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Lieb-Robinson correlation function for the quantum transverse-field Ising model
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The Lieb-Robinson correlation function is the norm of a commutator between local operators acting on
separate subsystems at different times. This provides a useful state-independent measure for characterizing
the specifically quantum interaction between spatially separated qubits. The finite propagation velocity for this
correlator defines a “light cone” of quantum influence. We calculate the Lieb-Robinson correlation function for
one-dimensional qubit arrays described by the transverse-field Ising model. Direct calculations of this correlation
function have been limited by the exponential increase in the size of the state space with the number of qubits.
We introduce a technique that avoids this barrier by transforming the calculation to a sum over Pauli walks
which results in linear scaling with system size. We can then explore propagation in arrays of hundreds of
qubits and observe the effects of the quantum phase transition in the system. We observe the emergence of two
distinct velocities of propagation: a correlation front velocity, which is affected by the phase transition, and the
Lieb-Robinson velocity which is not. The correlation front velocity is equal to the maximum group velocity of
single quasiparticle excitations. The Lieb-Robinson velocity describes the extreme leading edge of correlations
when the value of the correlation function itself is still very small. For the semi-infinite chain of qubits at the
quantum critical point, we derive an analytical result for the correlation function.
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I. INTRODUCTION

How does quantum information or influence spread? A
significant advance in understanding this important question
was famously provided in 1972 by Lieb and Robinson [1].
They focused on many-body systems composed of localized
but interacting subsystems. They considered the norm of the
commutator

CA,B(t ) = ‖[Âk, B̂m(t )]‖, (1)

where Âk operates on subsystem k and

B̂m(t ) = eiĤt/h̄B̂m(0)e−iĤt/h̄ (2)

is a Heisenberg operator which acts on subsystem m at time t .
They showed that under very general conditions, the norm of
the commutator in Eq. (1) is bounded,

CA,B(t ) � Ke−μ(dk,m−vLRt ), (3)

where dk,m is an appropriate distance between the two sub-
systems. The Lieb-Robinson velocity vLR is understood to
be an effective speed limit on the propagation of quantum
information or influence. This bound holds even for nonrela-
tivistic quantum mechanics and is often envisioned as a sort of
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effective “light cone” of possible interaction outside of which
influence is exponentially suppressed.

There is by now a large literature calculating and improv-
ing the values of vLR in the Lieb-Robinson bound for many
different systems and including the effects of finite tempera-
tures and disorder [2–6]. The Lieb-Robinson result has been
shown to imply finite-length correlations in the ground state of
any gapped many-body system [7,8]. Considerable work has
been done on specific lattice spin systems, with near-neighbor
coupling and those with power-law interactions [9,10]. Work
on propagation in such spin models is particularly relevant
to current developments in quantum computing and quantum
information processing. Recent reviews of the Lieb-Robinson
bound and its connection to fundamental questions of operator
locality and quantum information are given in Refs. [11,12].
The bounds have been explored experimentally [13]; a review
is in Ref. [14].

The Lieb-Robinson analysis is related to issues of quan-
tum entanglement [15]. Equations (1) and (2) involve only
Âk , B̂m, and the system Hamiltonian Ĥ . Entanglement, by
contrast, is a feature of the quantum state of a composite
system, which develops precisely because of the interac-
tion between subsystems. The Lieb-Robinson commutator
captures an aspect of the effective, possibly mediated, inter-
action between the two subsystems which is the precondition
for them becoming entangled with one another. As empha-
sized by Chen et al. [11], the quantity CA,B(t ) represents a
fundamental constraint on purely quantum nonlocality and
entanglement.
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Here we focus not on the bound in Eq. (3) in the general
case but on one specific model–the quantum transverse field
Ising (QTFIM) model for a one-dimensional chain of qubits
(or, equivalently, spins). Following the work of Colmenarez
and Luitz [10], we define the Lieb-Robinson correlation func-
tion by

Ck (t ) ≡ ∥∥[σ̂ z
1 (t ), σ̂ z

k

]∥∥, (4)

where the operators are the usual Pauli operators on qubits 1
and k.

The QTFIM is the simplest model that includes both intrin-
sic local dynamics and coupling between subsystems, and it
has other advantages as well. There is a well-known quantum
phase transition that occurs when the strength of the local
dynamics is equal to the inter-qubit coupling. A disordered
system for small coupling becomes ferromagnetically ordered
at a critical value of the coupling. The Hamiltonian can be
diagonalized using now-standard methods which map the
many-spin system onto free fermion quasiparticles [16,17].
Though simple in form, the QTFIM is also experimentally
and practically relevant; it is used in D-Wave quantum-
annealing based computers. Recent results have been reported
for one-dimensional Ising chains consisting of 2000 qubits
[18] and higher-dimensional configurations with 5000 qubits
[19]. Quantum-dot cellular automata dynamics have been
mapped to the QTFIM [20].

We study the behavior of Ck (t ) as a function of space (qubit
index k) and time. Our goals are to understand in detail the
propagation of these quantum correlations down the chain and
in particular (a) the effects of varying the Hamiltonian param-
eters, (b) the fingerprints of the quantum phase transition, and
(c) the relation of the propagation speed to the Lieb-Robinson
velocity.

Directly evaluating Ck (t ) has been practically challeng-
ing for all but relatively short chains even for the QTFIM.
The reasons are familiar: the size of the state space grows
exponentially with the length of the chain, and the matrix
exponentials in Eq. (2) are costly to compute. Heroic methods
may be required for chains of 22 qubits [10]. For the QTFIM,
we devise an operator Pauli walk method which scales only
linearly with the system size, and so allows evaluation of
Eq. (4) for chains of hundreds of qubits and long times. This
is sufficient to establish key features of the propagation for
chains of any length. For the special case of the QTFIM at
the quantum critical point, the method is extended to yield a
closed form expression for the semi-infinite chain.

The term correlation function often denotes an expectation
value, for example, of the form

〈Â(0)B̂(t )〉 − 〈Â(0)〉〈B̂(t )〉, (5)

and so depends on the system state [21]. By contrast, the
Lieb-Robinson correlation function defined in Eq. (4) is a
correlation between operators independent of state. Moreover,
because of the commutator, it captures only explicitly quan-
tum mechanical effects not classical correlations. It is also
fairly associated with bounding the spread of information in
a quantum channel [22], though it is not defined in Shannon
information theory terms. The quantity Ck (t ) could also be
conceived as quantifying influence or even potential influence
of one system on another (and reciprocally). We will refer to

it as a correlation function; its precise meaning is clear from
the definition.

We consider the dynamics of the QTFIM in the sense of
calculating Ck (t ) using the time-dependent Heisenberg op-
erators. The Hamiltonian itself is time independent. We are
not addressing the situation of the time-dependent state of the
system when the Hamiltonian changes abruptly—a so-called
quench.

The organization of the paper is as follows. Section II
describes the QTFIM and the corresponding operator space.
Section III presents the operator Pauli walk method which is
at the heart of our calculations. The special case of evaluating
Ck (t ) at the quantum critical point is described in Sec. IV.
At the leading edge of the correlation front which propagates
down the chain, a simpler analysis is possible. This was de-
scribed in Ref. [23] in one, two, and three dimensions. We
review the main results for one-dimensional chains in Sec. V
to connect them with the present calculations. In Sec. VI, we
examine the effect of the interqubit coupling strength on Ck (t ),
its saturation value, and propagation speed. A discussion of
the main results follows.

