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Entropy production for diffusion processes across a semipermeable interface
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The emerging field of stochastic thermodynamics extends classical ideas of entropy, heat, and work to
nonequilibrium systems. One notable finding is that the second law of thermodynamics typically only holds after
taking appropriate averages with respect to an ensemble of stochastic trajectories. The resulting average rate of
entropy production then quantifies the degree of departure from thermodynamic equilibrium. In this paper we
investigate how the presence of a semipermeable interface increases the average entropy production of a single
diffusing particle. Starting from the Gibbs-Shannon entropy for the particle probability density, we show that a
semipermeable interface or membrane S increases the average rate of entropy production by an amount that is
equal to the product of the flux through the interface and the logarithm of the ratio of the probability density
on either side of the interface, integrated along S. The entropy production rate thus vanishes at thermodynamic
equilibrium, but can be nonzero during the relaxation to equilibrium, or if there exists a nonzero stationary
equilibrium state (NESS). We then give a probabilistic interpretation of the interfacial entropy production rate
using so-called snapping out Brownian motion. This also allows us to construct a stochastic version of entropy
production. Finally, we illustrate the theory using the example of diffusion with stochastic resetting on a circle,
and find that the average rate of interfacial entropy production is a nonmonotonic function of the resetting rate
and the permeability.
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I. INTRODUCTION

In recent years there has been a rapid growth of interest in
stochastic thermodynamics, which uses tools from the theory
of stochastic processes to extend classical ideas of entropy,
heat and work to nonequilibrium systems [1–4]. Examples in-
clude overdamped colloidal particles, biopolymers, enzymes,
and molecular motors. One characteristic feature of such sys-
tems is that the second law of thermodynamics typically only
holds after taking appropriate averages with respect to an
ensemble of stochastic trajectories or over long time intervals.
The resulting average rate of entropy production then quanti-
fies the degree of departure from thermodynamic equilibrium.
In addition, probabilistic methods such as Itô stochastic calcu-
lus, path integrals and Radon-Nikodym derivatives have been
used to derive a variety of important fluctuation relations from
the stochastic entropy evaluated along individual trajectories
[5–8]. These fluctuation relations have subsequently been gen-
eralized using martingale theory [9–14].

In this paper we consider the following problem: How
does the presence of a semipermeable interface contribute
to the average entropy production rate of a single diffusing
particle? Diffusion through semipermeable membranes has
a wide range of applications, including molecular transport
through biological membranes [15–17], diffusion magnetic
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resonance imaging (dMRI) [18–20], drug delivery [21,22],
reverse osmosis [23], and animal dispersal in heterogeneous
landscapes [24–26]. At the macroscopic level, the classical
boundary condition for a semipermeable membrane takes the
particle flux across the membrane to be continuous and to be
proportional to the difference in concentrations on either side
of the barrier. The constant of proportionality κ0 is known as
the permeability. The semipermeable boundary conditions are
a particular version of the thermodynamically derived Kedem-
Katchalsky (KK) equations [27–30]. At the single-particle
level, the resulting diffusion equation can be reinterpreted as
the Fokker-Planck (FP) equation for the particle probability
density, which is supplemented by the interfacial boundary
conditions. In particular, suppose that a semipermeable inter-
face S partitions Rd into two complementary domains �±
with Rd = �+ ∪ �− ∪ S . If J (y, t ) denotes the continuous
flux across a point y ∈ S from �− to �+, then J (y, t ) =
κ0 [p(y−, t ) − p(y+, t )]/2, where p(y±, t ) are the solutions
on S± = �± ∩ S , where � denotes closure of a set �. We
consider a natural generalization of the interfacial condition
by allowing there to be a jump in the chemical potential across
the interface. This results in a corresponding directional bias
that can be implemented by taking J (y, t ) = κ0 [p(y−, t ) −
σ p(y+, t )]/2 for some σ �= 1.

Starting from the Gibbs-Shannon entropy for the particle
probability density p(x, t ), x ∈ Rd , we show in Sec. II that
a semipermeable interface S increases the average rate of
entropy production at a given time t by an amount Iint (t ) =´
S J (y, t ) ln[p(y−, t )/p(y+, t )]dy. In other words, Iint (t ) is

equal to the product of the flux through the interface and the
logarithm of the ratio of the probability density on either side
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of the interface, integrated along S . It immediately follows
that the entropy production rate vanishes at thermodynamic
equilibrium, but can be nonzero during the relaxation to equi-
librium. We illustrate the theory by calculating the average
rate of entropy production for one-dimensional (1D) diffusion.
In the 1D case, S reduces to a single point x = 0, say, so that
�− = (−∞, 0−] and �+ = [0+,∞).

In Sec. III we present a probabilistic interpretation of
Iint based on so-called snapping out Brownian motion (BM)
[31–34]. The latter generates individual stochastic trajectories
of the dynamics by sewing together successive rounds of
partially reflected BMs that are restricted to either the left
or right of the barrier. Each round is killed (absorbed) at the
barrier when its boundary local time exceeds an exponential
random variable parameterized by the permeability κ0. (The
local time is a Brownian functional that specifies the contact
time between a particle and a given boundary [35–39].) A
new round is then immediately started in either direction
with equal probability, assuming that there is no directional
bias (σ = 1). It is the random switching after each killing
event that is the source of the entropy production. We also
use snapping out BM to construct a stochastic version of
entropy production. Averaging the latter with respect to the
distribution of sample paths recovers the results based on the
Gibbs-Shannon entropy.

Finally, in Sec. IV we illustrate the theory using a well-
studied mechanism for maintaining a diffusing particle out
of thermodynamic equilibrium, namely, stochastic resetting.
Resetting was originally introduced within the context of a
Brownian particle whose position X(t ) instantaneously resets
to a fixed position x0 at a sequence of times generated from
a Poisson process of constant rate r [40–42]. There have sub-
sequently been a wide range of generalizations at the single
particle level, see the review [43] and references therein. A
signature feature of many diffusion processes with resetting
is the existence of a nonequilibrium stationary state (NESS)
that supports nonzero time-independent fluxes. A number of
recent studies have considered the stochastic thermodynamics
of diffusive systems with resetting [44–50]. One issue that
emerges from these studies is that sharp resetting to a single
point is a unidirectional process that has no time-reversed
equivalent. This means that the average rate of entropy pro-
duction calculated using the Gibbs-Shannon entropy cannot
be related to the degree of time-reversal symmetry breaking.
This connection can be established by considering resetting
to a random position [51] or BM in an intermittent confin-
ing potential [52]. An additional subtle feature arises when
considering the effects of resetting in the presence of a
semipermeable interface [53–55]. In particular, it is natural
to assume that the interface screens out resetting, in the sense
that a resetting event cannot cross the interface. This means
that a particle on one side of the interface ∂M cannot reset
to a point on the other side. Hence, it is not possible to
have a nonzero stationary flux across the interface, since there
is no countervailing reset current in the opposite direction.
We bypass the screening effect in Sec. IV by considering
the example of single-particle diffusion on a ring with both
stochastic resetting and a semipermeable interface. We derive
an explicit expression for the resulting NESS and use this
to calculate the various contributions to the average rate of

FIG. 1. BM in R with a semipermeable interface at x = 0. (The
two-dimensional representation is for illustrative purposes.)

entropy production in the stationary state, including those
associated with resetting as well as those arising from the
semipermeable interface.

