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Topological modes and spectral flows in inhomogeneous PT-symmetric continuous media
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In classical Hermitian continuous media, the spectral-flow index of topological modes is linked to the bulk
topology via index theorem. However, the interface between two bulks is usually non-Hermitian due to the
inhomogeneities of system parameters. We show that the connection between topological modes and bulk
topology still exists despite the non-Hermiticity at the interface if the system is endowed with PT symmetry. The
theoretical framework developed is applied to the Hall magnetohydrodynamic model to identify a topological
mode called topological Alfvén sound wave in magnetized plasmas.
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I. INTRODUCTION

Topological modes and classifications of electronic bands
in crystal structures [1–7] have been studied extensively. Sim-
ilar investigations have been carried out for photonic crystals
[8–10] or phononic crystals [11–14]. Topological analysis
has also found applications in continuous models, which can
describe either the linear waves in classical continuous me-
dia, such as neutral fluids [15–20] and plasmas [21–25], or
low-energy approximation of some electronic bands [26–29].
In 2D Hermitian cases, a topological mode in continuous
models can be understood as spectral flow induced by the
nontrivial topology of the eigenmode bundle over a sphere
surrounding the phase-space Weyl point [30–33]. A typi-
cal continuous model, which admits topological modes, is
sketched in Fig. 1, where a system parameter m is constant
in two bulk regions but changes sign in the interface re-
gion. If the system is Hermitian and supports a Weyl point,
then according to the index theorem [32], the spectral-flow
index in the band gap equals the topological charge of the
Weyl point.

Recently, non-Hermitian extensions [34–36] of those
topological properties have attracted considerable attention.
The bulk-boundary correspondence was found to be violated
in non-Hermitian systems [37,38] due to the non-Hermitian
skin effect [39–42]. Various strategies have been developed to
reestablish the non-Hermitian bulk-boundary correspondence,
including defining the generalized Brillouin zone [39] and
applying biorthogonal formalism [43]. Non-Hermitian
phenomena were discovered without Hermitian counterparts,
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such as the exceptional degeneracies [44,45] and the distinc-
tion between point and line gaps [46]. The classification of
gapless and gapped non-Hermitian systems was also proposed
[46–48]. In continuous media, although such bulk-edge corre-
spondence was recently demonstrated for a class of designed
non-Hermitian systems that is deformed from Hermitian
systems and preserve the point degeneracy and a line gap
[49], the general properties of non-Hermitian spectral flows
in continuous models still need to be further investigated.

Instead of attempting a general description of non-
Hermitian spectral flows, we focus on a special class of
problems that naturally arise and are typical in classical
continuous media. Classical homogeneous media are Her-
mitian in general, but classical inhomogeneous media are
mostly non-Hermitian. For the setup shown in Fig. 1, when
m(x) represents the flow speed in fluids and plasmas, the
two homogeneous bulk regions are Hermitian, but the inter-
face region is non-Hermitian due to the flow shear, which
supports the Kelvin-Helmholtz instability under appropriate
conditions. For this system, we ask the following question:
Can the topology from the Hermitian bulk predict the spectral
flows in the non-Hermitian interface? Although it may not
be possible in general without additional structures, we show
that the answer to this question is affirmative when the system
is endowed with parity-time (PT) symmetry [50–53] and the
non-Hermiticity is relatively weak, and in this case the cor-
responding spectral flows are stable surface waves with real
eigenfrequencies. It turns out that PT symmetry is a general
property that appears in many classical nondissipative systems
[54], including the shear flow system above [55,56], or system
with a balance of loss and gain [57,58].

We start from a family of simple two-band Hamilto-
nians to demonstrate the key physics of topological edge
modes, spectrum flows, and topological charges in inho-
mogeneous continuous systems. The general formalism for
non-Hermitian inhomogeneous continuous systems beyond
the two-band model is then established, which is applied to
identify a topological edge mode called topological Alfvén
sound wave (TASW) in magnetized plasmas.
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FIG. 1. Sketch of a continuous model. System parameter m(x) is
constant in bulk 1 and 2 but changes sign smoothly in the interface.

II. A TWO-BAND MODEL

Before presenting the result for a general inhomogeneous
PT-symmetric continuous media, we consider the following
two-band non-Hermitian Hamiltonians as simple examples of
asymptotically Hermitian systems,

Hα
ε [λ; x, ∂x] =

(
m(x) λ − ∂x

λ + ∂x −m(x)

)
+ iεm′(x)σα. (1)

Here, m(x) is a real function of x, representing a system
parameter, such as the mass term, and m′ .= dm/dx. λ is a
control parameter, σα (α = 0, x, y, z) is an identity matrix or
one of the Pauli matrices, and ε is a label indicating the
order of the anti-Hermitian term. To simplify the presentation,
we define the notion of asymptotic Hamiltonian. For a given
Hamiltonian, when all derivatives of the system parameters
are set to zero, it will be called the asymptotic Hamiltonian of
the original Hamiltonian. An inhomogeneous non-Hermitian
continuous system is called asymptotically Hermitian if its
asymptotic Hamiltonian is Hermitian.

To study the possible topological modes of Hα
ε [λ; x, ∂x], we

need to investigate the corresponding symbol defined by the
Wigner-Weyl transform Hα

ε = W (Hα
ε ) [59,60]. For the simple

Hamiltonian in the form of Eq. (1), its symbol can be obtained
by replacing k̂

.= −i∂x with k,

Hα
ε [λ; x, k] =

(
m(x) λ − ik
λ + ik −m(x)

)
+ iεm′σα. (2)

The asymptotic Hamiltonian Hα
ε=0 is Hermitian with eigenval-

ues ω± = ±√
m2 + k2 + λ2. Thus there is a Weyl point (band

crossing point) at (m, k, λ) = (0, 0, 0), and its topological
index can be easily calculated [30–32]. Hα

ε=0 is known as a
Dirac operator that supports a spectral flow with respect to the
control parameter λ.

When ε > 0, in general, Hα
ε is non-Hermitian with com-

plex eigenvalues, supports exceptional degeneracies [61–63],
and does not have a line gap. When α ∈ {0, x, z} the spectrum
of Hα

ε [λ; x, ∂x] is also complex. Therefore we need to explore
the non-Hermitian topology emergent from the exceptional
degeneracies in the interface region to fully understand their
spectral flow. However, we observe that Hy

ε is an exception,
which has a real spectrum for all ε ∈ R. Its topology can be
captured from the Weyl point determined by its asymptotic
Hamiltonian.