II. MODEL

A. System Hamiltonian

We consider a linear array of Nq qubits (or spins) with
near-neighbor interactions. The system is described by the
transverse-field Ising model with Hamiltonian

Ĥ = −γ

Nq∑
k=1

σ̂ x
k − J

Nq−1∑
k=1

σ̂ z
k σ̂ z

k+1, (6)

where the operators σ̂
{x,y,z}
k are the usual Pauli operators on site

k. The first term in Eq. (6) represents the internal dynamics
of each qubit and produces a characteristic time for these
dynamics given by

τ ≡ π h̄

γ
. (7)

The second term represents the interaction between adjacent
qubits and results in an energetic cost for neighboring opposite
spins. We can rewrite Eq. (6) in dimensionless form as

Ĥ ′ = Ĥ/γ = −
Nq∑

k=1

σ̂ x
k − J ′

Nq−1∑
k=1

σ̂ z
k σ̂ z

k+1, (8)

with J ′ = J/γ now characterizing the system. The quantum
phase transition between the ordered and disordered phase
occurs at J ′ = 1.

B. Operator space

The set of operators on the qubit array form a Hilbert space
with the inner product

〈Â | B̂〉 ≡ 1

N Tr(Â†B̂), (9)
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with N = 2Nq being the dimension of the operator state space.
The norm induced by this inner product is

‖Â‖ =
√

1

N Tr(Â†Â) =
√

1

N Tr|Â|2, (10)

known as the normalized Frobenius norm. The operator norm,
which is equal to the maximum modulus of the singular val-
ues, is frequently used in defining the Lieb-Robinson bound.
Different norms can, in general, produce somewhat different
results [3], but for the problem at hand the two norms yield
identical values (see Sec. III F below and the Supplemental
Material [24]).

Pauli operators on the same site k obey the commutation
relations[

σ̂ x
k , σ̂

y
k

] = 2iσ̂ z
k ,

[
σ̂

y
k , σ̂ z

k

] = 2iσ̂ x
k ,

[
σ̂ z

k , σ̂ x
k

] = 2iσ̂ y
k
(11)

and Pauli operators on different sites commute. It is some-
times convenient to use the common alternative notation:

Xk = σ̂ x
k , Yk = σ̂

y
k , Zk = σ̂ z

k . (12)

We consider Pauli strings of the form

σ̂s =
Nq∏

k=1

σ̂
αk
k , σ̂

αk
k ∈ [Îk, σ̂

x
k , σ̂

y
k , σ̂ z

k

]
. (13)

For example, using the simpler notation,

σ̂s = X1X2Z3I4 . . . (14)

or

σ̂s′ = Z1I2Y3Z4 . . . . (15)

The set of all 4Nq Pauli strings we denote P . These Pauli
strings form an orthonormal basis for Hermitian operators on
the system such that

〈σ̂s | σ̂s′ 〉 = 1

N Tr(σ̂sσ̂s′ ) = δs,s′ . (16)

III. CALCULATING THE LIEB-ROBINSON
CORRELATION FUNCTION

A. Heisenberg time dependence

In the Heisenberg picture, the time dependence of any
operator can be written

Q̂(t ) =
∞∑

n=0

1

n!

(
it

h̄

)n

[(Ĥ )n, Q̂], (17)

where Q̂ = Q̂(0), and we use the usual notation for n iterated
commutators:

[(A)n, B] ≡ [A, . . . [A, [A︸ ︷︷ ︸
n times

, B] . . . ]]. (18)

Using Eq. (7), the time dependence of σ̂ z
1 can then be

written

σ̂ z
1 (t ) =

∞∑
n=0

1

n!
πnin

(
t

τ

)n[
(Ĥ ′)n, σ̂ z

1

]
. (19)

The Lieb Robinson correlation function is defined by

Ck (t ) ≡ ∥∥[σ̂ z
1 , σ̂ z

k (t )
]∥∥ = ∥∥[σ̂ z

k , σ̂ z
1 (t )

]∥∥
= ∥∥[σ̂ z

k , eiĤt/h̄σ̂ z
1 e−iĤt/h̄

]∥∥ (20)

and we take this as the most direct method of computing it.
Making explicit use of the norm defined in Eq. (10) we have

Ck (t ) =
√√√√Tr

(∣∣[σ̂ z
k , σ̂ z

1 (t )
]∣∣2

N

)
. (21)

From the definition, we see Ck (0) = 0 because σ̂ z
1 com-

mutes with itself and with the Pauli operators on all other
sites. The time dependence of σ̂ z

1 (t ) can be envisioned as
the operator spreading out from the first qubit progressively
down the array, incorporating components of Pauli operators
on other qubits. As the expanding operator encounters site
k, the quantum correlation between qubit 1 and qubit k, as
quantified by Ck (t ), increases. It is this spread and growth that
we want to understand in detail.

We focus first on the operator formed by the commutator
[σ̂ z

k , σ̂ z
1 (t )] and using Eq. (19) obtain

[
σ̂ z

k , σ̂ z
1 (t )

] =
∞∑

n=0

1

n!
πnin

(
t

τ

)n[
σ̂ z

k ,
[
(Ĥ ′)n, σ z

1

]]
. (22)

Because Pauli strings span the operator space, the commu-
tator can be expanded as a weighted sum of Pauli strings as[

(Ĥ ′)n, σ̂ z
1

] =
∑
σ̂s∈P

Cn,σ̂s σ̂s. (23)

To solve for the coefficients Cn,σ̂ s, we multiply both sides
of (23) by σ̂s′ ,

[
(Ĥ ′)n, σ̂ z

1

]
σ̂s′ =

⎛
⎝∑

σ̂s∈P
Cn,σ̂s σ̂s

⎞
⎠σ̂s′ , (24)

and take the trace

Tr
([

(Ĥ ′)n, σ̂ z
1

]
σ̂s′
) =

∑
σ̂s∈P

Cn,σ̂s Tr(σ̂sσ̂s′ ). (25)

Now using Eq. (16), we obtain

Cn,σ̂s = Tr
([

(Ĥ ′)n, σ z
1

]
σ̂s
)

N (26)

or

Cn,σ̂s = 〈[
(Ĥ ′)n, σ z

1

]∣∣ σ̂s
〉
. (27)

By substituting Eq. (23) into Eq. (22), we have

[
σ̂ z

k , σ̂ z
1 (t )

] =
∑
σ̂s∈P

∞∑
n=0

1

n!
πn(i)n

(
t

τ

)n

Cn,σ̂s

[
σ̂ z

k , σ̂s
]
. (28)

We define

σ̂k,s ≡ 1
2

[
σ̂ z

k , σ̂s
]
. (29)

By virtue of Eq. (16), one can show that the operators σ̂k,s

also have an orthogonality relationship:

1

N Tr(σ̂ †
k,sσ̂k,s′ ) = δs,s′

1

N Tr(σ̂ †
k,sσ̂k,s). (30)
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From Eq. (28) we can write

[
σ̂ z

k , σ̂ z
1 (t )

] =
∑
σ̂s∈P

∞∑
n=0

2

n!
πn(i)n

(
t

τ

)n

Cn,σ̂s σ̂k,s. (31)

It is necessary to calculate the trace of the absolute value
square of this commutator so we can evaluate the Lieb
Robinson correlation function using Eq. (21). We proceed by
defining two quantities that will be temporarily useful:

Rn(t ) ≡ 2

n!
πn(i)n

(
t

τ

)n

(32)

and

Bσ̂s (t ) ≡
∞∑

n=0

Rn(t )Cn,σ̂s . (33)

Note that both the quantities Rn(t ) and Bσ̂s (t ) are numbers
rather than operators. Using Eqs. (32) and (33), we can rewrite
Eq. (31) in the compact form[

σ̂ z
k , σ̂ z

1 (t )
] =

∑
σ̂s′ ∈P

Bσ̂ ′
s
(t )σ̂k,s′ . (34)

The absolute value squared of the commutator is then

∣∣[σ̂ z
k , σ̂ z

1 (t )
]∣∣2 =

⎛
⎝∑

σ̂s∈P
Bσ̂s (t )σ̂k,s

⎞
⎠†⎛⎝∑

σ̂s′ ∈P
Bσ̂s′ (t )σ̂k,s′

⎞
⎠ (35)

