is defined as a function
proportional to the N th-order expansion of 〈deff〉, in the case
where a unique set of frequencies ωp1 , ..., ωpn add up to −ωp:

χ (N )(ωp1 , ..., ωpn ) =
∫ ∞
−∞

〈
d (N )

eff (−qp1 − ... − qpN )
〉
t e

i(ωp1 +...+ωpN )t

ε0V2DEGE (ωp1 )...E (ωpN )

=
∫ ∞
−∞ ei(ωp1 +...+ωpN )t ∑N

j=0 〈� ( j)(t )|deff (−qp1 − ... − qpN )|� (N− j)(t )〉
ε0V2DEGE (ωp1 )...E (ωpN )

, (26)

where |ψ (n)(t )〉 is the nth-order expansion of the composite
2DEG wave function |�(t )〉. Note that the variation of 〈deff〉
with the field amplitudes in Eq. (25) is entirely due to the
variation of the density of polarized electrons rather than the
dipole strength corresponding to a given polarized electron

(which is fixed by the acoustic wavelength, as discussed in
the previous subsection). Intuitively, χ (N )(ωp1 , ..., ωpn ) corre-
sponds to the probability that an electron becomes polarized
upon interacting with N fields of wave vectors qp1 , ..., qpN ,
respectively (normalized to the amplitude of each field and to
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the material volume), multiplied by the strength of the dipole
moment itself.

Appendix A shows how χ (N ) is calculated for a set of N
propagating acoustic waves with wave vectors qp1 , ..., qpN . As
for the 2DEG states, the well-defined momentum for each
state ensures strict momentum conservation for each transi-
tion. However, due to the spectral broadening encapsulated
in the decay rate γ , the energy conservation requirement
is somewhat relaxed. This dynamic is depicted in Fig. 3.
Due to the availability of permutations within the set of
modes (p1, ..., pN ), we have left the mode indices in the
generic form (r1, ..., rN ), where ωr1 + ... + ωrN = ωp1 + ... +
ωpN , and hence qr1 + ... + qrN = qp1 + ... + qpN . The transi-
tion to (from) |lm〉 is mediated by the mode rm for m � N − j
(m > N − j). The transition from |lN− j〉 to |lN− j+1〉 is unique

in that it is not mediated by any individual mode in the
set (p1, ..., pN ), but rather by the composite mode −p1 −
... − pN . Quantitatively, this mode will become relevant when
considering the interaction Hamiltonian term associated with
χ (N )(ωp1 , ..., ωpN ).

The most critical takeaway from Fig. 3 is that while the
intermediate 2DEG states are broadened in frequency ω (cor-
responding to a wide range of possible real states), each
intermediate state is fixed in wave vector q, since the effective
dipole moment deff conserves momentum. As a result, for a
given initial state, each intermediate state reduces to a single
real state (rather than a superposition of multiple states). The
summation over intermediate states in Eq. (A8) thus reduces
to a sum over initial states [which we index with the 2D wave
vector (kx, ky )]:

χ (N )(ωp1 , ..., ωpN ) = 1

h̄Nε0V2DEG

qN+1
e

|qp1 ...qpn (qp1 + ... + qpn )|
N∑

j=0

∑
kx,ky

P
∑

p1,...,pN

× 1(
ωkx−qpN ,kx + ωpN + i γ

2

)
...

(
ωkx−qpN −...−qpN− j+1 ,kx + (ωpN− j+1 + ... + ωpN ) + i γ

2

)

× 1(
ωkx+qp1 +...+qpN− j ,kx − (ωp1 + ... + ωpN−n ) − i γ

2

)
...

(
ωkx+qp1 ,kx − ωp1 − i γ

2

) , (27)

where we have used the fact that deff,k f ,ki (q) =
(qe/|q|)δq,k f −ki , and the symbol P preceding the summation
over p1, ..., pN denotes a permutation of the mode indices.
The expression thus includes N!(N + 1) = (N + 1)! terms,
due to the N possible values of j and the N! permutations of
the field mode indices.

IV. SUSCEPTIBILITY RESULTS

Here, we specifically consider the susceptibility results
up to third order. In calculating the nonlinearity produced
by the third-order Kerr susceptibility, it is also important to
compare its value to the spectral broadening. For a high-Q
acoustic cavity (which has recently been achieved [60]), the
spectral broadening is dominated by the phonon absorption

by the 2DEG electrons, for which we need to determine
the imaginary part of χ (1). In performing these calcula-
tions, we make the assumption that the average spacing
between consecutive charge carriers is much smaller than
the acoustic wavelength, corresponding to the limit q 	 kF

(where q and kF are the acoustic and Fermi wave vectors,
respectively).

The general procedure for calculating the susceptibili-
ties from phase-space integrals is derived in Appendix B.
We start by considering the third-order Kerr susceptibility.
To this end, the degenerate four-wave-mixing susceptibil-
ity χ (3)(ω,ω,−ω1) (corresponding to the processes where 2
phonons of frequency ω each are absorbed, and 2 phonons of
frequency ω1 and ω2 = 2ω − ω1 are emitted) reduces to the
following form:

χ (3)(ω,ω,−ω1) = q4
e

π2h̄3ε0t2DEG

v4
s

ω2ω1(2ω − ω1)

×
(∫ kF

−q/2
dkx2

√
k2

F − k2
x f (3)

kx
(ω,ω,−ω1) −

∫ kF −q

−q/2
dkx2

√
k2

F − (q + kx )2 f (3)
kx

(ω,ω,−ω1)

)
, (28)

where f (3)
kx

(ω,ω,−ω1) is approximately the following:

f (3)
kx

(ω,ω,−ω1) ≈ 1(
ωkx+q2,kx − ω2 − i γ

2

)(
ωkx+2q,kx − 2ω − i γ

2

)(
ωkx+q,kx − ω − i γ

2

)
+ 1(

ωkx+q1,kx − ω1 + i γ

2

)(
ωkx+2q,kx − 2ω − i γ

2

)(
ωkx+q,kx − ω − i γ

2

)
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FIG. 4. Phase-space depiction of processes contributing to χ (3)(ω,ω,−ω1), with (a), (b), (c), and (d) corresponding, respectively, to the
first, second, third, and fourth terms of Eq. (29). The shaded (unshaded) regions represent initially occupied (unoccupied) electronic states.
Note that the crescent region represents the range of allowed initial states, while electrons in the rest of the Fermi circle are prohibited from
interacting with the given phonons.

+ 1(
ωkx+q,kx + ω + i γ

2

)(
ωkx+2q,kx + 2ω + i γ

2 )
(
ωkx+q1,kx + ω1 − i γ

2 )

+ 1(
ωkx+q,kx + ω + i γ

2

)(
ωkx+2q,kx + 2ω + i γ

2 )
(
ωkx+q2,kx + ω2 + i γ

2

) , (29)

where we have defined q = ω/vs and q1 = ω1/vs. The first two terms are resonant, corresponding to the absorption of two
phonons of frequency ω each, followed by the emission of a phonon of frequency ω1 and another of frequency ω2 = 2ω − ω1.
However, the latter two terms are counter-resonant, corresponding to the emission of ω1 and ω2 phonons followed by absorption
of two ω phonons. The process described by each term is depicted in Fig. 4. It is worth noting that if we ignored the initial
occupation of the states, then there would be 12 separate processes contributing to χ (3)(ω,ω,−ω1). However, assuming that
q << kF , and given the fact that all states within the Fermi circle |k| < kF are occupied, we can make the approximation that
the only valid processes are either two absorptions followed by two emissions (resonant) or two emissions followed by two
absorptions (counter-resonant). The third-order Kerr susceptibility equals the degenerate four-wave-mixing susceptibility in the
limit ω1 → ω.

Next, we examine the second-order susceptibility, focusing first on the case of sum-frequency generation encapsulated by
χ (2)(ω1, ω2), where two phonons of frequency ω1 and ω2 are absorbed and a phonon of frequency 2ω = ω1 + ω2 is emitted:

χ (2)(ω1, ω2) = q3
e

2π2h̄2ε0t2DEG

v3
s

ω1ω2(ω1 + ω2)

×
( ∫ kF

−q/2
dkx2

√
k2

F − k2
x f (2)

kx
(ω1, ω2) −

∫ kF −q

−q/2
dkx2

√
k2

F − (q + kx )2 f (2)
kx

(ω1, ω2)

)
, (30)
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FIG. 5. Phase-space depiction of processes contributing to χ (2)(ω1, ω2), with (a), (b), (c), and (d) corresponding, respectively, to the first,
second, third, and fourth terms of Eq. (31). The shading scheme is identical to that in Fig. 4.

where f (2)
kx

(ω1, ω2) is approximately the following:

f (2)
kx

(ω1, ω2) ≈
(

1(
ωkx+2q,kx − 2ω − i γ

2

)(
ωkx+q1,kx − ω1 − i γ

2

) + 1(
ωkx+2q,kx − 2ω − i γ

2

)(
ωkx+q2,kx − ω2 − i γ

2

)
+ 1(

ωkx+2q,kx + 2ω + i γ

2

)(
ωkx+q2,kx + ω2 + i γ

2

) + 1(
ωkx+2q,kx + 2ω + i γ

2

)(
ωkx+q1,kx + ω1 + i γ

2

))
, (31)

where q1 = ω1/vs and q2 = ω2/vs. The first two terms are resonant and the latter two terms are counter-resonant, with the
processes depicted in Fig. 5. As with the case of χ (3), we apply the high-carrier-density limit q 	 kF , causing the requirement
for unoccupied intermediate states to approximately reduce the six processes that would feed into a generic second-order process
to 4 processes. The susceptibility governing the second-harmonic generation process equals the above susceptibility for the
general sum-frequency generation in the limit ω1 = ω2.

In the context of second-order susceptibility, it is also worth examining the case of parametric amplification encapsulatd by
χ (2)(2ω,−ω1), where a pump phonon of frequency 2ω is absorbed, causing one phonon each of the signal frequency ω1 and the
idler frequency ω2 to be emitted. Since the frequencies involved are the same as the sum-frequency generation, the coefficients
for χ (2)(2ω,−ω1) are the same as those for χ (2)(ω1, ω2) in Eq. (30). However, f (2)

kx
(ω1, ω2) in the integral is replaced by
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FIG. 6. Phase-space depiction of processes contributing to χ (1)(ω), with (a) and (b) corresponding, respectively, to the first and second
terms of Eq. (34). The shading scheme is identical to that in Fig. 4.

f (2)
kx

(2ω,−ω1), defined as

f (2)
kx

(2ω,−ω1) ≈
(

1(
ωkx+2q,kx − 2ω − i γ

2

)(
ωkx+q1,kx − ω1 + i γ

2

) + 1(
ωkx+2q,kx − 2ω − i γ

2

)(
ωkx+q2,kx − ω2 − i γ

2

)
+ 1(

ωkx+2q,kx + 2ω + i γ

2

)(
ωkx+q2,kx + ω2 + i γ

2

) + 1(
ωkx+2q,kx + 2ω + i γ

2

)(
ωkx+q1,kx + ω1 − i γ

2

))
. (32)

Note the sign flip [relative to Eq. (31)] in the second imaginary
term of the first and fourth processes. This has important
implications for the relationship between the parametric-
amplification susceptibility and the mobility in the case of
degenerate parametric amplification (ω1 = ω2), as we will
show in Sec. IV D.

Finally, we calculate the linear susceptibility χ (1)(ω) cor-
responding to the absorption and emission of a phonon of
frequency ω:

χ (1)(ω) = q2
e

2π2h̄ε0t2DEG

v2
s

ω2

(∫ kF

−q/2
dkx2

√
k2

F − k2
x f (1)

kx
(ω)

−
∫ kF −q

−q/2
dkx2

√
k2

F − (q + kx )2 f (1)
kx

(ω)

)
, (33)

where f (1)
kx

(ω) is defined as follows:

f (1)
kx

(ω) = 1

ωkx+q,kx − ω − i γ

2

+ 1

ωkx+q,kx + ω + i γ

2

, (34)

where q = ω/vs. The first term is resonant, while the second is
counter-resonant, as shown in Fig. 6. As previously discussed,
these susceptibility expressions govern the corresponding pro-
cesses in the high-carrier-density limit. The susceptibility
values can be numerically evaluated from these expressions.
However, it is useful to derive the analytical forms for the
purpose of optimization. In the coming sections, we will do
so in two limits: low-mobility and high-mobility.

A. High-mobility regime

Here, we seek to derive a general procedure for analyt-
ically determining the susceptibilities in the high-mobility
(low-decay) regime. We start by considering an electron in its
ground state inside the Fermi circle. The probability that this
electron interacts with an phonon of wave vector q = ω/vs

propagating in the x̂ direction is governed by the detuning
	ω between the phonon’s frequency and the transition fre-
quency corresponding to the electron jumping from kx →
kx + q. Consequently, 	ω is a function of the electron’s ini-
tial x-direction wave vector kx but is invariant in the initial
y-direction wave vector ky:

	ω = ωkx+q,kx − ω0 = h̄q(2kx + q)

2m
− vsq = h̄q

m
(kx − kx,0),

(35)

where ω0 = vsq denotes the phonon’s angular frequency, and
kx,0 = mvs/h̄ − q/2 represents the initial wave vector corre-
sponding to a fully resonant electron-phonon interaction.

