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Edge-dependent anomalous topology in synthetic photonic lattices subject to discrete step walks
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Anomalous topological phases, where edge states coexist with topologically trivial Chern bands, can only
appear in periodically driven lattices. When the driving is smooth and continuous, the bulk-edge correspondence
is guaranteed by the existence of a bulk invariant known as the winding number. However, in lattices subject
to periodic discrete step walks the existence of edge states does not only depend on bulk invariants but also on
the boundary. This is a consequence of the absence of an intrinsic time dependence or micromotion in discrete
step walks. We report the observation of edge states and a simultaneous measurement of the bulk invariants in
anomalous topological phases in a two-dimensional synthetic photonic lattice subject to discrete step walks. The
lattice is implemented using time multiplexing of light pulses in two coupled fibre rings, in which one of the
dimensions displays real-space dynamics and the other one is parametric. The presence of edge states is inherent
to the periodic driving and depends on the properties of the boundary in the implemented two-band model with
zero Chern number. We provide a suitable expression for the topological invariants whose calculation does not
rely on micromotion dynamics.
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I. INTRODUCTION

Systems with topological properties are changing the way
we understand phases of matter and physical phenomena.
Their mathematical characterization, purely based on topolog-
ical arguments, has allowed to find a plethora of new phases
and to discover a large number of practical applications [1–4].
In addition, the extension to the realm of nonequilibrium or
dissipative systems has increased the variety of topological
phases and their possible uses [5].

A particularly interesting and fruitful example of this are
Floquet topological phases [6,7], see Ref. [8] for a review.
They appear in systems with enriched topology due to the cou-
pling to an external driving field that is periodic in time. In the
high-frequency regime, i.e., when the frequency of the driving
field dominates over all the other energy scales, the system can
be successfully described by a stroboscopic effective Hamil-
tonian. In this regime, the driving field serves as a tuning knob
of the system’s external parameters and can be used to engi-
neer static pseudomagnetic fields [9,10]. In contrast, when the
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frequency is reduced, stroboscopic dynamics is not enough
to describe the system, and one needs to explicitly consider
the evolution dynamics within a single driving period, also
known as the micromotion. In this regime, the topology of
Floquet systems becomes fundamentally different from that
of static ones, and one can find anomalous topological phases
with chiral edge states in systems with topologically trivial
bands [11–22].

Anomalous phases have also been found in systems with a
discrete step time evolution, known as quantum walks [12,23–
28]. One of their particular features is the absence of an
intrinsic time coordinate due to their discrete time evolution.
This implies that the topological characterization of Floquet
phases with a Hamiltonian description, which requires an
explicit time coordinate [13,15], is not suitable for quantum
walks. Recent theoretical studies have shown [29–31] that
quantum walks result in a richer topological phase diagram
due to their discrete time evolution, and that not only the bulk
topology, but also the boundaries play a crucial role in the
existence of chiral edge states [32]. A direct consequence is
that one can study a time-discretized version of the anomalous
Floquet topological phase, characterized by bulk invariants
given by generalized winding numbers [13], and show that,
at the same time, the chiral edge states can be removed by
choosing a suitable set of edge unitary evolution operators at
the boundary. Hence, the bulk invariant is still well defined,
but it cannot predict the number of edge states for arbitrary
boundaries, notably when the edge unitaries are topologically
nontrivial [32].

Experimentally, Floquet topological phases in discrete step
walks have been realized in photonic lattices [9,12,18,24–28,
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33,34]. However, the characterization of anomalous phases
in these experimental systems has been constrained either
to chiral symmetric lattices in one dimension [12,24,27,28]
or to two-dimensional lattices in the limit of a continuous
time evolution [25,26] employing the invariants discussed by
Rudner and coworkers [13,15], which do not take into account
the crucial discrete step aspect of the time evolution.

In this paper, we simultaneously investigate the bulk and
edge properties of anomalous topological phases in discrete
step walks in a two-dimensional synthetic photonic lattice.
The lattice is implemented using time multiplexing of light
pulses in two coupled fibre rings. In this system, one of the
dimensions displays real-space dynamics and the other one is
defined by an external phase applied to the rings. We focus
on the relation between the bulk invariants and the presence
of topological edge states, and demonstrate important differ-
ences with anomalous topological phases in Floquet systems
with a Hamiltonian description (i.e., under continuous time
evolution). In particular, we show that the specific choice of
the boundaries affects the existence of edge states. Our re-
sults are well described by suitably defined winding numbers,
which we directly measure in the experiment, and open the
door to the engineering of extrinsic topological phases [32].
In these phases, the number of topological edge modes can be
varied through the appropriate design of unitary operators at
the edges of the lattice. The implementation of such configu-
ration could be useful to switch on and off edge transport via
local modifications.

II. EXPERIMENTAL IMPLEMENTATION
OF A DISCRETE STEP WALK

To study discrete step walks we use time-multiplexed lat-
tices made with coupled optical fiber loops. This type of
synthetic lattice has been used in different configurations as
a testbed to study, among others, the formation of solitons
in parity-time symmetric lattices [35,36], Bloch oscillations
[37], anomalous transport [35], artificial gauge fields [38], the
non-Hermitian skin effect [39], superfluidity [40], and Floquet
winding bands [41]. Importantly, in this setup it is possible
to simultaneously access the bulk and edge properties. The
bulk can be studied from the direct measurement of the eigen-
vectors of the Floquet operator [42] and via the measurement
of anomalous transport [43], which give access to the Berry
curvature of the Floquet bands over the whole first Brillouin
zone. The implementation of physical edges in the setup can
be done via the on-site control of the splitting ratios in the step
evolution.

In our experimental configuration the two fibre rings of
45.34 m and 44.79 m in length are coupled via a variable
beamsplitter (VBS), sketched in Fig. 1(a). A short square
pulse of about 1 ns at a wavelength of 1550 nm is injected in
the α ring and evolves in the rings following a split step walk
each time it reaches the beamsplitter. The small difference in
length between the rings allows encoding the lattice position
information in the time of arrival of pulses at the extraction
port at each round trip. This round-trip time is the unit of step-
time evolution. Er-doped amplifiers in the rings compensate
for the insertion, extraction, and absorption losses allowing
the circulation of pulses for many round trips. Figures 2(a)

FIG. 1. (a) Scheme of the double ring system with injection
and reference laser L, beamsplitters BS, variable beamsplitter VBS,
frequency shifter FS, phase modulator PM, and photodiode D.
(b) Synthetic split step lattice.

and 2(b) display the measured step evolution in the α and β

rings when a pulse is injected at a single site in the α ring.
The dynamics of the amplitude and phase of light pulses

in the rings can be mapped into a coherent step evolution
in the one-dimensional synthetic lattice depicted in Fig. 1(b),
governed by the following equations [28,39]:

αm+1
n = (

cos θmαm
n−1 + i sin θmβm

n−1

)
eiϕm ,

βm+1
n = i sin θmαm

n+1 + cos θmβm
n+1, (1)

with αm
n and βm

n being the complex amplitude of the light
pulses in the left and right rings, respectively, at lattice po-
sition n and round-trip time step m. The splitting amplitude
at the variable beamsplitter is θm, which can be controlled
electronically and alternates between two values θ1 and θ2 at
odd and even steps. To get the second synthetic dimension, a
phase modulator adds a controlled phase ϕm to the α ring with
a value that alternates between ϕ and −ϕ at odd and even
steps. The lattice sites n provide a spatial dimension along
which dynamics can take place with an associated conjugated
momentum k, while the external phase ϕ acts as a generalized
quasimomentum resulting in a second parametric dimension
{ϕ ∈ (−π, π ]}.

The lattice system has two spatial sublattices corre-
sponding to the α and β rings [red and blue circles
in Fig. 1(b)] and a Floquet period of two time steps.
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FIG. 2. (a) (b) Spatiotemporal dynamics measured in the α

(a) and β (b) rings for θ1 = 0.2π , θ2 = 0.3π , and ϕ = π . (c) (d) Mea-
sured bands extracted from the square of the Fourier transform of the
even time steps of (a) and (b), respectively.

