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Quantum modulation of a coherent state with a single electron spin
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The interaction of quantum objects lies at the heart of fundamental quantum physics and is key to a wide range
of quantum information technologies. Photon-quantum-emitter interactions are among the most widely studied.
Two-qubit interactions are generally simplified into two quantum objects in static well-defined states. In this
work we explore a fundamentally new dynamic type of spin-photon interaction. We demonstrate the modulation
of a coherent narrowband laser by a coherently evolving spin in the ground state of a quantum dot. What results
is a quantum modulation of the output phase (either 0 or π but no values in between), and a new quantum state
of light that cannot be described classically.
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The resonantly scattered field (RSF) from a two-level sys-
tem has been extensively studied over the past 50 years [1–5],
and it is considered a well understood phenomenon in physics
that underpins a range of quantum technologies [6–9]. The
coherent fraction of the resonantly scattered field retains the
bandwidth of the driving laser but becomes antibunched on
the timescale of the incoherent fraction (assuming sufficient
detector bandwidth) [5,10–12]. Less explored is how the RSF
is altered if the quantum emitter contains a ground-state spin.
For a high magnetic field the system splits into spectrally
distinct transitions that can be probed individually, where it
has been shown that the RSF either retains the coherence of
the drive field or undergoes dephasing on the same timescale
as the electron spin T 2

∗ time [13]. The RSF from a optically
active spin is generally simplified into separate uncoupled
two-level systems [8,14–16]. However, in the low magnetic
field limit where the Zeeman splitting (2ωB) is less than the
natural line-width of the optical transitions (�), the complex
interplay between all overlapping transitions must be taken
into account.

In this limit we reveal that the RSF does not adopt any
of the previously observed behaviours (except antibunching),
but rather the spin imparts a quantum phase modulation to the
RSF. Our previous RSF studies of efficient QD spin micropil-
lar systems in high magnetic field have shown that a phase
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shift is imparted on the RSF [17,18]. Since the charged QD
has circularly polarized transitions [Fig. 1(a)] this phase shift
can be used to rotate linearly polarized light [17–23]. In the
following we consider a narrowband single-photon state in the
weak excitation limit (i.e., no exciton creation). As we have
discussed in previous work [17,18] horizontally polarized (H)
single photons will scatter from the charged QD and undergo a
Faraday rotation towards vertical (V) due to the circularly po-
larized selection rules [each spin |↑z〉, |↓z〉 interacts only with
one circular component see Fig. 1(a)]. The cross-polarized
output field will depend on the spin oreintation and is given
by

|ψ〉in = |↑〉z|H〉 → |ψ〉out = |↑〉z|V 〉,
|ψ〉in = |↓〉z|H〉 → |ψ〉out = −|↓〉z|V 〉 (1)

(see Appendix A and Ref. [14] for details). This expression
is true in the limit of a perfect cavity, where a determinis-
tic perfect rotation to the orthogonal state is possible. Any
deviation from that results only in a reduction of efficiency,
as any light remaining in the same polarization as the laser
has no back-action on the spin state. States |↑/ ↓〉z represent
spin orientations along the growth (optical) axis of the QD.
The input photon is perfectly rotated to V polarization with a
global phase shift 0 or π depending on the spin state. Both
spin states rotate the polarization to vertical (V) but take
orthogonal trajectories (clockwise/anticlockwise) around the
Poincaré sphere, giving rise to a global phase difference.
The global phase arises from the intrinsic phase difference
of the σ+ and σ− components of linearly polarized light,
imprinted by the circularly polarized optical transitions of the
spin [Fig. 1(a)].
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FIG. 1. Experimental setup for probing the RSF a QD spin (QD1) in a pillar microcavity showing the optical selection rules for the spin
in the |↑/ ↓〉z basis in a weak in-plane (Voigt) magnetic field which induces Larmor precession at frequency 2ωB. In our experiment the drive
field is a horizontally polarized (H) single-frequency laser (along x). A polarizing beam splitter (PBS) separates the H polarized pump from
the V polarized signal. The output signal is split on a 50:50 beam splitter (BS) which forms the two arms of a MZI. (b) Spontaneous emission
lifetime measurements obtained via pulsed resonant excitation (2 ps) for QD1 where T1 = 460 ± 6 ps, corresponding to a transform limited
line-width of �ω ∼ 1.3 µeV. The initial fast decay is a result of background light from the pulsed drive laser with a timing response limited
by the detector jitter (∼64 ps). (c) Antibunching g2(t ) measurement of the RSF using a Hanbury Brown-Twiss experiment. Here we observe
a pronounced antibunching feature with the width determined by the excited trion state lifetime. The pronounced bunching outside of the dip
arises due to spectral jitter (d), (e) Plots showing the visibility [V (τ )] of the RSF as measured with the MZI in panel (a) for (d) B = 0, and (e)
B = 108mT, for a drive-field laser power P ∼ 0.02Psat. The oscillations in panel (e) are at a frequency of 2ωB = 590 ± 10 MHz, as a result of
Larmor precession and represents a subnatural line-width Zeeman splitting ∼0.4 µeV. (f) An illustration of the resonant scattering process in
the |↑/ ↓〉x basis which represent eigenstates of the spin along the direction of the applied magnetic field, separated in energy by 2ωB. Since
2ωB < � this forms a coupled pair of 	 systems where spin preserving optical transitions are H-polarized and spin flipping transitions are
V-polarized. (g) Fourier transforms of spectra calculated using parameters from panel (e) and using a master equation based on the level system
in panel (f), where every V-polarized photon that is scattered is a result of a spin flip in the |↑/ ↓〉x basis which to conserve energy results in
an energy shifted scattered photon. The gray line represents a Lorentzian with a bandwidth corresponding to � to emphasise the subnatural
linewidth splitting of the RSF spectrum. Each individual panel shows how the RSF spectra varies with QD-laser detuning � and the red line
the single-frequency CW drive laser.