Here, we show why Hy
ε is an exception from two per-

spectives. Firstly, (Hy
ε )∗ = Hy

ε , i.e., it is a real operator. Its
anti-Hermitian part iεm′(x)σ y can be combined with the ∂x

operator as a “covariant derivative” (∂x − εm′). To calculate
its spectrum, we perform a similarity transformation,

Hy
ε → H̃y

ε = e−εmHy
εeεm = Hy

0. (3)

The non-Hermitian operator Hy
ε has the same spectrum

as the Hermitian operator Hy
0. In particular, the Hy

ε will
have the same topological modes and spectral flows as Hy

0,

which is fully determined by its symbol Hy
0 = W (Hy

0). In
addition, eigenvectors are transformed as �̃ → e−εm�, which
resembles the non-Hermitian skin effect in lattices with open
boundaries [39].

Next, we interpret this result as a consequence of the non-
Hermitian Hamiltonian being PT-symmetric. In the current
context, time-reversal T is complex conjugation, and parity
P is a 2 × 2 constant unitary matrix, which satisfies P2 = 1
and [P, T ] = 0. It is straightforward to verify that Hy

ε is
PT-symmetric with P = σ 0, which implies that Hy

ε can have
real spectrum despite being non-Hermitian, when PT sym-
metry is not spontaneously broken [51,64]. Since Hy

ε is also
asymptotically Hermitian, the domain where PT symmetry
is not spontaneously broken must contain a neighborhood of
ε = 0. It turns out that this domain of unbroken PT symmetry
includes all ε ∈ R, as implied by Eq. (3).

The important fact that Hy
ε is similar to Hy

0 for all ε ∈ R
can be generalized to the following class of generic two-band
operators,

H[λ; x, ∂x] = [λd1μ + md2μ − i∂xd3μ + ind4μ]σμ, (4)

where m(x) and n(x) are two real functions of x, σμ = (σ 0, σ )
is Pauli 4-vector, diμ are constant real 4-vectors. The Hamilto-
nian in Eq. (4) is assumed to be PT-symmetric for a properly
chosen P . We prove that H[λ; x, ∂x] is similar to a Hermitian
operator.

The Hermitian part of its symbol HH[λ; x, k] =
[λd1μ + m(x)d2μ + kd3μ]σμ supports a degeneracy point
at (λ, m, k) = (0, 0, 0). H being PT-symmetric means

(PT )H(T P ) = PH∗P = H. (5)

Pick two orthonormal eigenvectors �i=1,2 of PT with eigen-
values 1 [65], PT �i = P�∗

i = �i. Here, �i are constant
vectors. Let �

.= (�1, �2)ᵀ, and it induces a similarity trans-
formation for H, H′ = �†H�. Let �†σμ� = cμ

ν σ ν , we find
H′ has the same form as Eq. (4) with diμ replaced by d̃iμ

.=
cν
μdiν . Since �†σμ� is Hermitian, cμ

ν must be real, so are d̃iμ.
From Eq. (5), we have

(H′
i j )

∗ = (�∗
i )†H∗�∗

j = (P�i )
†(PHP )(P� j )

= �
†
i P†PHP†P� j = H′

i j, (6)

which means that H′ is a real operator. Thus the coefficients in
front of σy must be imaginary, and the coefficients of σ0, σx, σz

must be real. So H′ has the following form:

H′ =
0,x,z∑

μ

[λd̃1μ + md̃2μ]σμ + i[nd̃4y − ∂xd̃3y]σ y. (7)

Let γ
.= ∫

n(x)d̃4y/d̃3y dx. The anti-Hermitian part of H′ can
be transformed away by a similarity transform,

H′′ = e−γH′eγ =
0,x,z∑

μ

[λd̃1μ + md̃2μ]σμ − i∂xd̃3yσ
y. (8)

The spectrum of the PT-symmetric H in Eq. (4) is identi-
cal to that of the Hermitian operator H′′. In particular, H
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admits topological edge modes whose spectral-flow index is
determined by the symbol H ′′ = W (H′′) according to Faure’s
index theorem [32].

III. INHOMOGENEOUS PT-SYMMETRIC
CONTINUOUS MEDIA

We now further generalize the result by showing that when
an inhomogeneous medium is asymptotically Hermitian and
PT-symmetric, and if the asymptotic Hamiltonian has a band
gap near a Weyl point of twofold degeneracy [66], then
the non-Hermitian inhomogeneous system admits topological
edge modes with real frequency in the neighborhood of the
Weyl point. The spectral-flow index of the mode is identical
to the topological charge of the Weyl point. This result is
established by proving that the system Hamiltonian can be ap-
proximated by a two-band Hamiltonian of the form of Eq. (4)
near the Weyl point of twofold degeneracy of the asymptotic
Hamiltonian symbol.

Consider a 1D continuous media with N field variables.
The dynamics of the system is governed by an asymptotically
Hermitian, PT-symmetric Hamiltonian operator H[λ; x, ∂x],
which depends on coordinate x through a system parameter
m(x) and its derivatives. Here, we make a technical assump-
tion that the inhomogeneity experienced by the edge mode is
weak, i.e., ε

.= δ/l � 1, where δ is the scale length of the edge
mode and l that of m(x). In dimensionless variable, it implies
that the ith order derivatives m(i) is of order O(εi). This tech-
nical assumption of weak inhomogeneity is consistent with
asymptotic Hermiticity. We write H as

H =H0[λ; m, ∂x] + εH1[λ; m, m′, ∂x]

+ ε2H2[λ; m, m′, m′′, ∂x] + · · · , (9)

where Hi depends on up to the i-th order derivatives m(i), and
εi is a label indicating that Hi is O(εi ). Similarly, the symbol
H[λ; x, k] can be written as

H
.= W [H] = H0[λ; m, k] + εH1[λ; m, m′, k]

+ ε2H2[λ; m, m′, m′′, k] + · · · , (10)

where εi is a label indicating that Hi is O(εi ) when k is taken
to be O(ε). Note that due to the inhomogeneity, Hi �= W [Hi]
in general. By the assumption of asymptotic Hermiticity, H0

and H0 are Hermitian at each value of x, and Hi�1 and Hi�1

are allowed to be non-Hermitian due to the inhomogeneity.
The expansion of the Hamiltonian according to the weak
inhomogeneity and the assumption of asymptotic Hermiticity
requires that non-Hermiticity and the free energy responsible
for possible instabilities can only be placed at Hi�1 and Hi�1.