We therefore focus on the near-resonance region, i.e., the
band of electrons around the initial wave vector kx,0 ranging in
detuning from 	ω ≈ −γ /2 to 	ω ≈ γ /2. In the high-carrier-
density/high-mobility regime, the kx span of this band is much
less than the diameter 2kF of the Fermi circle. We solve for the
kx span of the near-resonance band from Eq. (35) as follows:

kx,span = m

h̄q
(	ω)span ≈ 2mγ

h̄q
. (36)

Conveniently, the kx span of the near-resonance band is pro-
portional to the electronic decay rate γ (and hence inversely
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FIG. 7. Phase-space diagram of near-resonance band spanning the electron-phonon detuning range 	ω ≈ −γ /2 to 	ω ≈ γ /2, zoomed
out to show the position of the orange/light-colored band relative to the overall Fermi circle (a), and zoomed in to show the dimensions of
each half of the band (b).

proportional to the mobility μ). Intuitively, this is due to the
fact that the electron-phonon detuning varies linearly with
kx. Applying the high-mobility requirement kx,span 	 2kF , we
derive the following condition for γ :

γ 	 h̄qkF

m
, (37)

which corresponds to the following condition for the mobility
μ, upon applying the definition μ = qe/(mγ ):

μ � qe

h̄qkF
. (38)

Since the susceptibility corresponding to each initial electron
is invariant in ky, the total susceptibility corresponding to all
electrons with a particular initial kx is proportional to the ky

span of valid initial electronic states with the given kx value.
In the limit of high carrier density (i.e., kx,0 	 kF ), the ky span
given in Eq. (B2) for kx values near kx,0 can be approximately
linearized in kx as follows:

ky,span = 2
(√

k2
F − k2

x −
√

k2
F − (kx + q)2

)

≈ 2kF

(
− k2

x

2k2
F

+ (kx + q)2

2k2
F

)

= q(2kx + q)

kF
. (39)

We can express any given kx near kx,0 as kx = kx,0 + 	kx,
where 	kx is the deviation of the initial wave vector from
that corresponding to a resonant electron-phonon interaction.
Then, per Eq. (35), the detuning 	ω varies linearly with the
wave-vector deviation 	kx as 	ω = h̄q(	kx )/m. Substituting
this relationship as well as the definition of kx,0 into the above
expression, we find that to first-order, the ky span varies lin-

early with the detuning 	ω:

ky,span ≈ q(2kx,0 + q)

kF
+ 2q	kx

kF

= 2mω0

h̄kF
+ 2m	ω

h̄kF
, (40)

where we have also substituted the phonon frequency
ω0 = vsq. Using the fact that dkx = md (	ω)/(h̄q) =
mvsd (	ω)/(h̄ω0), a generic susceptibility term f (	ω) can be
integrated over phase space in the following manner:∫

dkx

∫
dky f (	ω)

≈ 2m

h̄kF

∫ ∞

−∞

mvs

h̄ω0
d (	ω)(ω0 + 	ω) f (	ω)

= 2m2vs

h̄2kF ω0

∫ ∞

−∞
d (	ω)(ω0 + 	ω) f (	ω)

= 2m2vs

h̄2kF ω0

{
ω0

∫ ∞
−∞ d (	ω) f (	ω), f (	ω) even,∫ ∞

−∞ d (	ω)(	ω) f (	ω), f (	ω) odd
.

(41)

Note that we only need to consider the resonant terms
for f (	ω), since the counter-resonant terms are negligible
relative to the resonant terms in the high-mobility limit. Intu-
itively, these results are explained by Fig. 7. Two observations
are worth making here. First, we note that the ky span of valid
initial states in the near-resonance band varies inversely with
the Fermi wave vector kF [as shown in Fig. 7(b)], ensuring that
the overall susceptibility also varies inversely with kF as well.
It might seem counterintuitive that a larger Fermi circle would
yield a smaller span of valid initial states. This can be visually
explained based on Fig. 7(a) by the fact that for the given
value of kx, as the Fermi wave vector is increased, the total
range of ky included inside the Fermi circle also increases,
but the part of that range inside the forbidden (purple/circle-
minus-crescent) zone grows even faster due to a reduced circle
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curvature. Therefore, the range of ky included inside the valid
(green/crescent) region actually decreases as the Fermi wave
vector increases. Since kF varies as

√
n (where n is the carrier

density), this implies that any susceptibility term varies as
n−1/2 (with the exceptions of the real parts of χ (1) and χ (2),
discussed later in this section).

The second observation regards the scaling of the near-
resonance band area with the decay rate γ . For convenience,
we define a new decay parameter γ ′ = γ /2. For each electron
in the near-resonance band, the average N th-order susceptibil-
ity is proportional to 1/γ ′N . If a single-electron susceptibility
term is even in the detuning 	ω, then the total susceptibility
corresponding to that term is simply determined by multiply-
ing the average single-electron susceptibility by the area of the
near-resonance band [which is proportional to γ ′, as shown
in Fig. 7(b)]. Therefore, the overall susceptibility for the pro-
cess represented by an even term is proportional to 1/γ ′N−1.
However, if a single-electron susceptibility term is odd in 	ω,
then the contributions from the electrons featuring positive
and negative electron-phonon detuning values largely cancel
each other out. In this case, the net contribution comes from
the difference in the number of electrons between the negative-
detuning and positive-detuning cases. As Fig. 7(b) shows, this
difference is proportional to γ ′2 rather than γ ′ when integrated
over the band. As a result, the overall susceptibility for the
process represented by an odd term is proportional to 1/γ ′N−2.

It is worth addressing the special cases of Re[χ (1)] and
Re[χ (2)]. In the case of Re[χ (1)], the integral does not
converge. Therefore, the contributing electron-phonon in-
teractions are concentrated far off-resonance rather than
near-resonance. This is evidenced by the fact that the resonant
and counter-resonant terms for Re[χ (1)] are always approx-
imately equal even in the high-mobility limit. Consequently,
Re[χ (1)] is invariant in the mobility. It is also important to note
that since the contributions to Re[χ (1)] are far off-resonance,
the initial electronic states are primarily concentrated around
kx = kF . Since 	ω ∝ kx for kx � q, and Re[χ (1)] ∝ 1/(	ω)
for far-off-resonance electrons, the susceptibility for each
electron varies inversely with kF . However, the size of the
region of valid initial states varies directly with kF (i.e., the
radius of the Fermi circle). As a result, these two variations
cancel out, and Re[χ (1)] is invariant in the Fermi wave vector
and thus independent of carrier density.

The case of Re[χ (2)] is complicated by the fact that
the near-resonance contributions cancel out when integrated.
However, it also converges to zero for high detuning values,
unlike Re[χ (1)]. Consequently, in the high-mobility limit, the
electronic contributions to Re[χ (2)] are neither dominantly
near-resonance or far-off-resonance, but rather in between the
two limits. We will thus tackle the problem of Re[χ (2)] in the
high-mobility limit solely through numerical means.

B. Low-mobility regime

Here, we focus on deriving a procedure for analytically de-
termining the susceptibilities in the low-mobility (high-decay)
limit. Conceptually, this corresponds to the regime in which
the kx span of the near-resonance band is much greater than
the diameter 2kF of the Fermi circle, such that all electrons
are included in the band and the electron-phonon detuning for

any electron is negligible compared to the electronic decay
rate γ . Following a derivation analogous to the high-mobility
regime, the following conditions on γ and the mobility μ hold
for the low-mobility regime:

γ � h̄qkF

m
, (42)

μ 	 qe

h̄qkF
. (43)

In this regime, the far-off-resonance electrons will dominate
the susceptibility terms.

We start by considering how the real-valued susceptibility
terms are reduced. In general, the real part of f (N ) can be
expressed as a power series in the electron-phonon detuning
	ω as follows:

Re[ f (N )(	ω)] =
1
2 (N− 1

2 +(−1)N 1
2 )∑

m=0

cN,mγ ′2m(	ω)N−2m∏N
n=1 a2

n(	ω)2 + γ ′2 , (44)

where each an is a positive integer and each cN,m represents a
coefficient that derives from expanding the numerator. In the
low-mobility limit, we can make the approximation |	ω| 	
γ ′. As such, we can reduce each summation to the leading
term in γ ′. This yields a real part of f (N ) that varies linearly
with the detuning for odd N , while being invariant in the
detuning for even N (assuming that this result does not cancel
out):

Re[ f (N )(	ω)] ≈
{ cN,N/2

γ ′N , N even,
cN,(N−1)/2	ω

γ ′N+1 , N odd.
(45)

Consequently, in the low-mobility limit, the real part of χ (N )

varies with the mobility μ as μN (μN+1) for even (odd) N ,
assuming that the leading term does not cancel out. To deter-
mine the overall χ (N ) values, we devise a scheme to integrate
the single-electron values over the entire phase space of valid
initial states rather than just the near-resonance region. To this
end, we approximate the ky span by applying the approxima-
tion q 	 kF but not kx 	 kF :

ky,span(kx ) = 2
(√

k2
F − k2

x −
√

k2
F − (kx + q)2

)
≈ 2

√
k2

F − k2
x − 2

√
k2

F − k2
x

(
1 − qkx

k2
F − k2

x

)

= 2qkx√
k2

F − k2
x

. (46)

The available phase-space area, which we label Aphase, is
solved by simply integrating the ky span over kx as follows:

Aphase =
∫ kF

0
dkxky,span(kx ) ≈

∫ kF

0
dkx

2qkx√
k2

F − k2
x

= 2ω0

vs

∫ kF

0
dkx

kx√
k2

F − k2
x

= 2ω0kF

vs

∫ π/2

0
dθ cos θ

= 2ω0kF

vs
. (47)
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Since the single-electron processes feeding into Re[χ (N )] for
even N are invariant in the detuning, the overall susceptibil-
ity can simply be calculated by multiplying Re[ f (N )] by the
phase-space area Aphase. To determine the overall Re[χ (N )]
for odd values of N , however, we need to integrate the de-
tuning 	ω over this phase-space area. Since the electrons
in the overall range of valid initial states are concentrated
near kx = kF , we can make the approximation kx � q and
thus 	ω ≈ ωkx+q,kx ≈ h̄qkx/m. We thus integrate 	ω over the
valid initial phase-space as follows:

∫ kF

−q/2
dkxky,span(kx )	ω ≈

∫ kF

0
dkx

2qkx√
k2

F − k2
x

h̄qkx

m

= 2h̄ω2
0

mv2
s

∫ kF

0
dkx

k2
x√

k2
F − k2

x

= 2h̄ω2
0k2

F

mv2
s

∫ π/2

0
dθ cos2 θ

= π h̄ω2
0k2

F

2mv2
s

. (48)

Note that the result as k2
F . This is due to two factors. The

first is that the available phase space area (corresponding to
the number of available electrons) scales as kF . The second is
that the probability that an electron interacts with the phonon
fields also scales as kF in the given regime, since 〈	ω〉 ∝ kF .
As such, Re[χ (N )] scales linearly with the carrier density n
for odd N . However, for even N , Re[χ (N )] scales as n1/2,
since the electron-phonon interaction probability in this case
is invariant in the detuning 	ω.

It is also worth examining the integral of (	ω)n more
generally over the valid initial phase space. This is especially
useful for the cases where the leading term cancels out, leav-
ing behind secondary terms that vary as (	ω)n where n > 1:

∫ kF

−q/2
dkxky,span(kx )(	ω)n ≈

∫ kF

0
dkx

2qkx√
k2

F − k2
x

(
h̄qkx

m

)n

= 2h̄nωn+1
0

mnvn+1
s

∫ kF

0
dkx

kn+1
x√

k2
F − k2

x

= 2h̄nωn+1
0 kn+1

F

mnvn+1
s

∫ π/2

0
dθ cosn+1 θ

=
√

π h̄nωn+1
0 kn+1

F

mnvn+1
s

�
(

n+2
2

)
�

(
n+3

2

) . (49)

This result varies as kn+1
F , since the number of available elec-

trons scales linearly with kF , while the interaction probability
for each electron scales as kn

F .
Finally, we comment on the imaginary parts of χ (N ). Sep-

arating these into individual terms corresponding to specific
processes, the imaginary parts of the individual susceptibility

terms f (N ) take the following form:

Im[ f (N )(	ω)] =
1
2 (N+ 1

2 −(−1)N 1
2 )∑

m=1

cN,mγ ′2m−1(	ω)N−2m+1∏N
n=1 a2

n(	ω)2 + γ ′2 .