One rarely needs to consider this global phase, but an
interesting situation arises when the spin evolves coherently
in an in-plane (Voigt) magnetic field Bx with a relatively slow
Larmor precession period (2ωB < �, where � is the radiative
lifetime of the optical transitions). To probe these dynamics
we measure the first-order correlation function g(1)(t ) of the
RSF. The correlation function is measured using a Mach
Zehnder interferometer [Fig. 1(a)] which measures the self-
interference of the RSF by splitting it into two beams and
interfering the signal at time t = t0 with a delayed part t =
t0 + τ . In the Mach-Zehnder interferometer (MZI) there are
two optical elements that can be used to vary the path length.
The first is a piezo controlled mirror that allows path length
changes up to ∼2 µm (with 10 pm resolution). Varying this
fine delay allows one to vary the pathlength over one wave-
length, i.e., to vary the relative phase, resulting in interference
fringes that are monitored on the two APDs by measuring
the visibility, defined as V = |IA−IB|

IA+IB
, where IA, IB are the

intensity counts on each detector. A separate delay stage with
a retro reflector (RR) can then change the coarse path length
difference between 0–1.2 m (τ ∼ 0–4 ns). By scanning the
piezo mirror, the visibility [V (τ ) ≡ |g(1)(τ )|] can be measured
as a function of the coarse time delay, which is controlled by
the RR This technique is often used to measure the coherence
length of a signal (e.g., a laser or single photon). To observe a
high visibility, the relative phase of the signal at times t = t0

and τ must be well-defined. Any loss of coherence with time
manifests as a reduction in the visibility as a function of τ .

For a charged QD (QD1) we probe in both zero [Fig. 1(d)]
and Voigt-field configurations [Fig. 1(e)] when the QD-drive
laser detuning is set to zero. The measured coherence time
(T ∗

2 ) of the RSF (∼3 ns) in both cases is significantly longer
than the transform limit of the radiative transition 2T1 =
920 ± 10 ps [Fig. 1(b)], but similar to the expected spin coher-
ence time, as observed in Ref. [13]. Second, when subjected
to a Voigt-magnetic field there is a pronounced oscillation in
the V (τ ) (|g(1)(τ )|) where the visibility oscillates from high
to almost zero with a frequency of 2ωB = 590 ± 10 MHz
within an exponentially decaying envelope. This oscillation
in visibility implies a variation in how well-defined the phase
difference is between two time-points of the RSF. Decoher-
ence should cause an exponential decrease in V (τ ) similar to
Ref. [13] as was observed for zero field Fig. 1, but a periodic
decay and revival of visibility is surprising given the input
field is a single frequency. This suggests the laser has been
modulated by the spin, particularly as the observed period
matches the expected spin precession period.

Our first inference is that the spin modulates the phase of
the coherent light state as it precesses. To explore the dy-
namics we input experimental values from Figs. 1(b) and 1(e)
into a master equation model (see Appendix D and Ref. [24]).
Figure 1(f) shows a diagram of the energy levels as modeled
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by a master equation approach, where two two-level systems
are coupled via a magnetic field along the x direction, perpen-
dicular to the optical axis (z), both driven simultaneously by a
narrowband driving laser, depicted with linear polarization H.
Note that we now express the ground states in the eigenstate
of the applied magnetic field (along x) rather than along z as
in Fig. 1(a). Through this we can visualize V (τ ) of the RSF,
in the spectral domain via a Fourier transform giving a spec-
trum that is dominated by two sideband peaks at plus/minus
the modulation frequency [Fig. 1(g)]. It is clear the RSF
neither retains the coherence of the input laser nor inherits
the spectrum of the QD. The two peaks in the spectrum are
substantially narrower than the spontaneous emission rate (�)
but broader than the δ-function-like CW drive laser.

To illustrate why this is the case let us consider the spin
in eigenstates along the direction of the applied magnetic
field (x) (|↑/ ↓〉x) as in Fig. 1(f).The eigenstates are per-
pendicular to the optical axis and are stationary states that
have an energy splitting (�E = 2ωB) rather than a precession
frequency. Suppose the spin is in the state |↑〉x = |↑〉z + |↓〉z

and a H-polarized photon is input. Equation (B2) predicts the
output state |ψ (t = τ )〉out = [|↑〉z − |↓〉z]|V 〉 = |↓〉x|V 〉, i.e.,
a rotated photon state and a flipped spin. This spin flip will
result a change in energy of the ground-state spin of +2ωB

which, to conserve energy, will lead to an energy shifted
output photon of −2ωB. Since the magnetic field is small
2ωB < �, a H-polarized input photon can equally well couple
to the QD spin when it is in the |↓〉x state. Following the
same logic this leads to a spin flip in the opposite direction
and a photon that is shifted in energy by +2ωB. The two
ground-state spin eigenstates (|↑/ ↓〉x) form a double 	 sys-
tem that are coupled together via the input field; a scattered
photon with energy −2ωB will always result in a subsequent
scattering at +2ωB and visa versa [see illustration Fig. 1(f)].
The bandwidth/coherence time of the RSF is governed by the
coherence between these scattering events which is limited by
the coherence time of the spin.

This gives rise to the |g(1)(τ )| that we observe [Fig. 1(e)]
resulting from an equal superposition of these two frequency
components where the observed oscillation has a one-to-one
mapping with the Larmor precession and the decaying enve-
lope represents the T ∗

2 of the QD spin. One may consider this
as either a superposition of frequencies correlated with spin
states |↑〉x or |↓〉x or a time evolving phase correlated with the
spin states |↑〉z or |↓〉z. The system can also be thought of as
a set of two mutually coherent Raman scattering processes.
Note that neutral QDs do not show the same phenomenon
because the lack of ground-state spin means there is no corre-
sponding change in the ground-state energy of the emitter (see
Appendix C).