We will show that under the assumptions of asymptotic
Hermiticity and PT symmetry, the spectral flow of the non-
Hermitian H[λ; x, ∂x] will be determined by the asymptotic
symbol H0[λ; m, k]. For convenience, we call H0[λ; m, k] the
bulk symbol and its eigenvalues ωn(λ; m, k) the bulk bands at
a given value of m(x) determined by a given x. Without losing
generality, let (λ, x, k) = (0, 0, 0) be an isolated Weyl point of
twofold degeneracy of the bulk bands. If H is Hermitian and

H
.= W [H] = H0[λ; m, k], (11)

then spectral-flow index of the edge modes of H near the
Weyl point is determined by H0 according to Faure’s index

theorem [32]. In certain simple inhomogeneous systems, such
as those studied in Refs. [15,16,22,23,30], the conditions of H
being Hermitian and Eq. (11) are satisfied, but in general they
are not. Nevertheless, we show that when an inhomogeneous
H is asymptotically Hermitian and PT-symmetric, H still
admits topological edge modes in the neighborhood of the
Weyl point of H0, and the spectral-flow index of H is also
determined by the topology of H0.

The definitions of P and T operators are similar to those
for the two-band systems discussed above, except that P is
now an N × N constant matrix. From Eqs. (9) and (10), Hi

and Hi are PT-symmetric for all i � 0.
Assume the asymptotic symbol H0[λ; m, k] has a Weyl

point of twofold degeneracy at (λ, x, k) = (0, 0, 0), its eigen-
values are ω1 = ω2 = 0 with eigenvectors �1 and �2. To
study the behavior of operator H near the Weyl point, we
expand the symbol H[λ; x, k] up to O(ε),

H ≈ H̃ [λ; x, k]

.= H0[0; 0; 0] + λ
∂H0

∂λ
+ m′(0)x

∂H0

∂m
+ k

∂H0

∂k

+ H1[0; 0, m′(0), 0]. (12)

Because H0, ∂H0, and H1 are all evaluated at the degeneracy
point, they do not depend on λ, x or k. Therefore the corre-
sponding approximated operator is

H̃ .= W −1[H̃]

= H0 + λ
∂H0

∂λ
+ m′(0)x

∂H0

∂m
− i∂x

∂H0

∂k
+ H1. (13)

Near the Weyl point, we can focus on the dynamics in the sub-
space of degeneracy and approximate H̃ by a 2 × 2 operator,

M[λ; m(x), m′(x = 0), ∂x]
.= �†H̃�

= �†

(
λ

∂H0

∂λ
+m′x

∂H0

∂m
−i∂x

∂H0

∂k

)
� + �†H1�. (14)

Here, �
.= (�1, �2)ᵀ. Since H0 is Hermitian, so are ∂H0 and

�†∂H0�. In contrast, �†H1� could have both Hermitian and
anti-Hermitian parts. At this point, we recognize that operator
M assumes the form of the two-band Hamiltonian in Eq. (4).

Now we invoke the PT-symmetry condition. Since H1 and
H2 are PT-symmetric, so are H̃ and H̃. Because �1 and �2 are
eigenvectors of H0 with real eigenvalues, they are also eigen-
vectors of the PT operator. In a manner similar to Eq. (6),
it’s easy to show that M is a real operator. The coefficient
in front of σy must be imaginary, and the anti-Hermitian part
MA can be absorbed by a similarity transformation, and do
not affect the operator’s spectrum, as in Eq. (8). The topo-
logical edge modes and spectral flows of M are the same as
those of its Hermitian part MH, whose spectral-flow index
is determined by MH = W [MH]. As the small contribution
of �†H1� in MH is a constant Hermitian matrix, MH only
perturbs the location of the Weyl point and band gap of H0

without changing the topology. This concludes our proof that
when an inhomogeneous H is asymptotically Hermitian and
PT-symmetric, H admits topological edge modes in the neigh-
borhood of the Weyl point of H0, and the spectral-flow index
of H is also determined by H0. Since the eigenvalues are real,
such topological edge modes are stable.
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IV. TOPOLOGICAL ALFVÉN SOUND WAVE

We now apply the general theoretical framework developed
to identify a topological edge mode called topological Alfvén
sound wave in the Hall magnetohydrodynamics (MHD)
model, which describes low-frequency, long-wavelength dy-
namics of magnetized plasmas [67–70].

We study the linearized waves in an inhomogeneous 1D
Hall MHD equilibrium. The plasma is assumed to be adia-
batic, namely, p/ργ is constant, where p is plasma pressure, ρ
is plasma density, and γ is the ratio of specific heats. Consider
an equilibrium with constant density and no mass flow. The
equilibrium magnetic field B and pressure p are balanced
according to

1

μ0
(∇ × B) × B = ∇p, (15)

where μ0 is the vacuum permeability. The perturbed field � =
(ṽ, B̃, p̃)ᵀ relative to the equilibrium evolve according to the
linearized system (see Appendix B),

∂t ṽ =(∇×B̃) × vA + (∇×vA) × B̃ − ∇(vs p̃), (16)

∂t B̃ =∇ × (ṽ × vA) − di∇×[(∇×B̃) × vA + (∇×vA) × B̃],

(17)

∂t p̃ = − vs∇·ṽ − (2/γ )ṽ·∇vs, (18)

where vA
.= B/

√
μ0ρ is the Alfvén velocity, vs

.= √
γ p/ρ is

the sound velocity, and di is the ion skin depth, which is a
constant controlling the magnitude of the Hall effect. Equa-
tions (16)–(18) can be cast into a Schrödinger equation

i∂t� = H� = (H0 + H1 + H2)�, (19)

H0 =

⎛⎜⎝ 0 (vAk̂)ᵀ − vA·k̂ vsk̂
(vAk̂) − vA·k̂ idi(vA·k̂)k̂× 0

vsk̂ᵀ 0 0

⎞⎟⎠. (20)

Here, H0 is the asymptotic Hamiltonian that does not depend
on the spatial derivatives of the equilibrium field, and H1 and
H2 depends on the first- and second-order derivatives, respec-
tively. The expressions of H1 and H2 are given in Appendix C.
The corresponding symbol H = H0 + H1 + H2 also has three
parts, where H0 can be obtained from H0 by simply replacing
k̂ → k. H0 and H0 are Hermitian, H and H are not in a
general equilibrium.