Applying the Floquet-Bloch ansatz (αm
n , βm

n )† =
(α, β )†eiEm/2eikn/2 to Eq. (1) we find two bands of
eigenvalues E±(k, ϕ) = ± arccos[cos θ1 cos θ2 cos(k) −
sin θ1 sin θ2 cos(ϕ)]. The factor 1/2 in the exponents of the
ansatz take into account the two sites spatial periodicity and
the period of two time steps in Eq. (1). Due to the periodicity
in time of the lattice, E is defined modulo 2π , and the two
bands are separated by two gaps centered around E = 0 and
E = π in the first Floquet Brillouin zone.

To determine the eigenvalues and eigenvectors, the phase
and amplitude of αm

n and βm
n are measured by interfering the

light extracted from the rings at each synthetic position and
time step with a high coherence laser shifted in frequency
by � = 3 GHz from the injected laser pulse [see interfer-
ence fringes in the inset of Fig. 2(a)]. A Fourier transform
of the stroboscopic spatiotemporal dynamics of each ring at
time steps corresponding to integer Floquet periods (m =
2, 4, 6, · · · ), is depicted in Figs. 2(c) and 2(d). The panels
directly show the Floquet-Bloch eigenvalues of the lattice
(identical for the two sublattices) for a given value of ϕ. Two
bands separated by two gaps centered at E = 0 and E = π

can be identified. The complex Fourier transform contains
information on the ratio of amplitudes R and phase difference
�αβ between the two sublattice sites for each quasimomentum
eigenvector of each band (see Appendix A and Ref. [42] for
a detailed description of the eigenvector measurement tech-
nique). This allows a complete experimental characterization

of the eigenvectors of the lattice for each band eigenvalue
labeled by k and ϕ,[

αm
n (k, ϕ)

βm
n (k, ϕ)

]
= 1√

1 + |R|2
[

1
|R|e�αβ

]
eikn/2eiE (k,ϕ)m/2. (2)

Depending on the splitting ratios θ1 and θ2, the system
presents two distinct gapped phases. They are shown in
Fig. 3(f) in white and orange colours, and separated by lines
at which both gaps close simultaneously. The upper panels
in Figs. 3(a) and 3(b) show the measured two-dimensional
quasienergy bands at two different points in the white phase
in panel (f). The second and third panels in Figs. 3(a) and 3(b)
display the measured tomography of the eigenvectors of the
upper band via the measured ratio of amplitudes |R| and phase
difference �αβ between the two sublattices for each point in
the Brillouin zone. The values of |R| present a dipole shape,
with eigenvectors with a high weight in the β sublattice at the
upper-left corner of the Brillouin zone, and a low weight at the
lower-right corner. At θ1 = θ2 = π/4 both middle and upper
gaps close simultaneously [see panel (c)], and open again in
the orange phase of Fig. 3(f), which measured eigenvectors
are displayed in panels (d) and (e). Interestingly, in the white
region [panels (a) and (b)] the phase �αβ winds along the ϕ

direction, while it winds along the k direction in the orange
phase corresponding to panels (d) and (e). We will see below
that this difference in winding of the sublattice phase in the
two regions is directly connected to the existence of edge
states for particular edge realizations.

III. TOPOLOGICAL CHARGE ASSOCIATED
TO THE PHASE TRANSITION

Once the eigenvectors have been fully characterized via the
amplitude ratio |R| and the phase �αβ , it is straightforward
to extract the Berry curvature at each point of the Brillouin
zone and the Chern number [44]. The lower panels of Fig. 3
show the measured and analytically computed Berry curvature
for the upper band in panels (a) and (b), and (d) and (e),
respectively (see Appendix A for a detailed description of
the computation of the Berry curvature). The measured Chern
number is approximately zero in all cases [–0.01 in (a), 0.02
in (b), 0.01 in (d), and 0.00 in (e)]. Nevertheless, a strong local
Berry curvature is observed around the gap closing points Mk

and Mϕ , shown in the lowermost panel of Fig. 3. The local
Berry curvature changes sign when going through the gap
closing transition.

Despite the zero Chern number in the two phases, the
local change of sign of the Berry curvature across the phase
transition is a direct manifestation of the topological nature
of this transition. This feature is captured by the topological
charge Qμ associated to the gap closing singularities of the
quasienergies (μ labels the considered gap). For a given band,
this charge can be determined from the outgoing Berry flux
through a cuboid in parameter space (k, ϕ, λ) centered at the
band touching singularly at the phase transition [19,45]. This
topological charge thus corresponds to a monopole Chern
number, which is different from the band Chern number ob-
tained from the Berry flux through the first Brillouin zone,
which vanishes here. The cuboid is represented in Fig. 3(g)
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FIG. 3. (a), (b) Measured bands, ratio of amplitudes |R|, and phase difference �αβ of the sublattice components of the upper band
eigenvectors in the white phase in panel (f). (a) θ1 = 0.16π , θ2 = 0.34π ; (b) θ1 = 0.2π , θ2 = 0.3π . The color code in the uppermost panels
depicts the measured value of |R| in log scale. The two lowermost panels display the measured and analytically calculated Berry curvature
of the upper band. (c) Measured bands at the point where the E = 0 and E = π gaps close (θ1 = θ2 = 0.25π ). (d), (e) Same as (a) and
(b) for θ1 = 0.3π , θ2 = 0.2π and θ1 = 0.34π , θ2 = 0.16π , respectively, in the orange phase. (f) Topological phase diagram of the system as a
function of the splitting angles θ1 and θ2. Black lines indicate the simultaneous closure of the 0 and π gaps, which happens for θ1 ± θ2 = nπ ,
with n ∈ Z. (g) Cuboid in parameter space for the computation of the topological charge.

and spans a part of quasimomentum space (k, ϕ) with the third
dimension λ parametrizing the changes in θ1 and θ2 to go
through the transition. The outgoing Berry flux in the upper
and lower faces can be directly extracted from the integration
of the Berry curvature around the high-symmetry point at
which the band touching point occurs. The flux through the
lateral faces can be neglected if 
λ is small enough, that is, if
the Berry curvature in momentum space is measured at points
sufficiently close to the phase transition. For the other band,
the topological charge associated to the gap closing transition
has an opposite sign.

To determine the topological charge at the μ = 0 gap,
we evaluate the integrated Berry flux B f around the gap
closing point Mϕ experimentally and analytically. To do so
in practice, we divide the Brillouin zone into four regions
indicated by dashed lines in the lower panels of Fig. 3 and

integrate the measured Berry curvature over regions 2 and 4,
which surround the Mϕ point. The white region side corre-
sponds to the upper face of the cuboid. Close to the phase
transition [Fig. 3(b)], the integrated outgoing flux is B f =
(C2 + C4) = 0.46. At the orange side depicted in Fig. 3(d),
it is (−1) × (−0.31); the prefactor −1 comes from the fact
that we evaluate the flux exiting the cuboid through the lower
face [Fig. 3(g)]. The total measured flux is 0.77, close to the
value of 0.80 computed from the analytic eigenvectors and as
represented in the lowermost panels of Figs. 3(b) and 3(d).
The expected value of the topological charge is 1. Analytic
evaluation of the Berry curvature on the lateral sides of the
cuboid shows that the Berry flux through these faces is zero
(see Fig. 12 in the Appendices). Therefore, the difference
with the measured values stems from the spread of the Berry
curvature associated to the Mϕ point at finite gap sizes. By

023282-4



EDGE-DEPENDENT ANOMALOUS TOPOLOGY IN … PHYSICAL REVIEW RESEARCH 6, 023282 (2024)

studying the Berry flux at points closer to the phase transition,
analytic calculations show that the value of Q0 extracted from
the local Berry flux approaches 1. To study a situation with
a smaller gap experimentally we are limited by the resolution
of the quasienergy bands, which is given by the number of
accessible round trips (84 in our case).

The same treatment can be done for the Berry flux around
the closing point for the μ = π gap. To preserve the correct
sign convention we need to evaluate the Berry flux on the
lower band around the Mk point. We obtain the experimental
value B+λ

f − B−λ
f = −0.80 (see Appendix A). Although the

measured Berry fluxes depart from the value of 1 expected for
the topological charge at the transition, they are sufficiently
different from zero to allow an unambiguous determination of
the topological nature of the phase transition.