(50)

Using the same argument as with the real parts, the leading
term reduces to the following in the low-mobility limit:

Im[ f (N )(	ω)] ≈
{

cN,N/2	ω

γ ′N+1 , N even,
cN,(N+1)/2

γ ′N , N odd.
(51)

The leading term for Im[χ (N )] therefore scales with mobility
as μN+1 (μN ) for even (odd) N . However, it is critical to note
that in the low-mobility regime, the resonant and counter-
resonant terms largely cancel out, corresponding to the fact
that stimulated emission largely balances out absorption. As a
result, the overall Im[χ (N )] for a generic N must be calculated
by making a higher-order expansion of the terms to account
for the slight difference between the absorption and emission
probabilities.

C. First-order susceptibility

We now apply our findings for the low-mobility and high-
mobility limits to derive the first-order susceptibility in these
limits. In parallel, we numerically determine the susceptibil-
ity as a function of mobility. We start with the real part of
χ (1), which governs the dielectric constant for the 2DEG. As
discussed in the previous sections, Re[χ (1)] follows a special
rule in the high-mobility limit, while following the generic
behavior in the low-mobility limit.

We thus focus first on the low-mobility limit. Substituting
Eq. (34) into Eq. (44) and simplifying per Eq. (45), we find
that Re[ f (1)

kx
] approximately reduces to the following:

Re[ f (1)(	ω)] ≈ 2	ω

γ ′2 . (52)

Note that the real part of χ (1) thus scales with mobility as
μ2 in the low-mobility limit. Integrating 	ω over the phase-
space area of the initial electronic states as in Eq. (48) and
multiplying by the constants shown in Eq. (33), we find the
following analytical expression for the real part of χ (1) in the
low-mobility limit:

Re[χ (1)(ω0)] ≈
(

q2
ev

2
s

2π2h̄ε0t2DEGω2
0

)
2

γ ′2

(
π h̄ω2

0k2
F

2mv2
s

)

= q2
e k2

F

2πε0t2DEGmγ ′2

= 2mk2
F μ2

πε0t2DEG
, (53)

where we substituted the relationship γ ′ = qe/(2mμ) in the
last line. Note that this susceptibility is independent of the
phonon frequency ω0 in the limit q 	 kF . This is because the
total number of electrons (encapsulated by the phase space
area) and the real part of the inverse detuning per electron
each varies linearly with ω0, thus canceling out the inverse
dependence of the dipole interaction probability with ω2

0.
Next, we examine the real part of χ (1) in the high-mobility

limit. As discussed in Sec. IV A, Re[χ (1)] is dominated by the
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far-off-resonance interactions, unlike the general case for the
high-mobility limit. Using the approximation |	ω| � γ ′, we
find that Re[ f (1)

kx
] approximately reduces to

Re[ f (1)(	ω)] ≈ 2

	ω
. (54)

As with the generic low-mobility case, we use the fact that the
valid initial states are concentrated near kx = kF , leading to
the approximation kx � q and thus 	ω ≈ ωkx+q,kx ≈ h̄qkx/m.
Integrating (	ω)−1 over the valid initial phase-space area
yields the following result:∫ kF

−q/2
dkxky,span(kx )(	ω)−1 ≈

∫ kF

0
dkx

2qkx√
k2

F − k2
x

m

h̄qkx

= 2m

h̄

∫ kF

0

dkx√
k2

F − k2
x

= 2m

h̄

∫ π/2

0
dθ

= πm

h̄
. (55)

Multiplying this by 2 [per Eq. (54)] and by constants shown
in Eq. (33), we find the following analytical expression for the
real part of χ (1) in the high-mobility limit:

Re[χ (1)(ω0)] ≈
(

q2
ev

2
s

2π2h̄ε0t2DEGω2
0

)
2

(
πm

h̄

)

= q2
ev

2
s m

π h̄2ε0t2DEGω2
0

. (56)

Note that this is independent of both mobility and carrier den-
sity. The invariance in mobility can be explained by the fact
that the dielectric screening is dominated by far-off-resonance
electron-phonon interactions, causing the detuning to domi-
nate over the decay rate, as explained earlier. The invariance
in carrier density n is explained by the fact that the number
of electrons available to interact with phonons varies as

√
n

(since the corresponding phase-space area varies as kF ), while
the probability that any given electron actually interacts with
a phonon varies as 1/

√
n (since in the far-off-resonance limit,

this probability scales inversely with the average detuning,
which in turn varies as kF and thus as

√
n).

We now turn to the imaginary part of χ (1), which gov-
erns the net phonon absorption rate and thus the spectral
broadening for the phonon energy levels. As discussed in
Sec. IV B, the imaginary parts follow a special rule in the
low-mobility limit due to cancellation between absorptive
and emissive processes. We thus start by analyzing the high-
mobility limit. Here, we can approximately ignore the second
(counter-resonant) term in f (1)

kx
in Eq. (34), yielding

f (1)(	ω) ≈ 1

	ω − iγ ′ , (57)

Im[ f (1)(	ω)] ≈ γ ′

(	ω)2 + γ ′2 . (58)

Using the near-resonance approximation and the corre-
sponding procedure in Eq. (41), we integrate this over the
near-resonance band (noting that the integrand is even in 	ω)

and multiply by the coefficients in Eq. (33), leading to the
following result for the imaginary part of χ (1) in the high-
mobility limit:

Im[χ (1)(ω0)]

≈
(

q2
ev

2
s

2π2h̄ε0t2DEGω2
0

)
2m2vs

h̄2kF

∫ ∞

−∞
d (	ω)

γ ′

(	ω)2 + γ ′2

=
(

q2
ev

2
s

2π2h̄ε0t2DEGω2
0

)
2m2vs

h̄2kF
π = q2

ev
3
s m2

π h̄3ε0t2DEGω2
0kF

.

(59)

As such, the imaginary part of χ (1) is invariant in γ ′ and hence
independent of mobility in the high-mobility limit. This is
because the number of electrons in the near-resonance region
scales linearly with γ ′, while the interaction probability for
each electron scales inversely with γ ′, causing the overall
interaction rate to be constant in γ ′.

Finally, we solve for the imaginary part of χ (1) in the low-
mobility limit. If we take the resonant and counter-resonant
terms (corresponding to phonon absorption and emission, re-
spectively) in Eq. (34) individually, then the magnitude of the
imaginary part of each of those terms should approximately
reduce to 1/γ ′, since γ ′ � |	ω| � ω0 in the low-mobility
limit. However, this dynamic is fundamentally altered by the
fact that the two terms cancel each other out to first-order. This
requires us to make a higher-order approximation, altering the
mobility-dependence of the net susceptibility:

Im
[

f (1)
kx

]
(ω0)

= γ ′

(ωkx+q,kx − ω0)2 + γ ′2 − γ ′

(ωkx+q,kx + ω0)2 + γ ′2

≈ 4ω0ωkx+q,kx

γ ′3

≈ 4ω0	ω

γ ′3 . (60)

Intuitively, this result can be conceptualized as follows: the
probability of the 2DEG electrons absorbing a phonon from
the field (represented by the resonant term) is almost (though
not fully) canceled out by the probability of 2DEG electrons
emitting a phonon into the field. The former (deamplifying)
process narrowly edges out the latter (amplifying) process,
yielding a positive imaginary part of the electron-phonon
interaction probability. As with the real part of f (1)

kx
, the

imaginary part is approximately linear in the electron-phonon
detuning 	ω. We therefore integrate over the phase-space
area of initial electronic states as in Eq. (48) and mutiply by
the coefficients in Eq. (33):

Im[χ (1)(ω0)] ≈
(

q2
ev

2
s

2π2h̄ε0t2DEGω2
0

)
4ω0

γ ′3

(
π h̄ω2

0k2
F

2mv2
s

)

= q2
eω0k2

F

πε0mt2DEGγ ′3

= 8m2ω0k2
F μ3

πε0qet2DEG
. (61)

Although the overall susceptibilities corresponding to the ab-
sorptive and emissive processes individually scale linearly
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FIG. 8. Results for the real (a) and imaginary (b) parts of χ (1)(ω0) as functions of the carrier mobility μ, including numerical (solid,
green), low-mobility analytical (dotted, red), and high-mobility analytical (dashed, blue) calculations. We use a phonon angular frequency of
ω0 = 2π × 109 s−1, speed of sound vs = 4 × 103 m/s, a carrier density n = 2 × 1015 m−2, a carrier effective mass m = 0.067m0, and a 2DEG
thickness t2DEG = 2 × 10−8 m.

with the mobility μ, the net process scales as μ3. As with the
real part of χ (1) in the low-mobility regime, this result also
varies linearly with carrier density n ∝ k2

F , due to a combi-
nation of the overall number of available electrons varying
and the single-electron interaction probability each varying
as n1/2.

Figure 8 depicts the numerically calculated results for the
real and imaginary parts of χ (1) (given a phonon angular fre-
quency of ω0 = 2π × 109 s−1, speed of sound vs = 4 × 103

m/s, a carrier density n = 2 × 1015 m−2, a carrier effective
mass m = 0.067m0 relative to the bare electron mass m0,
and a 2DEG thickness t2DEG = 2 × 10−8 m), along with the
analytical results in the high-mobility and low-mobility limits.
As desired, the numerical and analytical results match in the
low-mobility and high-mobility regimes, with the real (imagi-
nary) part varying as μ2 (μ3) in the low-mobility regime, and
with both parts plateauing in the high-mobility regime. Note
that for all mobility values, Re[χ (1)] vastly exceeds Im[χ (1)].
The dielectric constant can thus be approximated as fully real
rather than complex, which features important implications
when calculating the wave-mixing dynamics.

D. Second-order susceptibility

We now derive the second-order susceptibility, using
numerical means to calculate the susceptibility for all mo-
bility values and analytical means to specifically derive the
low-mobility limit. We start with sum-frequency generation,
governed by χ (2)(ω1, ω2). In the low-mobility limit, we can
reduce Re[ f (2)

kx
] in Eq. (31) to the following using the approx-

imation |	ω| � ωkx+q1+q2,kx , ω1, ω2:

Re
[

f (2)
SF

] ≈ − 4

γ ′2 . (62)

The sum-frequency-generation susceptibility thus varies with
mobility as μ2 in this regime, following the general low-
mobility rule laid out in Eq. (45). We can analytically solve
for the overall susceptibility in the low-mobility regime by
multiplying by the available phase-space area in Eq. (47)
and the coefficients in Eq. (30). It is important to consider,
however, that for two of the terms in Eq. (31), the width of
the phase-space area is q1 = ω1/vs [see Figs. 5(a) and 5(d)],
while for the other two terms, the width is q2 = ω2/vs [see

Figs. 5(b) and 5(c)]. Consequently, for the available phase-
space area expression in Eq. (47), we apply the replacement
ω0 → (ω1 + ω2)/2, yielding the following overall second-
order susceptibility in the low-mobility limit:

Re[χ (2)(ω1, ω2)] ≈
(

q3
ev

3
s

2π2h̄2ε0t2DEGω1ω2(ω1 + ω2)

)

×
(

− 4

γ ′2

)(
2(ω1 + ω2)kF

2vs

)

= − 2q3
ev

2
s kF

π2h̄2ε0t2DEGω1ω2γ ′2

= − 8qev
2
s m2kF μ2

π2h̄2ε0t2DEGω1ω2
. (63)

Note the linear variation in kF , implying that the susceptibility
scales with the carrier density as n1/2. This is because the
number of available electrons (corresponding to the available
phase-space area) varies linearly with kF , while the interaction
probability per electron is independent of kF .

Figure 9 depicts the numerically calculated results for the
amplitude of the real part of χ (2)(ω1, ω2) in the degener-

FIG. 9. Results for the amplitude of the real part of χ (2)(ω0, ω0)
as a function of the carrier mobility μ, including numerical (solid,
green) and low-mobility analytical (dotted, red) calculations. We
use a phonon angular frequency of ω0 = 2π × 109 s−1, speed of
sound vs = 4 × 103 m/s, a carrier density n = 2 × 1015 m−2, a car-
rier effective mass m = 0.067m0, and a 2DEG thickness t2DEG =
2 × 10−8 m.
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ate limit ω1 = ω0 = ω2 representing the second-harmonic-
generation process [we label this quantity χ

(2)
SHG(ω0)], along

with the analytical result in the low-mobility limit, given the
same parameters as in the χ (1) calculation. As desired, the
numerical and analytical results match in the low-mobility
regime, with the susceptibility varying as μ2. It is interesting
to note that the susceptibility plateaus in the high-mobility
regime. As discussed in Sec. IV A, the near-resonance elec-
tronic contributions to the real part of χ (2) cancel out in the
high-mobility regime, leaving behind electronic contributions
that are somewhat off-resonance (but not far-off-resonance,
since Re[χ (2)] converges to zero for large detuning values).
Along with the very low value of γ , this causes the effect of
the decay rate γ on the electron interaction probabilities to be
negligible, leading Re[χ (2)] to be constant in mobility in the
high-mobility limit.