We assume the equilibrium is inhomogeneous only in the
x direction, and the background magnetic field is in the z
direction, so vA = vAez. The equilibrium condition given by
Eq. (15) reduces to

v2
A(x)

2
+ v2

s (x)

γ
= const. (21)

Let kz be a constant and consider ky as a control parameter.
The eigenvalues ω of H0 satisfy the dispersion relation(

ω2−k2
z v

2
A

)2 − (divAkzkω)2 = ω2−k2
z v

2
A

ω2−k2v2
s

k2
⊥v2

Aω2, (22)

where k2
⊥ = k2

x + k2
y and k2 = k2

⊥ + k2
z . Since it is derived

from H0, the dispersion relation does not depend on any

FIG. 2. The numerically calculated spectrum of operator H.
When kz = 1.25, the real and imaginary parts of the spectrum as
functions of ky are shown in (a) and (b), respectively. The spectral
flow, i.e., the TASW, is depicted in red, and the bulk modes are
gray. When ky = 0, the real part of the spectrum as a function of
kz is shown in (c). For clarity, the bulk region is filled in gray,
while the frequency gap of bulk waves is filled in white. The black
lines represent the dispersion relations in two bulk regions calculated
from Eq. (22) at k⊥ = 0. The locations of two degeneracy points are
labeled in green and blue dashed lines.

derivatives of the equilibrium fields. For vA > vs > 0, there
is a Weyl point of twofold degeneracy between the Alfvén
wave and sound wave in the positive-frequency branches at
(ky, kx ) = (0, 0) and

ζ
.= vs

vA
=
√

1 + 1

4
k2

z d2
i − 1

2
kzdi. (23)

See Appendix B for details. The question to answer is whether
there is a spectral flow of H in the band gap. Recall that H is
not Hermitian and W [H] = H �= H0 for the inhomogeneous
equilibrium, and Faure’s index theorem [32] is not applica-
ble. But, with a 1D equilibrium profile satisfying Eq. (21),
we found that the operator H[ky; x, ∂x] in Eq. (19) is PT-
symmetric for P = diag(−1, 1, 1,−1, 1, 1, 1), in addition to
be asymptotically Hermitian. (See Appendix C.) Therefore,
based on the analysis established above, we shall expect
a spectral flow in H around the Weyl point. Because the
Weyl point and band gap are created by the resonance (band-
crossing) between the Alfvén wave and sound wave, we will
call the spectral flow topological Alfvén sound wave (TASW).

To verify the existence of TASW, we study the full spec-
trum of H numerically. In a 1D domain [0, L], let vA(x) =
vA2 + 0.5(vA1 − vA2)[1 + tanh( L/2−x

l )], where vA1, vA2 are
the Alfvén velocities in the two bulk regions, L is the system
size, l controls the width of the interface, and vs is determined
from Eq. (21). As an example, we choose vA1 = 1, vA2 =
0.85, vs1 = 0.4, vs2 = 0.625, L = 100, l = 2, di = 1, and
kz = 1.25. The Weyl point is located at ζ = 0.55. We expect a
degeneracy point somewhere in the interface region because in
the two bulk regions ζ1 = 0.4 and ζ2 = 0.73. The numerical
scheme to calculate the operator’s spectrum H is similar to
that in Ref. [24]. The real part of the spectrum displayed in
Fig. 2(a) clearly shows a spectral flow, i.e., the TASW, and
Fig. 2(b) confirms that the spectrum is real (|Im ω| < 10−8).
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These numerical results agree with our theoretical prediction
developed above. The TASW can also be faithfully modeled
by a titled Dirac cone [31] (see Appendix C).

For a given equilibrium profile with fixed ζ1 = vs1/vA1 and
ζ2 = vs2/vA2, Eq. (23) can be solved to find the following
range of kz where the TASW exists,

1

ζ2
− ζ2 < kzdi <

1

ζ1
− ζ1. (24)

In Fig. 2(c), this condition is numerically verified by the
numerically calculated spectrum of H at different kz with
ky = 0. A frequency gap exists at all kz except for the Weyl
points. However, the spectral flow, which is depicted in red,
only shows up in the region where condition (24) is satisfied.
It resembles the Fermi arc in topological electronic crystals.
These numerical results verify that in the Hall MHD model,
the dispersion relation of the asymptotic symbol H0 can ac-
curately predict the topological edge modes admitted by a
PT-symmetric non-Hermitian operator H.

V. SUMMARY

We studied topological edge modes and spectral flows in
non-Hermitian inhomogeneous continuous media that are PT-
symmetric and asymptotically Hermitian. For these media, if
the asymptotic symbol H0 supports a Weyl point of twofold
degeneracy, then the non-Hermitian operator H of the system
admits topological edge modes with real eigenfrequencies,
as characterized by a spectral flow near the Weyl point. In
other words, with the protection of PT-symmetry, the spectral
flow induced by a Weyl point in the Hermitian bulk is robust
against non-Hermitian perturbation at the interface in classical
continuous media. As an application of the general theory
developed, we identified a topological edge mode called topo-
logical Alfvén sound wave using the non-Hermitian Hall
MHD model. The analysis reported in this paper could be
applied to search for topological modes in a wide range of
non-Hermitian PT-symmetric inhomogeneous continuous me-
dia in fluids and plasmas.
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APPENDIX A: SPECTRA OF THE TWO-BAND MODEL
WITH ANTI-HERMITIAN PARTS

In this section, we calculate the spectra and the eigenmodes
of the following class of operators:

H[λ; x, ∂x] =
(

f (x)/κ λ − ∂x

λ + ∂x −κ f (x)

)
+ ig(x)σα (A1)

.= HH + iHA. (A2)

Here, f (x) and g(x) are real functions of x, and λ is a constant
control parameter. The parameter κ measures the tilting of
the Dirac operator [31], indicating that f (x) is associated to
both σ z and σ 0. Equation (2) corresponds to the case where

κ = 1 and g(x) = ε f ′(x). We first give the analytical solutions
for several special cases, and then provide numerically solved
examples for general f and g.