These properties also ensure that the |g(1)(τ )| (spectrum)
is robust to spectral jitter. The inhomogeneous linewidth of
the QD in Fig. 1 is ∼5 µeV (see Appendix E), substantially
larger than the Fourier transform limit (�) due to charge noise
imposing a time varying stark shift, altering the frequency of
the transitions of the QD (ωQD). Our fixed frequency laser
(ωd ) will explore a full range of detunings over the measure-
ment and any inhomogeneities in the RSF would manifest as
a rapid loss in coherence (<100 ps). We can calculate the
effect of spectral jitter on the output RSF spectra using a

numerically solved master equation for a driven QD-spin (see
Appendix E). In Fig. 1(g) we can see the expected spectra for a
range of QD-laser detunings (� = ωQD − ωd ). It is clear that
the spectrum is largely invariant to this detuning, the central
frequency remains fixed at the drive laser frequency (ωd ), and
the splitting remains constant. The only variation is in the
intensity of the V-polarized RSF, whereas the shape of the
|g(1)(τ )| (spectrum) is robust to imperfections in the light-
matter interaction. This provides a simple way to decouple
the effects of charge and spin noise in the QD, that avoids
time consuming second-order correlations, whilst avoiding
real excitation that may provide unwanted feedback between
the electron spin and the nuclear spin bath [25,26].

Finally, it is worth considering the photon statistics of the
output. Figure 1(c) shows the second-order correlation g(2)(τ )
for the RSF, obtained using a simple Hanbury Brown-Twiss
(HBT) interferometer. The resulting correlation shows an anti-
bunching dip where g(2)(0) < 0.5 with a timescale determined
by spontaneous emission rate (�). This antibunching of the
RSF on short timescales is identical to that seen for neutral
QDs [10] and demonstrates the single particle-like nature of
the RSF [11,12]. It is of note that there are no oscillations in
the g(2)(τ ) on a ns timescale similar to those in Fig. 1(e). This
indicates there is no intensity modulation in the RSF and that
the oscillations in the first-order correlations are a pure phase
modulation.

The results so far show that the phase of the RSF is modu-
lated by the spin. However, the g(1)(τ ) in Fig. 1(e) is sensitive
to phase differences in different parts of the wave function
of the RSF, but does not directly measure that the absolute
phase is modulated by the spin. To explore this further, we
now perform projective measurements of the phase of the
RSF compared to the original input laser using a homodyne
technique. A simplified schematic of the experiment is shown
in Fig. 2(a) (see Appendix F for experimental details). The
single-frequency laser is split into two paths, one of which
is reflected from the QD micropillar. The RSF and the refer-
ence laser, the local oscillator, LO, are then interfered on a
beamsplitter and the two-photon coincidences recorded as a
function of time delay. This allows for a comparison of the
relative phase difference between the RSF and the LO.
When the LO and RSF interfere such that their phases match,
signal is directed to one detector (e.g., APD A), whilst when
the two arms are out of phase by π , signal is directed to
the opposite output (e.g., APD B). Thus we convert the spin
dependent global phase seen in Eq. (B2) into which path
information. The use of single-photon detectors, APDs, means
that projective measurements in the |↑〉z, |↓〉z basis at specific
time points can be made. A click in APD A(B) projects the
spin at t = 0 into either |↑〉z or |↓〉z, this well-defined spin
will subsequently evolve in the magnetic field, and half a
precession period later will become orthogonal, leading to an
increase in probability of detection in APD B(A). Taking the
example where the spin is in |↑〉z at t = 0 we use Eq. (B2) to
rewrite the output state in terms of spatial mode states |A〉 and
|B〉 as

|ψ〉out = cos(2ωBt )|↑〉z|A〉 + sin(2ωBt )|↓〉z|B〉, (2)

where for simplicity we have considered the case where
the intensities, ILO = IRSF and φLO = 0.These oscillations are
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FIG. 2. Panel (a) shows a simplified MZI circuit diagram to illus-
trate the homodyne measurement performed on QD1. A photon input
in |B〉 will split into an equal superposition |A〉 + |B〉. The QD spin
in the top arm of the interferometer induces a phase difference on the
scattered field depending on the spin orientation, from Eq. (B2) this
will give either |↑〉z|A〉 or −|↓〉z|A〉. When this is combined with the
component of the field in |B〉 (assuming no phase shift, i.e., φLO = 0)
at the final beamsplitter in the MZI the output becomes |↑〉z|A〉 or
|↓〉z|B〉. Clearly, if the spin is prepared in a superposition |↑〉z + |↓〉z,
then the output spatial mode becomes entangled with the spin. (b)
g(2)

hom(τ ) for the case where the ratio of IRSF : ILO is set to be 1:10.
The y intercept is now ∼1 as IRSF << ILO. The data is fit for positive
time delay only. At negative time delay the data displays an increased
amplitude which may be related to nuclear spin effects specific to
this experiment which are currently under investigation. All data was
taken at B = 108 mT with a drive field of P ∼ 0.02Psat and detected
by low efficiency (few %), but fast thin film Si APDs (MPD) with a
timing jitter ∼64 ps.

evident in the second-order correlation of the homodyne sig-
nal [g(2)

HOM(τ ), Fig. 2(b)]. One observes the usual antibunching
dip at g(2)

HOM(τ = 0) from the RSF, and then a pronounced
oscillation with a period of 2ωB = 560 ± 10 MHz with a
coherence time T ∗

2 = 2.1 ± 0.4 ns in line with the corre-
sponding |g(1)(τ )| data in Fig. 1(e). This experiment derives
the LO directly from the drive laser and it is subject to ther-
mal and mechanical phase drift on a millisecond timescale.
However, the setup is stable on the nanosecond timescales
between our two-photon counting events (see Appendix F for
detailed discussion). The second-order correlations observed
here are markedly different from those obtained via a HBT
measurement [Fig. 1(c)], demonstrating the interference with
the LO maps the phase modulation of the RSF to a spatial
mode intensity modulation given by Eq. (B4).