II. SINGLE-PARTICLE DIFFUSION ACROSS
A SEMIPERMEABLE INTERFACE

A. Diffusion in R

Consider an overdamped Brownian particle diffusing in
a 1D domain with a semipermeable barrier or interface at
x = 0; see Fig. 1. Suppose that the particle is also subject
to a force F (x, t ). Let p(x, t ) denote the probability density
of the particle at position x at time t . The corresponding FP
equation takes the form

∂ p(x, t )

∂t
= −∂J (x, t )

∂x
, x �= 0, t > 0, (2.1a)

with the probability flux

J (x, t ) = −D
∂ p(x, t )

∂x
+ 1

γ
F (x, t )p(x, t ), (2.1b)

and the following pair of boundary conditions at the interface:

J (0±, t ) = J (t ) := κ0

2
[p(0−, t ) − σ p(0+, t )], (2.1c)

where κ0 is a constant permeability and σ , 0 � σ < 1, rep-
resents a directional asymmetry that can be interpreted as a
step discontinuity in a chemical potential [27–29,56]. This
asymmetry tends to enhance the concentration to the right
of the interface. (If σ > 1, then we would have an interface
with permeability κ0σ and bias 1/σ to the left. A symmetric
interface corresponds to the case σ = 1.) The arbitrary factor
of 1/2 on the right-hand side of Eq. (2.1c) is motivated by
the corresponding probabilistic interpretation of snapping out
BM, see Sec. III. Finally, D is the diffusivity, γ is the friction
coefficient, and the two quantities are related according to
the Einstein relation Dγ = kBT . (In the following we set the
Boltzmann constant kB = 1.)

For simplicity, we take the diffusive medium to be spa-
tially homogeneous. However, the domains (−∞, 0−] and
[0+,∞) could have different diffusivities, for example. That
is, D = D− for x < 0 and D = D+ for x > 0 with D− �= D+;
the drag coefficients would also differ due to the Einstein
relation. We also assume that the force F (x, t ) is continuous
at the interface. In order to evaluate various thermodynamic
quantities such as the average heat, work and entropy, we
have to integrate with respect to x ∈ R. Since the probability
density has a discontinuity at x = 0, we partition each integral
into the two domains (−∞, 0−] and [0+,∞), and introduce

023283-2



ENTROPY PRODUCTION FOR DIFFUSION PROCESSES … PHYSICAL REVIEW RESEARCH 6, 023283 (2024)

the notation  
dx =

ˆ 0

−∞
dx +

ˆ ∞

0
dx. (2.2)

Continuity of the flux at x = 0 means that in most cases there
is no contribution to the integral from the discontinuity. One
notable exception occurs when we evaluate the average rate of
entropy production.

In the 1D case we can always write the force as a gradi-
ent of a potential, F (x, t ) = −∂xV (x, t ). This means that the
average internal energy is

E (t ) =
 

dx p(x, t )V (x, t ), (2.3)

and

dE
dt

=
 

dx

[
∂ p(x, t )

∂t
V (x, t ) + ∂V (x, t )

∂t
p(x, t )

]
. (2.4)

Using Eqs. (2.1a), (2.1b) and integration by parts, we have
ˆ 0

−∞
dx

∂ p(x, t )

∂t
V (x, t )

=
ˆ 0

−∞
dx

∂V (x, t )

∂x
J (x, t ) − J (0−, t )V (0, t ) (2.5)

and ˆ ∞

0
dx

∂ p(x, t )

∂t
V (x, t )

=
ˆ ∞

0
dx

∂V (x, t )

∂x
J (x, t ) + J (0+, t )V (0, t ). (2.6)

Imposing flux continuity at the interface leads to a nonequi-
librium version of the first law of thermodynamics:

dE
dt

= dW
dt

− dQ

dt
, (2.7)

where W (t ) is the average work done on the particle and Q(t )
is the average heat dissipated into the environment with

dQ

dt
= −

 
dx

∂V (x, t )

∂x
J (x, t ) (2.8)

and

dW
dt

=
 

dx
∂V (x, t )

∂t
p(x, t ). (2.9)

If the potential is time-independent, then we have the further
simplification that there exists a unique equilibrium stationary
state given by the Boltzmann-Gibbs distribution,

lim
t→∞ p(x, t ) = 1

Z
e−V (x)/T , lim

t→∞ J (x, t ) = 0. (2.10)

Since there are no fluxes at equilibrium, the semipermeable
membrane becomes invisible, that is, it has no effect on the
stationary state.

The average system entropy at time t is defined by

Ssys(t ) := −
 

dx p(x, t ) ln p(x, t ), (2.11)

which takes the form of a Gibbs-Shannon entropy. To calcu-
late the average rate of entropy production, we differentiate

both sides of Eq. (2.11) with respect to time t :

Rsys(t ) := dSsys(t )

dt
= −

 
dx

∂ p(x, t )

∂t
[1 + ln p(x, t )].

(2.12)

Using the FP equation and performing an integration by parts,
we have

Rsys(t ) =
 

dx
∂J (x, t )

∂x
[1 + ln p(x, t )]

= −
 

dx
J (x, t )

p(x, t )

∂ p(x, t )

∂x
+J (0−, t )[1 + ln p(0−, t )]

− J (0+, t )[1 + ln p(0+, t )]. (2.13)

Using the definitions of the probability fluxes, the integrand
can be rewritten as

− 1

p(x, t )

∂ p(x, t )

∂x
J (x, t ) = J (x, t )2

Dp(x, t )
− F (x, t )J (x, t )

T
.

(2.14)

In addition, imposing the flux continuity condition shows that

J (0−, t )[1 + ln p(0−, t )] − J (0+, t )[1 + ln p(0+, t )]

= J (t ) ln[p(0−, t )/p(0+, t )]. (2.15)

We thus obtain a generalization of the classical entropy
production rate given by

Rtot (t ) := Rsys(t ) + Renv(t )

=
 

dx
J (x, t )2

Dp(x, t )
+ Iint (t ), (2.16)

where

Iint (t ) = κ0

2
[p(0−, t ) − σ p(0+, t )] ln

[
p(0−, t )

p(0+, t )

]
(2.17)

is the contribution to the entropy production from the semiper-
meable membrane, and

Renv(t ) := 1

T

dQ

dt
=
 

dx
F (x, t )J (x, t )

T
(2.18)

is the average environmental entropy production rate due to
heat dissipation, see Eq. (2.8). It is important to note that
Eq. (2.16) is a general result for diffusion through an inter-
face, while Eq. (2.17) is the particular form of the interfacial
contribution for a semi-permeable membrane.

In the case of a symmetric interface (σ = 1), [p(0−, t ) −
p(0+, t )] and ln[p(0−, t )/ ln p(0+, t )] have the same sign. It
follows that Iint (t ) � 0, and hence the average total entropy
production rate satisfies the second law of thermodynamics in
the sense that

Rtot (t ) � 0, t � 0. (2.19)

However, if 0 < σ < 1, then Iint (t ) is not necessarily posi-
tive. To obtain the correct second law of thermodynamics, we
decompose Iint (t ) as

Iint (t ) = Iσ (t ) + κ0

2
[p(0−, t ) − σ p(0+, t )] ln σ, (2.20)
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with

Iσ (t ) = κ0

2
[p(0−, t ) − σ p(0+, t )] ln

[
p(0−, t )

σ p(0+, t )

]
� 0.