=
∑

σ̂s,σ̂s′ ∈P
B∗

σ̂s
(t )σ̂ †

k,sBσ̂s′ (t )σ̂k,s′ , (36)

so

1

N Tr
(∣∣[σ̂ z

k , σ̂ z
1 (t )

]∣∣2) =
∑

σ̂s,σ̂s′ ∈P
B∗

σ̂s
(t )Bσ̂s′ (t )

Tr(σ̂ †
k,sσ̂k,s′ )

N

(37)

=
∑
σ̂s∈P

|Bσ̂s (t )|2Dk,σs , (38)

where we have used Eq. (30) and define

Dk,σs ≡ 〈σ̂k,s | σ̂k,s〉 = Tr(σ̂ †
k,sσ̂k,s)

N

=
∥∥∥∥1

2

[
σ̂ z

k , σ̂s
]∥∥∥∥2

. (39)

Reinserting the expressions for Bσ̂s (t ) and Rn(t ) from
Eqs. (32) and (33) yields

1

N Tr
(∣∣[σ̂ z

k , σ̂ z
1 (t )

]∣∣2)

=
∑
σs∈P

∣∣∣∣∣
( ∞∑

n=0

2

n!
πn(i)n

(
t

τ

)n

Cn,σ̂s

)∣∣∣∣∣
2

Dk,σs , (40)

and so from the definition for the correlation function in
Eq. (21), we have

Ck (t ) =
√√√√∑

σs∈P

∣∣∣∣∣
( ∞∑

n=0

2

n!

(
iπ

t

τ

)n

Cn,σ̂s

)∣∣∣∣∣
2

Dk,σs (41)

To calculate this correlation function, we need to determine
the quantity Cn,σ̂s from Eq. (27) and Dk,σs from Eq. (39).

B. Calculating Cn,σ̂s using operator Pauli walks

In this section, we develop an algorithm for calculating
Cn,σ̂s using algebraic methods, graph theory, and, finally, ma-
trix methods. Specifically, we aim to determine the subset of
the 4Nq Pauli strings that actually contribute to the sum in (41),
and to calculate the inner products in Eq. (27).

We now write the Hamiltonian in the more compact
notation:

H ′ = −
Nq∑
j=1

Xj − J ′
Nq−1∑
j=1

ZjZ j+1. (42)

We need to calculate the projection of Pauli string σ̂s on the
iterated commutator:

Cn,σ̂s = 〈[(H ′)n, Z1] | σ̂s〉 (43)

= 1

N Tr([(H ′)n, Z1]σ̂s). (44)

C. Example: Four-qubit case

We first consider a chain of Nq = 4 qubits and then will
generalize later. Our notation for Pauli strings will suppress
identity operators so, for example, X1Y2 will be understood to
mean X1Y2I3I4. We focus first on the iterated commutator:

[(H ′)n, Z1]. (45)

We begin by calculating [H ′, Z1] and generate the other com-
mutators that arise as a result of the repeated iteration of
commutation with H ′ in Eq. (44). The Pauli operator com-
mutation relations yield

[H ′, Z1] = 2iY1, (46)

[H ′,Y1] = −2iZ1 + 2iJ ′X1Z2, (47)

[H ′, X1Z2] = 2iX1Y2 − 2iJ ′Y1, (48)

[H ′, X1Y2] = −2iX1Z2 + 2iJ ′X1X2Z3, (49)

[H ′, X1X2Z3] = 2iX1X2Y3 − 2iJ ′X1Y2, (50)

[H ′, X1X2Y3] = −2iX1X2Z3 + 2iJ ′X1X2X3Z4, (51)

[H ′, X1X2X3Z4] = 2iX1X2X3Y4 − 2iJ ′X1X2Y3, (52)

[H ′, X1X2X3Y4] = −2iX1X2X3Z4. (53)

In each of these equations, the term underlined on the right
gives us the next commutator to evaluate. For each equation,
the commutator between H ′ and the nonunderlined term can
be evaluated using the previous results. The sequence termi-
nates in this case because there is no fifth qubit.

One result of this process is that the sequence allows us to
order the relevant Pauli strings as

σ1 = Z1, (54)

σ2 = Y1, (55)
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σ3 = X1Z2, (56)

σ4 = X1Y2, (57)

σ5 = X1X2Z3 (58)

σ6 = X1X2Y3, (59)

σ7 = X1X2X3Z4, (60)

σ8 = X1X2X3Y4. (61)

The Pauli strings σm enumerated in Eqs. (54)–(61) form a
closed set in the sense that the iterated commutator [(Ĥ ′)n, Z1]
will be a linear combination of these Pauli strings and no
others for all values of n. All other Pauli strings σ̂s will
yield an inner product Cn,σ̂s = 0. Rather than considering all
44 = 256 Pauli strings, we will only need to consider Cn,σ̂m for
m = [1, 8].

Next we can use Eqs. (46)–(53) to calculate the iterated
commutators in Eq. (45) and the inner products in (43). We
evaluate the first few using operator algebra. For the n = 1
iterated commutator, we have

[(H ′)1, Z1] = 2iY1, (62)

therefore, from Eq. (43)

C1,Y1 = 2i. (63)

The next level of iteration can be evaluated using Eq. (47) to
obtain

[(H ′)2, Z1] = 2i[H ′,Y1] (64)

= (2i)(−2i)Z1 + (2i)(2iJ ′)X1Z2, (65)

so evaluating the inner product in Eq. (43) yields

C2,Z1 = (2i)(−2i) = 4, (66)

C2,X1Z2 = (2i)(2iJ ′) = −4J ′. (67)

Similarly,

[(H ′)3, Z1] = [(2i)(2i)(−2i)Y1 + (2i)(2iJ ′)(2i)X1Y2

+ (2i)(2iJ ′)(−2iJ ′)Y1], (68)

so

C3,Y1 = ((2i)(2i)(−2i) + (2i)(2iJ ′)(−2iJ ′)) (69)

= 8i + 8i(J ′)2, (70)

C3,X1Y2 = (2i)(2iJ ′)(2i) (71)

= −8iJ ′. (72)

To evaluate the sum in Eq. (41), we need to evaluate Cn,σ̂m for
arbitrarily large values of n.

We now construct a finite directed graph which represents
this algebraic process. Figure 1 shows an array of operator
nodes (in blue) corresponding to the eight Pauli strings listed
in (54)–(61). The connectivity of the nodes is determined by
Eqs. (46)–(53). Two nodes are connected by an edge if the two
corresponding operators appear on the left and right sides of
one of these equations. The direction of the edge (indicated
in the figure by an arrow) is from the operator that appears

FIG. 1. Operator node graph for a four-qubit line.

on the left side of the equation to the operator that appears
on the right side. The edge weight is given by the coefficient
of the operator on the right side of the equation. Edges are
color-coded in Fig. 1 according to their weight and direction.

For example, consider the node in Fig. 1 corresponding to
the operator X1Z2. There are four edges connecting this node
to other nodes:

(1) The right-directed edge going from node Y1 with
weight 2iJ ′ given by Eq. (47).

(2) The right-directed edge going to node X1Y2 with
weight 2i given by Eq. (48).

(3) The left-directed edge going to node Y1 with weight
−2iJ ′ given by Eq. (48).

(4) The left-directed edge going from node X1Y2 with
weight −2i given by Eq. (49).

We define an operator Pauli walk on this graph as an
ordered list of nodes (Pauli strings) such that each consecutive
pair of nodes is connected by a directed edge. Each node may
be visited more than once and each edge traversed more than
once. The length of such a Pauli walk is the number of edge
traversals or, equivalently, one less than the number of (not
necessarily unique) nodes visited along the walk. The weight
product of a Pauli walk is the product of the edge weights
along the walk [25].