Now let us revisit Fig. 1(e). Equation (1) applied to a
precessing spin implies an oscillation in the global phase.
The periodic disappearance of the visibility indicates that the
phase difference at these points, which correspond to quarter
cycles in the precession period, is precisely undefined, i.e.,
the imparted phase is either 0 or π as the spin evolves into

FIG. 3. (a) Schematic of the stabilized homodyne interferometer.
A pick off beamsplitter (BS) with a 90% reflectivity selects non-
interacting Co-polarized light reflected from the micropillar that is
H-polarized, this is then rotated to be V-polarized and constitutes
the local oscillator (LO) arm of the interferometer. The path length
difference between the LO and RSF arms of the interferometer was
made equal using a (2 ps) pulsed laser to within ∼100 fs (∼30 µm)
where a piezo mirror is responsible for fine control and is used to sta-
bilise the path length difference, which is monitored by interference
between the LO and δLO, where δLO is a small amount of LO that is
allowed into the cross-polarized arm (see Appendix F). The intensity
autocorrelations of the homodyne signal [g(2)

hom(τ )] for QD2 in two
quadratures are presented for (b) φLO = 0 and (c) φLO = π/2, using
a drive-field power P ∼ 0.1Psat and B = 86 mT.

a superposition state when compared to the initial state at
τ = 0. To show that in Fig. 1(e) the zero points in visibility
correspond to a coherent quantum superposition of scattering
off a superposition state, e.g., |↑z〉 ± |↓z〉, a different method
needs to be applied as the technique in Fig. 2 has limitations
that prevent us from learning this. The millisecond instability
between the different arms of the MZ interferometer, allows
us to interrogate whether the phase of the RSF and LO are the
same or different, on a nanosecond timescale for two different
projective measurement times τ . However, we lack knowledge
of the absolute phase of the time resolved measurement. To
map the evolution of the absolute phase of the RSF we need
to interfere it with a known, stable, reference phase.

To explore this we modify the simple MZ interferometer
set up in Fig. 2(a) to allow for active stabilization of the
phase. This allows us to obtain homodyne measurements for
arbitrary LO phases. Figure 3(a) shows the modified set up
used. Details of the stabilization technique are in the cap-
tion and Appendix F. We also use a different QD (QD2)
for this experiment. This specific charged QD has a lower
in-plane gyromagnetic ratio (g ∼ 0.15) and a longer T ∗

2 ∼
13 ns which enables the use of slower more efficient de-
tectors needed for active stabilization (see Appendix F for
details).

The resulting two-photon correlations are presented in
Fig. 3 which compares the combined homodyne signal from
the LO and the RSF for two cases, φLO = 0 and φLO = π/2
using 256 ps time bins. In Fig. 3(b) we see that for φLO = 0
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we observe a similar homodyne signal to that in Fig. 2(b):
an antibunching at τ = 0. then characteristic decaying oscilla-
tions in the intensity autocorrelations of the homodyne signal
[g(2)

hom(τ )], with 2ωB = 159 ± 5 MHz and T ∗
2 = 12.5 ± 1.5 ns

which correspond with the equivalent |g(1)(τ )| for QD2 (see
Appendix G). In contrast for φLO = π/2 the oscillations dis-
appear [Fig. 3(c)]. What this demonstrates is that at no point
can the projective measurement of the phase of the RSF be
π/2: it can only take values of 0 or π (corresponding to |↑〉z

or |↓〉z).
The fact that one is able to make projective measure-

ments in the φ = 0, π basis but not the φ = ±π/2 basis
is not surprising, indeed it is predicted from Eq. (1). and
previous theoretical work [27]. The implication of Eq. (1)
is that when the spin is in a superposition state in the z
basis, e.g., |↑z〉 + |↓z〉, the phase of the RSF will also be in
a superposition state: indeed the state is nonseparable from
the spin. The optical selection rules of these QDs, along with
our detector bandwidth dictate that only the z component of
the spin, along the optical axis, can be projectively measured.
Thus when the spin is in the superposition state, the RSF is
also in a true quantum superposition state, either φ = 0 or
φ = π , inseparable from the spin state, |↑z〉 or |↓z〉. Contrast
this with a classical superposition of two fields with phases
0 and π where the result would be a field with phase π/2.
To project the spin in the |↑/ ↓〉x basis we would need to
perform a frequency resolved measurement that could dis-
tinguish the two sidebands. However this would necessarily
require one to filter with a bandwidth < � which is known to
remove the single-photon-like antibunching feature from the
RSF [11,12,28].

We conclude therefore that we have demonstrated a novel
quantum modulation of a coherent state laser, resulting in
a new quantum state of light that cannot be described
classically. While we observe the antibunching behavior of
resonance fluorescence seen in neutral QDs with no spin,
we find that otherwise the nature of the resonantly scattered
field is very different. It does not retain the bandwidth of the
coherent excitation but spin properties are directly mapped
onto the RSF. These include the dephasing of the spin, but also
the fact spin superposition states result in phase superposition
of the light. This phase superposition is entirely nonclassical,
and nonseparable from the spin.

This is a new class of resonant scattering with important
implications for quantum information applications. From a
practical point of view, while the interaction is determin-
istic [18], the bandwidth of the scattered field is several
orders of magnitude narrower than that of the emitter. This
along with the robustness to spectral jitter expands the scope
for interfacing matter and light qubits of very different
bandwidths and even wavelengths. A coherently evolving
deterministic photon-spin interaction may enable easier dis-
tributed entanglement protocols, quantum switches, memories
and repeaters, all mediated not by traditional single-photon
sources, but a narrow-band photonic “quantum bus” from a
single-frequency laser. These principles are likely to apply
to a wide range of spin-qubit systems where an optical or
microwave interface is used, including diamond color cen-
ters, 2D quantum emitters, superconducting qubits, or atomic
systems.

For the purpose of open access, the authors have applied
a Creative Commons Attribution (CC BY) licence to any
Author Accepted Manuscript version arising from this sub-
mission. Data are available at the University of Bristol data
repository, at [29].
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APPENDIX A: FARADAY ROTATION DUE
TO SINGLE QD SPIN

The polarization rotation of the RSF due to the QD spin
can be calculated via the reflectivity equation [14,17–19,21]:

r(ωd ) = |r(ωd )|eiφ(ωd )

= 1 − κk
(
i(ωQD − ωd ) + γ

2

)
(
i(ωQD − ωd ) + γ

2

)(
i(ωc − ωd ) + κk

2

) + g2
,

(A1)

where r(ωd ) is the frequency dependant reflectivity, ωQD is
the QD frequency, ωc is the cavity frequency and ωd the
frequency of the probing laser. The cavity QED parameters
g and κk represent coupling constants between the QD and the
cavity mode and the cavity mode and the input/output elec-
tromagnetic field modes, respectively. γ represents a loss and
is the rate the QD couples to noncavity modes. Note that this
complex function can be expressed as r(ωd ) = |r(ωd )|eiφ(ωd ),
where φ(ωd ) is the phase of the reflected light. We have made
the simplification that the cavity is single sided appropriate for
our micropillar design.