1. Analytical solution without anti-Hermitian part

When f (x) = x and g = 0, the operator only has a Hermi-
tian part,

HH =
(

x/κ λ − ∂x

λ + ∂x −κx

)
, (A3)

which can be analytically solved using the techniques given in
Refs. [30–32]. Let R = diag(κ, 1), we have

H′
H = R−1HHR =

(
x/κ (λ − ∂x )/κ

κ (λ + ∂x ) −κx

)
. (A4)

Define the following variables for convenience,

μ1
.= 1

2

(
κ + 1

κ

)
, μ2

.= 1

2

(
κ − 1

κ

)
. (A5)

In terms of Pauli matrices,

H′
H = − μ2xσ 0 + (μ2∂x + μ1λ)σ x

− i(μ1∂x + μ2λ)σ y + μ1xσ z. (A6)

Making a cyclic rotation of Pauli matrices (σ 0, σ x, σ y, σ z ) →
(σ 0, σ z, σ x, σ y) through a similarity transformation, H′

H is
transformed to

H′′
H = −μ2xσ 0 + (μ2∂x + μ1λ)σ z

− i(μ1∂x + μ2λ)σ x + μ1xσ y (A7)

=
(

μ1λ − √
2μ2â† i(−μ2λ − √

2μ1â)

i(−μ2λ + √
2μ1â†) −μ1λ − √

2μ2â

)
.

(A8)

Here,

â
.= 1√

2
(x + ∂x ), â† .= 1√

2
(x − ∂x ) (A9)

are the ladder operators.
Define functions |n; δ〉 as

〈x|n; δ〉 .= ϕn(x +
√

2δ),

ϕn(x)
.= 1

(2nn!
√

π )1/2
e−x2/2Hn(x), (A10)

where Hn(x) is the nth Hermite polynomial. The eigenvectors
of the bulk modes of H′′

H are

�±
n =

(
|n; δ±

n 〉
iγ ±

n |n + 1; δ±
n 〉

)
, n = 0, 1, 2, . . . , (A11)
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where

γ ±
n = −λ ± √

λ2 + n + 1√
n + 1

,

δ±
n = ∓μ2

μ1

√
λ2 + n + 1. (A12)

The corresponding eigenvalues are

ω±
n = ± 2

√
2κ

1 + κ2

√
λ2 + n + 1. (A13)

We also find the eigenvector and eigenvalue of the spectral
flow of H′′

H, labeled by n = −1, to be

�−1 =
(

0
|0, δ−1〉

)
, (A14)

δ−1 = μ2

μ1
λ, ω−1 = − 2

√
2κ

1 + κ2
λ. (A15)

2. Analytical solutions with anti-Hermitian parts

Here, we assume f (x) = x, g(x) = f ′(x) = 1 and study
the eigenvalues and eigenvectors of the Hamiltonian operator
H in Eq. (A1) with different iσα . We will see that when κ �= 1,
only the H with iσ y renders the system PT-symmetric.

(1) H with iσ 0. Since iσ 0 does not depend on x, the addi-
tion of iσ 0 only shifts the eigenvalue by i:

ω±
n = ± 2

√
2κ

1 + κ2

√
λ2 + n + 1 + i, n � 0,

ω−1 = − 2
√

2κ

1 + κ2
λ + i. (A16)

(2) H with iσ x. In terms of slightly modified control pa-
rameter λ̃

.= λ + i,

H =
(

x/κ λ̃ − ∂x

λ̃ + ∂x −κx

)
. (A17)

Therefore the eigenvalues are

ω±
n = ± 2

√
2κ

1 + κ2

√
(λ + i)2 + n + 1, n � 0,

ω−1 = − 2
√

2κ

1 + κ2
(λ + i). (A18)

(3) H with iσ y. By applying the technique described in
the main text, the anti-Hermitian part iσ y in operator H
can be removed by a similarity transformation H →e−xHex.
The eigenvalues thus do not change after adding iσ y.
Noticeably, the factor e−x in the eigenvectors resembles
the “non-Hermitian skin effect” [39,40] found in general
non-Hermitian systems. However, in the given example,
eigenvectors are already localized at the interface due to the
factor e−x2/2 in Eq. (A10), even in the Hermitian case.

(4) H with iσ z. In terms of modified variable x̃
.= x + i/μ1,

the operator is

H =
(

x̃/κ λ − ∂x̃

λ + ∂x̃ −κ x̃

)
+ μ2

μ1
iσ 0. (A19)

FIG. 3. m(x) and m′(x).

The eigenvalues are shifted by iμ2/μ1, similar to the case of
H with iσ 0. When κ = 1, the operator is not tilted, and the
addition of iσ z does not introduce an imaginary part.

3. Numerical solutions with anti-Hermitian parts

Here we present several numerical results on the spectra of
H in Eq. (A1) for the case of f (x) = m(x), g(x) = εm′(x), and

m(x)
.= tanh

(
x − 1

4 L

l

)
− tanh

(
x − 3

4 L

l

)
− 1. (A20)

Here, L is the system length, l is the scale length of the
interface region. m(x) and m′(x) are plotted in Fig. 3. The
x direction is chosen to be periodic with periodicity L. In
the bulk region around x = L/2 and x = 0, m′ = 0 and the
system is homogeneous. In the interface region at x = L/4
and x = 3L/4, m′(x) �= 0 and system is non-Hermitian.

In the numerical example, we choose L = 30, l = 1, and
κ = 2. The spectrum of the Hermitian operator at ε = 0 is
shown in Fig. 4. Since there are two interface regions at x =
L/4 and 3L/4, there are two spectral flows indicated by the
blue and red dots.

FIG. 4. The spectrum of Hermitian operators. Grey dots indicate
bulk mods, red/blue dots indicate topological edge modes (spectral
flow) localized at the left/right interface.
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FIG. 5. The imaginary part of operator H in Eq. (A1), whose
anti-Hermitian part HA is proportional to (a) σ 0, (b) σ x , (c) σ y, and
(d) σ z. The gray points indicate bulk modes, the blue/red points
indicate edge modes localized at left/right edge. In (b) and (c), the
blue and red points coincide.

For the non-Hermitian case, we choose ε = 0.1, so that the
real part of the spectrum of H does not deviate significantly
from its Hermitian counterpart. With different anti-Hermitian
parts iσα , the real parts of the spectrum are qualitatively
similar to Fig. 4. The imaginary parts are shown in Fig. 5.

We observe that with anti-Hermitian terms proportional to
iσ 0, iσ x or iσ z, the spectrum of H, including its spectral flow,
are complex. The effect of iσ 0 and iσ z are similar, akin to
the analytical solutions given above. However, with an anti-
Hermitian term proportional to iσ y, H is PT-symmetric, and
its spectrum is still real.