Next, we turn to parametric amplification, focusing specif-
ically on the degenerate case (ω1 = ω0 = ω2). Examining
Re[ f (2)

kx
] from Eq. (32) in the low-mobility limit, we note

that the amplitude of each of the terms can be approximated
as 1/γ ′2 to first order, as with second-harmonic genera-
tion. However, the key difference here is that the leading
terms cancel out for both the resonant case and the counter-
resonant case, due to destructive interference of probability
waves in the degenerate traveling-wave parametric amplifier.
Consequently, we shift to the secondary term, which equals
2(	ω)2/γ ′4 (where 	ω = ωkx+q0,kx − ω0). As a result, the
parametric amplification susceptibility varies with mobility as
μ4 instead of μ2:

Re
[

f (2)
PA (	ω)

] ≈ 8(	ω)2

γ ′4 . (64)

To analytically solve for the low-mobility susceptibility, we
need to integrate (	ω)2 over the available phase-space area.
Since the electron-phonon transitions in the low-mobility limit
are concentrated far-off-resonance, we approximate 	ω ≈
h̄qkx/m, enabling us to apply the generic higher-order integral
shown in Eq. (49) as follows:∫ kF

−q/2
dkxky,span(kx )(	ω)2 ≈ 4h̄2ω3

0k3
F

3m2v3
s

. (65)

Multiplying this f (2)
PA and the coefficients in Eq. (30), we find

the following degenerate parametric amplification susceptibil-
ity in the low-mobility limit:

Re[χ (2)(2ω0,−ω0)] ≈
(

q3
ev

3
s

2π2h̄2ε0t2DEG2ω3
0

)

×
(

8

γ ′4

)(
4h̄2ω3

0k3
F

3m2v3
s

)

= 8q3
ek3

F

3π2ε0t2DEGm2γ ′4

= 128m2k3
F μ4

3π2ε0qet2DEG
. (66)

Note that this is independent of the frequency ω0. This is
because the number of available electrons varies linearly
with ω0, while the interaction probability for each electron
varies inversely with ω0, and the two variations cancel out.

FIG. 10. Results for the amplitude of the real part of
χ (2)(2ω0, −ω0) as a function of the carrier mobility μ, including
numerical (solid, green) and low-mobility analytical (dotted, red)
calculations. We use a phonon angular frequency of ω0 = 2π ×
109 s−1, speed of sound vs = 4 × 103 m/s, a carrier density n =
2 × 1015 m−2, a carrier effective mass m = 0.067m0, and a 2DEG
thickness t2DEG = 2 × 10−8 m.

Furthermore, since the interaction probability per electron
now varies as k2

F , the susceptibility scales as k3
F , implying a

variation with carrier density as n3/2.
Figure 10 depicts the numerically calculated results for

the amplitude of the real part of χ (2)(2ω0,−ω0) [we label
this quantity χ

(2)
PA (ω0)]. As desired, the numerical and an-

alytical results match in the low-mobility regime, with the
susceptibility varying as μ4. The susceptibility levels out in
the high-mobility regime for the same reason as in the second-
harmonic-generation case.

E. Third-order Kerr susceptibility

We conclude our susceptibility calculations by deriving the
third-order Kerr susceptibility χ (3)(ω0, ω0,−ω0) governing
the Kerr shift and the degenerate four-wave-mixing process.
In the low-mobility limit, we simplify Re[ f (3)

kx
] in Eq. (29) to

the following, since |	ω| � ωkx+2q,kx , ω:

Re[ f (3)(	ω)] ≈ (−4 + 2 + 2 − 4)
γ ′2	ω

γ ′6 = −4	ω

γ ′4 , (67)

where 	ω = ωkx+q,kx − ω0. Following the general rule for
the low-mobility regime as outlined in Eq. (45), the Kerr
susceptibility varies with mobility as μ4 in this regime. We
analytically solve for the overall susceptibility in the low-
mobility limit by integrating over the phase-space area of
initial electronic states using the procedure in Eq. (48) and
multiplying by the coefficients in Eq. (28):

Re[χ (3)(ω0, ω0,−ω0)]

≈
(

q4
ev

4
s

π2h̄3ε0t2DEGω4
0

)(
− 4

γ ′4

)(
π h̄ω2

0k2
F

2mv2
s

)

= − 2q4
ev

2
s k2

F

π h̄2ε0mt2DEGω2
0γ

′4

= − 32v2
s m3k2

F μ4

π h̄2ε0mt2DEGω2
0

. (68)
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The quadratic variation in kF implies a linear scaling with
the carrier density n. This is because the number of available
electrons and the interaction probability per electron each
scales as n1/2.

We now turn to the high-mobility limit. Here, we have to
account for the fact that the transition frequency ωkx+2q,kx+q

for the electron upon absorbing a second phonon of wave
vector q exceeds that upon absorbing the first phonon ωkx+q,kx

by a constant (kx-independent) offset frequency, which we
label ω′:

ω′ = ωkx+2q,kx+q − ωkx+q,kx

= h̄q(2(kx + q) + q)

2m
− h̄q(2kx + q)

2m

= h̄q2

m
. (69)

In terms of this offset, Re[ f (3)
kx

] in Eq. (29) takes the following
form, considering only the resonant (first and second) terms:

Re[ f (3)(	ω)]

≈
∑
±

1

(	ω ∓ iγ ′)(2	ω + ω′ − iγ ′)(	ω − iγ ′)

= (2	ω + ω′)(	ω)2 − γ ′2(	ω ± 3	ω ± ω′)
((	ω)2 + γ ′2)2((2	ω + ω′)2 + γ ′2)

, (70)

where the top and bottom indices in the ± and ∓
operations represent the first and second terms of
Eq. (29), respectively. We integrate this over the
near-resonance band [using the procedure in Eq. (41)]
and multiply by the coefficients in Eq. (28), leading to the
following result for the overall Kerr susceptibility in the
high-mobility limit:

Re[χ (3)(ω0, ω0,−ω0)] ≈
(

q4
ev

4
s

π2h̄3ε0t2DEGω4
0

)
2m2vs

h̄2kF

∫ ∞

−∞
d (	ω)(ω0 + 	ω)

(2	ω + ω′)(	ω)2 − γ ′2(	ω ± 3	ω ± ω′)
((	ω)2 + γ ′2)2((2	ω + ω′)2 + γ ′2)

= β
π (3γ ′2 + ω′ω0)

γ ′(9γ ′2 + ω′2)
= 2πβmμ

qe

(
3q2

e + 4ω′ω0m2μ2

9q2
e + 4ω′2m2μ2

)
, (71)

where β is defined as follows:

β = 2q4
ev

5
s m2

π2h̄5ε0ω
5
0kFt2DEG

. (72)

Note that the Kerr susceptibility varies linearly with μ in
the high-mobility limit. However, the slope of this variation
is three times greater in the ultra-high-mobility limit than in
the medium-high-mobility limit. This is because the linear
variation originates from different sources for the two cases.
In the medium-high-mobility case, the electronic spectrum
effectively becomes harmonic, thus making Re[ f (3)(	ω)]
odd in 	ω and yielding 〈Re[ f (3)(	ω)〉 ∝ 1/γ ′3. As such,

FIG. 11. Results for the amplitude of the real part of
χ (3)(ω0, ω0, −ω0) as a function of the carrier mobility μ, includ-
ing numerical (solid, green), low-mobility analytical (dotted, red),
and high-mobility analytical (dashed, blue) calculations. We use a
phonon angular frequency of ω0 = 2π × 109 s−1, speed of sound
vs = 4 × 103 m/s, a carrier density n = 2 × 1015 m−2, a carrier
effective mass m = 0.067m0, and a 2DEG thickness t2DEG = 2 ×
10−8 m.

integrating the product of this function and 	ω over the near-
resonance band results in Re[χ (3)(ω0, ω0,−ω0)] ∝ 1/γ ′ ∝
μ. However, in the ultra-high-mobility limit, the size of the
electronic anharmonicity in phase space exceeds the width of
the near-resonance band, making Re[ f (3)(	ω)] even in 	ω

and yielding 〈Re[ f (3)(	ω)〉 ∝ 1/γ ′2. Integrating this over the
near-resonance band also results in Re[χ (3)(ω0, ω0,−ω0)] ∝
1/γ ′ ∝ μ, but with a different slope than the medium-high-
mobility case.

Figure 11 depicts the numerically calculated results for
the amplitude of the real part of χ (3)(ω0, ω0,−ω0), which
we label χ

(3)
Kerr (ω0). We use the same parameters as in the

χ (1) and χ (2) calculations. As desired, the numerical and an-
alytical results match in the low-mobility and high-mobility
regimes, varying as μ4 in the low-mobility regime and as μ1

in the high-mobility regime. The aforementioned change in
the proportionality coefficient with μ between the medium-
high-mobility and ultra-high-mobility regimes is apparent in
the intercept shift in the log-log plot around 103 m2/(V · s).

V. CALCULATION OF MIXING DYNAMICS

The N th-order susceptibility manifests itself in the (N +
1)-wave-mixing process. For a quantitative understanding, we
can substitute the expression for 〈deff (qp)〉 in Eq. (25) into the
interaction Hamiltonian in Eq. (24), yielding an expansion in
product of field amplitudes:

Hint = −ε0V2DEG

∑
n

∑
p

∑
p1,...,pN

ωp1 +...+ωpN =ω

× χ (N )(ωp1 , ..., ωpn )E∗(ω)E (ωp1 )...E (ωpN ). (73)

Intuitively, this corresponds to the fact that the different field
modes are coupled to one another via interactions with the
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2DEG electrons. At the elemental level, the field modes p1

through pN simultaneously polarize the electrons, which in
turn interact with the field mode p through field-dipole cou-
pling. It is apparent that the real part of the susceptibility
corresponds to the conversion efficiency between modes (or
to an energy shift in the acoustic states, for the case of mode
self-coupling), while the imaginary part yields a broadening
of the acoustic states caused by loss due to phonon absorption
by the electrons.

The Hamiltonian corresponding to the interaction of a
phonon from each of the modes p1, ..., pN and a phonon of
frequency ω = ωp1 + ... + ωpN can be expressed in operator
form as follows:

H = h̄(ga†a1...aN + g∗a†
1...a

†
N a), (74)

where, as evidenced by Eq. (73), the (N + 1)-phonon interac-
tion rate g is given by the following:

g = −ε0V2DEG

h̄
χ (N )(ωp1 , ..., ωpn )

× E∗
zpf (ω)Ezpf (ωp1 )...Ezpf (ωpN ), (75)

where Ezpf represents the zero-point electric field experienced
by the 2DEG electrons. Intuitively, since χ (N ) represents
the total induced electron polarization per unit amplitude
of the N polarizing fields p1, ..., pN , multiplying it by
V2DEGEzpf (ωp1 )...Ezpf (ωpN ) yields the product of the prob-
ability that an electron becomes polarized by absorbing N
phonons and the resulting dipole moment of the polarized
electron. This polarized electron then interacts with the (N +
1)-st field (represented here by the frequency ω) through the
dipole interaction. The net process is electron-mediated cou-
pling of N + 1 phonons from the respective fields, with the
interaction rate given by Eq. (75).

In general, we can determine the time-evolution of the
output electric field ω in terms of the amplitudes of the input
electric fields using the Heisenberg equation of motion as
follows:

Ė (ω) = Ezpf (ω)ȧ

= − i

h̄
Ezpf (ω)[a, H]

= −iEzpf (ω)ga1...aN

= i
ε0V2DEG

h̄
χ (N )(ωp1 , ..., ωpn )|Ezpf (ω)|2

× E (ω1)...E (ωN ). (76)

The zero-point electric field Ezpf is determined by substitut-
ing Aph = √

vs/(2Vω ) (corresponding to a vacuum fluctuation
spanning the mode volume) into Eq. (11), yielding:

Ezpf (ω) = − C

ε(ω)

√
h̄ω

2Vω

, (77)

where Vω is the overall mode volume for the acoustic wave.
From this, we can determine the spatial evolution of the out-
put field amplitude Aph(ω) in terms of the input amplitudes

Aph(ω1), ...Aph(ωN ):

∂xAph(ω)

= i
ε0

h̄

χ (N )(ωp1 , ..., ωpn )
√

ωω1...ωN

ε∗(ω)ε(ω1)...ε(ωN )

(
− C

√
h̄

vs

)N+1

× V2DEG

2Vω

Aph(ω1)...Aph(ωN ). (78)

Note that the conversion efficiency is proportional to the ra-
tio between the 2DEG volume V2DEG and the overall mode
volume Vω (which simply reduces to the ratio between the
2DEG thickness t2DEG and the mode depth Lz,ω if the 2DEG
covers the piezoelectric material’s surface). This is because
the fraction of the total mode energy stored in the 2DEG field
is proportional to the ratio of the two volumes.

