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Standard form of master equations for general non-Markovian jump processes:
The Laplace-space embedding framework and asymptotic solution
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We present a standard form of master equations (MEs) for general one-dimensional non-Markovian (history-
dependent) jump processes, complemented by an asymptotic solution derived from an expanded system-size
approach. The ME is obtained by developing a general Markovian embedding using a suitable set of auxiliary
field variables. This Markovian embedding uses a Laplace-convolution operation applied to the velocity trajec-
tory. We introduce an asymptotic method tailored for this ME standard, generalizing the system-size expansion
for these jump processes. Under specific stability conditions tied to a single noise source, upon coarse graining,
the generalized Langevin equation (GLE) emerges as a universal approximate model for point processes in the
weak-coupling limit. This methodology offers a unified analytical tool set for general non-Markovian processes,
reinforcing the universal applicability of the GLE founded in microdynamics and the principles of statistical
physics.
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I. INTRODUCTION

Non-Markovian stochastic processes have emerged as a
powerful framework across diverse scientific disciplines, in-
cluding physics [1], chemistry [2], econometrics [3], and
financial modeling [4].

(1) Physics: Within statistical physics, particle motion
in water is described by the generalized Langevin equa-
tion (GLE) [1]. The GLE represents a quintessential non-
Markovian stochastic model, capturing the hydrodynamic
memory effect.

(2) Econometrics: The autoregressive integrated moving
average (ARIMA) model stands as a recognized discrete-time
non-Markovian model describing many stylized structures of
financial returns [3].

(3) Finance: The self-excited Hawkes process [5–7], a
widely used non-Markovian point-process model, finds many
applications in finance [8–11]. Here, points indicate event
occurrences on the time axis.

(4) Other disciplines: The versatility of the non-
Markovian self-exciting Hawkes process also extends to
neuroscience [12], seismology [13–16], epidemiology
[17,18], industrial and organizational psychology and
sociology [19,20], criminology [21], and so on.
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Central to these models is their ability to encapsulate long-
memory effects inherent to various systems. This is typified
by power-law decaying autocorrelation functions, transcend-
ing the conventional boundaries set by Markovian stochastic
processes.

A well-established analytical toolkit has been devel-
oped for Markovian stochastic processes [22,23], which
includes stochastic differential equations (SDEs), master
equations (MEs), and their asymptotic solutions. For instance,
the theory of standard forms has been instrumental in the
systematic classification of both SDEs and MEs. Given that
MEs represent linear time-evolution equations for probability
density functions and functionals (PDFs), they can be solved
within the framework of linear algebra, particularly through
methods like the eigenfunction expansion [22,23].

There are also various asymptotic methods tailored to
MEs. Prominent among these are the system-size expansion
[2,24–26] and the Wentzel-Kramers-Brillouin approximation
[23,27]. Notably, the system-size expansion stands as a his-
toric cornerstone in the realm of statistical physics, especially
concerning the Langevin equations. This is largely due to its
role in extrapolating various Langevin equations from un-
derlying microscopic physical dynamics. Hence, Markovian
process theory offers a robust and structured foundation for
statistical physics, at least in a formal sense.

In contrast to the structured theories for Markovian pro-
cesses, those for non-Markovian processes remain more frag-
mented. A universally accepted ME theory for non-Markovian
processes is absent. Current MEs pertain specifically to
particular non-Markovian SDE classes, such as GLE with
exponential memories [28,29], GLE with linear potential [30],
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and semi-Markovian point processes [31]. Without a standard-
ized form for these MEs, corresponding asymptotic methods
for general non-Markovian processes have yet to emerge.
Hence, developing a systematic theory for non-Markovian
processes remains a long-standing challenge in statistical
physics.

Our prior studies have offered partial solutions to this chal-
lenge, specifically for linear and nonlinear Hawkes processes
[32–35]. We have generalized the Markovian embedding
approach, transforming a non-Markovian process into a
Markovian field dynamic. Within this framework, the MEs
for the Hawkes processes are conceived as time-evolution
equations for the PDFs of auxiliary field variables. We refer
to these equations as field master equations (fMEs). While we
regard this methodology as a potential avenue for generating
MEs for a broader range of non-Markovian processes, its
scope, for now, remains confined to certain models, notably
the nonlinear extensions of the Hawkes point process family.