This can be rewritten in terms of cavity parameters includ-
ing the β factor which is a parameter that denotes the fraction
of spontaneous emission (given by �) that couples into the
cavity mode vs all available modes, i.e., β = �

�+γ
. It is 1 for

a perfect cavity, i.e., all spontaneous emission couples to the
cavity mode and there are no losses:

r(ωd ) =

1 − i(ωQD − ωd ) + (1−β(ωd ))(�(ωd )+γ )
2

i(ωQD − ωd ) + (1−β(ωd ))(�(ωd )+γ )
2 + β(ωd )(�(ωd )+γ )

4

.

Now suppose we have the QD in a superposition state:

|ψ〉spin = |↑〉z + |↓〉z. (A2)
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The QD selection rules dictate that the |↑〉z will only couple
to photons in |L〉, and |↓〉z will only couple to photons in |R〉.
If we scatter an H-polarized photon, then after interaction the
output state will be

|ψ〉in = |ψ〉spin ⊗ (|R〉 + |L〉) →
|ψ〉scat = (|rc||R〉 + |rh|ei(φh−φc )|L〉)|↑〉z

+ (|rh|ei(φh−φc )|R〉 + |rc||L〉)|↓〉z.

Here, |rh| and φh represent the amplitude and phase mod-
ulation via interaction with a cavity coupled to an active
optical transition of the QD. |rc| and φc represent the input
field scattering from an empty cavity. In our experiment we
then pass this through a linear polarizer and collect only the
cross-polarized signal that is V polarized (|V 〉〈V |) this leaves
is with a cross polarized state:

|ψ〉cross = [|↑〉z − |↓〉z]|V 〉, (A3)

which will occur with a probability amplitude given by
i

2
√

2
(|rc| − |rh|ei(φh−φc ) ).

It is clear in this scenario our input H-polarized photon
will be flipped to V-polarized and our spin will flip from
|↑〉z + |↓〉z → |↑〉z − |↓〉z. The spin flip occurs when a su-
perposition state is present and the phase of the photon is
undefined, i.e., the phase of the photon has not been projected
similar to Ref. [27]. The term i

2
√

2
(|rc| − |rh|ei(φh−φc ) ) is a

complex number representing the probability amplitude; it is
a constant that depends on system parameters, and in the main
paper we have removed this coefficient by setting it equal to 1
which corresponds to an ideal lossless light matter interaction.
These parameters can be found using Eq. (A2) where under
resonant conditions when β = 1, we find |rc| = |rh| = 1 and
φh − φc = π . The micropillar we use does not have perfect
light matter interaction (i.e., 0.5 < β − factor<1), this results
in |rc|, |rh| being <1. This is simply a reduction in the ampli-
tude, i.e., the number of scattering events that result in a cross
polarized photon, but every time a photon is scattered into V
there is a corresponding spin flip.

Examining Eq. (A3) allows us to understand some of the
basics of the interaction and output RSF. If we perform a
measurement that is not phase sensitive, then the result of the
above spin photon interaction is photon whose polarization
has rotated from H to V accompanied by a spin flip of the spin
state of the QD. However, if we implement a phase sensitive
measurement, then it becomes possible to distinguish the |↑〉z,
and −|↓〉z states in Eq. (A3). due to the π phase difference in
their global phase. This z-basis measurement can be done with
the interferometric setups described in the main paper and in
the section later in the the Appendix (Fig. 7).

APPENDIX B: SPIN INSIDE A MACH-ZEHNDER
INTERFEROMETER

The phase modulation we presented in the previous sec-
tion is difficult to parse in a discussion of spin-photon
entanglement. It becomes much more obvious when we map
this into spatial modes. This can be done via including the
spin in one am of a balanced MZI (Fig. 4). This is precisely
how we achieve the homodyne correlations we present in the

FIG. 4. MZI containing a spin in the top arm only this maps
directly to the homodyne correlations in the main paper and in
Appendix B below. WP represents a half waveplate used to ensure
an overlap of the output polarization at the final beamsplitter.

main paper. The interaction described below has a one-to-one
mapping with previous work described for photonic crystal
waveguides [30]. If we consider the spin in some arbitrary
superposition state, then α|↑〉 + β|↓〉 and we include it in a
system with two possible spatial modes |A〉 and |B〉. If we
input a photon |A〉, then when it reaches the first beamsplitter
of the MZI it will we will be left with the photon just after
the beamsplitter being in the state 1√

2
(|A〉 + |B〉). The result

is a initial state for the spin photon system just after first
beamsplitter but before scattering from spin of

1√
2

(|A〉 + |B〉) ⊗ α|↑〉z + β|↓〉z. (B1)

We will now make the simplifying assumption that our
interaction is perfect and will use the spin photon interaction
outlined in the main paper, namely:

|ψ〉in = |↑〉z|H〉 → |ψ〉out = |↑〉z|V 〉,
|ψ〉in = |↓〉z|H〉 → |ψ〉out = −|↓〉z|V 〉. (B2)

Since the polarization of the photons is not useful when
distinguishing the two possible spin states and we can drop
it from our discussion from this point onward. This can be
achieved experimentally via a half waveplate in the bottom
arm of the MZI to ensure that the the polarization in both arms
is the same when the two parts of the photon overlap on the
final beamsplitter.

After interacting with the spin but before we reach the final
beamsplitter we can write out in intermediate state

|ψ〉in → |ψ〉int

= 1√
2

(|A〉[α|↑〉z − β|↓〉z] + |B〉[α|↑〉z + β|↓〉z]).