It is also worth noting that the conversion efficiency varies
inversely with εN+1, where ε is the effective 2DEG dielectric
constant, which is in turn proportional to Re[χ (1)]. Naively,
we would assume that ε = ε0Re[χ (1)]. However, there are 2
critical caveats. The first is that due to the thin-film nature
of the 2DEG (i.e., the fact that the 2DEG thickness is much
smaller than the field wavelength), the dielectric screening is
strongly suppressed. As explained in Appendix C, this atten-
uates the dielectric constant by a factor a, which is a function
of the ratio between the 2DEG thickness t2DEG and the field’s
half-wavelength l:

a = t2DEG

2π l

(
2 log

(
l

t2DEG

)
+ 3

)
. (79)

The second caveat is that when Re[χ (1)] is low enough that
the corresponding dielectric constant is below the dielectric
constant of the piezoelectric material εp, the latter provides
the effective dielectric constant for the 2DEG, since the fact
that the 2DEG is much thinner than the piezoelectric material
ensures that the fringe induced field from the piezoelectric
material fully penetrates the 2DEG. As such, the dielectric
constant can be approximated as follows:

ε(ω0) ≈
{

aε0Re[χ (1)(ω0)], aε0Re[χ (1)] > εp,

εp, aε0Re[χ (1)(ω0)] < εp.
(80)

The 2DEG dielectric constant is plotted in Fig. 12 given
εp = 43.6ε0, with all the other parameters the same as in
the susceptibility plots. Given the dielectric constant and the
susceptibilities, we solve for the rates of 3 processes: linear
absorption (corresponding to Im[χ (1)]), as well as second-
harmonic generation and parametric amplification (corre-
sponding to Re[χ (2)]). We also derive the figure-of-merit for
the Kerr nonlinearity by calculating the ratio between the
phonon Kerr shift (corresponding to Re[χ (3)]) and the phonon
spectral broadening (corresponding to Im[χ (1)], given a high-
Q acoustic cavity, which has recently been achieved [60]).

A. Linear absorption

We start with the case of linear absorption. Based on
Eq. (78), the spatial evolution of a single field propagating
through the heterostructure and experiencing linear absorption
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FIG. 12. Dielectric constant in units of ε0 as a function of
the carrier mobility μ, given a piezoelectric material dielectric
constant εp = 43.6ε0, a phonon angular frequency of ω0 = 2π ×
109 s−1, speed of sound vs = 4 × 103 m/s, a carrier density n =
2 × 1015 m−2, a carrier effective mass m = 0.067m0, and a 2DEG
thickness t2DEG = 2 × 10−8 m.

takes the following form:

∂xAph(ω0) = −αAph(ω0), (81)

where α is the amplitude attenuation rate, given as

α = −i
ε0

h̄

(iIm[χ (1)(ω)])
√

ω2
0

ε∗(ω0)ε(ω0)

(
− C

√
h̄

vs

)2 V2DEG

2V

= ε0C2V2DEGω0

2vsV

Im[χ (1)(ω0)]

|ε(ω0)|2 . (82)

Figure 13 depicts the absorption rate given C2 = 6.1ε0

and effective mode depth Lz = 2 × 10−6 m (i.e., the half-
wavelength of the ω0 field) along with the same parameters
used in the susceptibility calculations, assuming that the
2DEG covers the piezoelectric material such that V2DEG/V =
t2DEG/Lz. At very low mobility, the imaginary part of χ (1)

varies as μ3, while the dielectric constant is flat in mobility,
causing the absorption rate to vary as μ3. For moderately
low mobility, though, the dielectric-constant-squared varies

FIG. 13. Linear absorption coefficient per unit length α as a
function of the carrier mobility μ, given a piezoelectric material
dielectric constant εp = 43.6ε0, C2 = 6.1ε0, a phonon angular fre-
quency of ω0 = 2π × 109 s−1, mode depth Lz = 2 × 10−6 m, speed
of sound vs = 4 × 103 m/s, a carrier density n = 2 × 1015 m−2, a
carrier effective mass m = 0.067m0, and a 2DEG thickness t2DEG =
2 × 10−8 m.

FIG. 14. Amplitude of coupling strength G for second-harmonic
generation as a function of the carrier mobility μ, given a piezoelec-
tric material dielectric constant εp = 43.6ε0, C2 = 6.1ε0, a phonon
angular frequency of ω0 = 2π × 109 s−1, 2ω0-field mode depth
Lz,2ω0 = 1 × 10−6 m, speed of sound vs = 4 × 103 m/s, a carrier
density n = 2 × 1015 m−2, a carrier effective mass m = 0.067m0,
and a 2DEG thickness t2DEG = 2 × 10−8 m.

as μ4, causing the absorption rate to decrease with mobility
as μ−1. The linear absorption coefficient reaches a constant
value of about 25 m−1 at the high-mobility limit (since both
the dielectric constant and the imaginary part of χ (1) are con-
stant at high mobility), corresponding to an effective phonon
coherence length of 40 mm.

B. Second-harmonic generation

Next, we solve for the second-harmonic-generation cou-
pling strength. From Eq. (78), the output field spatially
evolves as follows:

∂xAph(2ω0) = iGAph(ω1)Aph(ω2), (83)

where 2ω0 = ω1 + ω2, and G is the coupling strength, given
as

G = ε0

h̄

Re[χ (2)(ω1, ω2)]
√

2ω0ω1ω2

ε∗(2ω0)ε(ω1)ε(ω2)

(
− C

√
h̄

vs

)3 V2DEG

2V2ω0

,

(84)

where V2ω0 is the mode volume corresponding to the 2ω0 field.
Here, the half-wavelength yields an effective mode depth of
Lz,2ω0 = 1 × 10−6 m. For degenerate second-harmonic gener-
ation (i.e, ω1 = ω0 = ω2), the coupling strength becomes the
following:

G = −ε0C3V2DEG

2V2ω0

√
2h̄ω3

0

v3
s

Re[χ (2)(ω0, ω0)]

ε∗(2ω0)|ε(ω0)|2 . (85)

Figure 14 depicts the second-harmonic coupling strength us-
ing the same parameters as in the linear absorption case
(except for the mode depth, as previously mentioned): At
very low mobility, χ (2) varies as μ2, while the dielectric
constant is flat in mobility, causing |G| to vary as μ2. Once
the dielectric constant starts rising with mobility, however, the
strong inverse dependence of |G| with the dielectric constant
(specifically, the ε−3 variation) causes |G| to sharply drop with
increasing mobility despite the fact that χ (2) increases with
mobility in this regime. However, at the high-mobility limit,
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FIG. 15. Diagram of the degenerate traveling-wave parametric amplifier system. Note that the S-curve on the left carries the pump input,
while the curve on the right drains the pump phonons remaining after the 3-wave-mixing process. The region in between represents the core
amplifier region, with the 2DEG (red) on top of the piezoelectric material (blue).

both χ (2) and the dielectric constant reach constant values,
causing |G| to level out at 7.6 × 10−11 s1/2.

C. Parametric amplification

Here, we solve for the parametric amplification gain per
unit length. We specifically design a phase-sensitive, degen-
erate, traveling-wave parametric amplifier due to its ability to
achieve the minimum possible additive quantum noise for an
amplification process [71–75]. It is worth noting that resonant,
degenerate parametric amplifiers could alternatively be de-
signed to minimize the pump power required for a given gain,
though a phase-preserving amplifier can never achieve the
same additive quantum noise as a phase-sensitive (traveling-
wave) amplifier [71,76].

A diagram of a traveling-wave parametric amplifier is
shown in Fig. 15. Given an input signal field with frequency
ω1 and a pump field with frequency 2ω0 = ω1 + ω2, the out-
put field ω2 evolves in a manner analogous to the output field
in Sec. V B:

∂xAph(ω2) = iGp,1Aph(2ω0)A∗
ph(ω1), (86)

where Gp,1 is the parametric conversion efficiency per unit
length per pump phonon current density amplitude (defined
as the square-root of the number of pump phonons per unit
time per unit cross-sectional area), defined as

Gp,1 = ε0

h̄

Re[χ (2)(2ω0,−ω1)]
√

2ω0ω1ω2

ε(2ω0)ε∗(ω1)ε∗(ω2)

×
(

− C

√
h̄

vs

)3 V2DEG

2Vω2

. (87)

Conversely, if we consider ω2 as the input signal field, then
the time-evolution of ω1 is modeled by switching ω1 and ω2

in Eq. (86), yielding

∂xAph(ω1) = iGp,1Aph(2ω0)A∗
ph(ω2). (88)

We now specifically consider the case of a degenerate
traveling-wave parametric amplifier (i.e., ω1 = ω0 = ω2). If
we set the phase of the pump field Aph(2ω0) such that it is in
phase with −iAph(ω0)/A∗

ph(ω0), then the time-evolution of the
signal/idler field amplitude is solved by summing Eqs. (86)
and (88):

∂x|Aph(ω0)| = 2|Gp,1||Aph(2ω0)||Aph(ω0)|. (89)

As such, the amplitude |Aph(ω0)| grows exponentially at a
rate 2|Gp,1||Aph(2ω0)|. The signal/idler field power P(ω0) is
proportional to the field intensity |Aph(ω0)|2 and thus evolves
at twice the rate of the amplitude:

P(ω0, x) = P(ω0, 0)e4|Gp,1||Aph (2ω0 )|x. (90)

The gain per unit length per pump phonon current density
amplitude is thus expressed in dB form as

Gp,2 =
(

10

ln (10)

)
4|Gp,1| = 40|Gp,1|

ln (10)
. (91)

An alternative metric for parametric amplification is the gain
per unit length per pump power amplitude (defined as the
square-root of the pump power). This is solved from Gp,2 in
the following manner:

Gp = Gp,2√
h̄2ω0LyLz,2ω0

= 20ε0C3V2DEG

ln (10)Vω0

√
ω2

0

v3
s LyLz,2ω0

|Re[χ (2)(2ω0,−ω0)]|
|ε(2ω0)||ε(ω0)|2 .

(92)
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FIG. 16. Degenerate parametric amplification gain per unit
length per unit power amplitude Gp as a function of the carrier mobil-
ity μ, given a piezoelectric material dielectric constant εp = 43.6ε0,
C2 = 6.1ε0, a signal/idler angular frequency of ω0 = π × 1010 s−1,
signal-field mode depth Lz,ω = 4 × 10−7 m, pump-field mode depth
Lz,2ω = 2 × 10−7 m, width Ly = 1.2 × 10−5 m, speed of sound vs =
4 × 103 m/s, a carrier density n = 2 × 1015 m−2, a carrier effective
mass m = 0.067m0, and a 2DEG thickness t2DEG = 2 × 10−8 m.

Note that Gp features an inverse dependence on the pump
mode’s cross-sectional area LyLz,2ω0 in addition to the stan-
dard V2DEG/Vω0 variation for Gp,1. This is because for a given
pump power, the pump field amplitude increases with decreas-
ing cross-sectional area. Since the gain is proportional to the
pump field amplitude rather than the power, this causes the
gain to increase for lower cross-sectional area values.

Figure 16 depicts the parametric amplification gain per
unit length per pump power amplitude, given the same pa-
rameters as in the second-harmonic-generation case, except
that we use a signal/idler frequency of 5 GHz (corresponding
to ω0 = π × 1010 s−1) and a mode width of 15 wavelengths
(i.e., Ly = 12 μm). The mode depths corresponding to the
signal and pump fields, respectively, are the half-wavelengths

Lz,ω0 = 400 nm and Lz,2ω0 = 200 nm. At very low mobility,
χ (2)(2ω0,−ω0) varies as μ4, while the dielectric constant
is invariant in mobility, causing Gp to vary as μ4, peak-
ing at 43 dB/(μm

√
μW), corresponding to a 20-dB gain in

4.7μm (about 2.4% of the Rayleigh length) given a 10-nW
pump power input. As the mobility is increased from this
point, though, the strong inverse dependence of the gain
with the dielectric constant causes Gp to decline with in-
creasing mobility for the intermediate-mobility case, as with
the second-harmonic case. Eventually, at the high-mobility
limit, both χ (2)(2ω0,−ω0) and the dielectric constant become
constant, causing Gp to level out at 11 dB/(μm

√
μW), cor-

responding to a 20-dB gain in 19μm (about 9.5% of the
Rayleigh length) given a 10-nW pump power input.