(2.21)

Suppose that there is a discontinuity in the chemical potential
across the interface, with μ = μ− for x < 0 and μ = μ+ for
x > 0. We then make the identification σ = e(μ+−μ− )/T with
μ+ < μ− for σ < 1, such that

Iint (t ) = Iσ (t ) + J (t )
μ+ − μ−

T
. (2.22)

The second term on the right-hand side represents the rate of
reduction in the free energy due to the probability flux J (t )
from a region with a high chemical potential μ− to a region
with a low chemical potential μ+. This change in free energy
contributes to the heat dissipated into the environment. Hence,
redefining the environmental entropy according to

Renv(t ) =
 

dx
F (x, t )J (x, t )

T
+ J (t )

μ− − μ+
T

, (2.23)

we obtain the modified second law of thermodynamics

Rtot (t ) =
 

dx
J (x, t )2

Dp(x, t )
+ Iσ (t ) � 0. (2.24)

The existence of the contribution Iint is one of the main results
of our paper. We will give a physical interpretation of this
result in Sec. III.

B. Interfacial entropy production for pure diffusion

In the particular case of a time-independent force F (x) =
−V ′(x), the rate of entropy production vanishes in the limit
t → ∞ since there are no fluxes at equilibrium. However,
Rtot (t ) > 0 at finite times t . This result holds even for pure
diffusion, where an explicit solution of Eqs. (2.1) can be
obtained. For the sake of illustration, we will consider a sym-
metric interface. The simplest way to proceed is to Laplace
transform Eqs. (2.1), under the initial condition p(x, 0) =
δ(x − x0). For the sake of illustration we take x0 > 0. It fol-
lows that

p̃(x, s) :=
ˆ ∞

0
e−st p(x, t )dt = G(x, x0; s), (2.25)

where G(x,0 ; s) is the Green’s function of the modified
Helmholtz equation

d2G

dx2
− sG(x, x0; s) = −δ(x − x0), (2.26a)

supplemented by the interfacial conditions

−D
dG(x, x0; s)

dx

∣∣∣∣
x=0−

= −D
dG(x, x0; s)

dx

∣∣∣∣
x=0+

= κ0

2
[G(0−, x0; s) − G(0+, x0; s)],

(2.26b)

and with limx→±∞ G(x, x0; s) = 0.

Equation (2.26a) has the general solution

G(x, x0; s) = e
√

s/D|x−x0|

2
√

sD
+ A(s)e

√
s/Dx + B(s)e−√

s/Dx,

(2.27)

with the pair of coefficients A(s) and B(s) determined by
the supplementary conditions (2.26b). Finally, inverting the
resulting solution in Laplace space gives

p(x, t )

= 1

2
√

πDt

[
exp

(
− (x − x0)2

4Dt

)
+ exp

(
− (x + x0)2

4Dt

)]

− κ0

2D
exp

(
κ0

D
(x + x0 + κ0t )

)
erfc

(
(x + x0 + 2κ0t

2
√

Dt

)
,

(2.28a)

for x > 0 and

p(x, t ) = κ0

2D
exp

(
κ0

D
(x0 − x + κ0t )

)
erfc

(
x0 − x + 2κ0t

2
√

Dt

)
(2.28b)

for x < 0. The complementary error function is

erfc(x) := 2√
π

ˆ ∞

x
e−y2

dy. (2.29)

In the limit κ0 → 0, we see that p(x, t ) → 0 for x < 0 and
p(x, t ) → p+(x, t ) for x > 0, with

p+(x, t )

= 1

2
√

πDt

[
exp

(
− (x − x0)2

4Dt

)
+ exp

(
− (x + x0)2

4Dt

)]
.

(2.30)

This is consistent with the fact that the interface becomes
completely impermeable in the limit κ0 → 0 and the particle
started to the right of the interface. We thus recover the so-
lution of the diffusion equation on the half-line with a totally
reflecting boundary at x = 0. To determine what happens in
the limit κ0 → ∞, we use the asymptotic expansion

erfc(x) ∼ e−x2

√
πx

[
1 − 1

2x2
+· · ·

]
. (2.31)

We find that the interface becomes completely transparent and
p(x, t ) is given by the classical solution of free diffusion in
R. In Fig. 2 we show sample plots of the interfacial entropy
production rate Iint (t ), see Eq. (2.17), as a function of time t
for various initial positions x0 and permeabilities κ0. The uni-
modal dependence of Iint (t ) on the time t reflects the fact that
the Green’s function solution p(0±, t ) on either side of the in-
terface is also unimodal, with p(0±, t ) → 0 as t → 0 and t →
∞. Since x log(x) → 0 as x → 0, one also finds that Iint (t ) →
0 in the limits t → 0 and t → ∞. Moreover, Iint (t ) > 0 for all
finite t since p(0+, t ) > p(0−, t ). Increasing the permeability
κ0 reduces the difference between the density on either side of
the interface, so that [p(0−, t ) − σ p(0+, t )] ln[ p(0−,t )

p(0+,t ) ] is also
reduced. However, this is counteracted by the multiplicative
factor of κ0 in Eq. (2.17) so that the initial rise of Iint (t )
actually increases with κ0. As expected, the effects of the
interface at x = 0 are greater when x0 is closer to the origin.
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FIG. 2. Single-particle diffusion across a closed semipermeable interface in R. Plots of the average interfacial entropy production rate as a
function time for (a) various initial positions x0 and fixed permeability κ0 = 1 and (b) various κ0 for fixed x0 = 1.

C. Diffusion across a closed semipermeable membrane in Rd

The expression (2.17) for the average rate of entropy
production through a semipermeable interface generalizes
to higher spatial dimensions. Suppose that M denotes a
closed bounded domain M ⊂ Rd with a smooth concave
boundary ∂M separating the two open domains M and its
complement Mc = Rd\M; see Fig. 3. The boundary acts as
a semipermeable interface with ∂M+ (∂M−) denoting the
side approached from outside (inside) M. Let p(x, t ) denote
the probability density function of an overdamped Brownian
particle subject to a force field F(x). The multidimensional
analog of the FP equation is

∂ p(x, t )

∂t
= −∇ · J(x, t ), x ∈ M ∪ Mc, (2.32a)

FIG. 3. Single-particle diffusion across a closed semipermeable
membrane in Rd .

J(x, t ) = −D∇p(x, t ) + 1

γ
F(x)p(x, t ), (2.32b)

J(y±, t ) · n = J (y, t ), y ∈ ∂M, (2.32c)

J (y, t ) = κ0

2
[p(y−, t ) − σ p(y+, t )], y ∈ ∂M, (2.32d)

where n is the unit normal directed out of M.
The average system entropy at time t is defined by

Ssys(t ) := −
ˆ
M

dx p(x, t ) ln p(x, t )

−
ˆ
Mc

dx p(x, t ) ln p(x, t ). (2.33)

Differentiating both sides of Eq. (2.33) with respect to time t
gives

Rsys(t ) := dSsys(t )

dt
= −

ˆ
M

dx
∂ p(x, t )

∂t
[1 + ln p(x, t )]

−
ˆ
Mc

dx
∂ p(x, t )

∂t
[1 + ln p(x, t )]. (2.34)

Using the FP Eq. (2.32) and performing an integration by parts
according to the divergence theorem, we have

Rsys(t ) =
ˆ
M

dx [1 + ln p(x, t )]∇ · J(x, t )

+
ˆ
Mc

dx [1 + ln p(x, t )]∇ · J(x, t )

= −
ˆ
M

dx ∇p(x, t ) · J(x, t )

p(x, t )

−
ˆ
Mc

dx ∇p(x, t ) · J(x, t )

p(x, t )

+
ˆ

∂M−
dy [1 + ln p(y, t )]J(y, t ) · n

−
ˆ

∂M+
dy [1 + ln p(y, t )]J(y, t ) · n. (2.35)
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We now decompose the various contributions to Rsys along
analogous lines to the 1D case. This leads to the higher di-
mensional version of Eq. (2.16):

Rtot (t ) := Rsys(t ) + Renv(t )

=
ˆ
M

dx
J(x, t )2

Dp(x, t )
+
ˆ
Mc

dx
J(x, t )2

Dp(x, t )
+ Iint (t ),

(2.36)

where

Iint (t ) =
ˆ

∂M
dyJ (y, t ) ln

[
p(y−, t )

p(y+, t )

]
(2.37)

is the contribution to the entropy production from the semiper-
meable membrane, and

Renv(t ) = 1

T

dQ

dt

=
ˆ
M

dx
F(x, t ) · J(x, t )

T
+
ˆ
Mc

dx
F(x, t ) · J(x, t )

T
.