APPENDIX B: THE HALL MHD MODEL

Within the MHD model, which focuses on low frequency
and long-wavelength phenomena, the displacement current
∂t E in Maxwell’s equations is ignored. When studying plasma
waves, the dynamics of plasma is usually assumed to be adi-
abatic with the equation of state p/ργ = Const., where p is
plasma pressure, ρ is plasma mass density, and γ is ratio of
specific heats. With this assumption, the equations of motions
for ρ, v, B, and p are

∂tρ + ∇ · (ρv) = 0, (B1)

ρ
dv
dt

= j × B − ∇p, (B2)

∂t B = −∇ × E, (B3)

d p

dt
= −γ p∇ · v, (B4)

where v is the plasma macroscopic velocity, and d/dt
.= ∂t +

v · ∇. The plasma current j is related to the magnetic field B
by the Ampere’s law

μ0j = ∇ × B, (B5)

where μ0 is the vacuum permeability. Since the displacement
current is ignored, E is obtained from the generalized Ohm’s
law. Different forms of Ohm’s laws lead to different MHD
models. In the Hall MHD approximation, the electron inertia
is ignored (me → 0) and the plasma is assumed to be infinitely
conductive. The Ohm’s law could be written as [69]

E + v × B = j × B − ∇pe

nee
, (B6)

where e > 0 is the elementary charge, ne is the electron num-
ber density, and pe is the electron pressure.

Combining Faraday’s law and Ohm’s law, we can eliminate
electric field E

∂t B = ∇ × (v × B)

− ∇ ×
(

j × B
nee

)
+ ∇ ×

(∇pe

nee

)
. (B7)

If the electrons are assumed to be barotropic [69], i.e., the
electron pressure is a function of electron number density,
pe = pe(ne ), the last term in Eq. (B7) vanishes.

Consider an equilibrium without flow and with homoge-
neous densities ρ and ne. Hereafter, we use symbols without
subscripts such B, p, and j to indicate equilibrium, time-
independent fields. From Eq. (B2), the equilibrium fields B
and p satisfy the pressure balance,

∇p = j × B = 1

μ0
(∇ × B) × B. (B8)

For a given equilibrium, the perturbed field (ρ1, v1, B1, p1)
are governed by the linearized system,

∂tρ1 = − ρ∇ · v1, (B9)

ρ∂t v1 =j1 × B + j × B1 − ∇p1, (B10)

∂t B1 = ∇ × (v1 × B)

− 1

ene
∇ × ( j1 × B + j × B1), (B11)

∂t p1 = −v1 · ∇p − γ p∇ · v1. (B12)

Equation (B9) is decoupled from the others. In terms of the
following normalized variables

ṽ .= √
ρv1, B̃ .= B1√

μ0
, p̃

.= p1√
γ p

, (B13)

the linearized equations become are

∂t ṽ =(∇ × B̃) × vA + (∇ × vA) × B̃ − ∇(vs p̃), (B14)

∂t B̃ = ∇×(ṽ × vA) −
√

ρ

μ0

1

nee
∇×[(∇×B̃)×vA]

−
√

ρ

μ0

1

nee
∇×[(∇×vA)×B̃], (B15)

∂t p̃ = −vs∇ · ṽ − (2/γ )ṽ · ∇vs, (B16)

where

vA
.= B√

μ0ρ
, vs

.=
√

γ p

ρ
(B17)

are Alfvén velocity and sound velocity. Let ni, mi, qi de-
note the number density, mass, and charge of ions. Us-
ing the quasineutrality condition nee = niqi, the coefficient√

ρμ0/nee in Eq. (B15) can be simplified as√
ρ

μ0

1

nee
=
√

nimi

1/(ε0c2)

1

niqi
= c

/√
niq2

i

ε0mi
= c

ωpi
= di,

(B18)
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FIG. 6. Dispersion relations of three positive frequency
branches. The red, purple and orange lines represent the fast, Alfvén,
and slow waves, respectively. The saturation level of each color
represents the value of k⊥. There are two types of Weyl points
depending on the ratio between vs and vA.

where ε0 is the vacuum permittivity, c is the light speed, ωpi

is the ion plasma frequency, and di is known as the ion skin
depth. The final linearized equations for Hall MHD become
Eqs. (16)–(18) in the main text. In the limit of di → 0, the
system reduces to the ideal MHD model where the right-hand
of Eq. (B6) vanishes.

To study the dispersion relation and wave topology in the
bulk region, we assume the equilibrium magnetic field B
and pressure p are constants. In this case, the wave fields
� = (ṽ, B̃, p̃)ᵀ are governed by i∂t� = H0�, where H0 is the
asymptotic Hamiltonian shown in Eq. (20). The correspond-
ing symbol is

H0 =

⎛⎜⎝ 0 (vAk)ᵀ − vA·k vsk
(vAk) − vA·k idi(vA·k)k× 0

vskᵀ 0 0

⎞⎟⎠. (B19)

It is clear that H0 and H0 are Hermitian.
Let magnetic field is in the z-direction and vA = vAez.

H0 has one zero eigenvalue ω0 = 0, whose eigenvector is
� = (0, 0, 0, 0, 0, 1, 0)ᵀ. The rest 6 eigenvalues are given by
Eq. (22). Because ω only appears in terms of ω2 in Eq. (22),
the eigenvalues are symmetric with respect to zero. We can
thus only study the three positive frequency branches. They
are called fast wave, Alfvén wave, and slow wave according
to their phase velocities, which satisfies the following order:

vp,slow � vp,Alfven � vp,fast. (B20)

The dispersion relation is plotted in Figs. 6 and 7. Since kx

and ky contribute symmetrically through k2
⊥

.= k2
x + k2

y , the
eigenvalues ωn are plotted as functions of (k⊥, kz ).

From the dispersion relations, we observe that a Weyl point
can be formed by the crossing between the fast and Alfvén
waves or between the slow and Alfvén waves. The Weyl point
can be analytically solved for from Eq. (22). When k⊥ = 0,
Eq. (22) has three positive solutions,

ω1 = vskz, (B21)

ω2,3 = vAkz

(√
1 + 1

4
k2

z d2
i ± 1

2
kzdi

)
. (B22)

FIG. 7. The 3D rendition of the dispersion relations in Fig. 6.