D. Kerr nonlinearity

Finally, we solve for the Kerr nonlinearity figure-of-merit
(F.O.M.), which we define as the ratio between the Kerr-
induced anharmonicity and the spectral broadening. This will
determine whether the electron-phonon interaction induces
enough anharmonicity in the phonon spectrum such that the
system can be used as an artificial atom. A diagram of the
acoustic cavity giving rise to the Kerr nonlinearity is shown in
Fig. 17. From Eq. (75), the anharmonicity induced by the Kerr
shift in a phonon ladder of fundamental angular frequency ω0

is calculated by doubling the Kerr coupling coefficient, which
we calculate from the third-order Kerr susceptibility χ

(3)
Kerr as

follows:

2|gKerr| = 2
ε0V2DEG

h̄
χ

(3)
Kerr (ω0)|Ezpf (ω0)|4. (93)

However, given a high-Q acoustic cavity (which has recently
been achieved [60]), the spectral broadening is given by the
linear absorption per unit time, which corresponds to Im[χ (1)].
We convert the result for the linear amplitude attenuation

FIG. 17. Diagram of the acoustic cavity, with the 2DEG (red) stacked on top of the piezoelectric material (blue) in the central region. The
coupling between the two gives rise to a Kerr nonlinearity through four-wave-mixing.

023288-21



CHATTERJEE, WENDT, SOH, AND EICHENFIELD PHYSICAL REVIEW RESEARCH 6, 023288 (2024)

FIG. 18. Kerr nonlinearity figure-of-merit (F.O.M.) as a function
of the carrier mobility μ, given a piezoelectric material dielectric
constant εp = 43.6ε0, C2 = 6.1ε0, a phonon angular frequency of
ω0 = π × 1010 s−1, mode length of 4 × 10−7 m along each dimen-
sion, speed of sound vs = 4 × 103 m/s, a carrier density n = 2 ×
1015 m−2, a carrier effective mass m = 0.067m0, and a 2DEG thick-
ness t2DEG = 2 × 10−8 m.

coefficient per unit propagation distance α from Sec. V A
into per-unit-time absorption by doubling it (to convert from
amplitude attenuation to energy absorption) and multiplying
by the speed of sound vs, yielding

γph = 2
ε0V2DEG

h̄
Im[χ (1)(ω0)]|Ezpf (ω0)|2, (94)

where γph is the phononic spectral broadening. The Kerr-
nonlinearity figure-of-merit (F.O.M.) is therefore solved as
follows:

F.O.M. = 2|gKerr|
γph

= χ
(3)
Kerr (ω0)|Ezpf (ω0)|2

Im[χ (1)(ω0)]

= C2h̄ω0χ
(3)
Kerr (ω0)

2V ε2(ω)Im[χ (1)(ω0)]
. (95)

As this expression shows, the Kerr nonlinearity is maximized
by minimizing the acoustic field’s mode volume. This is be-
cause the Kerr shift varies with the electric field intensity per
phonon, which varies inversely with mode volume.

Figure 18 depicts the Kerr nonlinearity figure-of-merit
using the same parameters as in the linear absorption and
second-harmonic generation cases, except that the angular
frequency ω0 is changed to π × 1010 s−1 to align with the
5-GHz transmon frequency. We minimize the mode volume
by setting the mode length equal to the half-wavelength of
400 nm along each dimension. At high mobilities, the Kerr
figure-of-merit scales linearly with μ. This is because χ

(3)
Kerr

also scales linearly with μ in this regime, while both the
real and imaginary parts of χ (1) are constant in mobility. At
very high mobilities [above 104 m2/(V s)], the figure-of-merit
exceeds unity, indicating that the phononic system can be used
as an artificial atom.

VI. COMPARISON OF QUANTUM AND CLASSICAL
RESULTS IN FLUID LIMIT

Although the previous sections treated the carrier states
as coherent fermionic states, it is interesting to analyze the
system in the incoherent (fluid) carrier limit for the purpose
of comparing the quantum results for the linear absorption
(corresponding to Im[χ (1)]) and the sum-frequency generation
(corresponding to Re[χ (2)]) processes to classical results from
previous studies. Here, we operate in the low-mobility limit
and effectively treat the electrons as bosonic. Due to the latter,
all electrons are capable of interacting with phonons, and due
to the former, the probability of such an interaction is ap-
proximately uniform for all of the electrons. Furthermore, we
only consider the resonant interaction processes, in line with
previous theoretical studies of various types of interactions
[77–81].

A. Linear absorption in fluid limit

We start by considering the linear absorption. In the low-
mobility regime, the resonant part of Im[ f (1)

kx
] from Eq. (34)

reduces to

Im
[

f (1)
res

] = γ ′

(ωkx+q,kx − ω)2 + γ ′2 ≈ 1

γ ′ , (96)

which is uniform for all electrons, as expected. If we make the
assumption that all electrons in the Fermi circle are capable of
absorbing phonons, then we solve for the imaginary part of
χ (1) simply by multiplying this expression by the Fermi circle
area and the coefficients in Eq. (33), yielding

Im[χ (1)(ω0)] ≈
(

q2
ev

2
s

2π2h̄ε0t2DEGω2
0

)
1

γ ′
(
πk2

F

)

= q2
ev

2
s n

h̄ε0t2DEGω2
0γ

′

= 2qev
2
s mnμ

h̄ε0t2DEGω2
0

, (97)

where we substituted k2
F = 2πn in the second line (where n is

the area carrier density) and γ ′ = qe/(2mμ) in the third line.
Now, we apply another consequence of the fluid treatment

of electrons: that all ground-state electrons feature zero mo-
mentum (k = 0). Then, a momentum kick from absorbing
a phonon of wave vector q would elevate a ground-state
electron’s energy to h̄q2/(2m). If we assume that the electron-
phonon interaction is resonant, then h̄q2/(2m) must equal vsq
(i.e., h̄ω0 = 2mv2

s ). Substituting this into the above expression
for the imaginary part of χ (1) yields the following result:

Im[χ (1)](ω0) ≈ qenbulkμ

ε0ω0
= ωcε

ε0ω0
, (98)

where we defined a bulk volumetric electron density nbulk =
n/t2DEG, along with the frequency parameter ωc = nbulkqeμ/ε.
It is worth noting that the imaginary part of χ (1) varies
linearly with both carrier density and mobility via ωc. The
former is due to the fact that a higher carrier density leads
to a larger number of electrons available for interacting with
phonons, while the latter is because for a given electron, the
electron-phonon interaction probability scales inversely with
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the spectral broadening in the limit in which the detuning is
much smaller than the broadening.

Next, we determine the phonon absorption per unit length
α from the imaginary part of χ (1) by multiplying by
ε0V2DEG|E (ω0)|2/h̄ to determine the absorption per unit time
and dividing by the propagation speed vs. Recall that the
zero-point electric field intensity is a function of the effective
dielectric constant εeff , the elasticity κ , and the frequency ω0:

|Ezpf (ω0)|2 = e2

|εeff |2 |Szpf |2 = K2ε h̄ω0

2|εeff |2Vpiezo
, (99)

where ε is the dielectric screening (i.e., the real part of χ (1))
and K2 = e2/(εκ ) represents the square of the electromechan-
ical coupling. This accords with Eq. (77), except for the fact
that εeff incorporates both the real and imaginary parts of χ (1)

for the sake of generality:

εeff = ε0(Re[χ (1)(ω0)] + iIm[χ (1)(ω0)]) = ε

(
1 + i

ωc

ω0

)
.

(100)

The absorption per unit length α thus becomes the following:

α = ε0V2DEG

h̄vs
Im[χ (1)](ω0)

K2ε h̄ω0

2|εeff |2Vpiezo

= ε0V2DEG

h̄vs

ωcε

ε0ω0

K2ε h̄ω0

2ε2(1 + ω2
c/ω

2
0 )V2DEG

= K2

2

ωc

vs

(
1 + ω2

c

ω2
0

)−1

, (101)

where in the first line, we inserted vs in the denominator
to convert from per-unit-time to per-unit-length absorption,
while in the second line, we used the fact that Vpiezo = V2DEG

for a bulk piezoelectric semiconductor. Note that this result
matches that derived previously in the classical limit [82].

B. Sum-frequency generation in fluid limit

We now turn to the question of resolving the real part
of χ (2) in for the purpose of deriving the dynamics of
sum-frequency generation. In the low-mobility regime, the
resonant part of Re[ f (2)

kx
] from Eq. (31) reduces to the

following:

Re
[

f (2)
res

] =
(

1(
ωkx+q1+q2,kx − (ω1 + ω2) − i γ

2

)(
ωkx+q1,kx − ω1 − i γ

2

) + 1(
ωkx+q1+q2,kx − (ω1 + ω2) − i γ

2

)(
ωkx+q2,kx − ω2 − i γ

2

))

≈ − 2

γ ′2 , (102)

which is also uniform for all electrons. Then, assuming that all
electrons are capable of undergoing second-order interaction
with phonons, we solve for the real part of χ (2) by multiplying
this expression by the Fermi circle area and the coefficients in
Eq. (30), yielding the following result:

Re[χ (2)(ω1, ω2)] ≈
(

q3
ev

3
s

2π2h̄2ε0t2DEGω1ω2(ω1 + ω2)

)

×
(

− 2

γ ′2

)(
πk2

F

)

= − 2q3
ev

3
s n

h̄2ε0t2DEGω1ω2(ω1 + ω2)γ ′2

= − 8qev
3
s m2nμ2

h̄2ε0t2DEGω1ω2ω3
, (103)

where ω3 = ω1 + ω2, and we substituted k2
F = 2πn and γ ′2 =

q2
e/(4m2μ2) in the second and third lines, respectively.

Applying the ground-state approximation described in the
linear absorption derivation, along with the single-phonon res-
onance condition that h̄q2/(2m) must equal vsq (i.e., h̄2ω2 =
4m2v4

s , where ω1 ≈ ω ≈ ω2), we find that the real part of χ (2)

reduces to the following:

Re[χ (2)(ω1, ω2)] ≈ −2qenbulkμ
2

ε0vsω3
= −2εωcμ

ε0vsω3
, (104)

where nbulk and ωc are defined as in the linear absorption
calculation, and ω3 = ω1 + ω2.

Next, we use the real part of χ (2) to determine how the
ω3 field evolves in time given input fields ω1 and ω2. To
that end, the rate of change of the field E3 due to the sum-
frequency-generation process can be calculated by promoting
the fields to operators, such that En = Ezpf,nan, where an is the
lowering operator for the mode n and Ezpf,n is the zero-point
electric field amplitude. Recall that the electric field amplitude
is directly proportional to the strain field amplitude:

En = − e

εn
Sn = − e

ε�n
Sn, (105)

where �n is defined as follows for the given mode n:

�n = 1 + i
ωc

ωn
. (106)

Also, recall that the zero-point electric field intensity varies
linearly with the phonon frequency and inversely with the
mode volume as follows:

|Ezpf,n|2 = e2

|εn|2 |Szpf,n|2 = K2ε h̄ωn

2|ε�n|2V = K2h̄ωn

2ε|�n|2V . (107)
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The time-evolution of E3 due to sum-frequency generation is thus solved by applying the three-wave-mixing Hamiltonian:

Ė3
(2) = −i

Ezpf,3

h̄

[
a3, H (2)

int

]
= i

ε0V

h̄
Re[χ (2)](ω1, ω2)|Ezpf,3|3E2E1[a3, a†

3]

≈ i
ε0V

h̄

(
− 2εωcμ

ε0vsω3

)(
K2h̄ω3

2ε|�3|2V
)(

− e

ε�2
S2

)(
− e

ε�1
S1

)

= −iK2 e2μωc

ε2vs

1

�1�2|�3|2 S2S1. (108)

Finally, we solve for E (2)
3 by dividing both sides by −iω3

(since Ė3
(2) = −iω3E (2)

3 ):

E (2)
3 = K2 e2μ

ε2vs

ωc

ω3

1

�1�2|�3|2 S2S1. (109)

Note that this result matches that calculated in the classical
limit [48] if K2 → 1 and |�3|2 → 1.

VII. CONCLUSION

Using time-dependent perturbation theory, we have theo-
retically derived the nonlinear acoustic susceptibilities up to
an arbitrary order for a technologically feasible heterostruc-
ture consisting of a 2DEG stacked on top of a piezoelectric
material. We have also used this susceptibility to derive the
equations of motion for various nonlinear quantum phononic
processes. We presented the first, second, and third order
susceptibilites in detail, both analytically and numerically, and
their variations with important parameters such as carrier con-
centration and mobility. Our results demonstrate that both the
second-order and third-order susceptibilities are maximized at
high mobility, demonstrating the advantage that a 2DEG cre-
ates by virtue of its ultrahigh mobility. We note that in the case
of classical acoustoelectric mediation of phonon-mixing non-
linearities [47], the application of bias fields causes profound
modification of these nonlinear processes. These modifica-
tions range from amplification or deamplification in space
of the waves involved in the mixing processes, to relaxation
of phase-matching conditions, to direct modification of the
phononic susceptibility. Though the treatment of the interac-
tion of these quantum phononic mixing processes with bias
fields is beyond the scope of this paper, we expect that in this
regime, the effect of bias fields will be similarly profound, and
we plan to analyze it in future work.