(2.38)

III. PROBABILISTIC INTERPRETATION
OF THE ENTROPY CONTRIBUTION Iint

In Sec. II we analyzed BM across a semipermeable in-
terface using a Fokker-Planck description of the distribution
of sample paths. To understand the origins of the interfa-
cial entropy production term Iint, see Eq. (2.17) and its
higher-dimensional analog (2.37), we turn to a probabilis-
tic description of individual trajectories based on so-called
snapping out BM [31–34]. Here we only cover the es-
sential elements necessary for interpreting Iint in 1D. The
mathematical details of the 1D case are presented in the
Appendix. Extensions of the probabilistic framework to
higher-dimensional interfaces can be found in Ref. [34].

First suppose that the interface is impermeable (κ0 = 0), so
that the particle is restricted to the positive half-line [0,∞)
and the boundary at x = 0 is totally reflecting. Let X (t ) ∈
[0,∞) denote the position of a Brownian particle at time t .
To write down a stochastic differential equation (SDE) for
the particle, it is necessary to introduce a Brownian functional
known as the boundary local time [35–39]:

L(t ) = lim
ε→0+


ε (t )

ε
= lim

ε→0+

D

ε

ˆ t

0
�(ε − X (τ ))dτ

= D lim
ε→0+

ˆ t

0
δ(X (τ ) − ε)dτ, (3.1)

where � is the Heaviside function. The functional 
ε (t ) mea-
sures the occupation time of the particle in a boundary layer
of width ε. It can be shown that L(t ) exists and is a nonde-
creasing stochastic process. The position of the particle then
evolves according to the so-called Skorokhod equation for
reflected BM on the half-line:

dX (t ) = F (X (t ))dt +
√

2DdW (t ) + dL(t ), (3.2)

where dL(t ) = D limε→0+ δ(X (t ) − ε) and W (t ) is a Wiener
process satisfying

〈W (t )〉 = 0, 〈W (t )W (t ′)〉 = min{t, t ′}. (3.3)

Heuristically speaking, the differential of the local time gen-
erates a rightward impulsive kick whenever the particle hits
the boundary. Now suppose that the diffusion process is killed
when the local time L(t ) at x = 0 exceeds a randomly gener-
ated threshold L̂ with

P[L̂ > l] ≡ e−κ0
/D. (3.4)

That is, the particle is absorbed at the stopping time

T = inf{t > 0 : L(t ) > L̂}. (3.5)

Since L(t ) is a nondecreasing process, the condition t < T
is equivalent to the condition L(t ) < L̂. It can be proven that
the distribution of sample paths generated by the SDE (3.2)
satisfies an FP equation with a Robin boundary condition at
x = 0 [39].

Let us now return to the case of a semipermeable inter-
face (κ0 > 0). First, suppose that the interface is symmetric
(σ = 1). The dynamics of snapping out BM consists of
sewing together successive rounds of reflected BM, each of
which evolves according to an SDE of the form (3.2) or its
analog on the left-hand side of the interface, as illustrated
in Fig. 4. [The local time when X (t ) ∈ (−∞, 0] is L(t ) =
limε→0+ (D/ε)

´ t
0 �(ε + X (τ ))dτ .] Each round is killed when

the local time at the right-hand or left-hand side of the inter-
face exceeds an exponentially distributed random threshold.
(The threshold is independently generated each round.) Fol-
lowing each round of killing, an unbiased coin is thrown to
determine which side of the interface the next round occurs. It
can be proven that snapping out BM generates sample paths
whose distribution is given by the solution of the correspond-
ing FP Eq. (2.1), see Refs. [31–34] and the Appendix. It is the
randomization following each killing event that accounts for
the term Iint appearing in Eq. (2.16). That is, Iint is given by
the product of the flux J (t ) across the interface, which speci-
fies the effective rate of randomization, and the corresponding
entropy difference ln p(0−, t ) − ln p(0+, t ). It is also possible
to incorporate directional asymmetry into snapping out BM
[34]. This is achieved by introducing a bias in the switching
between the positive and negative directions of reflected BM
following each round of killing.

One of the major advantages of the probabilistic formula-
tion of snapping out BM is that it can be used to construct
a stochastic version of entropy production. For the sake of
illustration, we focus on the 1D unbiased case. Let X (t ) be
the position of the Brownian particle at time t and consider
the stochastic system entropy

Ssys(t ) = − ln p(X (t ), t ), (3.6)

where p(x, t ) is the solution of Eqs. (2.1). First suppose that
the interface is impermeable (κ0 = 0) and X (0) > 0. Differ-
entiating both sides of Eq. (3.6) with respect to t and using the
chain rule in the Stratonovich version of stochastic calculus
gives

dSsys(t ) = − 1

p(X (t ), t )

∂ p(X (t ), t )

∂t
dt

− 1

p(X (t ), t )

∂ p(X (t ), t )

∂x
◦ dX (t ), (3.7)
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FIG. 4. Snapping out BM. (a) Single-particle diffusing across a semipermeable interface at x = 0. (b) Decomposition of snapping out BM
into the random switching between two partially reflected BMs in the domains �±.

with dX (t ) satisfying Eq. (3.2) and dL(t ) =
limε→0+ δ(X (t ) − ε)dt . If κ0 > 0, then in an infinitesimal
time interval dt , there is a nonzero probability κ0dt/2 that
the reflected BM is killed and the particle switches to the
left-hand side of the interface. This results in a jump of the
entropy given by Ssys = ln[p(0−, t )/p(0+, t )]. However, if
the particle remains on the right-hand side after the killing
event, which occurs with probability 1 − κ0dt/2, then there
is no jump in the entropy. Equation (3.7) is thus modified as

dSsys(t ) = − 1

p(X (t ), t )

∂ p(X (t ), t )

∂t
dt − 1

p(X (t ), t )

× ∂ p(X (t ), t )

∂x
◦ dX (t ) − κ0

2
lim

ε→0+
δ(X (t ) − ε)

× ln[p(0−, t )/p(0+, t )]dt, (3.8)

with

dX (t ) = − 1

γ
V ′(X (t ))dt +

√
2DdW

+ D[1 − κ0dt/2] lim
ε→0+

δ(X (t ) − ε)dt . (3.9)

The last term on the right-hand side is the impulsive kick
dL(t ) at x = 0+ multiplied by the probability that the particle
remains on the same side, that is, it is reflected rather than
transmitted through the interface. A very similar result holds
if the particle approaches the interface from the left-hand
side, except that now the jump in entropy due to crossing the
interface is Ssys = − ln[p(0−, t )/p(0+, t )]. Combining the
two possibilities leads to the following general result:

dSsys(t ) = − 1

p(X (t ), t )

∂ p(X (t ), t )

∂t
dt − 1

p(X (t ), t )

∂ p(X (t ), t )

∂x
◦ dX (t )