In this paper, we focus on deriving the ME for the general
class of one-dimensional non-Markovian jump processes, a
subset of the broader point process family. Our approach
frames the general one-dimensional non-Markovian jump
process as a history-dependent jump process. As a versatile
model, it can incorporate any form of historical dependency
and represents the most comprehensive one-dimensional non-
Markovian jump process conceivable by us. To tackle these
processes, we develop a general Markovian embedding using
a suitable set of auxiliary field variables. This Markovian em-
bedding uses a Laplace-convolution operation applied to the
velocity trajectory and allows us to derive the corresponding
fME. Given the capability of this ME to handle all forms of
one-dimensional non-Markovian properties, we suggest that it
constitutes a standard ME form for general one-dimensional
non-Markovian jump processes. Additionally, we introduce
an asymptotic method tailored for this ME standard, general-
izing the system-size expansion for this jump process. Under
specific stability conditions tied to a single noise source, the
GLE emerges as a universal approximate model for point pro-
cesses in the weak-coupling limit. This methodology offers
a unified analytical tool for general non-Markovian processes,
underpinned by strong statistical physics validating the GLE’s
universal applicability.

This paper is organized as follows. Section II presents our
mathematical notations. Section III gives a concise review of
the theories of Markovian stochastic processes, of the corre-
sponding standard form of the ME, and of the system-size
expansion. Section III is prepared for readers unfamiliar with
Markovian stochastic processes; expert readers can skip it
to go directly to the main part from Sec. IV. Section IV
introduces our model and derives the corresponding fME via
the Laplace-convolution Markovian embedding. Section V
describes the system-size expansion for the non-Markovian
jump processes that allows us to asymptotically derive the
GLE. Section VI demonstrates another application of our
formalism to a financial-pricing model based on the nonlinear
Hawkes processes. We conclude this paper after discussing
implications and future perspectives of our work in Sec. VII.
Eight appendices supplement the main text on technical
issues.

II. MATHEMATICAL NOTATION

Let us describe our mathematical notation regarding
stochastic variables, sets, and functionals.

A. Notation for stochastic variables

Any stochastic variable carries the hat symbol in the form
Â to distinguish it from the real number A. The PDF is denoted
by Pt (A) := P(Ât = A), implying that the probability for Ât ∈
[A, A + dA) is given by Pt (A) dA. The ensemble average of
any stochastic variable Â is written as 〈Ât 〉 := ∫

APt (A) dA.
Using this notation, the PDF can be rewritten as Pt (A) =
〈δ(A − Ât )〉 with the Dirac δ function (see Appendix A).

B. Notation for sets

The set of real numbers and the set of positive integers are
denoted by R and N. The set of positive real numbers is de-
noted by R+ := {s | s > 0, s ∈ R}. Here s typically represents
the wave number, which should be a real positive number, and
we introduce the compact notation

{z(s)}s := {z(s) | s ∈ R+}. (1)

Also, i and j typically represents integers, and we also intro-
duce the corresponding compact notation

{ai}i := {ai | i ∈ N}. (2)

C. Notation for functionals

If the argument of a map f is a function {z(s)}s, f is called
a functional. A functional is indicated by the square brackets
f [{z(s)}s]. The functional notation f [{z(s)}s] is sometimes
abbreviated as f [z] if its meaning is obvious from the context.
For a stochastic field variable {ẑt (s)}s, the corresponding PDF
is written as Pt [z] = Pt [{z(s)}s], characterizing the probabil-
ity Pt [z]Dz that {ẑ(s)}s ∈ ∏

s[z(s), z(s) + dz(s)), where the
functional volume element is Dz := ∏

s dz(s). The ensemble
average of any functional f [ẑt ] is written as the path-integral
representation

〈 f [ẑt ]〉 :=
∫

f [z]Pt [z]Dz. (3)

On the basis of this notation, the PDF is formally rewritten by
Pt [z] = 〈δ[z − ẑt ]〉, where the δ functional is defined by δ[z −
ẑt ] := ∏

s∈R+ δ(z(s) − ẑt (s)). The concept of derivative can be
generalized to the functional derivative, which is denoted by
δ f [z]/δz(s) (see Appendix A for the detail).

III. LITERATURE REVIEW: MARKOVIAN
STOCHASTIC PROCESSES

This section offers a concise overview of the foundational
theory of Markovian processes, serving as an introduction
for readers less acquainted with Markovian processes and
statistical physics. Specifically, we touch upon the standard
form of the ME for these processes. Experts who are solely
focused on our primary findings may bypass this section, as
the main results are presented in a stand-alone, comprehensive
format.
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A. Review of Markovian stochastic differential equations

Let us consider a one-dimensional stochastic process char-
acterized by the trajectory {v̂s}s�t , where t is the current
time. If the statistics of the infinitesimal future state v̂t+dt

is completely characterized only by the current state v̂t , the
stochastic dynamics is said to obey a Markovian stochastic
process. However, a more general class of stochastic models
can be considered that cannot be characterized only by the
current state v̂t . For example, a stochastic model can depend
on the full history {v̂s}s�t . Such stochastic dynamics obey a
non-Markovian stochastic process. This subsection reviews
the theory of Markovian stochastic processes, in particular,
their standard forms and the system-size expansion.