It is particularly noteworthy that the Kerr nonlinearity con-
tinues to increase with mobility, even at high mobility values.
If we are able to achieve a sufficiently high-mobility in a
2DEG and fabricate a device such that a heterostructure island
mostly fills the inside of an acoustic cavity, then the phenom-
ena such as phononic cavity blockades (analogous to photon
blockades [83,84]) and other types of single-phonon level
quantum interactions or even logic gates are achievable. The
relevant metric to enter this regime is the Kerr shift per phonon
inside the cavity relative to the cavity linewidth, given a high-
Q acoustic cavity (which has recently been achieved [60]). If
we can produce such a system with a high enough mobility

and small enough cavity linewidth such that only the transition
from the ground state to a single-phonon excitation is effec-
tively resonant with the cavity, then this system could provide
a new type of artificial atom, analogous to a superconducting
circuit qubit and at the same microwave frequencies but with
a length scale of microns instead of centimeters. Furthermore,
the large second-order nonlinearity of our heterostructure sys-
tem at high mobilities could be used to create a parametric
phonon amplifier. This combination of artificial atom cavities
and traveling-wave parametric amplifiers, together with bus
waveguides, make a complete analog to the primary hardware
components of superconducting circuit quantum computers.
Together with a method for microwave-to-phonon transduc-
tion (well-established interdigital electrode transducers) and
for tuning the coupling rate between cavities [27,85], one has
the pieces necessary to perform state preparation, single and
multiqubit gates via tunable cavity-cavity coupling, and room
temperature readout after parametric amplification. Thus, it
could be possible to make microwave frequency phononic
quantum processors based on these heterostructures that are
highly analogous to superconducting circuit quantum comput-
ers and operating at the same frequency and temperature but
with many orders of magnitude higher qubit density. We note
these qubits would require no shielding from the environment,
as there are no phononic modes in the vacuum to exclude and
their size compared to a microwave wavelength gives them
a vanishingly small electromagnetic dipole moment. Finally,
their reduced size and wholly different mechanism for gen-
erating nonlinearity may lead to reduced decoherence from
sources such as charge fluctuations and two-level systems.
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APPENDIX A: CALCULATION OF HIGHER-ORDER
SUSCEPTIBILITIES FROM TIME-DEPENDENT

PERTURBATION THEORY

We now seek to derive this using the overall Hamiltonian
H = H0 + Hint (t ) and applying time-dependent perturbation
theory. From the 2DEG self-energy in Eq. (23), we deduce
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that |� (n)(t )〉 can be expressed as a generic superposition of
2DEG eigenstates |l〉 in the following manner:

|� (n)(t )〉 = δn,0 |g〉 +
∑
l>g

a(n)
l (t )e−iωlgt e− γl

2 t |l〉 . (A1)

The goal is to solve for the time-varying coefficients a(n)
l (t ).

For the zeroth-order wave function |� (0)(t )〉, the 2DEG
is fully in the ground state |g〉, yielding a(0)

l (t ) = δl,g.

To solve for the higher-order coefficients, we start with
the Schrodinger-equation relationship linking |� (n)(t )〉 with
|� (n−1)(t )〉:

ih̄
∂ |� (n)(t )〉

∂t
= H0 |� (n)(t )〉 + Hint (t ) |� (n−1)(t )〉 , (A2)

which takes the following form when each side is expanded in
the 2DEG basis:

∑
l

ȧl
(n)(t )e−iωlgt e− γl

2 t |l〉 = − i

h̄

∑
l

a(n)
l (t )e−iωlgt e− γl

2 t Hint (t ) |l〉 . (A3)

Applying 〈m| eiωmgt e
γm
2 t to both sides and integrating over time, we find the following recursive expression for the coefficients:

a(n)
m (t ) = i

h̄

∑
l

∫ t

−∞
dt ′a(n−1)

l (t ′) 〈m|Hint (t
′)|l〉 ei(ωml −i

γml
2 )t ′

= i

h̄

∑
r

E (ωr )
∑

l

deff,ml (qr )
∫ t

−∞
dt ′a(n−1)

l (t ′)ei(ωml −ωr−i
γml

2 )t ′
, (A4)

where γml = γm − γl , and we substituted the interaction Hamiltonian from Eq. (24) in the second line. Starting with a(0)
l (t ) = δl,g,

we find that the time-dependence in the integral becomes entirely contained in an easily integrable exponential expression. Using
the recursive process from the above expression yields the following analytical result for the coefficients:

a(n)
ln

(t ) = 1

h̄n

∑
l1,...,ln−1

∑
r1,...,rn

deff,lnln−1 (qrn )...deff,l1g(qr1 )E (ωr1 )...E (ωrn )ei(ωlng−(ωr1 +...+ωrn )−i
γlng

2 )t(
ωlng − (ωr1 + ... + ωrn ) − i γlng

2

)
...

(
ωl1g − ωr1 − i

γl1g

2

) . (A5)

This intuitively corresponds to an n-step process from g to ln through the intermediate states l1, ..., ln−1, with the mth step
mediated through an absorption of a phonon with frequency ωrm and wave vector qrm = ωrm/vs. It is also important to derive the
complex conjugate of these coefficients:

a(n′ )∗
l ′
n′

(t ) = 1

h̄n′

∑
l ′1,...,l

′
n′−1

∑
r′

1,...,r
′
n′

deff,gl ′1 (−qr′
1
)...deff,l ′

n′−1
l ′
n′ (−qr′

n′ )E (−ωr′
1
)...E (−ωr′

n′ )e
i(ωgl′

n′ +(ωr′1
+...+ωr′

n′ )−i
γl′

n′ g

2 )t

(
ωl ′

n′ g − (ωr′
1
+ ... + ωr′

n′ ) + i
γl′

n′ g

2

)
...

(
ωl ′1g − ωr′

1
+ i

γl′1g

2

)

= 1

h̄n

∑
l ′1,...,l

′
n′−1

∑
r′

1,...,r
′
n′

deff,gl ′1 (qr′
1
)...deff,l ′

n′−1
l ′
n′ (qr′

n′ )E (ωr′
1
)...E (ωr′

n′ )e
i(ωgl′

n′ −(ωr′1
+...+ωr′

n′ )−i
γl′

n′ g

2 )t

(
ωl ′

n′ g + (ωr′
1
+ ... + ωr′

n′ ) + i
γl′

n′ g

2

)
...

(
ωl ′1g + ωr′

1
+ i

γl′1g

2

) , (A6)

where in the first line we used the facts that E∗(ω) = E (−ω) for any field frequency ω and d∗
eff, f i(q) = deff,i f (−q) for the

corresponding field wave vector q = ω/vs, and in the second line we reversed the signs of the field frequencies ωr′
1
, ..., ωr′

n′ to
ensure that the time-dependent phase corresponding to the fields would align with the nonconjugated coefficients.

Having derived the coefficients for the wave function, we now solve for the N th-order expectation value of the effective dipole
moment corresponding to the wave vector qp = −qp1 − ... − qpN :

〈
d (N )

eff (qp)
〉
t =

N∑
j=0

〈� ( j)(t )|deff (qp)|� (N− j)(t )〉

= 1

h̄N

N∑
j=0

∑
l ′j ,lN− j

a( j)∗
l ′j

a(N− j)
lN− j

e
i(ωl′j g+i

γl′j g

2 )t
e−i(ωlN− j g−i

γlN− j g

2 )t 〈l ′
j |deff (qp)|lN− j〉

= 1

h̄N

N∑
j=0

∑
l1,...,lN

∑
r1,...,rN

e−i(ωr1 +...+ωrN )t deff,glN (qrN )...deff,lN− j+2lN− j+1 (qrN− j+1 )(
ωlN g + ωrN + i

γlN g

2

)
...

(
ωlN− j+1g + (ωrN− j+1 + ... + ωrN ) + i

γlN− j+1g

2

)
× deff,lN− j+1lN− j (qp)

× deff,lN− j lN− j−1 (qrN− j )...deff,l1g

(ωlN−ng − (ωr1 + ... + ωrN−n ) − i
γlN−ng

2 )...
(
ωl1g − ωr1 − i

γl1g

2

)E (ωr1 )...E (ωrN ). (A7)
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Calculating the N th-order susceptibility χ (N ) using Eq. (26), we find that the field frequencies ωr1 , ..., ωrN are constrained such
that ωr1 + ... + ωrN = ωp1 + ... + ωpN , as desired:

χ (N )(ωp1 , ..., ωpN ) = 1

h̄Nε0V2DEG

N∑
j=0

∑
l1,...,lN

∑
r1,...,rN

∫ ∞

−∞
dtei((ωp1 +...+ωpN )−(ωr1 +...+ωrN ))t

× deff,glN (qrN )...deff,lN− j+2lN− j+1 (qrN− j+1 )(
ωlN g + ωrN + i

γlN g

2

)
...

(
ωlN− j+1g + (ωrN− j+1 + ... + ωrN ) + i

γlN− j+1g

2

)deff,lN− j+1lN− j (−qp1 − ... − qpN )

× deff,lN− j lN− j−1 (qrN− j )...deff,l1g(
ωlN−ng − (

ωr1 + ... + ωrN−n

) − i
γlN−ng

2

)
...

(
ωl1g − ωr1 − i

γl1g

2

)
= 1

h̄Nε0V2DEG

N∑
j=0

∑
l1,...,lN

P
∑

p1,...,pN

× deff,glN (qpN )...deff,lN− j+2lN− j+1 (qpN− j+1 )(
ωlN g + ωpN + i

γlN g

2

)
...

(
ωlN− j+1g + (ωpN− j+1 + ... + ωpN ) + i

γlN− j+1g

2

)deff,lN− j+1lN− j (−qp1 − ... − qpN )

× deff,lN− j lN− j−1 (qpN− j )...deff,l1g(
ωlN−ng − (ωp1 + ... + ωpN−n ) − i

γlN−ng

2

)
...

(
ωl1g − ωp1 − i

γl1g

2

) , (A8)

where in the second line, we use the fact that
∫ ∞
−∞ dteiωt =

δω,0. It is also worth noting the symbol P in front of the
summation over the modes p1, ..., pN , which denotes a permu-
tation over the mode indices. This is due to the fact that there is
no specific requirement that each generic mode frequency ωrm

equal the corresponding input frequency ωpm , but rather that
the sum of the generic mode frequencies (i.e., ωr1 + ... + ωrN )
equal the sum of the input frequencies (i.e., ωp1 + ... + ωpn ).
As a result, the set of transitions encapsulated by the real
part of χ (N ) conserves the energy of the acoustic field, which
is required in order for an electron starting in the ground
state |g〉 to return to that state after transitioning through the
intermediate states |l1〉 , ..., |lN 〉. Since each mode features a
well-defined momentum as well, the net momentum of the
field is conserved too.

APPENDIX B: CALCULATING SUSCEPTIBILITY
THROUGH PHASE-SPACE INTEGRALS

Here, we convert the summation over states in the suscep-
tibility expressions to phase-space integrals. Given a 2DEG
area A2DEG, the following replacement can be used for any
summation over generic initial wave vectors k:∑

k

= 2A2DEG

(2π )2

∫
dkx

∫
dky, (B1)

where the factor of 2 in the numerator is inserted to account
for two spin states per spatial state. The main challenge is to
determine the boundaries of integration for kx and ky. The key

requirement is an occupied initial state paired with an unoccu-
pied final state. To this end, Fig. 19(a) depicts the initial and
final states in phase space. As explained in the caption, the
possible final states for a single excitation from the ground
state is represented by the area enclosed by the red (right)
circle, minus the shaded (overlapping) area. To represent the
zone of forbidden initial states, the shaded zone representing
the forbidden final states can be shifted leftward by q to cover
the corresponding part of the blue (left) circle. The resulting
range of valid initial states is depicted in Fig. 19(b). The states
in the purple region (Zone 1) are forbidden from serving as
initial states, while the rest of the states within the circle
(green region) are allowed to act as initial states. We separate
the range of allowed states into Zone 2 (left of dotted line)
and Zone 3 (right of dotted line) to streamline the process of
establishing the integral boundaries. In Zone 2, kx ranges from
−q/2 to kF − q. For each given kx in this range, the span of ky

is determined as follows:

2
(√

k2
F − k2

x −
√

k2
F − (q + kx )2

)
. (B2)

In Zone 3, kx ranges from kF − q to kF . The corresponding
span of ky for each value of kx is the following:

2
√

k2
F − k2

x . (B3)

Consequently, the conversion of the summation over k into
integral form, laid out generically in Eq. (B1), takes the fol-
lowing concrete form:

∑
k

= 2A2DEG

(2π )2

( ∫ kF −q

−q/2
dkx2

(√
k2

F − k2
x −

√
k2

F − (q + kx )2
) +

∫ kF

kF −q
dkx2

√
k2

F − k2
x

)

= A2DEG

2π2

( ∫ kF

−q/2
dkx2

√
k2

F − k2
x −

∫ kF −q

−q/2
2
√

k2
F − (q + kx )2

)
. (B4)
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FIG. 19. (a) Phase-space diagram of valid states for absorption of a phonon with wave vector x̂q by an electron. The blue (left) circle
is the Fermi circle, which in the ground state is completely filled. The red (right) circle is the Fermi circle shifted in the +k̂x direction by
q, with the enclosed area representing potential destinations for the excited electrons. However, the shaded (overlapping) area represents
states that are banned from serving as final states, since they are already occupied. Consequently, the range of possible destination states are
represented by the area within the red (right) circle, less the shaded (overlapping) area; (b) phase-space diagram of the range of possible initial
states. The purple region (Zone 1) represents the forbidden initial states, while the green region (Zones 2 and 3) represents the allowed initial
states.