A similar analysis was recently done in an ultracold atoms
experiment implementing a two-band, two-dimensional lat-
tice subject to periodic shaking [19]. In that case, the studied
topological phases involved phase transitions with the closure
of a single gap at a time, and a change of the number of
edge states in that specific gap through the transition. To
determine the topological charge related to the gap closing
singularity, the Berry flux was computed across the whole
Brillouin zone, that is, via the change of Chern number in
the bands across the transition. In our case, both gaps close
and open simultaneously and the Chern number of the bands
is zero in all topological regions. Our study shows that a
local analysis of the Berry flux around each gap closing
point allows an accurate characterization of the topological
charge.

The direct consequence of the nontrivial topological charge
at the gap closing singularities is the existence of interface
states when lattices in the two different topological regions
are pasted together. We implement a lattice with two different
spatial regions by engineering the splitting ratios in the proper
way on either side of the boundary [41]. The top inset of Fig. 4
shows a sketch of the employed lattice: the left part belongs
to the white phase with θ1 = 0.2π and θ2 = 0.3π , while the
right part belongs to the orange phase with θ1 = 0.3π and
θ2 = 0.2π . By injecting an initial pulse exactly at an interface
site, we observe that part of the light remains localized at the
interface [Fig. 4(a)]. Figure 4(b) shows the measured bands
when scanning the values of ϕ from −π to π and keeping
the injection at the interface. Each gap is traversed by a single
band of interface states, with the same group velocity in both
cases, a situation that consistently corresponds to an anoma-
lous topological phase.

IV. BULK TOPOLOGICAL CHARACTERIZATION

The previous section experimentally demonstrates the
presence of anomalous topology in the implemented lattice,
but we have not yet characterized the topology of the different
phases. In contrast with Floquet systems whose dynamics
are governed by continuous time modulations of a Hamilto-
nian [13], it has been recently discussed that the presence of
edge states in discrete step walks—especially in the anoma-
lous regime—is not fully characterized by a bulk invariant
[32,46,47]. In other words, the existence of edge states de-
pends on the boundary conditions. This is somehow very

FIG. 4. (a) Measured step walk when exciting a single site at
the interface between a lattice in the white region (θ1 = 0.2π,

θ2 = 0.3π ) and a lattice in the orange region (θ1 = 0.3π, θ2 = 0.2π )
for ϕ = π . (b) Measured band structure as a function of ϕ showing
an interface state traversing both gaps. (c), (d) Numerical simulation
of Eq. (1) in the conditions of the experiment.

similar to static chiral symmetric systems in one dimension
such as the the Su-Schrieffer-Heeger (SSH) model, except
that the SSH model is 1D, while the boundary conditions
dependence for the edge states in discrete step walks was
noticed in higher dimensions, and in particular for chiral edge
states in 2D.

Different approaches have been followed to tackle the issue
of boundary-dependent edge states to still have a topological
meaning. One strategy consists in noticing that the boundary
conditions are in correspondence with different choices of unit
cells that define different bulk evolution operators. Although
those operators yield different bulk invariants, their difference
is still meaningful to characterize interface states [46]. This
situation corresponds to the description in terms of topological
charge at the gap closing points we followed in Sec. III. A sec-
ond option is to identify the winding of the discrete step walk
sketched in Fig. 1(b) if interpreted as a finite oriented graph in
two dimensions, in which one of the dimensions is the position
and the second dimension the step time [47]. This graphical
approach is equivalent to computing a quantized flow of the
boundary modes through an arbitrary line transverse to the
edge in finite size geometry, and it is particularly suitable
in 2D but does not seem straightforward to apply to our 1D
case plus time step. A third approach, dubbed extrinsic topol-
ogy, was recently proposed to handle the boundary condition
dependence by separating the bulk evolution from the edge
evolution, and considering the topological properties of both
bulk and edge operators [32]. In this approach, “extrinsic”
refers to the boundary of the system, which is not fixed, in
contrast to the “intrinsic” topology that denotes the bulk. This
method seems general enough but the edge operator may be
tricky to identify in practice.

023282-5



RABIH EL SOKHEN et al. PHYSICAL REVIEW RESEARCH 6, 023282 (2024)

FIG. 5. (a) Schematics of the quantum walk with a fully reflecting edge along the position coordinate at site n = 0 and periodic boundary
conditions along the synthetic dimension ϕ. The two-step protocol separates the stroboscopic evolution into odd and even time-steps (blue and
red time slices, respectively). Their corresponding Floquet operators have identical quasienergies, but they describe different time frames, or
equivalently, different boundary conditions. (b), (d) Measured spatiotemporal dynamics in the β (b) and α (d) rings when injecting an initial
pulse at the β ring at site n = 1 in the white phase (b) and orange phase (d) of Fig. 3(f), for ϕ = −0.3π . Only in the second case an edge
state band traverses both gaps, as displayed in the measured dispersions in (c) and (e). To compose these panels, we first Fourier transform the
measured spatiotemporal dynamics selecting only the even time steps (stroboscopic analysis) for each value of ϕ. We then stack the resulting
bands for different values of ϕ. The edge state is visible in the spatiotemporal diagram in (d) as a localized emission at the boundary with
vacuum. (f)–(j) Same as the upper row (a)–(e) when adding to the lattice an extra site n = −1 at the edge with vacuum. The injection site in
all experimental images is still the β ring at n = 1. The addition of a site to the lattice exchanges the presence/absence of chiral edge states
with respect to the case depicted in the upper row.

In the present paper we follow a yet different strategy by
exploiting the fact that the choice of boundary conditions is
not only related to a choice of bulk unit cell, as it is in certain
static Hamiltonian systems (e.g., the SSH Hamiltonian), but
also to a time frame, which is specific to discrete step walks.
This property can be related to what was introduced as time-
glide symmetry [30]. In this manner, fixing a time frame, that
is, the origin of time over which we have an experimental
control, sets the bulk evolution operator in a consistent way
with the boundary conditions we may implement.

In the following, we will develop this approach and find
a suitable topological invariant that takes into account the
choice of unit cell/time frame associated to the specific
boundary conditions. For completeness, in Appendix E we
demonstrate how the extrinsic topology approach yields the
same phase diagram, and in Appendix D we show that the
invariant derived for systems with time-glide symmetry coin-
cides with the one we propose in this paper.

A. Bulk topology

The bulk topology can be determined from the Floquet op-
erator under periodic boundary conditions (PBC). The Fourier
transform of Eq. (1) for the two-step protocol results in the
following Floquet operator:

UQW(q) = v0(q)σ0 + iv(q) · σ, (3)

with the two-dimensional vector q = (k, ϕ). The components
of the vector v(q) can be expressed in the following form
(details in the Appendix C):

vx = J2 cos(k) + m2 cos(ϕ), (4)

vy = J2 sin(k) + m2 sin(ϕ), (5)

vz = −J1 sin(k) + m1 sin(ϕ), (6)

with the different parameters being functions of the angles θ1,2

of the variable beamsplitter,

J1 = cos(θ1) cos(θ2), J2 = sin(θ1) cos(θ2),

m1 = sin(θ1) sin(θ2), m2 = cos(θ1) sin(θ2). (7)

Actually, those four parameters are not independent due to
the unitarity of the time-evolution operator that imposes the
constrains J1m1 = J2m2 and J2

1 + J2
2 + m2

1 + m2
2 = 1.