1. Review of the standard form of white noise

White noise is a noise that is independent of its history. It
is formally defined as the derivative of the Lévy process L̂t ,
such that ξ̂W

t := dL̂t/ dt . According to the Lévy-Itô decom-
position, any white noise can be decomposed as the sum of
the white Gaussian noise and of the white Poisson noise (see
Appendix B for a review), such that

ξ̂W = m + σ ξ̂G + ξ̂P
λ(y), (4)

where m is the constant drift, σ is the standard deviation of
the white noise, ξ̂G is the white noise, and ξ̂P

λ(y) is the white
Poisson noise with intensity distribution function λ(y) of the
jump size y.

2. Review of the standard form of stochastic differential equations

Any one-dimensional stochastic process can be constructed
from white noise by introducing the state dependence into the
drift term a, standard deviation σ , and the intensity distribu-
tion function λ(y), such that

m → m(v̂), σ → σ (v̂), λ(y) → λ(y|v̂). (5)

A one-dimensional stochastic Markovian process {v̂s}s�t

obeys the state-dependent SDE

dv̂t

dt
= m(v̂t ) + σ (v̂t )ξ̂

G + ξ̂P
λ(y|v̂t ), (6)

with the Itô interpretation assumed. We refer to this repre-
sentation as the standard form of one-dimensional Markovian
SDEs. The Markovian property is expressed by the fact that
the right-hand side of Eq. (6) depends only on the current state
v̂t .

3. Review of the standard form of master equations

The SDE (6) describes the dynamics of stochastic systems
for a single path. While the SDE are intuitive tools, they are
not easy to handle because of their general nonlinear structure.
For analytical calculations, the ME approach provides more
systematic methods based on linear algebra. The ME is the
equation governing the time evolution of the PDF Pt (v) :=
〈δ(v − v̂t )〉 as follows:

∂Pt (v)

∂t
= LPt (v), (7)

Jump probability

FIG. 1. Schematic of the Markovian jump process (9). The path
is piecewisely continuous and occasionally has jumps. A jump oc-
curs during [t, t + dt ) with probability λ(y|v̂t )dtdy with jump size
ŷ ∈ [y, y + dy). The remarkable character of the Markovian jump
process is that the intensity density λ(y|v̂t ) depends only on the
current state v̂t and does not depend on the whole history {v̂τ }τ<t .
In this sense, the Markovian jump process is a history-independent
Poisson process, in contrast to the non-Markovian jump process (or
the history-dependent Poisson process) defined as Eq. (16).

with a linear operator L. The ME corresponding to the SDE
(6) is given by

∂Pt (v)

∂t
=

[
− ∂

∂v
m(v) + 1

2

∂2

∂v2
σ 2(v)

]
Pt (v)

+
∫ ∞

−∞
dy[λ(y|v − y)Pt (v − y) − λ(y|v)Pt (v)].

(8)

This ME is known to cover all possible one-dimensional
Markovian stochastic processes with mild assumptions [22],
and thus is called the standard form of the master equation
in this report. The ME is very useful because it is always a
linear dynamical equation1 of the PDF Pt (v). In other words, a
standard approach to a given Markovian process is to consider
its ME and solve the corresponding eigenvalue problem with
linear algebra techniques.

4. Review of the Markovian jump process (history-independent
Poisson process)

Markovian jump processes constitute a large subclass of
Markovian SDEs, such that

dv̂t

dt
= ξ̂P

λ(y|v̂t ), ξ̂P
λ(y|v̂t ) =

N̂ (t )∑
k=1

ŷkδ(t − t̂k ), (9)

where the drift term and the white Gaussian noise term are
absent, and only the jump term is present (see Fig. 1). Here
λ(y|v̂t ) is the conditional intensity density of the jump size
y, N̂ (t ) is the total number of jumps during [0, t ), and t̂k
is the kth jump time, ŷk is the kth jump size. Markovian
jump processes depend only on the current state v̂t and can
be called history-independent Poisson processes, in contrast
to the non-Markovian jump processes (or history-dependent
Poisson processes) defined in Eq. (16) in the main section.

1Indeed, the formal solution of the ME (7) is given by

Pt (ν ) =
∑

i

cie
−μitφi(ν ), Lφi(ν ) = −μiφi(ν ).

with initial condition constants {ci}i, where μi and φi(v) are the ith
eigenvalue and the corresponding eigenfunction, respectively.
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(a) (b) Continuous pathJump size:

FIG. 2. Schematic of the system-size expansion. (a) A typical trajectory of a Markovian jump process (9) where the jump size is scaled
with ε, such that ŷi = εŶi with ε-independent jump size Ŷi. (b) For small ε � 1, the path becomes approximately continuous due to the small
jump sizes and obeys the Langevin equation (12) under an appropriate stability condition around v̂t � 0. This picture essentially applies even
to the non-Markovian jump process (16) as shown in Sec. V.