The sequence of iterated commutators generated by
Eqs. (46)–(53) correspond precisely to a Pauli walk among the
nodes associated with the Pauli strings σm in Eqs. (54)–(61).
The quantity Cn,σm is equal to the sum of the weight products
for all Pauli walks of length n which start at the first node
(σ̂1 = Z1) and end at the node labeled σ̂m.

Some examples:
(1) There is one Pauli walk of length 3 connecting node Z1

to node X1Y2:

{Z1,Y1, X1Z2, X1Y2}.
From Fig. 1, we see that the weight product for this walk is

C3,X1Y2 = (2i)(2iJ ′)(2i) = −8iJ ′, (73)

in agreement with Eq. (72).
(2) There are two Pauli walks of length 3 connecting node

Z1 to node Y1:

{Z1,Y1, Z1,Y1} and {Z1,Y1, X1Z2,Y1}
.

From the figure, we see that the sum of the corresponding
weight products is

C3,X1Y2 = [(2i)(−2i)(2i) (74)

+ (2i)(2iJ ′)(−2iJ ′)] (75)

= 8i + 8iJ ′, (76)

in agreement with Eq. (70).
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(3) There are three Pauli walks of length 4 connecting
node Z1 to node X1Z2:

{Z1,Y1, X1Z2, X1Y2, X1Z2}, (77)

{Z1,Y1, Z1,Y1, X1Z2}, and (78)

{Z1,Y1, X1Z2,Y1, X1Z2}. (79)

From the figure, we see that the sum of the corresponding
weight products is

C3,X1Z2 = [(2i)(2iJ ′)(2i)(−2i) + (2i)(−2i)(2i)(2iJ ′)

+ (2i)(2iJ ′)(−2iJ ′)(2iJ ′) ]

= −16(J ′)3 − 32J ′. (80)

In general, Cn,σ̂m is a polynomial in J ′. As the walk length n
becomes large, the number of walks becomes very large, even
for a modest Nq, because each walk can go back and forth
between nodes many times.

The process of computing the sum of the weight products
for all Pauli walks of a given length can be automated by
defining the adjacency matrix A whose (�, p) element is the
edge weight from the �th node to the pth node. In the four-
qubit example illustrated in Fig. 1, the 8 × 8 adjacency matrix
is

A = 2i

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
−1 0 J ′ 0 0 0 0 0

0 −J ′ 0 1 0 0 0 0
0 0 −1 0 J ′ 0 0 0
0 0 0 −J ′ 0 1 0 0
0 0 0 0 −1 0 J ′ 0
0 0 0 0 0 −J ′ 0 1
0 0 0 0 0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(81)

It is convenient to also define A′ ≡ A/(2i). The sum of the
weight products of all walks of length n that begin at node j
and end at node k is the ( j, k)th element of the nth power of A.
In our case, this means we can evaluate the sum of all weight
products for Pauli walks starting at the first node σ̂1 = Z1 and
ending at node σ̂m by evaluating

Cn,σm = (An)1,m. (82)

Using (82), we can now rewrite Eq. (41) with the sum over
the set of Pauli strings σs now expressed as a sum over the
ordered set {σm} as

Ck (t ) =
√√√√ 8∑

m=1

∣∣∣∣∣
∞∑

n=0

2

n!

(
−2π

t

τ

)n

[(A′)n]1,m

∣∣∣∣∣
2

Dk,m, (83)

where

Dk,m = 〈σ̂k,m | σ̂k,m〉 = ∥∥ 1
2 [Zk, σ̂m]

∥∥2
. (84)

D. Calculating Dk,m

We have seen that for the four-qubit line, only the eight
Pauli strings enumerated in Eqs. (54)–(61) contribute to the
correlation function in Eq. (41). Examining the structure of
this set, we see that the Pauli strings in {σm} appear in pairs

associated with each qubit k. The first element of each pair
ends with Zk , and the second ends with with Yk , after which all
the succeeding σm’s have the operator Xk . The quantity Dk,m is
zero for any Pauli string which includes Zk or Ik because both
commute with Zk . Only if σm includes Yk or Xk is Dk,m 
= 0,
and in both of those cases it has a value of 1. The result is that
Dk,m is 0 for m < 2k and 1 otherwise. Therefore, the effect of
Dk,m is to limit the sum over m in Eq. (83) to start at m = 2k,
so we can write

Ck (t ) =
√√√√ 8∑

m=2k

∣∣∣∣∣
∞∑

n=0

2

n!

(
−2π

t

τ

)n

[(A′)n]1,m

∣∣∣∣∣
2

. (85)

E. Generalizing the method of operator Pauli walks

Generalizing from the case of Nq = 4 to any number of
qubits is now straightforward. In place of the eight equa-
tions relations in Eqs. (46)–(53), we have 2Nq commutation
relations. For each qubit with index j = 1 to Nq, there are
two relevant equations: one is the commutator between the
Hamiltonian and a Pauli string that ends in Zj , and the second
is a commutator between the Hamiltonian and a Pauli string
that ends in Yj . Specifically, we have⎡
⎣H ′,

⎛
⎝ j−1∏

k=1

Xk

⎞
⎠Zj

⎤
⎦ = 2i

⎛
⎝ j−1∏

k=1

Xk

⎞
⎠Yj − 2iJ ′

⎛
⎝ j−2∏

k=1

Xk

⎞
⎠Yj−1,

1 � j � Nq (86)

and ⎡
⎣H ′,

⎛
⎝ j−1∏

k=1

Xk

⎞
⎠Yj

⎤
⎦

=

⎧⎪⎪⎨
⎪⎪⎩

−2i
(∏ j−1

k=1 Xk
)
Zj

+2iJ ′(∏ j
k=1 Xk

)
Zj+1, 1 � j < Nq

−2i
(∏ j−1

k=1 Xk
)
Zj, j = Nq.

(87)

These connect the Pauli strings that contribute to Eq. (41).
These 2Nq operators σm also occur in pairs associated with
qubit index j ∈ [1, Nq]:

σ1 = Z1,

σ2 = Y1,

σ2 j−1 =
⎛
⎝( j−2)/2∏

k=1

Xk

⎞
⎠Y( j/2), j even, j � 2,

σ2 j =
⎛
⎝( j−1)/2∏

i=1

Xi

⎞
⎠Z( j+1)/2, j odd, j � 2. (88)

The method of enumerating Pauli walks on the nodes la-
beled by σm as described in the previous section is naturally
extended to any length chain. The adjacency matrix A, deter-
mined by the coefficients in Eqs. (86)–(88), can be written in
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the general case as

A = 2i

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 · · · 0
−1 0 J ′ 0 0 0 · · · 0
0 −J ′ 0 1 0 0 · · · 0
0 0 −1 0 J ′ 0 · · · 0

0 0 0 −J ′ 0 . . .
...

...

0 0 0 0 . . .
. . . J ′ 0

...
...

...
... · · · −J ′ 0 1

0 0 0 0 · · · 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 2iA′ (89)

and we again define A′ ≡ A/(2i).
The value of the Lieb-Robinson correlation function can be

calculated by calculating powers of A′ and evaluating

Ck (t ) =
√√√√ 2Nq∑

m=2k

∣∣∣∣∣
∞∑

n=0

2

n!

(
−2π

t

τ

)n

[(A′)n]1,m

∣∣∣∣∣
2

. (90)

This can be rewritten in terms of the matrix exponential of the
adjacency matrix:

Ck (t ) =
√√√√ 2Nq∑

m=2k

∣∣∣∣∣2
[

exp

(
−2π

t

τ
A′
)]

1,m

∣∣∣∣∣
2

. (91)

Importantly, whereas the size of the Hamiltonian matrix
for a system of Nq is 2Nq × 2Nq , the size of the connectivity
matrix A is only 2Nq × 2Nq. This makes the method tractable
for much larger systems. To evaluate Cq(t ) with this method
only requires evaluating Eq. (91).