− κ0

2
lim

ε→0+
[δ(X (t ) − ε) − δ(X (t ) + ε)] ln[p(0−, t )/p(0+, t )]dt, (3.10)

with

dX (t ) = − 1

γ
V ′(X (t ))dt +

√
2DdW + D[1 − κ0dt/2] lim

ε→0+
[δ(X (t ) − ε) − δ(X (t ) + ε)]dt . (3.11)

In terms of the probability flux J (x, t ), we have

− 1

p(X (t ), t )

∂ p(X (t ), t )

∂x
◦ dX (t ) = J (X (t ), t )

Dp(X (t ), t )
◦ dX (t ) − dSenv(X (t ), t ), dSenv(X (t ), t ) = −V ′(X (t ))

T
◦ dX (t ), (3.12)

where dSenv(X (t ), t ) is the the infinitesimal change in the environmental entropy.
To determine the average entropy production rate we need to take expectations with respect to the white noise process. This

is simplified by converting from Stratonovich to Itô calculus [1]. In particular, to leading order in dt ,

J (X (t ), t )

Dp(X (t ), t )
◦ dX = −J (X (t ), t )V ′(X (t ))

T p(X (t ), t )
dt +

√
2

D

J (X (t ), t )

p(X (t ), t )
◦ dW + J (X (t ), t )

Dp(X (t ), t )
lim

ε→0+
[δ(X (t ) − ε) − δ(X (t ) + ε)]dt

= −J (X (t ), t )V ′(X (t ))

T p(X (t ), t )
dt +

√
2

D

J (X (t ), t )

p(X (t ), t )
· dW + 1

p(X (t ), t )

∂J (X (t ), t )

∂x
dt

− J (X (t ), t )

p2(X (t ), t )

∂ p(X (t ), t )

∂x
dt + J (t )

Dp(X (t ), t )
lim

ε→0+
[δ(X (t ) − ε) − δ(X (t ) + ε)]dt,
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since J (0−, t ) = J (0+, t ) = J (t ). Hence, we can rewrite Eq. (3.12) as

dSsys(X (t ), t ) + dSenv(X (t ), t ) = − 1

p(X (t ), t )

[
∂ p(X (t ), t )

∂t
− ∂J (X (t ), t )

∂x

]
dt +

√
2

D

J (X (t ), t )

p(X (t ), t )
dW (3.13)

+ J2(X (t ), t )

Dp2(X (t ), t )
dt − κ0

2
lim

ε→0+
[δ(X (t ) − ε) − δ(X (t ) + ε)] ln[p(0−, t )/p(0+, t )]dt

+ J (t )

Dp(X (t ), t )
lim

ε→0+
[δ(X (t ) − ε) − δ(X (t ) + ε)]dt . (3.14)

We now average each term in Eq. (3.13) with respect to
the white noise process using the following identity for any
integrable function g(X (t )):

〈g(X (t )〉 =
〈 

dx δ(x − X (t ))g(x)

〉

=
 

dx g(x)〈δ(x − X (t )〉 =
 

dx g(x)p(x, t ).

(3.15)

First,〈
1

p(X (t ), t )

∂ p(X (t ), t )

∂t

〉
=
 

dx
∂ p(x, t )

∂t

= ∂

∂t

 
dx p(x, t ) = 0, (3.16)

by conservation of probability. Second,〈
1

p(X (t ), t )

∂J (X (t ), t )

∂x

〉
=
 

dx
∂J (x, t )

∂x

= J (0−, t ) − J (0+, t ) = 0. (3.17)

Third,〈
1

p(X (t ), t )
lim

ε→0+
[δ(X (t ) − ε) − δ(X (t ) + ε)]

〉

= lim
ε→0+

 
dx[δ(x − ε) − δ(x + ε)] = 0. (3.18)

Finally, taking expectation of the Wiener process in the Itô
multiplicative noise terms also gives zero. Hence, averaging
Eq. (3.13) gives

〈dSsys(X (t ), t ) + dSenv(X (t ), t )〉

=
〈

J2(X (t ), t )

Dp2(X (t ), t )

〉
dt − κ0

2
ln[p(0−, t )/p(0+, t )]

× lim
ε→0+

〈[δ(X (t ) − ε) − δ(X (t ) + ε)]〉dt

=
[ 

dx
J (x, t )2

Dp(x, t )
+ Iint (t )

]
dt, (3.19)

with Iint (t ) satisfying Eq. (2.17). We thus recover Eq. (2.16),
which indicates that we can reverse the order of integration
and differentiation so that〈

dStot (X (t ), t )

dt

〉
= d

dt
〈Stot (X (t ), t )〉. (3.20)

IV. STOCHASTIC RESETTING ON A CIRCLE
WITH A SEMIPERMEABLE INTERFACE

To illustrate our results on interfacial entropy production,
we consider an example that supports an NESS in the large
time limit by combining diffusion across a semipermeable
interface with stochastic resetting. In previous work we con-
sidered scenarios similar to the one shown in Fig. 5(a) [53,55].
We assumed that the semipermeable interface acts as a screen
for resetting in the sense that a particle located in M cannot
reset to a point x0 ∈ Mc and vice versa. This means that
although the NESS is characterized by nonzero stationary
fluxes in both domains, the net flux across the interface is zero.
The last result can be understood as follows. Suppose, for
concreteness, that the stationary interfacial flux J ∗ is positive
so that there is a net flow of probability from M to Mc.
The screening effect of the interface means that there is no
reset flux in the opposite direction, which is impossible for a
stationary state with p∗(x) > 0 unless J ∗ = 0. The vanishing
of the interfacial flux can also be confirmed by explicitly
calculating the NESS [53,55].

Therefore, in contrast to our previous work, we consider
a Brownian particle diffusing on a circle of circumference L.
The circle is topologically equivalent to a finite interval [0, L]
with a semipermeable interface at x = {0+, L−}. The particle
is taken to reset at a rate r to a random position y ∈ (0, L)
generated from the density σ0(y). In Fig. 5(b) we show the
example of resetting to a single point x0, which is obtained
by taking σ0(y) = δ(y − x0). Since the particle cannot reset
by crossing the semipermeable interface, it resets in the an-
ticlockwise direction when X (t ) ∈ [0+, x0) and resets in the
clockwise direction when X (t ) ∈ (x0, L−]. For a random reset
location, the probability density p(x, t ), x ∈ [0, L], evolves
according to the equation

∂ p

∂t
= D

∂2 p(x, t )

∂x2
− r p(x, t ) + rσ0(x), (4.1a)

together with the interfacial conditions

−D
∂ p(0+, t )

∂x
= −D

∂ p(L−, t )

∂x
= J (t ), (4.1b)

J (t ) = κ0[p(L−, t ) − p(0+, t )]. (4.1c)

(A factor of 1/2 has been absorbed into κ0, and we have set
σ = 1.)