Markovian jump processes are popular models. For in-
stance, the detailed description of physical Brownian motion
is often modeled as a Markovian jump process for the velocity
of the Brownian particle, where the velocity discontinuously
changes due to molecular collisions.

B. Review of the system-size expansion

Solving the eigenvalue problem is, in general, difficult, in
particular when the linear operator L leads to an integrod-
ifferential equation of the form (8). One of the systematic
methods to obtain asymptotic solutions was invented by van
Kampen, which is called the system-size expansion. Math-
ematically, the system-size expansion can be regarded as a
weak-noise asymptotic limit for Markovian jump processes.
This assumption is very natural, particularly in the context of
Brownian motions. This method provides a solid mathemat-
ical derivation of the Langevin equations from microscopic
physical dynamics. In this subsection, we briefly review this
methodology based on Refs. [24–26].

1. Sketch of the system-size expansion

Let us consider a Markovian jump process described by
(9). In addition, let us assume that the jump size is propor-
tional to a small positive parameter ε > 0 [see Fig. 2(a)], so
we can write

ŷk = εŶk . (10)

This implies that the noise term can be rewritten as ξ̂P
λ(y|v̂t ) =

εξ̂P
W (Y |v̂t ), with the conditional intensity density W (Y |v̂t ) for

the rescaled jump size Y . We thus obtain the SDE with a small
jump-noise term:

dv̂t

dt
= εξ̂P

W (Y |v̂t ). (11)

This is the scaling assumption for the system-size expansion.
In other words, the small parameter ε can be interpreted as
the small constant quantifying the weak-coupling with the
stochastic environment.

In the small-noise asymptotic limit ε → 0 and for
a broad variety of setups, assuming a stability condi-
tion around v̂t � 0 (see Appendix C for details), the
Markovian jump process reduces to the Langevin equation
[see Fig. 2(b) for a schematic]

dv̂t

dt
= −γ v̂t +

√
2γ T ξ̂G, (12)

where γ takes the meaning of a frictional constant and T is
the temperature. See Appendix C for the detailed derivation.
Thus, the system-size expansion is a celebrated mathematical
foundation for the derivations of the Langevin equations from
microscopic dynamics.

After applying the system-size expansion, remarkably, the
white Gaussian noise term emerges even though we have
started our discussion with the compound Poisson noise. This
result can be interpreted within the framework of the law of
large numbers and the central limit theorem. In the detailed
derivation (see Appendix C), the introduction of the rescaled
time t := εt is a technical key. Assuming t = O(1) [or, equiv-
alently, t = O(ε−1)], there are sufficiently many collisions
during [0, t ) so the law of large numbers and the central limit
theorem are applicable: the deterministic drift term appears as
the result of the law of large numbers, and the white Gaussian
noise appears as the result of the central limit theorem. In this
sense, the system-size expansion is the formal application of
the law of large numbers and the central limit theorem to the
Markovian jump processes.

2. Physical validity of the scaling assumption

The physical validity of the scaling (10) and (11) can
be intuitively understood by considering a one-dimensional
collision problem (Fig. 3). Let us prepare a small particle of
mass m, velocity v and a large particle of mass M and velocity
V . In a one-dimensional elastic collision, the postcollisional
velocity V ′ of the large particle is given by

V ′ − V = 2m

m + M
(v − V ). (13)

Since the typical thermal velocities are given by v � √
T/m

and V � √
T/M, where T is the gas temperature, we have

|V/v| ∝ ε1/2 � 1 with ε := m/M. For ε � 1, we obtain the
velocity jump y of the large particle as

y := V ′ − V � 2εv. (14)

Thus, the velocity-jump size is proportional to ε and satisfies
the system-size expansion scaling (11) exactly. This example
highlights that the scaling assumption of the system-size ex-
pansion is physically reasonable2 when the Brownian particle
in a gas is much heavier than the surrounding gas particles.

2Note that the assumption that the dynamics is Markovian is also
valid for Brownian dynamics in the dilute-gas limit.
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Collision

Velocity jump size

FIG. 3. The scaling assumption of the system-size expansion is natural on physical grounds for the description of a massive Brownian-
particle motion. Let us denote the mass and initial velocity of the Brownian particle (respectively, of a surrounding small particle) by M
(respectively, m) and V̂ (respectively, v̂). After an elastic collision, the velocity of the Brownian particle changes according to formula (13)
deriving from the conservation of momentum. The velocity jump size y is proportional to the mass ratio ε := m/M, which is the small parameter
of the problem in the limit of massive Brownian particle limit m � M.