F. Choosing a norm

We can now revisit the question of which norm to use in
computing the Lieb-Robinson correlation function.

The operator norm and Frobenius norm of an operator Q
can be expressed as

‖Q‖Op =
√

λmax(Q̂Q̂†), (92)

‖Q‖Frob =
√

1

N Tr(Q̂Q̂†). (93)

The operator norm is the square root of the maximum eigen-
value of QQ† and the Frobenius norm is the square root of the
average of the eigenvalues of QQ†. In general, these are, of
course, not equal to each other.

For the QTFIM, we have shown above that the operator
Q = [σ̂ z

k , σ̂ z
1 (t )] can be written as a linear combination of just

the 2Nq Pauli strings in Eq. (88). One can therefore show
that, in this case, for all times QQ† is a (time-dependent)
multiple of the identity operator. For the identity operator I ,
the eigenvalues are all 1, so the largest eigenvalue and the
average eigenvalue are identical. The two norms then yield
the same result. The detailed proof is included as Supple-
mental Material [24]. As a consequence of this identity, the
Lieb-Robinson correlation function defined by Eq. (4) can be
calculated with either definition of the norm; we have chosen
to use the Frobenius norm.

FIG. 2. The Lieb-Robinson correlation function for a ten-qubit
chain with J ′ = 0.5. The solid curve shows the results for Ck (t )
calculated using the exponential time evolution operator in Eq. (20).
The points show the results calculated from the method of Pauli
walks using Eq. (91). The Pauli walk method in this case is more
than 100 times faster and can be extended to much larger chains.

G. Comparison with the direct time-exponential method

Figure 2 shows the Lieb-Robinson correlation function
Ck (t ) for a chain of Nq = 10 qubits. The timescale is in units
of τ as defined by Eq. (7). The solid curves show the results
of a direct calculation using the operator exponential time
dependence in Eq. (20). The points show the result of the
operator Pauli walk method using Eq. (91). The agreement
between the two methods is essentially exact. The results
are shown for qubit coupling J ′ = 1/2. Because large-matrix
exponentials are costly to calculate, the Pauli walk method
here provides a speedup of more than a factor of 100 for the
calculation. To assure accuracy, we use an extended-precision
arithmetic package [26].

Several general features of Ck (t ) are visible even in this
relatively short line. The value of the correlation function is
zero at t = 0 for all k because operators on the first qubit
and the kth qubit initially commute—they cannot know about
each other yet. As the influence of the first qubit propagates
down the chain, the correlation function for each site starts
to rise. Quantum oscillations on the characteristic timescale
of τ are due to the internal dynamics of each qubit. The
maximum value of Ck (t ) is Csat = 2. This has its origin in
the Pauli commutation relations of Eq. (11)—the maximum
amount of “noncommutation” is 2. The correlation of qubit 1
with itself, C1(t ) is initially zero because [σ̂ z

1 (0), σ̂ z
1 ] = 0, and

rises because σ̂ z
1 (t ) starts to mix in components of σ̂ x

1 and σ̂
y
1 .

The nesting of Ck (t ) for successive values of qubit index k
is apparent in Fig. 2. Note also that for each pair of successive
qubits k and k + 1, there are particular times for which the
values of Ck (t ) and Ck+1(t ) are nearly identical. For example,
C2(t ) and C3(t ) are nearly the same for t/τ ≈ 0.7. Calcula-
tions on a fine grid of times around such points reveal that the
values do not, in fact, become identical, merely quite close.

The computational cost of using direct operator exponen-
tiation as in Eq. (20) becomes prohibitive for chains of even
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15 qubits. Moreover, quantum reflections from the end of the
chain propagate back, and so relatively short chains can give a
misleading impression of the way in which correlations would
propagate in a longer chain. In the case shown in Fig. 2, for ex-
ample, after about t/τ = 2 the behavior observed is strongly
influenced by interference due to the finite chain length and
reflections from the end. The method of operator Pauli walks
gives us the ability to examine much larger systems and ob-
serve behavior far from the ends. We will explore this behavior
more in Sec. VI.

IV. THE SEMI-INFINITE CHAIN
AT THE PHASE TRANSITION

The results for Ck (t ) given by Eq. (91) can be simplified
even further if we consider the case of a semi-infinite chain at
the critical interqubit coupling J ′ = 1. The adjacency matrix
in Eq. (89) becomes

A′
c =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 · · ·
−1 0 1 0 0 · · ·

0 −1 0 1 0 · · ·
0 0 −1 0 1 · · ·
0 0 0 −1 0 · · ·
...

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦. (94)

It will prove helpful in this context to renumber the operator
nodes in Eq. (88) (not the qubits) so the first node has the
index 0. We then define

Gn,m ≡ [(Ac)n]1,m+1, (95)

and write the correlation function

Ck (t ) =
√√√√ 2Nq−1∑

m=2k−1

∣∣∣∣∣
∞∑

n=0

2

n!

(
−2π

t

τ

)n

Gn,m

∣∣∣∣∣
2

. (96)

The quantity Gn,m is the sum of the weight products for all
walks of length n from node 0 to node m. The weight product
for each of the walks will be ±1. Each negative step (a step
to the left) in the walk generates a negative sign in the weight
product. The overall sign of the weight product for a walk
is determined by the number of negative steps. All of the
walks of length n from node 0 to node m must have the same
number of negative steps, and thus the same overall sign.
One corollary is that in computing G there is no interference
between walks to m that have the same length.

Consider a walk from node 0 to node m of length n. Let
np be the number of positive steps and nn be the number
of negative steps. The weight product for the walk will be
(+1)np (−1)nn . We have n = np + nn and m = np − nn, so

nn = n − m

2
and np = n + m

2
. (97)

Since nn is an integer, we must have n − m ≡ 0 (mod 2),
i.e., n and m must have the same parity. A walk with an even
(odd) number of steps cannot end on an odd (even) node.

Let Nw(n, m) be the number of walks from node 0 to
node m of length n. A well-established result in combinatorics
(Bertand’s ballot problem) is that in the case of a line of nodes

unbounded to the right the number of such walks is

Nw(n, m) =

⎧⎪⎪⎨
⎪⎪⎩

m+1
1+(n+m)/2

( n
(n+m)/2

)
if (n − m) = 0 (mod 2)

0, if (n − m) = 1 (mod 2).

(See, for example, the expression in Ref. [27] with a = np + 1
and b = nn.) Note that for m > n, Nw(n, m) = 0.

Combining the information about the number of walks and
the weight product for each walk, we can write

Gn,m = (−1)(n−m)/2 Nw(n, m). (98)

So, if we consider a semi-infinite line of qubits (Nq → ∞),
we can write for the correlation function:

C2
k (t ) =

∞∑
m=2k−1

∣∣∣∣∣
∞∑

n=0

2

n!

(
−2π

t

τ

)n

(−1)(n−m)/2 Nw(n, m)

∣∣∣∣∣
2

.

(99)

Because only values of n with the same parity as m con-
tribute to the sum in Eq. (99), we make the change of variables
n′ ≡ (n − m)/2, n = 2n′ + m, with the result

C2
k (t ) = 4

∞∑
m=2k−1

(
2πt

τ

)2m

(m + 1)2

×
∣∣∣∣∣

∞∑
n=0

(−1)n

(n + m + 1)!n!