The value of kz at the Weyl points can be expressed in terms
of ζ = vs/vA,

kzdi =
∣∣∣∣ 1ζ − ζ

∣∣∣∣ =
{

1/ζ − ζ , when: ζ < 1,

ζ − 1/ζ , when: ζ > 1.
(B23)

If kz is fixed, the value of ξ at the Weyl points is

ζ =
√

1 + 1

4
k2

z d2
i ± 1

2
kzdi. (B24)

For a fixed kz, the topological charge of each Weyl point
can be calculated in the parameter space (x, kx, ky), which
is given explicitly using a two-band approximation in Ap-
pendix C.

APPENDIX C: THE TOPOLOGICAL ALFVÉN SOUND
WAVE IN HALL MHD

In this section, we provide detailed derivations of the topo-
logical Alfvén sound wave in Hall MHD.

In an inhomogeneous equilibrium, the operator H is rela-
tively complicated. From Eqs. (16)–(18), the operator H can
be written in a 7 × 7 matrix,

H = H0 + H1 + H2 =

⎛⎜⎝ 0 h12 h13

h21 h22 0
h31 0 0

⎞⎟⎠, (C1)

where

h12 =

⎛⎜⎝−vAkz 0 −ivA∂x−iv′
A

0 −vAkz vAky

iv′
A 0 0

⎞⎟⎠,

h13 =

⎛⎜⎝−ivs∂x−iv′
s

vsky

vskz

⎞⎟⎠,

h21 =

⎛⎜⎝ −vAkz 0 0
0 −vAkz 0

−ivA∂x−iv′
A vAky 0

⎞⎟⎠,

h22 =

⎛⎜⎝ div
′
Aky −idivAk2

z idivAkykz

idi
(
vAk2

z +v′′
A

)
div

′
Aky −kzdivA∂x

−idivAkykz dikz(vA∂x+v′
A) 0

⎞⎟⎠,

h31 = (−ivs∂x−i(2/γ )v′
s vsky vskz ).

Here, H0 is the asymptotic Hamiltonian that depends on
vA and vs, but not their derivatives. It is the same as
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Eq. (20) in the main text. The terms that show up in H0

are written in black. We can see that H is significantly dif-
ferent from H0 in the inhomogeneous region. H1, which
are highlighted in blue, depends on the first order deriva-

tives. Similarly, H2, highlighted in red, depends on the
second order derivatives. It is clear that H is not Hermitian
due to the background inhomogeneity. The anti-Hermitian
part of H is

HA
.= 1

2i
(H − H†) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 −v′
A/2 −v′

s/γ

0 0 0 0 0 0 0
0 0 0 v′

A/2 0 0 0
0 0 v′

A/2 0 div
′′
A/2 0 0

0 0 0 div
′′
A/2 0 0 0

−v′
A/2 0 0 0 0 0 0

−v′
s/γ 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (C2)

Notice that for a real function f (x),[
i f (x)

d

dx

]†

= i f ′(x) + i f (x)
d

dx
. (C3)

Although H is not Hermitian, it is PT-symmetric for P =
diag(−1, 1, 1,−1, 1, 1, 1) and T being complex conjugation,
i.e., PT HT P = PH∗P = H. To prove this property, the ef-
fect of P and T operators on H are graphically shown in
Fig. 8. Each element in Eq. (C1) is either real or imaginary.
Under time reversal or parity transform, the sign of each
element is either unchanged or flipped. Observe that P and
T have the same effect on H. Thus their combination keeps
H unchanged.

For a function f (x) and operator k̂ = −i∂x, their Wigner-
Weyl transforms are

W [ f (x)] = f (x), W [k̂] = k, (C4)

W [ f (x)k̂] = f (x)k + i f ′(x)/2. (C5)

From these relations, the symbol of H in Eq. (C1) is

H = W [H] = H0 + H1 + H2 =

⎛⎜⎝ 0 s12 s13

s21 s22 0
s31 0 0

⎞⎟⎠,

where

s12 =

⎛⎜⎝−vAkz 0 vAkx− i
2v′

A

0 −vAkz vAky

iv′
A 0 0

⎞⎟⎠,

s13 =

⎛⎜⎝vskx− i
2v′

s

vsky

vskz

⎞⎟⎠, s21 =

⎛⎜⎝ −vAkz 0 0

0 −vAkz 0

vAkx− i
2v′

A vAky 0

⎞⎟⎠,

s22 =

⎛⎜⎝ div
′
Aky −idivAk2

z idivAkykz

idi
(
vAk2

z +v′′
A

)
div

′
Aky −kzdivA∂x

−idivAkykz dikz
(
ivAkx+ v′

A
2

)
0

⎞⎟⎠,

s31 =
(

vskx+i

(
1

2
− 2

γ

)
v′

s vsky vskz

)
.

Similar to the operator H, the symbol H is also decomposed
into H0, H1, and H2. H0 is the asymptotic symbol that depends
only on vA and vs, but not their derivatives. It is the same
as Eq. (B19). H1 depends on first order derivatives of vA or
vs, and H2 depend on second order derivatives of vA or vs.
Clearly, the dispersion relation of H is much more compli-
cated than H0.

Finally, for symbol H (kx, ky, kz ), the time reversal opera-
tor is complex conjugation and flipping the sign of kx, i.e.,
T H (kx, ky, kz )T = H∗(−kx, ky, kz ). This is because we have
fixed kz, and ky is treated as a control parameter. Using this
property, we find that H is also PT-symmetric with the same
P used for H, i.e., P = diag(−1, 1, 1,−1, 1, 1, 1).

Now, we approximate the Hall MHD model by a two-band
non-Hermitian Hamiltonian near the degeneracy (Weyl) point
between the Alfvén wave and slow wave as determined by
H0. The index (topological charge) of the Weyl point will be
calculated from the two-band approximation of H0, and the
spectral flow is explicitly solved for. According to the naming
convention defined by the inequality (B20), the Alfvén wave
and slow wave are switched at the Weyl point. But in the
neighborhood of the Weyl point, the two branches are physi-
cally the Alfvén wave and the sound wave. Therefore a proper
name for this edge mode is topological Alfvén sound wave
(TASW).

Assume ζ0 = vs0/vA0 < 1 at the Weyl point. The loca-
tion of the Weyl point in the momentum space is found
to be (kx, ky, kz ) = (0, 0, (1/ζ0 − ζ0)/di ) with eigenvalue
ω0 = (v2

A0 − v2
s0)/(divA0). At the Weyl point, the two unit

FIG. 8. The effects of P and T operators on H. The elements of
H are represented by a 7 × 7 grids. Vanishing elements are shown in
white. Elements that are unchanged under an operator are shown in
light blue. Elements that have their sign flipped under an operator are
shown in dark blue.
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eigenvectors are

�1 = 1√
2

(0, 0, 1, 0, 0, 0, 1)ᵀ,

�2 = 1√
2
(
v2

A0 + v2
s0

) (−ivA0,−vA0, 0, ivs0, vs0, 0, 0)ᵀ.