3. Scaling assumption in the master equations

The scaling assumption y = εY at a trajectory level is
equivalent to the scaling assumption for the ME,

λ(y|v) = 1

ε
W

(
y

ε

∣∣∣v), (15)

which is derived from the conservation of probability (i.e., the
Jacobian relation), such that λ(y|v)dy = W (Y |v)dY .

C. Goal of this paper

On the basis of the above theory regarding the standard
forms of SDEs and MEs, our goals in this paper are the
following:

(1) We derive the ME for the general non-Markovian jump
process analogous to the standard form of the Markovian ME
(8).

(2) We asymptotically solve the ME for non-Markovian
jump processes by generalizing the system-size expansion;
we finally obtain the GLE via a physically reasonable coarse-
graining approach.

IV. MAIN RESULT: NON-MARKOVIAN
MODEL AND FORMULATION

In this section, we first present the stochastic
model studied in this paper. We then introduce the
Laplace-convolution Markovian embedding that converts

the original low-dimensional non-Markovian dynamics onto
a Markovian field dynamics. Finally, the corresponding fME
is formulated.

A. Non-Markovian jump process (history-dependent
compound Poisson process)

Let us consider a non-Markovian stochastic model that
can encompass a large class of non-Markovian stochastic
processes:

We study the history-dependent compound Poisson pro-
cess (see Fig. 4 for a schematic),

dv̂t

dt
= ξ̂CP

λ(y|{v̂τ }τ�t ), (16)

where the intensity λ(y|{v̂τ }τ�t ) with jump size y is condi-
tional on the full history of the system {v̂τ }τ�t .

The non-Markovian nature of this process makes the in-
tensity a functional of the whole history. More technically,
Eq. (16) implies that

dv̂t :=
{

ŷ + O(dt ) (Prob = dt dyλ(y|{v̂τ }τ�t ) for any ŷ ∈ [y, y + dy))

0
(
Prob = 1 − dt

∫ ∞
−∞ dyλ(y|{v̂τ }τ�t )

) (17)

for any given history {v̂τ }τ�t with infinitesimal time evolution
dv̂t := v̂t+dt − v̂t . Our aim is to provide the full analytical
tool set for this history-dependent Poisson process by devel-
oping the corresponding fME and by analyzing its asymptotic
solutions.

Throughout Sec. IV, we do not make strong assumptions
and consider the general class of non-Markovian jump pro-
cesses, including both stationary and nonstationary cases. On
the other hand, some of the results in other sections (such as
the system-size expansion in Sec. V) are only available for
stationary processes.

B. Markovian embedding

In this subsection, we apply the Markovian-embedding
scheme to the history-dependent Poisson process (16). We fi-
nally obtain the stochastic partial differential equation (SPDE)
governing the Markovian field dynamics and derive the corre-
sponding fME.

1. Basic idea

The idea of Markovian embedding is very simple: a
low-dimensional non-Markovian dynamics can be converted
onto a higher-dimensional Markovian dynamics by adding a
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Jump probability

History

FIG. 4. Schematic of the non-Markovian jump process (or
history-dependent compound Poisson process). The probability
that a velocity jump occurs during [t, t + dt ) is given by
λ(y|{v̂τ }τ�t )dtdy with jump size ŷ ∈ [y, y + dy). Here the intensity
density λ(y|{v̂τ }τ�t ) explicitly depends on the whole history {v̂τ }τ�t

and the system is thus truly non-Markovian.

sufficient number of auxiliary variables. In the statistical-
physics context, this approach dates back to Mori [36] around
the mid-1960s.3 Also, the theory of the Kac-Zwanzig model
[28,29,37–39] can be regarded as a theory of Markovian
embedding between the generalized Langevin equation and
the Hamiltonian-particle model with harmonic interaction.
For example, the generalized Langevin equation with the
sum of K-exponential memories can be thought of as a K-
dimensional Markovian dynamics [28,29,33]. This idea can
even be applied to the Hawkes processes [4,40,41] for mem-
ory kernels expressed as a sum of exponential functions.
Remarkably, this idea of Markovian embedding has been also
applied to non-Markovian stochastic processes in quantum
systems [42–48] in the context of the pseudomode approach
around the mid-1990s.

The dimension needed for the Markovian embedding de-
pends on the model but can be infinite in general. In this case,
the dynamics can be regarded as a Markovian field dynamics.
For instance, the GLE and the Hawkes processes have been
converted onto Markovian field dynamics [32–35], which can

3He proposed a systematic expansion of the relaxation memory ker-
nel by the continued-fraction expansion. Truncating the expansion
leads to an approximation based on the sum of several exponential
memories.

be analyzed by the fME (which is a functional-differential
equation for the probability density functional).