A. Average entropy production

We begin by calculating the average rate of entropy produc-
tion, and show that there are contributions from the interface
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FIG. 5. Screening effect of a semipermeable membrane for a diffusing particle with resetting. (a) Closed semipermeable membrane ∂M
in Rd with a resetting point x0 ∈ Mc. Although the particle can diffuse across ∂M in either direction, it cannot reset to x0 whenever it is
within M. (b) Single particle diffusing on a circle with a semipermeable interface at {0,+, L−}, and resetting to a point x0. Let X (t ) denote the
current particle position. If X (t ) ∈ [0+, x0 ), then it can only reset in the anticlockwise direction, otherwise it can only reset in the clockwise
direction.

and the resetting protocol, We then calculate these contribu-
tions in the NESS. Substituting Eq. (4.1a) into the formula
(2.12) for the average rate of entropy production gives

Rsys(t ) =
ˆ L

0
dx

∂J (x, t )

∂x
[1 + ln p(x, t )] + Ir (t ), (4.2)

where J (x, t ) = −D∂ p(x, t )/∂x and

Ir (t ) = r
ˆ L

0
dx [p(x, t ) − σ0(x)] ln p(x, t ). (4.3)

The integral on the right-hand side of Eq. (4.2) can be ana-
lyzed along identical lines to the case of no resetting. Since
there are no forces, we find that

Rsys(t ) =
ˆ L

0
dx

J (x, t )2

Dp(x, t )
+ Iint (t ) + Ir (t ), (4.4)

with

Iint (t ) = κ0[p(L−, t ) − p(0+, t )] ln

[
p(L−, t )

p(0+, t )

]
. (4.5)

Hence, there are contributions from both the semipermeable
interface and resetting.

In the special case σ0(x) = δ(x − x0) (resetting to a fixed
location x0), we have

Ir (t ) = r
ˆ L

0
dx p(x, t ) ln p(x, t ) − r ln p(x0, t ). (4.6)

Following along analogous lines to Ref. [3] we define
Rreset (t ) = −Ir (t ) and rewrite Eq. (4.4) as

Rsys(t ) + Rreset (t ) =
ˆ L

0
dx

J (x, t )2

Dp(x, t )
+ Iint (t ) � 0. (4.7)

Note that the left-hand side is the total rate of entropy pro-
duction since, in this example, there is no external potential.
As highlighted in the introduction, resetting to a single point
is a unidirectional process that has no time-reversed equiva-
lent. This means that the average rate of entropy production

calculated using the Gibbs-Shannon entropy cannot be related
to the degree of time-reversal symmetry breaking. However,
as shown in Ref. [51], such a connection can be made in the
case of a regular resetting density σ0(x) > 0. The contribution
Ir (t ) is now decomposed as

Ir (t ) = K[p(·, t )|σ0] + K[σ0|p(·, t )]

−
ˆ L

0
dx [σ0(x) − p(x, t )] ln σ0(x), (4.8)

where K[p|q] is the Kullback-Leibler divergence of any two
measures p, q on R:

K[p|q] =
ˆ

dx p(x) ln[p(x)/q(x)]. (4.9)

Using Jensen’s inequality for convex functions it is straight-
forward to prove that K[p|q] � 0. Hence, we can rewrite the
entropy production equation as

Rsys(t ) + Rreset (t )

=
ˆ L

0

J (x, t )2

Dp(x, t )
+Iint (t ) + r(K[p(·, t )|σ0] + K[σ0|p(·, t )])

� 0, (4.10)

where

Rreset (t ) = r
ˆ L

0
dx [σ0(x) − p(x, t )] ln σ0(x). (4.11)

Equation (4.11) has a direct physical interpretation. In-
troducing the reset entropy, Sreset (x) according to σ0(x) =
exp[Sreset (x)], we see that (up to the resetting rate r) Rreset (t )
can be expressed as the difference

Rreset (t ) = r[〈Sreset〉insert − 〈Sreset (t )〉remove], (4.12)

between the average resetting entropy calculated with the
probability density σ0(x) of the positions where the particles
are inserted to the system, and the probability density of the
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positions from which those particles are removed, which is
nothing but p(x, t ).

B. Nonequilibrium stationary state (NESS)

In contrast to the system without resetting, there exists a
nonequilibrium stationary state (NESS) for which there are
nonzero stationary fluxes J∗(x) and J ∗, both of which con-
tribute to the average rate of entropy production. Setting all
time derivatives to zero in Eqs. (4.1) gives

D
d2 p∗(x)

dx2
− r p∗(x) = −rσ0(x), (4.13a)

−D
d p∗(0)

dx
= −D

d p∗(L)

dx
= J ∗

= κ0[p∗(L) − p∗(0)]. (4.13b)

For the moment, suppose that σ0(x) = δ(x − x0). The general
solution of Eq. (4.13a) then takes the form

p∗ = p∗
−(x, x0) = A1(x0)eηx + B1(x0)e−ηx, 0 < x < x0,

(4.14a)

p∗ = p∗
+(x, x0) = A2(x0)eηx + B2(x0)e−ηx, x0 < x < L,

(4.14b)

with η = √
r/D. There are four unknown coefficients and

four supplementary conditions. The first pair arises from the
conditions at x0:

p∗
−(x0, x0) = p∗

+(x0, x0),

(4.15a)

D
d p∗

+(x, x0)

dx

∣∣∣∣
x=x0

− D
d p∗

−(x, x0)

dx

∣∣∣∣
x=x0

= −r, (4.15b)

that is

A2eηx0 + B2e−ηx0 = A1eηx0 + B1e−ηx0 , (4.16a)

A2eηx0 − B2e−ηx0 = A1eηx0 − B1e−ηx0 − r

ηD
. (4.16b)

The second pair follow from the interfacial conditions (4.13b):

A2eηL − B2e−ηL = A1 − B1, (4.17a)

A2eηL + B2e−ηL =
(

1 − Dη

κ0

)
A1 +

(
1 + Dη

κ0

)
B1. (4.17b)

After some algebra we find that

A1 = (a− + b−)�−(x0)eηL − (a− − b−)�+(x0)e−ηL

b−a+ + b+a−
,

(4.18a)

B1 = (a+ − b+)�−(x0)eηL − (a+ + b+)�+(x0)e−ηL

b−a+ + b+a−
,

(4.18b)

and

A2(x0) = A1(x0) − �−(x0), B2(x0) = B1(x0) + �+(x0),
(4.18c)

where

a± = e±ηL − 1, b± = a± ± Dη

κ0
, �±(x0) = r

2ηD
e±ηx0 .

(4.19)

In Figs. 6(a) and 6(b) we plot the solutions p∗
−(0, x0) and

p∗
+(L, x0) on either side of the semipermeable interface as a

function of r and x0, respectively. We fix the space and time
units by setting L = D = κ0 = 1. A number of observations
can be made. First, if x0 = 0.5 then p∗

−(0, x0) = p∗
+(L, x0) for

all resetting rates r � 0. This is a consequence of the symme-
try of the configuration under the reflection x → 1 − x. This
symmetry no longer holds when x0 �= 0.5 and r > 0. That is,
p∗

−(0, x0) > p∗
+(L, x0) for x0 ∈ (0, 0.5) and there is now an

exchange symmetry p∗
−(0, x0) ↔ p∗

+(L, x0) under reflection.
Second, for fixed x0 ∈ (0, L), the discontinuity across the in-
terface is a nonmonotonic function of r, since the stationary
state is at equilibrium when r = 0 and the density at the inter-
face vanishes in the limit r → ∞. However, the discontinuity
is a monotonically decreasing function of x0 ∈ (0, 0.5). These
results are reflected in plots of the average entropy production
rate at the interface,

I∗
int = J ∗(x0) ln[p∗

−(0, x0)/p∗
+(L, x0)], (4.20)

with J ∗(x0) = κ0[p∗
−(0, x0) − p∗

+(L, x0)]; see Fig. 7. We also
find that I∗

int is a nonmonotonic function of the permeability
κ0, as illustrated in Fig. 8. This follows from the fact that I∗

int
vanishes in the limits κ0 → 0 and κ0 → ∞. In the first limit,
the circle becomes topologically equivalent to a finite interval
with totally reflecting boundaries at both end, whereas in the
second limit the interface becomes totally transparent.