We will evaluate this integral both numerically and analytically (in the high-mobility and low-mobility limits) to determine the
susceptibility results.

We start by examining the third-order Kerr suscepbility χ
(3)
Kerr by applying Eq. (27) to the specific case of degenerate four wave

mixing. The χ (3) susceptibility for this process features the input frequency triplet (ω,ω,−ω1) (where ω and ω1 are positive
frequencies), yielding the following expression:

χ (3)(ω,ω,−ω1)

= 2
q4

e

h̄3ε0V2DEG

v4
s

ω2ω1(2ω − ω1)

∑
kx,ky

(
1(

ωkx+2q−q1,kx − (2ω − ω1) − i γ

2

)
(ωkx+2q,kx − 2ω − i γ

2 )
(
ωkx+q,kx − ω − i γ

2

)
+ 1(

ωkx+q1,kx − ω1 + i γ

2

)(
ωkx+2q,kx − 2ω − i γ

2

)(
ωkx+q,kx − ω − i γ

2

)
+ 1(

ωkx−q,kx + ω + i γ

2

)(
ωkx−2q,kx + 2ω + i γ

2

)(
ωkx−q1,kx + ω1 − i γ

2

)
+ 1(

ωkx−q,kx + ω + i γ

2

)(
ωkx−2q,kx + 2ω + i γ

2

)(
ωkx−2q+q1,kx + (2ω − ω1) + i γ

2

))
, (B5)

where we have defined q = ω/vs and q1 = ω1/vs, and the factor of 2 has been added in front to account for the permutations of
ω. We convert the summation over kx and ky into integrals using the procedure from Eq. (B4). Note that the integral boundaries
for all terms can be aligned if we flip the signs of all wave-vector arguments for the frequency shift terms ωk f ,ki , which is valid
since the energy spectrum and occupation probabilities are symmetric about the kx axis. Then, χ (3) reduces to the following
form:

χ (3)(ω,ω,−ω1) = q4
e

π2h̄3ε0t2DEG

v4
s

ω2ω1(2ω − ω1)

×
( ∫ kF

−q/2
dkx2

√
k2

F − k2
x f (3)

kx
(ω,ω,−ω1) −

∫ kF −q

−q/2
dkx2

√
k2

F − (q + kx )2 f (3)
kx

(ω,ω,−ω1)

)
, (B6)
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where f (3)
kx

(ω,ω,−ω1) is approximately the following:

f (3)
kx

(ω,ω,−ω1) ≈ 1(
ωkx+q2,kx − ω2 − i γ

2

)(
ωkx+2q,kx − 2ω − i γ

2

)(
ωkx+q,kx − ω − i γ

2

)
+ 1(

ωkx+q1,kx − ω1 + i γ

2

)(
ωkx+2q,kx − 2ω − i γ

2

)(
ωkx+q,kx − ω − i γ

2

)
+ 1(

ωkx+q,kx + ω + i γ

2

)(
ωkx+2q,kx + 2ω + i γ

2

)(
ωkx+q1,kx + ω1 − i γ

2

)
+ 1(

ωkx+q,kx + ω + i γ

2

)(
ωkx+2q,kx + 2ω + i γ

2

)(
ωkx+q2,kx + ω2 + i γ

2

) . (B7)

The third-order Kerr susceptibility equals the degenerate four-wave-mixing susceptibility in the limit ω1 → ω.
Next, we examine the second-order susceptibility, focusing first on the case of sum-frequency generation encapsulated by

χ (2)(ω1, ω2), where two phonons of frequency ω1 and ω2 are absorbed and a phonon of frequency 2ω = ω1 + ω2 is emitted.
Applying Eq. (27) again, we obtain the following expression for the second-order susceptibility:

χ (2)(ω1, ω2) = q3
e

h̄2ε0V2DEG

v3
s

ω1ω2(ω1 + ω2)

∑
kx,ky

(
1(

ωkx+q1+q2,kx − (
ω1 + ω2

) − i γ

2

)(
ωkx+q1,kx − ω1 − i γ

2

)
+ 1(

ωkx+q1+q2,kx − (ω1 + ω2) − i γ

2

)(
ωkx+q2,kx − ω2 − i γ

2

)
+ 1(

ωkx−q1−q2,kx + (ω1 + ω2) + i γ

2

)(
ωkx−q2,kx + ω2 + i γ

2

)
+ 1(

ωkx−q1−q2,kx + (ω1 + ω2) + i γ

2

)(
ωkx−q1,kx + ω1 + i γ

2

))
, (B8)

where q1 = ω1/vs and q2 = ω2/vs. Converting the summation over wave vectors to integrals using the same procedure and
symmetry arguments as in the χ (3) calculation, we find that χ (2) reduces to the following form:

χ (2)(ω1, ω2) = q3
e

2π2h̄2ε0t2DEG

v3
s

ω1ω2(ω1 + ω2)

×
( ∫ kF

−q/2
dkx2

√
k2

F − k2
x f (2)

kx
(ω1, ω2) −

∫ kF −q

−q/2
dkx2

√
k2

F − (q + kx )2 f (2)
kx

(ω1, ω2)

)
, (B9)

where f (2)
kx

(ω1, ω2) is approximately the following:

f (2)
kx

(ω1, ω2) ≈
(

1(
ωkx+2q,kx − 2ω − i γ

2

)(
ωkx+q1,kx − ω1 − i γ

2

) + 1(
ωkx+2q,kx − 2ω − i γ

2

)(
ωkx+q2,kx − ω2 − i γ

2

)
+ 1(

ωkx+2q,kx + 2ω + i γ

2

)(
ωkx+q2,kx + ω2 + i γ

2

) + 1(
ωkx+2q,kx + 2ω + i γ

2

)(
ωkx+q1,kx + ω1 + i γ

2

))
. (B10)

The susceptibility governing the second-harmonic generation
process equals the above susceptibility for the general sum-
frequency generation in the limit ω1 = ω2.

Finally, we use Eq. (27) once more to briefly derive the
linear susceptibility χ (1)(ω) corresponding to the absorption
and emission of a phonon of frequency ω:

χ (1)(ω) = q2
e

h̄ε0V2DEG

v2
s

ω2

∑
kx,ky

(
1

ωkx+q,kx − ω − i γ

2

+ 1

ωkx−q,kx + ω + i γ

2

)
, (B11)

where q = ω/vs. Converting to an integral form over phase
space in a manner analogous to the χ (3) and χ (2) calculations,
we find the following χ (1):

χ (1)(ω) = q2
e

2π2h̄ε0t2DEG

v2
s

ω2

( ∫ kF

−q/2
dkx2

√
k2

F − k2
x f (1)

kx
(ω)

−
∫ kF −q

−q/2
dkx2

√
k2

F − (q + kx )2 f (1)
kx

(ω)

)
, (B12)

where f (1)
kx

(ω) is defined as follows:

f (1)
kx

(ω) = 1

ωkx+q,kx − ω − i γ

2

+ 1

ωkx+q,kx + ω + i γ

2

. (B13)

023288-28



AB INITIO CALCULATIONS OF NONLINEAR … PHYSICAL REVIEW RESEARCH 6, 023288 (2024)

FIG. 20. Depiction of induced electric field in the 2DEG due to
charge polarization effectively giving rise to two plates of charge
density ±P separated along the x axis by the dipole length in the
material, which we label as l .

APPENDIX C: RELATING 2DEG POLARIZATION
TO INDUCED ELECTRIC FIELD

Here, we seek to derive the relationship between the in-
ternal electric field induced by the polarization in the 2DEG
versus the polarization itself. The key difference between a
bulk material and a thin-film 2DEG is that the charges con-
tributing to the polarization in the latter must be modeled as
finite rather than infinite distributions, as we will show.

We start with the definition of polarization: the number of
dipole moments per unit volume multiplied by the amplitude
of each moment. For now, we will express the size of each mo-
ment as l . Then, if we take a volumetric segment of the 2DEG
with an x-axis length of l , the number of dipole moments in
that segment becomes the following (see Fig. 20):

Nsegment = PlLyLz

qel
= PLyt2DEG

qe
. (C1)

The charge density per unit of cross-sectional area is thus
solved as follows:

σsegment = qe
Nsegment

Lyt2DEG
= P. (C2)

If we consider the dipoles in the 2DEG as a uniformly dis-
tributed cloud, then the induced electric field comes from
two oppositely charged plates, with area charge densities
±σsegment = ±P, separated by a distance l . For the case of a
bulk material, the length of a plate along each cross-sectional
axis far exceeds the dipole length l . Consequently, the electric
field is equivalent to that between two infinite-area plates
of charge density ±P, i.e., Eind = −P/ε0. However, for the
case of a thin-film material with thickness t2DEG, the aver-
age electric field between the plates is sharply attenuated if
t2DEG � l . We express this attenuation by defining a factor a,
such that the average induced field becomes 〈Eind〉 = −aP/ε0.
This yields the following relationship between the external
field Eext, overall field E , and polarization P:

ε0Eext = ε0(E − 〈Eind〉) = ε0E + aP. (C3)

Note that if k = 1, then the above expression reduces to the
familiar relationship for bulk materials. However, in the thin-
film limit, we need to solve for the induced electric field as a
function of polarization by considering two finite plates with
charge density ±P. The setup is depicted in Fig. 20. Since
Ly � l , the plates can be considered as essentially infinite
along the y axis. However, along the z axis, each plate features
a finite width t2DEG. The field lines therefore diverge from
each plate before returning to the opposite plate, ensuring that
while the electric field between the plates is uniform along the
y axis, it varies along the z and especially x axes. To calculate
the induced electric field along the x axis at a point (x, z), we
integrate the contributions from all of the infinitesimal charges
along the two plates:

Eind(x, z) = − P

4πε0

∫ z+t2DEG/2

z−t2DEG/2
dz′

∫ ∞

−∞
dy

(
x

(x2 + y2 + z2)3/2
+ l − x

((l − x)2 + y2 + z2)3/2

)

= − P

4πε0

∫ z+t2DEG/2

z−t2DEG/2
dz′

(
2x

x2 + z2
+ 2(l − x)

(l − x)2 + z2

)

= − P

4πε0

[
2 tan−1

(
z′

x

)
+ 2 tan−1

(
z′

l − x

)]z+t2DEG/2

z′=z−t2DEG/2

= − P

2πε0

(
tan−1

(
t2DEG/2 + z

x

)
+ tan−1

(
t2DEG/2 + z

l − x

)
+ tan−1

(
t2DEG/2 − z

x

)
+ tan−1

(
t2DEG/2 − z

l − x

))
. (C4)

Next, we average this field over x ranging from 0 to l and z ranging from −t2DEG/2 to t2DEG/2. Note that by symmetry, each
of the terms features the same average value. We therefore pick one term to calculate the average induced field, yielding the
following relationship between the induced field and the polarization:

〈Eind〉 = −4
P

2πε0

〈
tan−1

(
t2DEG/2 + z

x

)〉

= − 2P

πε0t2DEGl

∫ t2DEG/2

−t2DEG/2
dz

∫ l

0
dx tan−1

(
t2DEG/2 + z

x

)
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= − 2P

πε0t2DEGl

∫ t2DEG/2

−t2DEG/2
dz

((
t2DEG/2 + z

2

)
log

(
1 + l2

(t2DEG/2 + z)2

)
+ l tan−1

(
t2DEG/2 + z

l

))

≈ − 2P

πε0t2DEGl

∫ t2DEG/2

−t2DEG/2
dz

(
t2DEG

2
+ z

)(
log

(
l

t2DEG/2 + z

)
+ 1

)

= − 2P

πε0t2DEGl

(
t2DEG

2

)2(
2 log

(
l

t2DEG

)
+ 3

)

= −kP

ε0
, (C5)

where we have used the approximation t2DEG 	 l in the fourth line. The attenuation factor k takes the following form in terms
of the dipole length and 2DEG thickness:

a = t2DEG

2π l

(
2 log

(
l

t2DEG

)
+ 3

)
. (C6)

The overall field E inside the 2DEG can be solved by substituting the relationship P = ε0χ
(1)E into Eq. (C3):

ε0Eext = ε0E + aε0χ
(1)E , E = Eext

1 + aχ (1)
≈ Eext

aχ (1)
, (C7)

where in the last line, we have used the approximation aχ (1) � 1.
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