Markovian embedding is nontrivial and technically tricky
for continuous-time stochastic processes, while Markovian
embedding is rather straightforward for discrete-time stochas-
tic processes (see Appendix E for brief clarification). This
paper aims at formulating a general embedding theory of the
non-Markovian jump process (16), even though it is based on
continuous time.

2. Variable set

Before proceeding with the derivation of the Markovian
field dynamics, let us introduce a complete set of system
variables useful for Markovian embedding. In the previous
section, we used {v̂τ }τ�t as a naive complete set of sys-
tem variables. This set is equivalent in information content
to another set (v̂t ; {âτ }τ<t ), with acceleration ât := dv̂t/ dt .
Note that the acceleration can include the impulses de-
scribed by the Dirac δ functions associated with the jumps.
Let us now introduce the Laplace-convolution Markovian-
embedding representation of the velocity trajectory as

ẑt (s) :=
∫ ∞

0
e−sτ ât−τ dτ, ât := dv̂t

dt
, (18)

which is defined for s > 0 (see Fig. 5 for a schematic). We
then adopt the variable set

(v̂t , {ẑt (s)}s>0) (19)

as a useful complete variable set.

The introduction of the auxiliary field variable {ẑt (s)}s>0 is
the technical but crucial trick to convert the general nonlinear
non-Markovian model onto a Markovian field model. In the
following, the wave number s is always considered strictly
positive (s > 0), and the set { f (s)}s>0 for any function f (s) is
sometimes abbreviated by { f (s)}s if its meaning is clear from
the context.

Markovian
embedding

FIG. 5. Schematic of the Markovian embedding of the original one-dimensional non-Markovian jump process (16) onto the Markovian
field dynamics {ẑt (s)}s. The auxiliary field variables {ẑt (s)}s are defined by Eq. (18) on the wave-number axis s ∈ (0, ∞) (i.e., one-dimensional
field) and obey the first-order Markovian SPDE (23a).
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3. Phase space

Let us introduce the state variables ̂t as points in the phase
space S, such that

̂t := (v̂t , {ẑt (s)}s) ∈ S, S := {(v, {z(s)}s) :v ∈ R, z(s) ∈ F},
(20)

where R is the space of real numbers and F is the function
space. In the following, we simplify the notation of function-
als such as the intensity as a functional in terms of the history
in the following way:

λ[y|̂t ] := λ[y|v̂t ; ẑt ] := λ(y|v̂t , {âτ }τ�t ) := λ(y|{v̂τ }τ�t ).
(21)

In our notation, the functional argument (e.g., ̂t and {ẑt (s)}s)
follows other variables (e.g., y and v̂t ) after the separation by
the semicolon.

Note that the ordinary Markov compound Poisson process
corresponds to the case where the intensity does not depend
on the historical velocities, such that

λ[y|v̂t ; ât ] = λ(y|v̂t ), (22)

with a nonnegative function λ(y|v̂t ).

C. Markovian field dynamics

The history-dependent compound Poisson process (16)
characterizing the original variables {v̂τ }τ�t is equivalent to
the set of the following SDE and SPDEs characterizing the
new variables ̂t := (v̂t , {ẑt (s)}s):

dv̂t

dt
= ξ̂CP

λ[y|̂t ]
,

∂ ẑt (s)

∂t
= −sẑt (s) + ξ̂CP

λ[y|̂t ]
, (23a)

where the jump term ξ̂CP
λ[y|̂t ]

simultaneously acts on both v̂t

and ẑt (s) for all s > 0 (see Fig. 5 for a typical configuration
of the auxiliary field). The initial condition is given by

ẑ0(s) =
∫ ∞

0
e−sτ â−τ dτ, âτ := dv̂τ

dτ
. (23b)

This set of SDEs characterizes the complete dynamics of
the phase point ̂t = (v̂t , {ẑt (s)}s) in a closed form.

This is the first main result of this paper, stating that the
original non-Markovian SDE is converted onto a Markovian
field dynamics for the auxiliary variables. In other words, the
non-Markovian memory effect has been removed in the ex-
tended space by considering all the components in the Laplace
space.

The essence of the trick is to use the Laplace-convolution
transform, which encodes the whole history of v̂t (or, equiv-
alently, its acceleration ât ) into a function of t (now, thus
Markovian) and of an additional variable s. The function
ẑt (s) dependent on s serves as the key device to render the
system Markovian, utilizing an infinite series of equations for

all ẑt (s). It is remarkable that this system is Markovian in
the extended phase space ̂t ∈ S, while the original one-
dimensional process is non-Markovian. This means that we
have successfully transformed the original non-Markovian
dynamics into a Markovian dynamics by adding a sufficient
number of variables. Since the resulting dynamics is Marko-
vian, we can derive the corresponding ME for the PDF for the
phase point ̂t in the extended phase space.