(
2πt

τ

)2n
∣∣∣∣∣
2

, (100)

where we have then substituted the symbol n for n′. The sum
over n can be connected to a Bessel function of the first kind
through the relation (8.440 in Ref. [28])

Jm+1(2x) = xm+1
∞∑

n=0

(−1)n

(n + m + 1)!n!
x2n. (101)

Substituting Eq. (101) into Eq. (100) yields

C2
k (t ) = 4

∞∑
m=2k−1

(
2πt

τ

)2m

(m + 1)2

×
∣∣∣∣∣

∞∑
n=0

(
2πt

τ

)−(m+1)

Jm+1

(
4πt

τ

)∣∣∣∣∣
2

, (102)

C2
k (t ) = 1(

2πt
τ

)2

∞∑
m=2k−1

(m + 1)2J2
m+1

(
4πt

τ

)

= 1

(z/2)2

∞∑
m=2k−1

(m + 1)2J2
m+1(z)

︸ ︷︷ ︸
S

, (103)

where we let

z ≡ 4πt

τ
. (104)

We divide the sum S into two parts:

S =
∞∑

m=1

(m + 1)2J2
m+1(z)

︸ ︷︷ ︸
S1

−
m=2k−2∑

m=1

(m + 1)2J2
m+1(z)

︸ ︷︷ ︸
S2

. (105)
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The first term can be written

S1 =
∞∑

m=1

m2J2
m(z) − J2

1 (z). (106)

Now we can use the relations (11.4.7 in Ref. [29])

J2
m(x) = 2

π

∫ π/2

0
J2m(2x cos θ )dθ (107)

and
∞∑

m=1

m2J2m(u) = u2

8
(108)

(8.513.4 in Ref. [28]) to write Eq. (106) as

S1 =
∫ π/2

0

2

π

∞∑
m=1

m2J2m(2z cos θ )dθ − J2
1 (z)

=
∫ π/2

0

z2

π
cos2 θdθ − J2

1 (z)

= 1

4
z2 − J2

1 (z). (109)

Substituting Eq. (109) and Eq. (105) into Eq. (103), we obtain

C2
k (t ) =

1
4 z2 − J2

1 (z) −∑2k−2
m=1 (m + 1)2J2

m+1(z)

(z/2)2

=
1
4 z2 −∑2k−1

m=1 m2J2
m+1(z)

(z/2)2 . (110)

Substituting in Eq. (104), we arrive at a closed-form solution
for the Lieb-Robinson correlation function for the J ′ = 1 case:

Ck (t ) =
√

1
4

(
4πt
τ

)2 −∑2k−1
m=1 m2J2

m

(
4πt
τ

)
πt/τ

. (111)

V. THE LEADING EDGE OF CORRELATIONS

The complicated behavior of the Lieb-Robinson correla-
tion function shown in Fig. 2 is much simpler if we focus on
the early turn-on of correlation in each successive bit—the
leading edge of the correlation. Figure 3 shows Ck (t ) for
J ′ = 1/2 as correlations first start to grow and propagate along
the qubit chain. The solid lines show the results computed
directly from Eq. (20) and the dots indicate the results from
the Pauli walk method of Eq. (91). For each qubit k, as the
correlation with qubit 1 just begins to grow, and Ck (t ) is
still small, the growth follows a power-law behavior in time
∼t2k−1. At this leading edge, we have shown in Ref. [23] that
the Lieb-Robinson correlation function is given by

Ck (t ) −−−−−→
leading edge

22kπ2k−1

(2k − 1)!

(
J ′)k−1

(
t

τ

)2k−1

. (112)

Only odd orders contribute to the initial growth, so the next
most important term is proportional to t2k+1.

Figure 4 shows the early growth of the Lieb-Robinson
correlation function for the ten-qubit chain on a log-log scale.
Three methods of calculating the correlation are shown: the
direct exponential time dependence of Eq. (20) (solid lines),
the operator Pauli walk method of Eq. (91) (solid dots), and

FIG. 3. Leading edge of Lieb-Robinson correlations for a ten-
qubit line with J ′ = 1/2. Solid lines calculated directly from Eq. (20)
and black dots are the results of the Pauli walk method given by
Eq. (91).

the leading-edge expression of Eq. (112) (open circles). The
agreement between the three methods is excellent.

The leading edge correlation response quantifies the way
in which the correlation between qubit k and qubit 1 ini-
tially turns on. How fast does this leading edge of correlation
propagate down the chain? For qubits far enough down the
chain that we can replace the factorial in the denominator of
Eq. (112) with Stirling’s approximation, we obtain

Ck (t ) −−−−−→
k large

leading edge

1√
πJ ′

1√
k

(
vLRt

(k − 1/2)

)2k−1

, (113)

where the value of vLR is given by

vLRτ = eπ
√

J ′, (114)

FIG. 4. Leading edge of Lieb-Robinson correlations for a ten-
qubit line with J ′ = 1/2. The solid curves shows the results for Ck (t )
calculated using the exponential time evolution operator in Eq. (20).
The black dots show the results calculated from the method of Pauli
walks using Eq. (91), and the open circles are calculated from the
leading edge expression of Eq. (112).
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FIG. 5. Leading edge of the Lieb-Robinson correlation function
for J ′ = 2. The solid lines show snapshots at particular times calcu-
lated with the full operator Pauli walk method of Eq. (91). The black
dots are calculated using the simplified leading edge expression of
Eq. (113).

which we identify as the Lieb-Robinson velocity.
A comparison of the leading edge expression of Eq. (114)

with the results of the operator Pauli walk method is shown
in Fig. 5 for the J ′ = 2 case. Snapshots of Ck (t ) are shown
for various times as the correlations propagate down a chain
of 200 qubits. The solid lines are from the Pauli walk method,
which includes all higher orders in time. The calculation using
the leading edge expression of Eq. (114) matches well for
early times, but not as well later as the correlations moves
down the chain and higher order terms become more im-
portant. As we will see in the next section, the correlation
front moves down the chain and the leading edge description
is accurate only well out ahead of that front. Note that the
magnitude of C here is very small.

To see something more like a simple exponential decay in
front of the correlation front, one must go much further down
the chain. In that limit, where k is quite large and in the region
of the leading edge, where k ≈ vLRt , Eq. (113) can be further
simplified to

Ck (t ) −−−−−→
large k

leading edge

e√
πJ ′

1√
k

e−2(k−vLRt ). (115)

The details of the connection between Eq. (113) and Eq. (115)
are in Appendix A.

We recognize that this nearly exponential leading edge
of correlation corresponds to the classic results of Lieb and
Robinson. For the TFIM, we have here the additional informa-
tion of the specific prefactor and its dependence on J ′, and the
modification of the wavefront by the factor 1/

√
k (also noted

in Ref. [30]). Figure 6 shows a comparison between the results
of Eq. (112) (lines), Eq. (114) (red dots), and the exponential
form given by Eq. (115) (black dots). For Ck (t ) to assume this
simple form—an exponential front moving down the chain at
velocity vLR—requires looking very far down the line, here
more than 10 000 qubits.

FIG. 6. The leading edge of the Lieb-Robinson correlation func-
tion far down a qubit chain for J ′ = 2. Snapshots of Ck (t ) are shown
for even values of t/τ between 828 and 862. The solid lines are
calculated using Eq. (112). Red dots are the results of Eq. (113), and
black dots are calculated using Eq. (115).

VI. PROPAGATION OF CORRELATIONS

We now have three techniques that let us characterize the
way the correlation quantified by Ck (t ) propagates in larger
systems. The operator Pauli walk method described in Sec. III
is our primary tool, augmented by the critical point (J ′ = 1)
results from Sec. IV, and by the expression for the leading
edge of correlations from Sec. V.

A. Overall behavior and effect of coupling strength

Figure 7 shows the Lieb-Robinson correlation function
calculated using the method of operator Pauli walks for a line
with Nq = 200 qubits and J ′ = 1/2. The figure shows Ck (t ) as
a function of time for qubit indices k = [10, 15, 20, . . . , 70]
and times up to 20τ .