Let us now turn to a resetting protocol in which the particle
resets to a random point according to the density

σ0(y, x0) = �0(x0)e−|y−x0|ξ0 , (4.21a)

�0(x0) = ξ0

2 − e−x0ξ0 − e−(L−x0 )ξ0
. (4.21b)

Note that σ0(y, x0) → δ(x − x0) in the limit ξ0 → ∞ and
σ0(y, x0) → 1/L in the limit ξ0 → 0. The corresponding
NESS is

p∗(x) =
ˆ x

0
dy p+(x, y)σ0(y, x0) +

ˆ L

x
dy p−(x, y)σ0(y, x0)

= A(x, x0)eηx + B(x, x0)e−ηx, (4.22)

where

A(x, x0) =
ˆ L

0
dy A1(y)σ0(y, x0) −

ˆ x

0
dy �−(y)σ0(y, x0),

(4.23a)

B(x, x0) =
ˆ L

0
dy B1(y)σ0(y, x0) +

ˆ x

0
dy �+(y)σ0(y, x0).

(4.23b)

Moreover,
ˆ x

0
dy �±(y)σ0(y, x0) = f±(x), (4.24)
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FIG. 6. Single-particle diffusion on a ring with resetting to the same location x0. The ring is mapped to the interval [0, L] with a
semipermeable interface at x = {0+, L−}. Plots of the stationary densities p∗(0+) (solid curves) and p∗(L−) (dashed curves) on either side
of the interface as a function of (a) the resetting rate r for fixed x0 and (b) the resetting position x0 for fixed r. Other parameter values are
D = κ0 = L = 1. The thin solid line in (a) is the stationary density when x0 = 0.5. Note that by symmetry the density is continuous across the
interface when x0 = 0.5, as can be seen in panel (b).

for x < x0 andˆ x

0
dy �±(y)σ0(y, x0)

= f±(x0) +
√

r/D�0ex0ξ0

2

(ex[±η−ξ0] − ex0[±η−ξ0] )

±η − ξ0
(4.25)

for x > x0, where

f±(x) :=
√

r/D�0e−x0ξ0

2

(ex[±η+ξ0] − 1)

±η + ξ0
. (4.26)

In Fig. 9 we plot the corresponding interfacial entropy
production rate I∗

int as a function of r for different values of the

decay parameter ξ0 in the definition of the resetting position
density given by Eq. (4.21). Since σ0(x) becomes a uniform
distribution in the limit ξ0 → 0, it follows that I∗

int → 0 by
symmetry. However, in the limit ξ0 → ∞, we recover the
curve obtained for resetting to x0. Finally, Eq. (4.10) implies
that for 0 < ξ0 < ∞, there is also a positive contribution to the
average entropy production rate from resetting. The stationary
version takes the form

I∗
r = r

ˆ L

0
dx [p∗(x) − σ0(x, x0)] ln(p∗(x)) − ln σ0(x, x0)].

(4.27)

Example numerical plots of I∗
r as a function of r and ξ0

are shown in Fig. 10. As expected, I∗
r blows up in the limit

FIG. 7. Single-particle diffusion on a ring with resetting to the same location x0. Plots of the average rate of interfacial entropy production
I∗

int as a function of (a) the resetting rate r and (b) the resetting location x0. Other parameter values are the same as Fig. 6.

023283-11



PAUL C. BRESSLOFF PHYSICAL REVIEW RESEARCH 6, 023283 (2024)

FIG. 8. Single-particle diffusion on a ring with resetting to the
same location x0 = 0.25. Plots of the average rate of interfacial en-
tropy production I∗

int as a function of the permeability κ0 and different
values of r. Other parameter values are the same as Fig. 6.

ξ0 → ∞ since the corresponding Kullback-Leibler diver-
gences become singular.

V. DISCUSSION

In this paper we showed how the presence of a semiper-
meable interface S increases the average rate of entropy
production of a single diffusing particle by an amount that
is equal to the product of the flux through the interface and
the logarithm of the ratio of the probability density on either
side of the interface, integrated along S . We also presented
a probabilistic interpretation of the interfacial entropy pro-
duction rate that is based on snapping out BM. The latter

FIG. 9. Single-particle diffusion on a ring with resetting to a ran-
dom location that is distributed according to the probability density
(4.21) parameterized by ξ0. Plots of the average rate of interfacial
entropy production I∗

int as a function of r for different values of ξ0.
Other parameters are D = L = 1, κ0 = 1, and x0 = 0.25.

FIG. 10. Single-particle diffusion on a ring with resetting to a
random location that is distributed according to the probability den-
sity (4.21) parameterized by ξ0. Plots of the average rate of resetting
entropy production I∗

r as a function of (a) r for different values of ξ0

and (b) ξ0 for different values of r. Other parameters are D = L = 1,
κ0 = 1, and x0 = 0.25.

represents individual stochastic trajectories as sequences of
partially reflected BMs that are restricted to one side of the
interface or the other. When a given round of partially re-
flected BM is terminated, a Bernoulli random variable is used
to determine which side of the interface the next round takes
place. We identified this switching process as the source of
interfacial entropy production. Moreover, we showed how a
biased switching process is equivalent to a directionally biased
interface arising from a jump discontinuity in the chemical po-
tential. The latter contributes to the dissipation of heat into the
environment. Snapping out BM also allowed us to construct
a stochastic version of entropy production defined along indi-
vidual trajectories. Averaging with respect to the distribution
of trajectories recovered the expression for the average rate of
entropy production obtained from the Gibbs-Shannon entropy.
Finally, we illustrated our formula for the interfacial entropy
production rate using the example of diffusion with stochas-
tic resetting on a circle, and found that the average rate of
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interfacial entropy production in the NESS is a nonmonotonic
function of the resetting rate and the permeability.

One direction for future work would be to relate the
stochastic entropy for diffusion through a semipermeable in-
terface to the ratio of forward and backward path probabilities
[1,3]. More specifically, a fundamental result of stochas-
tic thermodynamics is that for many continuous stochastic
processes, the total stochastic or instantaneous entropy pro-
duction can be expressed as

Stot (t ) = ln

[ P[X (τ ), 0 � τ � t]

P[X (t − τ ), 0 � τ � t]

]
. (5.1)

Such a relationship provides a basis for deriving a variety of
fluctuation relations [1,3]. The corresponding average produc-
tion rate in steady state is then

Rtot = lim
t→∞

1

t

〈
ln

[ P[X (τ ), 0 � τ � t]

P[X (t − τ ), 0 � τ � t]

]〉
. (5.2)

One way to establish a result of the form (5.1) is to use path
integrals. Within a path integral framework, one could treat
diffusion as a random walk on a lattice in which a semiperme-
able barrier is represented in terms of local defects [57–60].

Another possible extension of the paper is to apply the
theory to a more general class of stochastic processes that
result in an NESS at the interface. We considered the particu-
lar example of instantaneous resetting, under the assumption
that the particle cannot reset by crossing the interface. How-
ever, instantaneous resetting is not physically realizable. One
physical implementation of noninstantaneous resetting is BM
in an intermittent confining potential, where the potential is
randomly switched on and off [61–65]. During the ON phases,
a diffusing particle tends to move toward the minimum of the
potential, which thus plays an analogous role to the reset-
ting position in instantaneous resetting. This return phase is
clearly of finite duration. Moreover, once the particle reaches
a neighborhood of the minimum, it tends to remain there until
switching to an OFF state, which is analogous to a refractory
phase. One issue that would need to be addressed is whether
or not a semipermeable membrane screens the potential when
it is ON. It would also be interesting to derive general con-
ditions under which resetting results in an interfacial entropy
production rate that is a unimodal function of the effective
resetting rate, analogous to Figs. 6–10.