Importantly, to write this Floquet operator, we have
assumed that during the first and second time-steps the beam-
splitter is set to θ1,2, respectively. This allows us to identify
the two-step stroboscopic evolution generated by UQW(q)
with the blue time slices in the schematic of Fig. 5(a). How-
ever, due to time periodicity, another perfectly valid choice
would have been to consider a shifted time frame in which
the beamsplitter is set to θ2,1 during the first and second
time steps, respectively. We will refer to this alternative
choice as ŨQW(q), which corresponds to the red time slices of
the evolution in Fig. 5(a). Their matrix representation differs,

023282-6



EDGE-DEPENDENT ANOMALOUS TOPOLOGY IN … PHYSICAL REVIEW RESEARCH 6, 023282 (2024)

but they are connected by the swap of the angles θ1 ↔ θ2, plus
an additional sign change in the quasimomentum ϕ → −ϕ.
Their equivalence becomes more clear when one checks that
their quasienergy spectrum is identical, and therefore, ŨQW(q)
and UQW(q) have identical Floquet bands. This symmetry be-
tween frames with an additional reflection along the synthetic
dimension ϕ can be related with a recently proposed sym-
metry relevant to the topology of quantum walks, known as
time-glide symmetry [30], which we will not discuss further
here.

To find the corresponding bulk topological invariant, one
can first check that UQW(q) is in the D symmetry class with
particle-hole symmetry

CUQW(q)C−1 = UQW(−q), (8)

implemented by the antiunitary operator C = σzK , being K
the complex conjugation operation. This implies that the bulk
invariant corresponds to the Chern number [48]. The numer-
ical calculation of the Berry curvature distribution perfectly
agrees with the one measured in the experiment (see Fig. 3),
and vanishes when summed over the whole Brillouin zone,
for all values of θ1,2. Hence, the Chern number of the Floquet
bands is zero, and this indicates that only trivial or anomalous
phases are present in our system. In addition, we have exper-
imentally demonstrated above that the two phases separated
by a gap closure are topologically distinct, because chiral
edge states develop at their interface (see Fig. 4), together
with a change of sign of the local Berry curvature captured
in the topological charges Qμ. Hence, one can conclude that,
although the Chern number vanishes, the phase diagram must
contain at least one anomalous Floquet phase.

B. Reference frames and open boundary conditions

To identify each phase independently, we perform an
additional experimental test where we implement open bound-
ary conditions (OBC) with the vacuum along the spatial
coordinate and PBC along the synthetic one. OBC are exper-
imentally implemented by dynamically changing the variable
beamsplitter at a single site, and setting its value to full re-
flectance [see Fig. 5(a) for a schematic]. Figures 5(b)–5(e)
show the presence of robust chiral edge states in one phase
[orange panels in Fig. 3(f)] and the absence of edge states in
the other [white panels in Fig. 3(f)]. Numerical simulations of
Eq. (1) confirmed the experimental observations (see Fig. 13
in the Appendix). This behavior seems to indicate that the
white panels of the phase diagram can be identified with the
trivial phase, while the orange panels with the anomalous
phase.

However, this appears to be in contradiction with the time
translation invariance between UQW(q) and ŨQW(q) previ-
ously discussed. The reason is that the two phases considered
in Figs. 5(b) and 5(c) and Figs. 5(d) and 5(e) are related by
the swap θ1 ↔ θ2. Hence, they are described by equivalent
Floquet operators whose only difference is a shift in the ref-
erence frame by one step of the protocol and this should not
change the bulk topology. That is, one would expect the two
phases to be identical because they are related by a symme-
try of the system and, hence, no edge states should exist at
their interface. This is consistent with the fact that the Chern

number remains zero at both sides of the quasienergies gap
closure. We now resolve this contradiction by demonstrating
the crucial role played by the boundaries.

To understand the role of the boundaries in the presence of
edge states, notice that the choice of a time frame in Fig. 5(a)
can be linked to a choice of boundary when OBC are con-
sidered. For example, if one chooses UQW(q) to characterize
the stroboscopic evolution [blue time slices in Fig. 5(a)], this
defines a bipartite unit cell (αn, βn). There is nothing special
about this unit cell, as far as PBC are considered along the
spatial dimension. However, once the fully reflecting edge
is fixed at n = 0, the evolution can be interpreted as the
stroboscopic evolution of a chain of dimers with an α-site ter-
mination. Instead, if one chooses the Floquet operator ŨQW(q)
to characterize the stroboscopic evolution [red time slices in
Fig. 5(a)], for a boundary at the same site, this corresponds
to a dimer chain with a β-site termination. This implies that
for OBC, a change in the boundary termination is equivalent
to a shift in the reference frame of the Floquet operator. This
is shown schematically in Fig. 5(a), where the shift in one
time step (change of color in the time slice) is equivalent to a
change of boundary.

This relation between different edge terminations for OBC
and Floquet operators with PBC in different frames of ref-
erence provides the starting point to obtain the topological
invariant from the Floquet operator with PBC incorporating
the role of boundaries.

As a confirmation that our interpretation is correct regard-
ing the importance of boundaries, and that there is nothing
special about the choice of UQW(q) or ŨQW(q) (i.e., they
have identical bulk topology); we show in Figs. 5(f)–5(j) that
a change in the boundary to a fully reflecting edge at site
n = −1 for the same values of θ j reverses the phase diagram
shown in Fig. 3(f). Hence, as we can find chiral edge states for
any value of θ j , this confirms that the system can actually be
topological for all values of θ j , and that the appearance of the
chiral edge states is linked to the particular boundaries fixed
in the experimental realization. Also, notice that the direction
of the group velocity associated to the edge state in Fig. 5(h)
is reversed with respect to the case with a boundary at site
n = 0 in Fig. 5(e). The reason is that, as we discussed earlier,
the time translation relating the two frames is not only imple-
mented by the swap θ1 ↔ θ2, but it also involves the reflection
of the quasimomentum ϕ → −ϕ. Therefore, as changing the
boundary site must be equivalent to a reference frame shift,
the phase diagram not only reverses the phases, but also the
chiral edge states change their direction of propagation.

C. Topological invariant

For the purpose of defining the topological invariant and
predicting the existence of chiral edge states for a particular
boundary, we now focus on the time frame that defines the
evolution operators UQW(q) and study the conditions to have
edge states when OBC are placed along the spatial coordinate.
This evolution operator describes the stroboscopic evolution
depicted by blue time slices in Fig. 5(a). Importantly for our
purpose, particle-hole symmetry imposes a crucial restriction
on the trajectories of the Bloch vector v(q) when k and ϕ are
varied. It requires that at high-symmetry points q = (πn, πm)
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FIG. 6. Topologically nonequivalent trajectories on the Bloch
sphere as k is varied over the first Brillouin zone. Particle-hole sym-
metry requires that at high-symmetry points ϕ = mπ , for all m ∈ Z,
the Bloch vector aligns with the x axis if k = {0, π}. This defines two
nonequivalent loops that either cross twice the same pole (trivial, in
blue) or once each different pole (topological, in red). These loops
cannot be continuously transformed into one another. For visualiza-
tion purposes we chose ϕ = 0.99π , which is why loops in solid lines
are not exactly confined to a plane when chiral symmetry is present.

with n, m = {0,±1}, the Bloch vector aligns with the x axis,
v = (vx, 0, 0). This allows us to define two topologically
nonequivalent trajectories [49], schematically shown in Fig. 6:
blue trajectories passing through a single pole of the Bloch
sphere only, and red trajectories passing through both poles.

To define the topological invariant we focus in loops in
k space. We first consider the particular case of the high-
symmetry point ϕ = mπ , with m ∈ Z. We will show that
a nonzero winding number exists in this case, and then
demonstrate that our argument holds for arbitrary ϕ, allow-
ing to discriminate between the two types of topologically
nonequivalent loops that perfectly predict the phase diagram
of Fig. 3(f).

At the high-symmetry points the system has an additional
symmetry because UQW(q) becomes chiral (the explicit form
of the chiral operator can be found in Appendix C),

�UQW(k, nπ )�−1 = UQW(k, nπ )†. (9)

Then, one can calculate the winding number that distinguishes
between trajectories of the Bloch vector v that encircle the
origin from those that do not, while k spans the Brillouin
zone [23]. This invariant is given by counting algebraically
the number of intersections of this trajectory with an arbitrary
vector v0 pointing to the equator from the center of the Bloch
sphere, as

ν =
∑

v(ki )=v0

sgn[(v × ∂kv) · n̂], (10)

where ki denote the momenta at which an intersection i occurs,
and n̂ is a unit vector normal to the equatorial plane [50,51].
Furthermore, as we know that at k = {0, π} the Bloch vector
must align with the x axis due to particle-hole symmetry, we
can choose v0 as pointing along the x direction, and this yields

FIG. 7. Measured value of the sublattice phase difference �αβ

for ϕ = 0.5π extracted from panels (b) and (d) of Fig. 3 (dashed
lines). The winding of �αβ is clearly observed in the case with topo-
logical edge states, corresponding to the orange regions in Fig. 3(f).

the expression (see Appendix C for a detailed derivation)

ν = 1
2 [1 − sgn(J2 + m2)sgn(m2 − J2)]. (11)

Here each sign function determines if the Bloch vector aligns
with the north or the south pole at k = {0, π}. Hence, it shows
that trajectories that cross the two poles wind around the
origin, and those that cross the same pole twice, do not wind.