Since PT symmetry is unbroken at the Weyl point, �1,2 are
also the eigenvectors of the PT operator with eigenvalue 1,
namely, PT �i = �i.

In the (kx, ky, x) space near the Weyl point, we can expand
the inhomogeneous equilibrium field, vA(x) = vA0 + v′

A0x,
vs(x) = vs0 + v′

s0x, and approximate H0 by the following two-
band operator:

M0
.= �†

[
vA(x)

∂H0

∂vA
+ vs(x)

∂H0

∂vs
(C6)

+ ky
∂H0

∂ky
+ kx

∂H0

∂kx
− ω0I2

]
� (C7)

=

⎛⎜⎝
v2

A0−v2
s0

divA0

v′
s0

vs0
x − ω0 − vA0vs0 (ky+ikx )

2
√

v2
A0+v2

s0

− vA0vs0 (ky−ikx )

2
√

v2
A0+v2

s0

v2
A0−v2

s0
divA0

v′
A0

vA0
x − ω0

⎞⎟⎠. (C8)

Here, � = (�1, �2)ᵀ, and the ω0I2 term can be ignored.
All derivatives of H0 are evaluated at (kx, ky, x) = (0, 0, 0).
The topological charge of Weyl point is defined to be the
Chern number of the slow wave bundle over a 2D sur-
face in the (kx, ky, x) space surrounding the Weyl point
[31,32]. Without loss of generality, assume v′

A0 < 0, and
thus v′

s0 > 0 from the pressure balance in Eq. (21). Let α
.=

1 − v′
A0vs0/(2v′

s0vA0) > 0. In terms of the following scaled

variables:

x̃
.= v2

A0 − v2
s0

2divA0vs0
v′

s0αx, (C9)

k̃x
.= vA0vs0

2
√

v2
A0 + v2

s0

kx, k̃y
.= vA0vs0

2
√

v2
A0 + v2

s0

ky, (C10)

M0 is simplified to

M0 =
(

2x̃/α −k̃y − ik̃x

−k̃y + ik̃x −2(α − 1)x̃/α

)
. (C11)

Its eigenvalues and eigenvectors are

ω± = x̃

(
2

α
− 1

)
±
√

k̃2
x + k̃2

y + x̃2, (C12)

�± =

⎡⎢⎣ x̃ ±
√

k̃2
x + k̃2

y + x̃2

ik̃x − k̃y
, 1

⎤⎥⎦
ᵀ

. (C13)

On an infinitesimal 2D sphere in the (x̃, k̃x, k̃y) space cen-
tered at (x̃, k̃x, k̃y) = (0, 0, 0), the unit eigenvectors can be
written in the spherical coordinates as

�+ =
(

cos θ
2

i sin θ
2 eiϕ

)
, �− =

(
sin θ

2

−i cos θ
2 eiϕ

)
. (C14)

Here, the spherical coordinate is defined by (x̃, k̃x, k̃y) =
(cos θ, sin θ cos ϕ, sin θ sin ϕ), θ ∈ [0, π ], ϕ ∈ [0, 2π ).

The Chern numbers for �± are

C± = 1

2π

∫∫
[∂θ (i�†

±∂ϕ�±) − ∂ϕ (i�†
±∂θ�±)]dϕ dθ

= ∓1.

Next, we derive the TASW using the two-band ap-
proximation of non-Hermitian Hall MHD model in the
inhomogeneous region. To the lowest order, M = M0 + M1,
where M0 is specified by Eq. (C8), and

M1
.= �† H1|x,kx,ky=0� =

⎛⎜⎝ 0 vA0v
′
s0 (1−4/γ )−2v′

A0vs0

4
√

v2
A0+v2

s0

vA0v
′
s0

4
√

v2
A0+v2

s0

0

⎞⎟⎠ (C15)

= 1

4
√

v2
A0 + v2

s0

[((1 − 2/γ )vA0v
′
s0 − v′

A0vs0)σ x − i(2vA0v
′
s0/γ + v′

A0vs0)σ y]. (C16)

The corresponding 2 × 2 operator M can be obtained by
simply replacing kx → −i∂x in M. Since the inhomogeneous
part M1 does not depend on kx, we have M1 = M1. At this
point, we are ready to verify that in M = M0 + M1 the anti-
Hermitian term is proportional to σ y, which is the result of PT
symmetry.

Finally, we show that the non-Hermitian M is similar to
a tilted Dirac cone, which is Hermitian and admits a spectral

flow. Let

k̃y
.= ky − 1

2

[
(1 − 2/γ )

v′
s0

vs0
− v′

A0

vA0

]
, (C17)

δ
.= 1

γ

v′
s0

vs0
− 1

2

v′
A0

vA0
. (C18)
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Perform a similarity transformation on M,

M̃ .= eδxMe−δx (C19)

=

⎛⎜⎝
v2

A0−v2
s0

divA0

v′
s0

vs0
x − vA0vs0 (k̃y+∂x )

2
√

v2
A0+v2

s0

− vA0vs0 (k̃y−∂x )

2
√

v2
A0+v2

s0

v2
A0−v2

s0
divA0

v′
A0

vA0
x

⎞⎟⎠. (C20)

Note that M̃ has the same format of the operator M0 =
W −1(M0), and it can be written as

M̃ = c1c2

(
x̄/κ −k̄y − ∂x̄

−k̄y + ∂x̄ −κ x̄

)
, (C21)

where

c1
.= v2

A0 − v2
s0

divA0

v′
s0

vs0
> 0, (C22)

c2
.=

⎛⎜⎝ vA0vs0κ

2c1

√
v2

A0 + v2
s0

⎞⎟⎠1/2, (C23)

x̄
.= κ

c2
x, k̄y

.= c2

κ
ky, (C24)

κ
.=
(

−v′
A0/vA0

v′
s0/vs0

)1/2

> 0. (C25)

Equation (C21) is the tilted Dirac cone described in Ap-
pendix A. It admits one spectral flow whose index is identical
to the topological charge at the Weyl point [31].
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