1. Derivation

By directly solving Eq. (23a), we obtain

ẑt (s) = ẑ0(s)e−st +
∫ t

0
e−s(t−t ′ )ξ̂CP

t ′,λ[y|̂t ]
dt ′

=
∫ ∞

0
e−s(τ+t )â−τ dτ +

∫ t

0
e−s(t−t ′ )ât ′ dt ′

=
∫ ∞

t
e−sτ ′

ât−τ ′ dτ ′ +
∫ t

0
e−st ′′

ât−t ′′ dt ′′

=
∫ ∞

0
e−sτ ât−τ dτ, (24)

with the dummy-variable transformation τ ′ := t + τ and
t ′′ := t − t ′ from the second to the third line. Thus, the set of
the SDEs (23a) is consistent with the Markovian-embedding
representation (18).

2. Interpretation of the Laplace embedding

Here, we offer an intuitive interpretation of the Laplace
embedding from multiple perspectives. First, the Laplace em-
bedding bears resemblance to the exponential moving average
(EMA)

â(EMA)
t (T ) := 1

T

∫ ∞

0
e−τ/T ât−τ dτ = sẑt (s) (25)

with the characteristic timescale T := 1/s. In finance, the
EMA finds widespread use in technical analysis, particularly
in detecting financial price trends. The auxiliary variable ẑt (s)
encapsulates the same information as the EMA, with a char-
acteristic timescale of 1/s. In essence, the Laplace embedding
implies that complete memory effects are accounted for by
incorporating the EMA with diverse timescales.

Second, the effectiveness of the Laplace embedding stems
from its ability to transform the original non-Markovian
dynamics into simultaneous first-order SPDEs. There is
thus a perfect equivalence between the first-order ordinary-
differential equation (ODE) and its general integral solution:

dxt

dt
= −sxt + ft ⇐⇒ xt = x0 +

∫ t

0
e−s(t−τ ) fs dτ. (26)

This formula is essentially equivalent to the Laplace-
convolution transformation by assuming consistent initial val-
ues. Inversely, the Laplace-convolution transformation can be
rewritten as an ODE. We have utilized this fact to convert the
original non-Markovian dynamics onto a first-order SPDE.
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D. Field master equation for the history-dependent compound Poisson process

The functional ME of the field corresponding to the SPDEs (23a) is given by

∂Pt []

∂t
= LPt [] :=

∫ ∞

0
ds

δ

δz(s)
(sz(s)Pt []) +

∫ ∞

−∞
dy{λ[y| − �y]Pt [ − �y] − λ[y|]Pt []}, (27)

with jump size vector

�y := (y, {y1(s)}s), (28)

with indicator function 1(s) = 1 for any s.

This is the second main result of this paper. The fME (27) determines the PDF of the auxiliary field dynamics, generally
applicable to non-Markovian jump processes.

1. Derivation

We derive the fME as follows: For any functional f [̂t ] := f [v̂t ; ẑt ] = f (v̂t , {ẑt (s)}s), from Eq. (23a), its path-level differential
d f [̂t ] := f [̂t+dt ] − f [̂t ] is given by

d f [̂t ] =
{

f [̂t + �ŷ] − f [̂t ] + O(dt ) (Prob = dt dyλ[y|̂t ] for any ŷ ∈ [y, y + dy))

− dt
∫ ∞

0 sẑt (s) δ f [̂t ]
δẑt (s) ds + O(dt2)

(
Prob = 1 − dt

∫ ∞
−∞ dyλ[y|̂t ]

) (29)

at leading order.4 By taking the ensemble average of both sides, up to the order of dt , we obtain

〈d f [̂t ]〉 = dt
∫

dPt []

[∫ ∞

−∞
dyλ[y|]( f [ + �y] − f []) −

∫ ∞

0
ds

{
sz(s)

δ

δz(s)
f []

}]
+ O(dt2) (30)

with integral volume element d := dvDz. By applying a variable transformation  + �y = ′, the first term on the right-hand
side is given by∫

dPt []λ[y|] f [ + �y] =
∫

d′Pt [
′ − �y]λ[y|′ − �y] f [′] =

∫
dPt [ − �y]λ[y| − �y] f [], (31)

where the dummy variable ′ is finally replaced with . By applying the functional partial integration (A17), the third term on
the right-hand side of Eq. (30) is given by∫

sz(s)Pt []
δ f []

δz(s)
d = −

∫
f []

δ

δz(s)
{sz(s)Pt []} d. (32)