To generalize our argument to arbitrary ϕ we just need to
notice that varying ϕ ∈ [−π, π ] does not close the quasiener-
gies gap. Therefore, the loops are smoothly deformed
out-of-plane (see Fig. 16 in Appendix C), and although the
system is not chiral anymore, the two types of trajectories can
still be topologically identified due to particle-hole symmetry.

The invariant defined in Eq. (11) predicts the existence
of edge states and the phase diagram of Fig. 3(f). More im-
portantly, it also allows extracting the value of the invariant
directly from the experimental measurements. The reason is
that the vector v(q) characterizes the time-evolution operator
in Eq. (3), and its trajectory controls the relative phase be-
tween components of the eigenstates. Figure 3 displays the
measured sublattice phase difference of the eigenvectors, �αβ .
Hence, in the phase with edge states, the winding number
must be 1 for trajectories along k. This is precisely what is
reported in Figs. 3(d) and 3(e) for fixed ϕ. In contrast, when
θ1,2 swap their values, as in Figs. 3(a) and 3(b), the system has
identical quasienergies but no edge states. This is because the
texture �αβ of phase difference has rotated by 90 degrees in
parameter space (k, ϕ), making the winding along k trivial.
This is explicitly shown in Fig. 7, where we display �αβ

measured in the two phases.

D. Connections with the topology of a chain of dimers

As we mentioned above, the topology of the system seems
to share some similarities with that of a chain of dimers
(the SSH model) [52,53] in the sense that the existence of
edge states is linked to the type of considered boundary [54].
Discussing this apparent similarity will allow us to place our
results within the framework of extrinsic topology and explic-
itly show how edge unitaries affect the global topology of the
system.

The unit cell choice of A-B or B-A atoms in a chain of
static dimers is similar to the choice of the order of time steps

023282-8



EDGE-DEPENDENT ANOMALOUS TOPOLOGY IN … PHYSICAL REVIEW RESEARCH 6, 023282 (2024)

in our setup. In both cases, this choice only fixes the spatial or
temporal reference frame, respectively, which is unimportant
for the physics of the bulk system. When OBC are considered
the two cases become different. In a chain of static dimers, a
nonvanishing winding number implies that an unpaired state
is present at the edge of a chain. The winding number is
now unambiguously defined for the particular choice of unit
cell corresponding to the dimer at the edge. The existence of
the edge state is then explained by the bulk-boundary cor-
respondence of chiral symmetric Hermitian Hamiltonians in
dimension one [52,55], and the value of the invariant is linked
to the choice of termination (i.e., the unit cell).

However, for the case treated in the present paper, there
is an important difference due to the Floquet dynamics. The
discrete nature of the time periodicity in our lattice en-
riches the topology with the possibility of the winding of the
quasienergy spectrum. Mathematically, this is related to the
fact that in Floquet physics, one must deal with a unitary
operator—the time-evolution operator—and not a Hermitian
one. Hence, a nonvanishing winding number, ν �= 0, indicates
the presence of a topologically protected unitary operator
Uedge(ϕ) that acts on the dimers at the edges for a particular
edge termination, and this edge unitary has a nontrivial topol-
ogy characterized by a winding number νedge. This additional
contribution to the bulk or intrinsic topology by edge unitaries
is what is called extrinsic topology [56]. In our case, the
unitaries at the edge are effectively determined by the choice
of time step (even or odd, or equivalently θ1 and θ2) at which
the spatial unit cell is cut by the edge. In Fig. 5(a), the edge
unit cell is cut at even steps, implicitly imposing the blue times
reference frame (odd steps) for the determination of the edge
unitaries. The opposite reference frame is imposed in Fig. 5(f).
In Appendix E we explicitly find the edge unitaries for these
cases and provide the details to characterize their appearance.
The change of unitaries and, therefore, the presence of edge
states, can also be controlled by explicitly engineering the
unitary operators themselves without changing the position of
the edge. This situation is not possible in static Hermitian sys-
tems, and shares features with non-Hermitian Hamiltonians,
as discussed in Ref. [56].

Notice that extrinsic topology is a hallmark of time-discrete
evolution, but plays a similar role as the micromotion in
continuously driven Floquet Hamiltonians. That is, extrinsic
topology produces chiral edge modes simultaneously in both
gaps, even when the bulk bands are topologically trivial,
which is one of the signatures of anomalous topology when
micromotion becomes relevant. However, in extrinsic topol-
ogy the control of these chiral edge modes depends on the
unitaries at the edge sites. This situation is very different to the
Floquet topology expected from continuously driven systems,
in which anomalous phases are described by a purely bulk
invariant [13].

V. CONCLUSIONS

In this paper we have addressed a complete theoretical
and experimental analysis of anomalous topological phases in
a synthetic photonic lattice following a step-walk evolution.
Our system illustrates some fundamental differences between
static and driven systems, but also between driven Hamil-

tonians and general step-walk evolutions. As such, it also
confirms the existence of topological phases with time-glide
symmetry [30].

In particular, we have shown that systems following a dis-
crete and periodic time evolution display topological features
beyond those of continuously driven Floquet Hamiltonians.
These features stem from the absence of an intrinsic time
coordinate in discrete step walks and enlarge the possible
topological phases [30]: anomalous phases and the emergence
of chiral edge states are controlled by both the bulk topol-
ogy and the specific edge termination. The existence of such
“extrinsic” topology is demonstrated in our experiments. To
predict the presence of chiral edge states in our system we
use an invariant tailored for two-dimensional step-walks in
the D symmetry class. This invariant takes into account the
crucial role of boundaries in extrinsic topology by showing
that different time frames become nonequivalent in the pres-
ence of OBC. It allows identifying the different anomalous
phases in the phase diagram without any reference to the
micromotion and demonstrates that the presence of edge states
is completely dominated by extrinsic topology.

From an experimental perspective, our results demonstrate
that a complete topological characterization of anomalous
phases in a synthetic photonic lattice is possible. We have
determined the bulk/intrinsic topology of the synthetic lattice
from the measurement of the eigenstates of the system,
which are obtained from the Fourier transform of the spatial
trajectories. From them, we extract the Berry flux distribution
for each phase and the Chern number. Additionally, we have
shown that it is also possible to measure the topological
charge associated to an arbitrary quasienergy band crossing
at the 0 or π gap. This is helpful to study both standard and
anomalous topological phases. For the study of edge/extrinsic
topology we have shown the possibility to simultaneously
detect the edge states and measure the winding number
that relates the existence of edge states and the particular
boundary realizations.

Our experimental platform paves the way for the investi-
gation of genuine step walk topology, including the potential
observation of extrinsic topological phases when arbitrary
unitary operators are introduced at the edge sites [32]. These
unitary operators can be designed to have local windings
(i.e., at edge sites) by simply applying an appropriate voltage
sequence to the phase modulator already present in one of the
rings. This is not only interesting from a fundamental point
of view, but it can also open avenues to produce topological
phases on demand, in situations in which the control of the
bulk topology can be challenging. It could be of potential use
to switch on and off topological channels via local actions at
the edges of a two-dimensional metamaterial.
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APPENDIX A: DATA PROCESSING

In this Appendix, we will explain how to extract the eigen-
vectors, construct the Berry curvature and calculate the Chern
number from the experimental data.