Only the component of the photon that traveled through
the top arm of the MZI will interact with the spin leading to
the minus sign which is highlighted in red. The action of the
second beamsplitter in the MZI will leave us with two possible
output states with orthogonal spatial modes:

|A〉out = α|↑〉z,

|B〉out = β|↓〉z.
(B3)

It is obvious now how one can achieve spin photon en-
tanglement as the two possible spin states scatter the output
photon into two orthogonal spatial modes. We have used an
arbitrary spin state with complex probability amplitudes α and
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FIG. 5. The figure on the left is the visibility of the interference measured using the setup in Fig. 1(a) from the main paper for a neutral
QD. On the right-hand side is lifetime for the neutral QD measured under pulsed excitation. Both data sets are recorded at a B ∼ 100 mT Voigt
field.

β. We can include a time dependence in these probability am-
plitudes if we make a simplifying assumption that the duration
of the input photon is much shorter than any time dynamics of
the of the spin. Alternately it can be valid when we are able
to project the photon on timescales much faster that the spin
dynamics. Doing this we are able to write the output state for
the MZI in the presence of a precessing spin as we have in
Eq. (2) in the main paper as

|ψ〉out = cos(2ωBt )|↑〉z|A〉 + sin(2ωBt )|↓〉z|B〉. (B4)

APPENDIX C: NEUTRAL QD

We also perform a reference measurement on a neutral
QD so the |g(1)| can be compared to the results in the main
paper. This can be seen in Fig. 5. Here we see a small initial
decay in the coherence as a result of real excitation which then
levels out to give a flat V (τ ) corresponding to the RSF field
inheriting the coherence of the laser [31]. We also measure the
lifetime as we did for the charged QD. Interestingly the decay
from real excitation now contains oscillations. These are a
beating between the two possible excited state transitions.
This is possible as they share a common ground state unlike
the charged QD of the main paper. The oscillations correspond
to a line splitting ∼0.9 µeV, likely due to fine structure split-
ting that the B ∼ 100 mT Voigt field applied here is unlikely
to have overcome. The observed decay time corresponds to a
Fourier transform limited linewidth ∼1.6 µeV, hence this QD
exhibits a subnatural linewidth splitting. The amplitude mod-
ulation that is observed for the neutral QD here is in contrast
with the charged QD that contains a ground-state spin, where
there is no beating in the optical lifetime (0.3 µeV Zeeman
splitting). This is due to the fact that output photons become
entangled with the ground-state spin preventing interference.
This leaves a modulation that is purely on the phase of the
RSF field.

APPENDIX D: MASTER EQUATION MODEL OF
OPTICALLY ACTIVE CHARGED QD SPIN

The system under consideration in this work can be mod-
eled as a four-level system (FLS), with two ground states
and two excited states. The ground states form an effective
spin 1/2 system whose basis states are given as |↑〉 and |↓〉,
quantized along the growth axis of the QD. The |↑〉(|↓〉) state
is optically coupled to the trion state |↑〉(|↓〉) by right(left)
circularly polarized light. The FLS is coupled to a cavity
which has two polarized modes, aL and aR, representing
left and right circular polarization, respectively. These cavity
modes are then coupled to the external electromagnetic field
with modes rk,L and rk,R where again L and R denote left
and right circular polarization. With this we can express the
Hamiltonian of the full system as H = H0 + HB + HI , where
H0 represents the energy of the FLS and cavity, HB represents
the energy of the bath modes and HI describes the interactions
between the subsystems. Furthermore, these can be expressed
in terms of the system parameters as follows (note we set
h̄ = 1):

H0 = ωQDPe + ωBσx + ωc(a†
RaR + a†

LaL )

HB =
∑

k

ωk (r†
k,Rrk,R + r†

k,Lrk,L )

HI = g(SR
−a†

R + SL
−a†

L + H.c.)

+
∑

k

κk (rk,Ra†
R + rk,La†

L ) + H.c.,

where ωQD is the energy of the excited trion states,
Pe = |⇑〉〈⇑| + |⇓〉〈⇓| is the projection operator on to the ex-
cited state subspace, ωBσx = ωB(|↑〉〈↓| + |↓〉〈↑|) represents
the coupling of the ground states caused by the external mag-
netic field in the Voigt geometry, ωc is the energy of the
cavity modes, ωk is the energy of the kth field mode, SR

− =
|↑〉〈⇑|; SL

− = |↓〉〈⇓| are dipole operators and finally g and κk
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represent coupling constants between the system and the cav-
ity and the cavity and the electromagnetic field, respectively.
To calculate the quantities we are interested in requires a
master equation for the dynamics of the FLS. To arrive at
this we follow methods described in Ref. [32]. Hence, the port
modes are traced out giving a master equation for the cavity
and the FLS in the Born-Markov approximation. Furthermore,
the cavity modes can be eliminated adiabatically [33] leading
to the following master equation written in a frame rotating at
the drive-field frequency

ρ̇(t ) = −i[H, ρ(t )]

+
∑

k=R,L

Lkρ(t )L†
k − 1

2
{L†

k Lk, ρ(t )} + D(ρ), (D1)

with

H = �Pe + ωBσX + (�RSR
− + �LSL

− + H.c.). (D2)

The Lindblad operators responsible for optically induced
dissipation have the form LR/L = √

�SR/L
− and D(ρ) = γpd

2
[σxρ(t )σx − 1

2 {σ 2
x , ρ(t )}] describes the additional process of

pure-dephasing with a rate γpd . Here � is the renormalized
detuning, � is the Purcell enhanced decay rate and �R/L

represents the driving parameters of the system. This adia-
batic approximation is valid in the regime where the cavity
bandwidth is much greater then the bandwidth of the system
dynamics.