Several features of the way in which the correlation spreads
down the chain now become clearer. As one might expect,
away from the ends, the turning on of correlations in each
qubit becomes more regular, with a similar pattern for succes-
sive values of qubit index k down the line. In the timeframe

FIG. 7. Time dependence of the Lieb-Robinson correlation func-
tion for a chain of Nq = 200 qubits with coupling J ′ = 1/2.
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FIG. 8. Snapshots of the Lieb-Robinson correlation function at
different times for a chain of Nq = 200 qubits with coupling J ′ =
1/2. The box shows a plateau in Ck (t ) at t/τ ≈ 13. The inset shows
the time dependence of C39 and C40 around that time. The near-
equivalent values at these adjacent qubits produces the plateau.

shown, reflections from the end of the chain play no role. The
characteristic quantum oscillations remain, but now we can
see that in the absence of end effects, Ck (t ) saturates to the
maximum value of 2 eventually for all values of k. This feature
was not as obvious in the shorter chain of Fig. 2.

While Fig. 7 plots the time dependence of Ck (t ) for specific
qubits down the chain, Fig. 8 shows the same process in a
different way. The figure shows Ck (t ) for all the qubits in the
chain at particular snapshots in time: t/τ = [1, 3, 5, . . . , 39].
This displays the correlation front moving down the chain.
Behind the correlation front, Ck saturates at the maximum
value of 2 (for this case, when J ′ = 1/2). The regular spacing
of the curves in both Figs. 7 and 8 suggests that the front
moves with a constant velocity down the chain, creating the
so-called light cone of propagating influence. (It will turn out
that this is not the Lieb-Robinson velocity.) At a time far in
advance of the front’s arrival, the state of qubit k is necessarily
independent of whatever is happening, or has happened, with
qubit 1, so Ck (t ) is small. The structure of the Hamiltonian
has not yet allowed qubits 1 and k the possibility of becoming
quantum entangled with each other.

We note that Fig. 8 shows an initially perplexing feature—
what appears to be small plateaus in Ck as a function of k at
particular times. As the inset shows, this is simply a manifes-
tation of the above-described near equalities that occasionally
occur for neighboring qubits. The plateau in the small box is
simply due to the fact that C39(t ) and C40(t ) are very nearly
equal at t/τ ≈ 13.

Results for the propagation of correlations for the critical
coupling J ′ = 1 are shown in Figs. 9 and 10. In this case, we
can use the analytic result for a semi-infinite chain of qubits
given by Eq. (111). The behavior is qualitatively similar to
the J ′ = 1/2 case discussed above, although the curves are
smoother. The values of Ck (t ) still saturate at 2. There are no
near equalities for neighboring qubits and so no plateaus. One
noteworthy difference that is immediately visible is that the
correlation front moves down the chain much faster than the
case with J ′ = 1/2 (compare Figs. 8 and 10). We will return
to analysis of the velocity of propagation below.

FIG. 9. Time dependence of the Lieb-Robinson correlation func-
tion for a chain with coupling J ′ = 1. This is the critical point for
the quantum phase transition between the disordered (J ′ < 1) and
ferromagnetic (J ′ > 1) ground states.

The correlation function in the case of stronger coupling,
here J ′ = 2, is shown in Figs. 11 and 12 for Nq = 200 qubits.
This stronger coupling produces a ferromagnetically ordered
ground state with a double degeneracy. These results are
calculated with the method of Pauli walks. Unlike either the
weak-coupling or critical coupling case, the correlation func-
tion now saturates at less than the maximal value of 2–in
this case Ck (t ) saturates at the value 1. The velocity of the
correlation front is the same as that in the J ′ = 1 case.

B. Saturation value

For a long chain, where reflection from the end can be
neglected, we see that Ck (t ) for any qubit eventually reaches
a saturation value which we denote Csat. When the correlation
front that is moving down the line is well past a particular
qubit k, the correlation function Ck for that qubit will approach
arbitrarily closely to Csat.

FIG. 10. Snapshots of the Lieb-Robinson correlation function at
different times for a chain of qubits with critical coupling J ′ = 1.
The correlation front is moving down the chain much faster than in
the J ′ = 1/2 case shown in Fig. 8.
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FIG. 11. Time dependence of the Lieb-Robinson correlation
function for a chain of Nq = 200 qubits with coupling J ′ = 2.

The calculated values of Csat for different values of J ′ are
shown in Fig. 13. For J ′ � 1, corresponding to the weakly
coupled disordered phase, Csat = 2 independent of J ′. We
observe that for J ′ � 1, corresponding to the ordered phase,
the value of Csat decreases inversely with increasing J ′:

Csat =
{

2, J ′ � 1
2/J ′, J ′ > 1.

(116)

The agreement between the numerical calculations using the
Pauli walk method and this conjectured, though unproven,
analytical expression is excellent.

C. The velocity of correlation propagation

We have seen in Figs. 7–12 that the Lieb-Robinson cor-
relation front propagates down the chain of qubits. How fast
does this front travel? We quantify this in the obvious way
by picking an arbitrary threshold level Cthreshold and finding
the time tk when Ck (t ) = Cthreshold. Using finite differences,
the velocity of the front can then be calculated. Near the
beginning of the chain, the velocity varies, but subsequently
saturates to a stable value, as is clear in the figures. We find
that this value vfront is

vfrontτ =
{

2πJ ′ J ′ � 1
2π J ′ > 1.

(117)

FIG. 12. Snapshots of the Lieb-Robinson correlation function at
different times for a chain of Nq = 200 qubits with coupling J ′ = 2.

FIG. 13. Saturation values of the Lieb-Robinson correlation
function.

This front velocity can be connected to a well-established
result for the QTFIM. For the infinite qubit chain, or one
with periodic boundary conditions, the Hamiltonian of Eq. (6)
can be mapped onto an equivalent fermion problem using
the Jordan-Wigner transformation [16,17,31]. A subsequent
Bogoliubov transformation rotates the fermion creation and
annihilation operators to yield a free (noninteracting) fermion
Hamiltonian with quasiparticle excitation spectrum

E (q) = 2J
√

g2 + 1 − 2gcos q. (118)

Here q is the wave number of the harmonic excitation and
g ≡ 1/J ′. The corresponding group velocity can be calculated
via the usual expression:

vg(q) = 1

h̄

∂

∂q
E (q). (119)

The maximum value of this group velocity vmax
g is given by

precisely the expression for vfront in Eq. (117). The derivation
is included for completeness in Appendix B. Thus, the cor-
relation front quantified by Ck (t ) and depicted in Figs. 7–12
travels down the qubit chain at the speed of the maximum
quasiparticle group velocity.

There is another velocity in the problem, as we have al-
ready described in Sec. V, the Lieb-Robinson velocity in
Eqs. (113) and (114). The front velocity vfront and the Lieb-
Robinson velocity vLR are plotted as a function of coupling
strength J ′ in Fig. 14. The points are obtained from numerical
calculations using the operator Pauli walk method. The solid
lines are from the analytic expressions in Eqs. (114) and (117).
The phase transition at J ′ = 1 is clearly evident in vfront, but is
not manifested in vLR. For any value of J ′ > 0,

vLR > vfront, (120)

so the exponential leading edge of correlation is traveling
down the chain considerably ahead of, and faster than, the
main correlation front seen in Figs. 7–12.

The relationship of the two velocities in the problem can
also be seen in the light-cone plot of Ck (t ) in Fig. 15. The
color in the figure represents the logarithm of the correlation
function for a 200-qubit chain with J ′ = 2. The calculation is
done using the Pauli walk method of Eq. (91). Isocontours
for the correlation function are shown in white (slight os-
cillations are an artifact of the contouring algorithm and the
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FIG. 14. Correlation front velocity and the Lieb-Robinson veloc-
ity for the leading edge. Points are from numerical solutions using
the operator Pauli walk method. Solid lines are from Eqs. (114)
and (117).

discreteness of the grid). The black line segment corresponds
to the velocity vfront, and the red line segment corresponds to
vLR. Because time is on the vertical axis, a lower slope on the
graph corresponds to a higher velocity. The main correlation
front expands with a linear light cone given by vfront. The
velocity of the leading edge is initially faster than that given
by Eq. (114) and saturates at the Lieb-Robinson velocity from
above [23]. As the primary front expands down the chain, the
slope of the isocontours at a particular qubit shift to corre-
spond to vfront. The region that is sufficiently far enough ahead
of the primary front that it is well-described by Ck ∼ e−2(k−vt )

is more than 100 qubits down the chain and has an extremely
small value of the correlation function.