The lattice has two dimensions: a real-space one, defined
by the sites n, and a parametric one whose coordinates are
given by the value ϕ of the phase modulator in one of the rings.
To reconstruct the two-dimensional dispersion and associated
eigenvectors we extract the eigenvalues and eigenvectors from
the measured dynamics for a given value of ϕ, which is
varied from −π to π in successive experiments. For each
experiment, we use an arbitrary waveform generator (AWG)
to generate two consecutive 1.4 ns pulses (a calibration pulse
and a science pulse) separated by a time delay of 90 round
trips TR. For the calibration pulse the beamsplitter is set to
θ = π/4, which corresponds to a 50/50 splitting ratio, and
ϕ = 0. The time dynamics of this model is quite trivial and
well known [57], and serves as a reference model. The science
shot describes the two-steps model we wish to study, in which
the variable beam splitter alternates between two coupling
values θ1 and θ2, and the external phase modulator adds a
controlled phase ϕ with a value that alternates between ϕ and
−ϕ in odd and even steps, respectively.

For each injected pulse, we record on the oscilloscope the
signal intensity at the output of both fiber loops as a func-
tion of time. After the injected calibration or science pulse
we observe a series of groups of pulses separated by a time
TR = 225 ns. This time corresponds to the average round-trip
time inside the loops. Each pulse has a temporal width of
T = 1.4 ns and is separated from adjacent pulses in the same
group a time interval 
T = 2.8 ns, corresponding to the length
difference between the two fiber loops. To clearly observe sep-
arate sequences of pulses and avoid any overlap, the width of
each pulse must be shorter than the time difference separating
the two rings (
T < T). Figure 8(a) shows a typical measured
time trace of the β ring for the first round trips after the arrival
of the calibration pulse.

To create the space-time diagram of the evolution of light
intensity as a function of position and time in the α and

β rings, we cut each recorded time trace after the arrival
of the injected pulse into equal time segments of duration
TR [see Fig. 8(a)]. The segments are then arranged in lines
corresponding to each round-trip time m, the spatial position
n denoting the relative time of each pulse within each segment
[see Fig. 8(b)]. This procedure can be applied to either the
first part of the measured trace, corresponding to the dynamics
after the injection of the calibration pulse, or to the second
part of the time trace, corresponding to the dynamics after
the injection of the science pulse. Note that in between the
two pulses, high losses are applied to both rings for a few
milliseconds using an electronic switch to make sure that no
light from the calibration experiment is present during the
science experiment. The reason to do the two experiments in
the same oscilloscope shot will become clear later.

To measure the excited eigenvectors and the corresponding
eigenvalues we need information about the relative phase of
the pulses in the rings at different spatial sites n and time steps
m. Because the photodiodes are only sensitive to intensity, we
reveal the relative phase by interfering the signal that exits
the rings at each round trip with a reference continuous wave
laser. This reference laser is shifted in frequency by about
3 GHz with respect to the laser that creates the injected pulses
and has a coherence length of hundreds of microseconds,
much longer than the duration of each recorded time trace.
The interference fringes of the two lasers are visible in Fig. 8.
By doing a two-dimensional Fourier transform of the space-
time diagram shown in Fig. 8(b) and in Figs. 2(a) and 2(b) we
obtain the diagram shown in Fig. 9(a). This figure shows the
periodic eigenvalue bands spanning in the range of 10 GHz
in the horizontal direction and 4 MHz in the vertical axis
[see Fig. 9(a)]. These frequencies correspond to the conjugate
times within each segment, and from time step to time step.
Therefore, they have the meaning of quasimomentum and
quasienergy.

We focus on a single Brillouin zone [Fig. 9(b)] at around
a frequency of 3 GHz. From shot to shot, the Fourier trans-
formed diagram moves slightly due to variations in laser
wavelength and fibre length. To fine-center the selected zone,
we use a correlator between the measured data and the ana-
lytic dispersion of the model in the calibration shot. Note that
once this is done for the calibration shot, the Brillouin zone
window remains exactly the same for the science dynamics.
This is one of the reasons to design the experiment with this
double injection protocol in the same experimental shot.
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FIG. 9. (a) Two-dimensional Fourier transform of the measured space-time dynamics of the calibration part of the time trace. (b) Measured
bands in one Brillouin zone.

To identify the bands of eigenvalues from the Fourier trans-
form of the measured spatiotemporal diagrams we proceed in
the following way. For each value of quasimomentum, we use
the analytically computed band corresponding to the nominal
value of the external phase modulator as a reference [green
line Fig. 9(b)]. To locate the maximum of intensity of the
experimental bands [blue line Fig. 9(b)] we scan two pixels
in quasienergy above and below the analytical bands [yellow
line Fig. 9(b)]. Other more general methods based exclusively
on the location of the maxima of intensity extracted from the
experiment are also successful.

To extract the eigenvectors, we take the complex amplitude
of the measured bands at each point in quasimomentum for the
α and β rings. To reduce the noise in the measurement of the
ratio of amplitudes R, we integrate the recorded intensity over
two pixels below and above the maximum of the band for each
value of k. The ratio R and the phase difference �αβ of the
complex amplitudes directly provide the eigenvectors Eq. (2).

For the calibration shot, the relative phase difference is well
defined for all values of quasimomenta k up to an overall
rigid shift 
�. From shot to shot, this shift may vary due
to slight differences in length in the fibre components of the
experiment. For this reason, in each measured shot, we rigidly
shift �αβ (k = −π ) to zero in the calibration shot. When we
treat the science part of the time trace, we follow the exact
same procedure to extract the eigenvectors, and we apply the
rigid shift 
� found in the calibration trace of the same shot.
In this way we are sure of having an unambiguous phase
reference for the measured �αβ (k) in the science bands.

Following this procedure is crucial when reconstructing the
two-dimensional sublattice phase pattern �αβ (k, ϕ) shown in
Fig. 3. As already mentioned, these diagrams are constructed
from independent measurements for different values of ϕ ∈
[−π, π ]. For the values of �αβ (k, ϕ) to be consistent when
changing ϕ, we need the phase reference of the calibration
shot.

Finally, we perform a number of averaging procedures.
First, the measured ratio of amplitude R and phase �αβ of
the eigenvectors are averaged over five to ten identical ex-
periments for each value of ϕ. Then, we apply a Gaussian
averaging (“smoothdata” function in Matlab) to the two-
dimensional matrices R(k, ϕ) and �αβ (k, ϕ). The result is
displayed in Fig. 3 for the upper band.

To compute the Berry curvature we use the natu-
ral discretization of the Brillouin zone coming from the

experimental data. The Berry curvature can be computed by
taking the product of the eigenvectors of a given band at the
four corners of the square of the discretized Brillouin zone
(see Fig. 10),

BC = −Im log [〈ψ1|ψ2〉〈ψ2|ψ3〉〈ψ3|ψ4〉〈ψ4|ψ1〉]. (A1)

Figure 3 shows the measured and analytically calculated
Berry curvature for the upper band at different points in the
phase diagram. Figure 11 shows the same for the lower band.
Finally, the Chern number is computed by integrating the
Berry curvature over the entire Brillouin zone.

For completeness, Fig. 12 displays the computed Berry
curvature through the sides of the cuboid represented in Fig.
3(g). Figure 13 shows numerical simulations of the spatiotem-
poral dynamics and the associated bands in the exact same
conditions as in Fig. 5.

APPENDIX B: CALCULATION OF THE EIGENVECTORS
AND EIGNENVALUES

The eigenvectors of the evolution Eqs. (1) are represented
by the complex amplitudes α and β of each of the two sublat-
tices, Eq. (2). The analytic value of |R| and, therefore, of the
eigenvectors, can be straightforwardly calculated by apply-
ing the Floquet-Bloch ansatz to the two time steps evolution

FIG. 10. Discretization of the bands in two dimensions over the
Brillouin zone.
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FIG. 11. Measured (upper panels) and analytically computed Berry curvature for the lower band at points in the phase diagram displayed
in Fig. 3(f). The numbers in each quadrant show the integrated Berry curvature in the quadrant.

Eqs. (C4) and (C5). The solution is

R(k, ϕ) = |R|ei�αβ

= [eiE (k,ϕ) − cos θ2 cos θ1e−ik + sin θ2 sin θ1e−iϕ]

[i cos θ2 sin θ1e−ik + i sin θ2 cos θ1e−iϕ]
.