Finally, note that in this paper we considered a mesoscopic
model of diffusion through a semipermeable interface, which
involved phenomenological parameters such as the perme-
ability κ0 and the directional bias σ . These also appeared
as parameters in snapping out BM, with κ0 determining the
rate at which each round of partially reflected BM is killed
and σ specifying the bias of the switching Bernoulli process.
Another direction of future work would be to develop a mi-
croscopic model of a semipermeable interface that identifies
the biophysical mechanisms underlying κ0, σ , and interfacial
entropy production. Along these lines, we have recently pro-
posed a more general model of snapping out BM, in which
each round of partially reflected BM is killed according to a
more general threshold distribution than the exponential (A6)
[33,34]. The corresponding effective permeability becomes a
time-dependent function that can have heavy tails. A more
realistic biophysical model would also need to consider an

interface with finite width. Indeed, one can derive the standard
interfacial equations (2.1c) by considering the zero width limit
of a thin sheet of membrane.

APPENDIX: MATHEMATICAL FORMULATION
OF SNAPPING OUT BM

The dynamics of snapping out BM is formulated in
terms of a sequence of killed reflected BMs in either �− =
(−∞, 0−] or �+ = [0+,∞) [31–34]. Let Tn denote the time
of the nth killing (with T0 = 0). Immediately after the killing
event, the position of the particle is taken to be

X (T +
n ) = lim

ε→0+
[−Ynε + (1 − Yn)ε], (A1)

where Yn is an independent Bernoulli random variable with
P [Yn = 1] = P [Yn = 0] = 1/2. (We are assuming the inter-
face is symmetric, that is, σ = 1.) Suppose that X (t ) ∈ �+
for t ∈ (Tn, Tn+1), that is, X (T +

n ) = 0+, and introduce the
boundary local time [35–39]

L+
n (t ) = lim

ε→0+

D

ε

ˆ t

0
�(ε − X (τ + Tn))dτ. (A2)

The boundary local time L+
n (t ) tracks the amount of the time

the particle is in contact with the right-hand side of the in-
terface over the time interval [Tn, t]. The SDE for X (t ), t ∈
(Tn, Tn+1), is given by the Skorokhod equation for reflected
BM in the half-line �+:

dX (t ) = 1

γ
F (X (t ))dt +

√
2DdW (t ) + dLn(t ) (A3)

for t ∈ (Tn, Tn+1), where W (t ) is a Wiener process with
W (0) = 0. Formally speaking,

dL+
n (t ) = lim

ε→0+
δ(X (t + Tn) − ε)dt, (A4)

so that each time the particle hits the interface it is given a
positive impulsive kick back into the domain. The time of the
next killing is then determined by the condition

Tn+1 = Tn + inf{t > 0, L+
n (t ) � 
̂}, (A5)

where 
̂ is an independent randomly generated local time
threshold with

P [
̂ > 
] = e−κ0
/D, 
 � 0. (A6)

However, if X (T +
n ) = 0−, then the next round of reflected BM

takes place in the domain �−. The corresponding SDE is

dX (t ) = 1

γ
F (X (t ))dt +

√
2DdW (t ) − dL−

n (t ), (A7)

with t ∈ (Tn, Tn+1), X (t ) ∈ �−,

L−
n (t ) = lim

ε→0+

D

ε

ˆ t

0
�(ε + X (τ + Tn))dτ, (A8)

and

Tn+1 = Tn + inf{t > Tn: L−
n (t ) � 
̂}. (A9)

We now use renewal theory to sketch a proof that the distri-
bution of sample paths in 1D snapping out BM is given by the
solution of the corresponding FP Eq. (2.1). For an alternative
proof in 1D see Ref. [31] and for the generalization to higher
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spatial dimensions see Ref. [34]. Let p(z, t ) denote the prob-
ability density of snapping out BM for p(x, 0) = δ(x − x0)
and x0 > 0. Let q(z, t |x0) be the corresponding solution for
partially reflected BM in �+. (It is straightforward to gen-
eralize the analysis to the case of a general distribution of
initial conditions g(x0) that spans both sides of the interface.)
The densities p are related to q according to the last renewal
equation [33,34]

p(x, t ) = q(x, t |x0) + κ0

2

ˆ t

0
q(x, τ |0)[p(0+, t − τ )

+ p(0−, t − τ )]dτ, x > 0, (A10a)

p(x, t ) = κ0

2

ˆ t

0
q(|x|, τ |0)[p(0+, t − τ )

+ p(0−, t − τ )]dτ, x < 0. (A10b)

The first term on the right-hand side of Eq. (A.10a) represents
all sample trajectories that have never been absorbed by the
barrier at x = 0± up to time t . The corresponding integrand
represents all trajectories that were last absorbed (stopped) at
time t − τ in either the positively or negatively reflected BM
state and then switched to the appropriate sign to reach x with
probability 1/2. Since the particle is not absorbed over the
interval (t − τ, t], the probability of reaching x ∈ �+ starting
at x = 0± is q(x, τ |0). The probability that the last stopping
event occurred in the interval (t − τ, t − τ + dτ ) irrespective
of previous events is κ0dτ . A similar argument holds for
Eq. (A.10b).

The renewal Eqs. (A10) can be used to express p in terms
of q using Laplace transforms. First,

p̃(x, s) = q̃(x, s|x0) + κ0

2
q̃(x, s|0)[ p̃(0+, s) + p̃(0−, s)],

x > 0, (A11a)

p̃(x, s) = κ0

2
q̃(|x|, s|0)[ p̃(0+, s) + p̃(0−, s)],

x < 0. (A11b)

Setting x = 0± in Eq. (A11), summing the results and rear-
ranging shows that

p̃(0+, s) + p̃(0−, s) = q̃(0, s|x0)

1 − κ0q̃(0, s|0)
. (A12)

Substituting back into Eqs. (A11) yields the explicit solution

p̃(x, s) = q̃(x, s|x0) + κ0q̃(0, s|x0)/2

1 − κ0q̃(0, s|0)
q̃(x, s|0), x > 0,

(A13a)

p̃(x, s) = κ0q̃(0, s|x0)/2

1 − κ0q̃(0, s|0)
q̃(|x|, s|0), x < 0. (A13b)

Calculating the full solution p(x, t ) thus reduces to the
problem of finding the corresponding solution q(x, t |x0) of
partially reflected BM in �+. As we have shown elsewhere,
this then establishes that p(x, t ) satisfies the interfacial condi-
tions (2.1c).

Interfacial asymmetry (σ < 1) can be incorporated into
snapping out BM by taking the independent Bernoulli random
variable Yn in Eq. (A1) to have the biased probability distri-
bution P [Yn = 0] = α and P [Yn = 1] = 1 − α for 0 < α < 1
[34]. The 1D renewal Eq. (A11) becomes

p̃(x, s) = q̃(x, s|x0) + κ0α

2
q̃(x, s|0)[ p̃(0+, s) + p̃(0−, s)],

x > 0 (A14a)

p̃(x, s) = κ0[1 − α]

2
q̃(|x|, s|0)[ p̃(0+, s) + p̃(0−, s)],

x < 0. (A14b)

Setting x = 0± in Eqs. (A14), summing the results and re-
arranging recovers Eq. (A12). It can then be shown that
snapping out BM with biased switching and α > 1/2 is
equivalent to single-particle diffusion through a directed
semipermeable barrier with an effective permeability κ0α/2
and bias σ = (1 − α)/α.
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