A note about terminology is perhaps in order here. The
original Lieb-Robinson paper [1] used the term “group ve-
locity” to describe the velocity that appears in Eq. (3). Their
result was very general and did not depend on a specific
energy dispersion relationship or indeed on the precise Hamil-
tonian. The meaning of this velocity is provided by the context

FIG. 15. The light-cone plot of the Lieb-Robinson correlation
function for a 200-qubit chain with J ′ = 2. Isocontours are shown for
log10 (Ck (t )) = [−1, −20, −40, −60, −80, −100]. The slope of the
solid black line segment corresponds to vfront given by Eq. (117). The
slope of the red line segment corresponds to vLR given by Eq. (114).

in which it appeared—a bound on correlations that depends on
the quantity (d − vt ). Here we use the term “group velocity”
in the standard sense provided by Eq. (119). In this case, the
group velocity vg is understood as the speed of a wave packet
composed of a superposition of single-quasiparticle Hamil-
tonian eigenstates with some distribution of wave numbers
centered about q. We identify our observed (calculated) front
velocity vfront with the maximum group velocity so defined.

VII. DISCUSSION

The primary result of this investigation is to highlight the
fact that for the 1D QTFIM, two different velocities character-
ize the propagation of the Lieb-Robinson correlation function.
A correlation front moves down the qubit chain with velocity
vfront, ahead of which Ck (t ) is exponentially smaller. This
velocity increases linearly with coupling strength in the dis-
ordered Ising phase (J ′ < 1) and is independent of coupling
strength in the ordered phase. The velocity is given by the
maximum group velocity of the single quasiparticle excitation
band. Behind the propagating front, Ck (t ) saturates to a value
of 2 in the disordered phase and 2/J ′ in the ordered phase.

Well ahead of the correlation front, the exponential lead-
ing edge of the correlation front moves faster. This velocity
saturates from above to the Lieb-Robinson velocity vLR =
e
√

Jγ /h̄ [equivalent to Eq. (114)]. This velocity is unaffected
by the phase transition at J ′ = 1. The Lieb-Robinson velocity
describes a region well out ahead of the main correlation front
in which the value of Ck (t ) is extremely small.

It is not clear if the operator Pauli walk method developed
here for the QTFIM can be extended to other models. The key
feature that enabled this method to work was that the num-
ber of Pauli strings that were required to support the spreading
Heisenberg operator was reduced from 4Nq to 2Nq. For longer-
range interactions, that may well not be the case. Further
investigation will be required to reveal whether the general
features of the propagation of Ck (t ) as described here hold for
such systems.

APPENDIX A: DERIVATION OF EQUATION Eq. (115)

We begin with Eq. (113) and consider the limit in which
the qubit index k is quite large and focus on the region ahead
of the leading edge of correlations defined by k ≈ vLRt . Equa-
tion (113) can be written

Ck (t ) −−−−−→
k large

leading edge

1√
πJ ′

1√
k

[vLRt]2k−1

[
1

(k − 1/2)

]2k−1

,

(A1)

[
1

k − 1
2

]2k−1

=
[

1

k
(
1 − 1

2k

)
]2k−1

=
(

1

k

)2k−1
[

1(
1 − 1

2k

)
]2k−1

=
(

1

k

)2k−1
[

1(
1 − 1

2k

)
]−1[

1(
1 − 1

2k

)
]2k

=
(

1

k

)2k−1[
1 − 1

2k

][
1(

1 − 1
2k

))
]2k

. (A2)
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In the large k limit, the first term in square brackets in Eq. (A2)
becomes 1. For the second term in square brackets, we can use
the fact that

lim
x→∞

[
1(

1 − 1
x

)
]x

= e (A3)

to obtain

Ck (t ) −−−−−→
k large

leading edge

e√
πJ ′

1√
k

[
vLRt

k

]2k−1

. (A4)

The term in square brackets in Eq. (A4) can be written[
vLRt

k

]2k−1

= e(2k−1) log ( vLRt
k ). (A5)

We define the index at the leading edge of correlation at time
t to be

kt ≡ vLRt (A6)

and consider a region of width �k out in front of this point,
so

k = kt + �k, (A7)

�k = k − kt = k − vLRt . (A8)

We are interested in the limit when kt → ∞ and therefore
�k/kt → 0. In that case,

vLRt

k
= kt

kt + �k
= 1

1 + �k
kt

, (A9)

so the logarithm in Eq. (A5) can be written

log

(
vLRt

k

)
= − log

(
1 + �k

kt

)
(A10)

≈ −�k

kt
. (A11)

The argument of the exponential in Eq. (A5) can therefore
be written

(2k − 1) log

(
vLRt

k

)
≈ −2k

�k

kt
+ �k

kt
. (A12)

The second term on the right can be dropped to first order, but
the first term must be treated more carefully. Using Eq. (A7),
we have

(2k − 1) log

(
vLRt

k

)
≈ −2(kt + �k)

�k

kt

≈ −2�k

≈ −2(k − vLRt ). (A13)

Combining this result with Eq. (A5) and Eq. (A4), we
obtain

Ck (t ) −−−−−→
large k

leading edge

e√
πJ ′

1√
k

e−2(k−vLRt ) (A14)

which is identical to Eq. (115). The validity of this expression
is confirmed by the close match shown in Fig. 6. Of course,

if the width of �k is extended too far, then Ck (t ) will drop
faster. The exponential given by Eq. (A14) bounds this very
advanced leading edge of the correlation function in a region
where its magnitude is extremely small.

APPENDIX B: MAXIMUM QUASIPARTICLE GROUP
VELOCITY FOR THE TRANSVERSE ISING CHAIN

We start with the dispersion relation for single quasiparticle
excitations for the QTFIM,

E (q) = 2J
√

g2 + 1 − 2gcos q, (B1)

where g = 1/J ′ = γ /J [17].
The group velocity is given by

vg = 1

h̄

dE (q)

dq
(B2)

and

dE (q)

dq
= 2Jg sin(q)√

(g − cos(q))2 + sin2(q)
. (B3)

We consider two cases:
Case I: g � 1, J ′ � 1.
If g � 1, (B3) can be maximize by making (g − cos(q)) in

the denominator 0, so q = arccos(g). Hence,

vmax
g = 1

h̄

(
dE (q)

dq

)
max

= 2Jg

h̄
(B4)

= 2π

τ
. (B5)

Therefore,

vmax
g τ = 2π for g � 1, J ′ � 1. (B6)

Case II: g � 1, J ′ � 1.
We write Eq. (B3) as

dE(q)

dq
= 2Jg√

1 + ( g
sin(q) − cot(q)

)2 . (B7)

Maximizing (B7) is equivalent to minimizing

β(q) = g

sin q
− cot q. (B8)

Taking the derivative of β with respect to k and setting it to
zero, we obtain

dβ

dq
= −gcot(q) csc(q) + csc2(q) = 0, (B9)

so at value q0 which minimizes β,

gcot(q0) = csc(q0), cos(q0) = 1

g
, (B10)

and

sin(q0) =
√

1 − 1

g2
. (B11)
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Substituting (B10) and (B11) into (B3), we obtain

dE (q)

dq

∣∣∣∣
q0

= 2J. (B12)

The maximum group velocity in this case is then

vmax
g = 2J

h̄
(B13)

or

vmax
g τ = 2πJ ′. (B14)

Summarizing the two cases, we therefore have

vmax
g τ =

{
2πJ ′, J ′ � 1, g � 1
2π, J ′ � 1, g � 1.

(B15)
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