(B1)

In the above expression, the eigenvalues E (k, ϕ) take different
magnitudes for each of the bands ±,

E±(k, ϕ) = ± cos−1[cos θ2 cos θ1 cos(k)

− sin θ2 sin θ1 cos(ϕ)]. (B2)

Figure 14 displays the analytical eigenvalue bands and
the relative amplitude and phase difference between the

FIG. 12. (a) Topological phase diagram of the system as a function of the splitting angles θ1 and θ2. (b) Cuboid in parameter space where
λ labels the evolution of the splitting amplitudes θ1 and θ2 across the phase transition. Faces 1–4 denote the local Berry flux through the lateral
faces, while faces 5 and 6 represent the transversal local Berry flux over a region of the standard Brillouin zone. (c) Analyticial computation
of the transversal Berry flux when varying the parameters θ1, θ2 across the phase transition from the upper side (5) to the lower side (6) of the
cuboid. (d) Computed Berry curvature through the lateral faces 1–4 of the cuboid when (θ1, θ2) evolve from (0.2, 0.3)π to (0.3, 0.2)π . The
integrated Berry flux through each of the lateral faces is zero.
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FIG. 13. Numerical simulation of the spatiotemporal dynamics and the associated bands in the exact same conditions as in Fig. 5.

two sublattices for the eigenmodes of the upper band in
the conditions of Fig. 3, in which most of the experiments
were realized.

APPENDIX C: TOPOLOGICAL CHARACTERIZATION

In this Appendix we discuss the topological characteriza-
tion of the system and present the detailed calculation of the
invariant for the quantum walk.

FIG. 14. Analytical eigenvalues (top row), and the relative amplitude and phase difference between the two sublattices for the eigenvectors
corresponding to the upper band in the conditions of Fig. 3. The bottom row displays the Berry curvature computed from the analytic
eigenvalues.
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The general time evolution of the initial state for our two-
step protocol can be written as the product of two different
unitaries,

U = . . .U2U1U2U1U2U1 . . . (C1)

Therefore, the stroboscopic time evolution over a period or
Floquet operator for this protocol corresponds to the product
of two unitaries, UQW = U2U1, and as it propagates the system
over many periods, we can also change the order to ŨQW =
U1U2, and represent an identical protocol. This description
only shifts the reference frame one time step, and can be
checked that the corresponding quasienergies are identical for
the two cases.

Let us now particularize to our protocol, which is described
by the following equations of motion at each time step,

αm+1
n = αm

n−1 cos(θm)eiϕm + iβm
n−1 sin(θm)eiϕm , (C2)

βm+1
n = iαm

n+1 sin(θm) + βm
n+1 cos(θm). (C3)

Then, for our two-step protocol we can write the equa-
tions of motion describing the time evolution during each full
period as

αm+2
n = [−αm

n sin(θm) + iβm
n cos(θm)

]
sin(θm+1)eiϕm+1

+ [
αm

n−2 cos(θm) + iβm
n−2 sin(θm)

]
× cos(θm+1)ei(ϕm+ϕm+1 ), (C4)

βm+2
n = [

iαm
n cos(θm) − βm

n sin(θm)
]

sin(θm+1)eiϕm

+ [
iαm

n+2 sin(θm) + βm
n+2 cos(θm)

]
cos(θm+1). (C5)

Now, we fix our reference frame by assuming that U1 acts
before U2 and produce the synthetic dimension by requiring
ϕm = −ϕm+1 = ϕ. Then, for periodic boundary conditions,
the matrix describing one period of the quantum walk be-
comes

UQW(q) = v0σ0 + iv(q) · σ (C6)

with q = (k, ϕ), the vector components

v0 = J1 cos(k) − m1 cos(ϕ), (C7)

vx = J2 cos(k) + m2 cos(ϕ), (C8)

vy = J2 sin(k) + m2 sin(ϕ), (C9)

vz = −J1 sin(k) + m1 sin(ϕ), (C10)

and the parameters J1 = cos(θ1) cos(θ2), J2 = sin(θ1) cos(θ2),
m1 = sin(θ1) sin(θ2), and m2 = cos(θ1) sin(θ2). In addition,
unitarity imposes the constrains J1m1 = J2m2 and J2

1 + J2
2 +

m2
1 + m2

2 = 1, because the four parameters are not indepen-
dent (only θ1,2 are). Notice that the shifted Floquet operator,
ŨQW = U1U2, can be easily obtained by just swapping θ1 ↔
θ2 and ϕ ↔ −ϕ.

To study the bulk topology one must look at the symmetry
class of UQW(q). It can be checked the presence of particle-
hole symmetry (PHS),

CUQW(q)C−1 = UQW(−q) (C11)

for the antiunitary operator C = σzK , with K the conjugation
operation and σz the third Pauli matrix. Also, the PHS operator
fulfills C2 = +1, placing the Floquet operator in D class in
two dimensions, which is characterized by a Chern number.

The calculation of the Chern number shows that it vanishes
for all values of θ1,2, indicating that the topology, if any, must
be anomalous.

Importantly, the 0 and π gaps simultaneously close when
θ1 ± θ2 = nπ for n ∈ Z. However, one should not expect a
different bulk topology at either side of the gap closing point,
because the bulk topology should not depend on the reference
frame, and the two points are related by the swap θ1 ↔ θ2,
which is equivalent to a shift of the time frame of half a period.
This is in agreement with the vanishing of the Chern number
for all θ1,2.

To study if the topology is trivial or anomalous, we first
calculate the spectrum for a ribbon with OBC along the spa-
tial coordinate, and periodic boundary conditions along the
synthetic one [see Fig. 5(a) for a schematic]. This choice
corresponds to the one of the experimental setup, where OBC
are implemented as fully reflecting edges which can separate
two dimers, or the two sites within a dimer. Notice that the
two cases are also related by a reference frame shift of half a
period.

The result is shown in Fig. 15. Surprisingly, it shows that
for θ1 = π/4 and θ2 = π/8, chiral edge states populate both
gaps, indicating the presence of an anomalous phase. In con-
trast, swapping the angles θ1 ↔ θ2 the edge states disappear.
This seems to be in contradiction with the fact that swapping
the angles should not affect the topology, because it is equiv-
alent to a reference frame time-shift.

There are two equivalent ways to reconcile these ideas, and
both highlight the relevance of boundaries in the topological
characterization of quantum walks: the first way invokes ex-
trinsic topology [32], which explains that in quantum walks
there is intrinsic topology that is encoded in the bulk effective
Hamiltonian of the Floquet operator HF(q) = i log[UQW(q)],
but also extrinsic topology, which is produced when OBCs
are implemented, due to the unitary nature of the boundary
operators and their possibility to have nonvanishing winding
number, unlike Hermitian operators. Both contribute to the
presence of edge states in the system, and in particular, ex-
trinsic topology is the one responsible for anomalous phases,
because the boundary unitary operators directly produce chi-
ral edge modes along both gaps. That is, it plays a similar role
as the micromotion in periodically driven Hamiltonians.

Alternatively, here we show that the role of boundaries and
edge unitaries can be linked with different Floquet operators
with PBC in different time frames, and that their winding
number at high-symmetry points completely characterizes the
presence of edge states. This interpretation implies that for
the same parameters θ1,2 as in Fig. 15 (right) we could obtain
edge states by just changing the boundary conditions. We have
experimentally confirmed this by considering a fully reflecting
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FIG. 15. Spectra for a ribbon with PBC along the synthetic coordinate at symmetric values of θ1,2 before and after the gap closure. The
bulk is identical, but the left plot describes an anomalous phase with chiral edge states in each gap, while the right plot lacks the edge states.

edge at a neighboring site and checking that the chiral edge
states appear. This is shown in Fig. 5 of the main text.