The main quantity of interest is the the visibility, V (τ ),
of the RSF as measured by a MZI. We define this as the
magnitude of the steady-state first-order correlation function:

V (τ ) = ∣∣g(1)(τ )
∣∣. (D3)

To calculate this steady-state correlation function we ex-
press it in terms of the vertically polarized output electric
field:

g(1)(τ ) = 〈E(−)
V (τ )E(+)

V (0)〉 ∝ 〈SV
+(τ )SV

−(0)〉. (D4)

Here SV
−(t ) = 1√

2
(SR

−(t ) − SL
−(t )) is the vertically polarized

dipole operator. The final proportionality in Eq. (7) can be
derived by applying input-output theory [34] to the system and
holds when the input field is horizontally polarized. Another
interesting quantity is the cross-polarized emission spectrum.
This can be calculated from the first-order correlation function
via a Fourier transform:

S(ω − ωD) =
∫ ∞

−∞
g(1)(τ )e−iωτ dτ. (D5)

With the desired quantities now expressed in terms of oper-
ators of the FLS they can be calculated by solving the master
equation numerically. Here this was done via QuTiP [35],
which we use to generate the plots in Fig. 1 in the main paper.
This spectrum contains some rich and interesting physics.
It demonstrates different frequency distributions depending
on the relative strength of driving and precession processes.
These effects can be described analytically by solving the
above master equation in the weak driving regime. The de-
tails of this is beyond the scope of this work and a thorough
analysis of this system can be found in Ref. [24].

FIG. 6. (a) The RSF spectrum as a function of the drive-field
laser wavelength. Data is recorded by stepping the wavelength
single-frequency laser and integrating the number of counts in the
V-polarized channel over a 1 second interval at each wavelength. The
blue dashed line is an indicator that represents the transform limited
result derived from the observed spontaneous emission lifetime. The
gray solid line represents the drive-field laser spectrum for the case
when � = 0. (b) The effect that varying the pure dephasing rate in
the master equation has on the RSF spectrum for the case when the
QD-laser detuning is set to �/� = 0.5. It is clear that as the pure
dephasing rate is decreased the asymmetry in the RSF disappears.

APPENDIX E: SPECTRAL JITTER AND DEPHASING

In Fig. 1 in the main paper we use the master equa-
tion model from the previous section to predict how the
RSF spectrum varies with QD-laser detuning. Figure 6(a)
above shows the inhomogeneously broadened spectra of QD1
described in Figs. 1 and 2 in the main paper. The data is ac-
cumulated by tuning the single-frequency drive laser through
the QD transition where we observe a RSF signal with a
Lorentzian line-shape and bandwidth of ∼5 µeV. This is sub-
stantially broader than the ∼1.3 µeV of the transform limited
line and shows the extent to which spectral jitter broadens the
observed transitions. Over the course of an experimental run
(> seconds) if our single-frequency laser remains at a fixed
frequency then the QD will be subjected to this slow (∼µs)
spectral jitter and the Fourier limited line will (randomly)
explore a full range of detunings. We showed in Fig. 1(g) of
the main paper that the output RSF is invariant to this detuning
and thus remains unchanged in all aspects besides its intensity.

At moderate values for the QD-laser detuning
(�/� = ±0.5) there is an observable discrepancy between
the peak heights in the RSF spectrum. This is an artefact of
the the way dephasing is modeled in the master equation.
To ensure the master equation can describe the experiment
we need to incorporate a term that describes spin dephasing.
The established way to do this is by adding a Lindblad term
D(ρ). This models a pure dephasing process (γ ) which
is the equivalent to the T2 coherence time for the spin.
Whilst the RSF from the QD-spin is invariant to spectral
wander that stark shifts the transitions it is not insensitive to
changes in the Larmor frequency (Zeeman splitting). These
processes fall more broadly under the umbrella of spin noise.
Here slow (of order µs) variations to the nuclear spin bath
cause a time varying Overhauser field across the QD. This
dynamically changes the effective B-field applied to the
QD-spin and changes the line splitting in the RSF. When
this is averaged over longer timescales (>seconds) it leads
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FIG. 7. (a) Hanbury Brown-Twiss setup used to measure antibunching g(2)(t ) measurement of the RSF. (b) The measured g(2)(t ) data for
QD1. (c) Shows the homodyne setup that is used to measure the non phase locked second-order correlation of the homodyne signal g(2)

hom(t ),
with the data for QD1 presented in panel (d). This measurement does not implement any phase locking of the LO which is derived by splitting
off a small amount of the input laser and overlapping it with the RSF on the final beam-splitter. For active stabilization it is necessary to allow
a small amount of LO (δLO) into the RSF arm of the MZI. This leads to a signal in the RSF arm that is roughly a 50:50 mixture of RSF and
LO. To measure the second-order correlation of this signal we use the setup in panel (e). (f) Shows the g(2)(t ) for the field RSF + δLO where
the intensities IδLO ∼ IRSF for QD2. The main feature in the correlation is a small antibunching dip whose depth is limited by the presence of
δLO along with the detector timing resolution of ∼300 ps. There are no clear oscillations on a ns timescale outside of the central antibunching
feature confirming that there is no measurable homodyne signal at the PBS using this technique. (g) Shows the homodyne setup used to measure
g(2)

hom(t ) when φLO = 0. The LO is derived from the Co-polarized (H) channel using pick off light from a 90:10 (R:T) beam-splitter. The path
length between the LO and RSF arms of the MZI is maintained via monitoring the interference between LO and δLO, and active feedback
provided via a movable piezo mirror, the data for QD2 is shown in panel (h). To change the measurement basis we can stabilise the path length
difference between the RSF and LO arm at different points such as in panel (i) where φLO = π/2 with the g(2)

hom(t ) for QD2 presented in panel
(j). Data from QD1 in panels (b) and (d) are taken with an applied external magnetic field (Voigt) of B = 108mT, and correlations recorded
with thin film APDs with timing jitter of 64 ps. Data from QD2 in panels (f), (h), and (j) are taken at B = 86mT with standard Si APDs with
timing jitter of 300 ps.

to an inhomogeneous broadening where experimentally one
measures the T ∗

2 , an ensemble average coherence time. Since
our measurements cannot distinguish the T2 from the T ∗

2 we
use a model with pure dephasing, i.e., T2. This represents
a worse case scenario for the dephasing of the spin as the
underlying T2 in our system is likely significantly longer and
we are dominated by inhomogeneous processes.