To find the topological invariant, let us first notice that PHS
in topological systems in D class imprints tight restrictions
on the trajectories of the Bloch vector [49]. In particular, at
high-symmetry points, q = π (n, m) with n, m = {0,±1}, the
Bloch vector aligns with the x axis, v = (vx, 0, 0). As in our
case the OBC is always along the spatial coordinate and the
PBC along the synthetic dimension ϕ, we are interested in
topologically nonequivalent loops as k is varied. To simplify
the analysis, let us first focus on the high-symmetry points
along the synthetic dimension ϕ = mπ . In that case the Bloch
vector actually describes a system with chiral symmetry

�UQW(k, mπ )�−1 = UQW(k, mπ )†. (C12)

Furthermore, the chiral operator can be easily obtained as

�(ϕ) = ie−iπ �n� (ϕ)·�σ/2 (C13)

for ϕ = {0, π}, and �n� (ϕ) the vector orthogonal to the plane
of rotation. In particular, at the high-symmetry points it
is given by: �n� (ϕ) = (0, J1, J2)(J2 ± m2) for ϕ = 0 and π ,
respectively.

For this case, the components of the Bloch vector at the
high-symmetry points ϕ = {0, π}, read

vx = J2 cos(k) ± m2, (C14)

vy = J2 sin(k), (C15)

vz = −J1 sin(k). (C16)

In 1D systems with chiral symmetry it is possible to calculate
the winding number straightforwardly [50],

ν = 1

2π

∫ π

−π

dk
v × ∂kv

v2
· n̂ (C17)

=
∑

v(ki )=v0

sgn[v × ∂kv) · n̂]. (C18)

However, this calculation is not even necessary in our case,
because the only two types of possible trajectories at high-
symmetry points can be classified as those that pass through
both poles of the Bloch sphere, or those that only return to the
original pole without reaching the other (see Figs. 6 and 16).

This means that we only need to know if the vector passes
through different poles at k = {0, π} and we can write the
invariant as

ν = 1
2 [1 − sgn(J2 + m2)sgn(m2 − J2)]

= 1
2 [1 − sgn[sin(θ1 + θ2)]sgn[sin(θ2 − θ1)]]. (C19)

Finally, we just need to remember that as the trajectories that
pass through both poles are topologically nonequivalent to
those that do not, and notice that if we continuously change ϕ,
the gap remains open (the spectrum is gapless only at points
θ1 ± θ2 = nπ ). Hence, the different loops are deformed out
of the plane breaking chiral symmetry, but remain topolog-
ically nonequivalent due to PHS and characterizing the two
phases. This is illustrated in Fig. 16. The red loop belongs
to the phase in which the loop passes through both poles
at ϕ = 0 and can be adiabatically deformed to a loop that
again passes through both poles at ϕ = π . Similarly, the blue
loop crosses a single pole twice at ϕ = 0 and at ϕ = π . The
topologically nonequivalence between the two types of loops
makes it impossible for a loop crossing the two poles at ϕ = 0
to become a loop that crosses twice the same pole at ϕ = π .
Note that the topology of these loops is not to be understood
as the deformation of the two colored loops on the surface
of a sphere (they would both be equivalent), but rather as a
parity symmetry for the loops, produced by the existence of
PHS. Therefore, the invariant (C19) appropriately predicts the
existence of chiral edge states in the system.

APPENDIX D: ANALYSIS IN TERMS
OF TIME-GLIDE SYMMETRY

Here we comment on the equivalence between our topolog-
ical analysis in the main text and the one based on time-glide
symmetry.

Time-glide symmetry is present in systems that are invari-
ant under a time-translation plus a reflection. In particular,
the glide operation acting on our Floquet operator, which is
decomposed in two steps UQW(q) = U2(q)U1(q), gives

GTUQW(q)G†
T = ŨQW(gq), (D1)

where gq = (k,−ϕ) and ŨQW(gq) = U1(q)U2(q) changes the
order of the unitary matrices. This means that for a system
with this symmetry, we can write the following relation be-
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FIG. 16. Topologically trivial (blue) and nontrivial (red) trajectories, for different values of the parameter ϕ. At high-symmetry points
ϕ = 0, π , the trivial loop crosses twice the same pole, while the nontrivial one crosses each pole only once. Then, as ϕ moves away from
the high-symmetry point, chiral symmetry breaks and trajectories are deformed out-of-plane. However, due to the presence of PHS, the two
trajectories remain topologically nonequivalent for all values of ϕ.

tween the unitary matrices for each step:

GTU1(q)G†
T = U2(gq). (D2)

Consider the glide-symmetric plane qG = (k, ϕG), with
ϕG = {0, π}. It is possible to define an effective Floquet
Hamiltonian

H1(k) = i logGTU1(qG), (D3)

which is twice the standard Floquet Hamiltonian and is
gapped. Importantly, in the glide-symmetric plane H1(k) has
chiral symmetry, and one can define its winding number,
which coincides with the one obtained in the main text.

APPENDIX E: EXTRINSIC TOPOLOGY
FROM THE ANALOGY WITH A DIMERS CHAIN

As mentioned in the main text, the topology of our two-step
walk can be partially connected with the topology of a dimers
chain. In particular, the Floquet operator for the two-step walk
takes a matrix form similar to that of the dimers chain, with
unitary instead of Hermitian operators. Fortunately, this also
provides a natural way to understand extrinsic topology.

The Floquet operator can be written as

UF =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

UL U+ 0 0 0 0

U− U0 U+ 0 0 . . . 0

0 U− U0 U+
. . . 0 0

0 0 U−
. . . U+ 0 0

0 0 . . . U− U0 U+ 0

0 . . . 0 0 U− U0 U+
0 0 0 0 U− UR

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(E1)

where the different blocks are given by

U0 = sin (θ2)

(−e−iϕ sin (θ1) ie−iϕ cos (θ1)
ieiϕ cos (θ1) −eiϕ sin (θ1)

)
, (E2)

U+ = cos (θ2)

(
0 0

i sin (θ1) cos (θ1)

)
, (E3)

U− = cos(θ2)

(
cos(θ1) i sin(θ1)

0 0

)
. (E4)

Notice also the presence of edge unitaries

UL =
( −e−iϕ sin (θ1) ie−iϕ cos(θ1)

ieiϕ cos(θ1) sin(θ2) −eiϕ sin(θ1) sin(θ2)

)
, (E5)

UR =
(−e−iϕ sin w(θ1) sin(θ2) ie−iϕ cos(θ1) sin(θ2)

ieiϕ cos(θ1) −eiϕ sin(θ1)

)
,

(E6)

which are different due to the condition of full reflection at
the edges. In this case, the matrix can be interpreted as a
unitary version of a dimerized lattice, with couplings between
neighboring dimers given by U±.

As for the dimers chain, it is useful to check the different
limits of dimerization, which in this case correspond to cou-
pling only within each dimer (θ1 = 0 and θ2 = π/2), or full
hybridization between dimers (θ1 = π/2 and θ2 = 0). In the
first case the edge unitaries become

UL,R =
(

0 ie−iϕ

ieiϕ 0

)
. (E7)

Their winding number can be calculated from [32],

νedge[Uedge(ϕ)] =
∫ 2π

0

dϕ

2π
tr[Uedge(ϕ)−1i∂ϕUedge(ϕ)], (E8)

and results in a vanishing winding number. In contrast, the
edge unitaries for the second case result in

UL =
(−e−iϕ 0

0 0

)
, UR =

(
0 0
0 −eiϕ

)
(E9)

and each edge unitary has nonvanishing winding number
controlled by ϕ. Notice that they are completely decoupled
from the bulk unitaries. This exemplifies what is the mean-
ing of edge unitaries in discretized time-step walks and how
their topology (extrinsic) complements the bulk topology
(intrinsic).

It is important to stress that this result explicitly shows
that the topology of the two-step walk is richer than that of
a dimers chain. In particular, the fact that we are dealing with
driven systems, characterized by unitary operators rather than
Hermitian ones is what makes possible the existence of chiral
edge states crossing both gaps.

Also, notice that as in this paper we have characterized
the topology of the system by linking the role of boundaries
with different time frames and then, calculating the invariant
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for PBC. This comparison with the dimers chain explicitly
shows the edge unitaries and illustrate the connection with the

approach to extrinsic topology from Ref. [32], where a recipe
to find the edge unitaries is not given.
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