The pure dephasing model is responsible for the discrep-
ancies in peak heights in the RSF when using the master
equation model. We can see from Fig. 6(b) as the rate of pure
dephasing approaches the that of the spontaneous emission
lifetime the asymmetry in the RSF spectrum is more pro-
nounced. This is due to the addition of a competing incoherent
process that becomes sensitive to the small Zeeman splitting
at moderate detunings. Clearly, in the limit where the pure
dephasing is small this effect is not observed and the under-
lying RSF spectrum is derived from coherent processes and
the spectrum retains its symmetry. By using a model of pure
dephasing we over emphasise this effect where in the limit
of no pure dephasing and the observed coherence is entirely
limited by inhomogeneous effects then the spectrum would
be symmetric for all values of �. A more detailed study of the
dephasing mechanisms can be found in Ref. [24].

APPENDIX F: SECOND-ORDER CORRELATIONS
AND HOMODYNE MEASUREMENTS

In the main paper we perform several second-order corre-
lation measurements of the RSF and here we include more
detailed setup diagrams in Fig. 7. Figure 7(a) shows how we
measure a simple HBT correlation to probe the single-photon
nature of the RSF. Figure 7(b) shows how we measure the
second order correlation of the homodyne signal from QD1.
For this we use low efficiency thin film Si APDs with a
timing jitter of 64 ps. This provides us with sufficient timing
resolution to resolve the oscillations in the homodyne signal
due to the evolving spin state (approximately 2 ns period).
This experiment derives the LO directly from the drive laser
and it is not phase stable. There is a slow (ms) drift in
φLO which over the long timescale (hours) it takes to gather
statistics for the g(2)

hom which means we sample all possible
values of φLO. However, this does not impact the two photon
correlations used to measure the fast (ns) spin dynamics over
which timescales φLO remains fixed. The end result is a sum of
homodyne correlations for all possible values of φLO against
which the observed oscillations are robust. Another side effect
of the slow phase drift is that a click in one of the measure-
ment APDs does not provide an absolute measurement of the
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FIG. 8. (a) The RSF response as a single-frequency laser is
tuned through the QD2 transition for a drive strength ω ∼ 0.1� in
a B ∼ 86 mT Voigt field. The measured linewidth is ∼28 µeV this
is considerably broader than QD1 due to an increase in the spectral
jitter for this particular QD (b) Measurement of |g(1)(τ )| for QD2
under the same driving conditions. Fitting the data yields a time
period for the precession ∼6.2 ns or a Larmor precession frequency
2ωB ∼ 157 MHz, i.e., a Zeeman splitting ∼0.1 µeV. This matches
the timescales recorded for the homodyne measurement in the main
paper.

spin state. Whilst it still represents a projective measurement
we lack knowledge of the precise phase difference between
the two arms of the interferometer at the time the photon is
detected.

For phase stable homodyne correlations we use QD2. This
specific charged QD has a lower in-plane gyromagnetic ratio
(g ∼ 0.15) and a longer T ∗

2 ∼ 13 ns. As such we can measure
correlations using standard Si-APDs (30% efficient) with a
timing jitter ∼300 ps improving detected counts by an order
of magnitude. This allows us to obtain sufficient count rate to
implement a phase locked interferometer on a ms timescale.
We derive the local oscillator from the copolarized (H) chan-
nel from the setup in Fig. 7(a) which is composed of light that
has not interacted with the QD, i.e., mismatched to the cavity
mode and has reflected directly from the top of the micropillar.
The fact that both the LO and the RSF signal have the same
optical path to and from the QD micropillar sample drastically
reduces the phase noise allowing active feedback to become a
viable means to stabilise the interferometer. The LO is atten-
uated by a neutral density filter (ND) such that ILO ∼ 10IRSF

and rotated to be V-polarized. To implement the phase lock
a small amount of LO (δLO) is introduced into the RSF arm
using a quarter waveplate (∼1o rotation) [see Fig. 7(e)] such
that the ratio of intensities of IδLO : IRSF is approximately 1:1
in the cross-polarized (V) output. The δLO component then

provides an interference signal when combined with the LO
at the final BS that is monitored on a 15 ms timescale and is
used to feedback to a piezo actuated mirror to fix the phase
difference between the two arms of the interferometer. By
choosing different points of the interference fringe we can
change the relative phase between the RSF arm and the LO
arm and thus change the quadrature that we measure. This
allows the whole setup to be phase stabilized all the way to
the sample. The noise is around 15% about a chosen set-point
as such the LO phase has the same corresponding uncertainty.
The mixture of δLO and RSF will result in a very weak self
homodyne signal at the PBS, but it is not significant enough
to affect the overall resulting interference at the final BS. This
is evident in the second-order correlation of this signal for
QD2 [Fig. 7(f)] where data is collected by blocking the LO
arm of the interferometer so the only signal at the final BS is
RSF + δLO [Fig. 7(e)]. The main feature in the correlation is a
small antibunching dip whose depth is limited by the presence
of δLO along with the detector timing resolution of ∼300 ps.
There are no pronounced oscillations, unlike Figs. 7(d) and
7(h) when the LO arm in unblocked.

APPENDIX G: SUPPLEMENTARY DATA FOR QD2

For stabilized homodyne measurements we use QD2 this
is due to its lower in plane gyromagnetic ratio. Figure 8(b)
shows the |g(1)(τ )| which corresponds to a Larmor precession
frequency of 2ωB ∼ 157 MHz (∼6 ns period) for B ∼ 86 mT.
This is approximately three times slower than QD1 which
means the two photon correlations from the homodyne inter-
ferometer can be captured with standard Si-APDs with around
30% efficient detection with a timing uncertainty ∼300 ps.
Statistics for the each homodyne measurement are gathered
over approximately 24 h. Note we do not use the same thin
film APDs that are deployed to measure QD1 as the efficiency
is only a few % which for this particular measurement makes
two photon correlations, and stabilizing the interferometer
challenging.

The disadvantage of QD2 is that the slow precession fre-
quency means the |g(1)(τ )| is less reliable. In order for the
fitted data to be reliable we need to observe at least one full
oscillation, while the data in Fig. 8(b) only contains a half
period. This is why in the main paper we focus on QD1 for a
discussion of the dynamics observed in the |g(1)(τ )|, and also
why the values quoted above are only given approximately.
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