By considering that the left-hand side of Eq. (30) is given by

〈d f [̂t ]〉 = 〈 f [̂t+dt ]〉 − 〈 f [̂t ]〉 =
∫

d(Pt+dt [] − Pt []) f [] = dt
∫

d f []
∂Pt []

∂t
+ O(dt2), (33)

we finally obtain the following integral identity regarding any functional f []:∫
d f []

∂Pt []

∂t
=

∫
d f []

[∫ ∞

−∞
dy{λ[y| − �y]Pt [ − �y] − λ[y|]Pt []} +

∫ ∞

0
ds

δ

δz(s)
(sz(s)Pt [])

]
(34)

in the limit dt → 0. Since this relation holds for an arbitrary f [], we obtain the fME (27).

E. Functional Kramers-Moyal expansion

By applying the identity [see Eq. (A11) for the functional Taylor expansion],∫ ∞

−∞
dyλ[y| − �y]Pt [ − �y] =

∞∑
n=0

1

n!

∫ ∞

−∞
dyyn

(
− ∂

∂v
−

∫ ∞

0
ds

δ

δz(s)

)n

λ[y|]Pt [], (35)

4Notably, while the jump probability during [t, t + dt ) is of order dt , the leading-order contribution f [̂t + �ŷ] − f [̂t ] is of order 1. In
addition, while the no-jump probability during [t, t + dt ) is of order 1, the leading-order contribution − dt

∫ ∞
0 sẑt (s){δ f [̂t ]/δẑt (s)} ds is of

order dt . Therefore, the contributions of their averages are balanced at the order dt .
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to the fME (27), we obtain the functional Kramers-Moyal (KM) expansion:

∂Pt []

∂t
=

∫ ∞

0
ds

δ

δz(s)
(sz(s)Pt []) +

∞∑
n=1

(−1)n

n!

(
∂

∂v
+

∫ ∞

0
ds

δ

δz(s)

)n

αn[]Pt [] (36a)

with the KM coefficient

αn[] :=
∫ ∞

−∞
ynλ[y|] dy. (36b)

F. Remark: Systematic calculations based on linear algebra

Since the fME (27) is linear, it can be analyzed with the
tools of linear algebra. Starting from the standard form (7)
∂Pt []

∂t = LPt [], let us consider the eigenvalue problem

Lφi[] = −μiφi[], (37)

where μi is the ith eigenvalue and φi[] is the corresponding
eigenfunction.5 The time-dependent solution is then given by
superposition of the eigenfunctions

Pt [] =
∑

i

cie
−μitφi[], (38)

where the coefficients {ci}i are determined by the initial
condition. The steady-state PDF corresponds to the zeroth
eigenfunction φi[] with μ0 = 0:

Pss[] ∝ φ0[]. (39)

Various physical quantities can be systematically calculated
by the time-dependent (38) or steady-state solutions (39). For
example, the correlation function is formally given by the path
integral

〈Ât B̂t ′ 〉 =
∫

At []Bt ′[]Pss[] d, (40)

where At and Bt ′ are expressed as functionals of .

V. APPLICATION 1: SYSTEM-SIZE EXPANSION AND
GENERALIZED LANGEVIN EQUATION

In this section, we illustrate the utilization of our fME
framework in relation to an asymptotic theory, drawing upon
the system-size expansion. By enforcing a stability condition
upon the system-size expansion, we ultimately infer the GLE
as a plausible coarse-graining process rooted in physical rea-
soning.

5While the eigenvalue spectral may be continuous technically, we
formally write the eigenvalues with discrete notation.

A. Assumptions

(1) Small noise assumption: Let us consider the non-
Markovian process with small jumps,

dv̂t

dt
= εξ̂P

W [Y |{v̂τ }τ�t ], (41)

where W is the ε-independent conditional intensity of the
jump size Y (see Fig. 2 for the schematic of the small-jump
assumption). This assumption is equivalent to the follow-
ing scaling relation of the conditional intensity density:

λ[y|] = 1

ε
W

[
y

ε

∣∣∣∣
]
. (42)

This assumption leads to the scaling relation for the KM
coefficients

αn[] = εnAn[], An[] :=
∫ ∞

−∞
Y nW [Y |] dY, (43)

with the ε-independent KM coefficient An[].
(2) Linear stability: Let us additionally assume that the

first-order KM coefficient A1[] has a single stable point:

A1[ = 0] = 0, 0 := (0, {0}s) (44)

We also assume that A1[] is linearly stable around  = 0,
such that

γ = − ∂

∂v
A1[]

∣∣∣∣
=0

> 0, ϒ(u) = − δ

δz(s)
A1[]

∣∣∣∣
=0

> 0 for any u,

(45)

where the rescaled wave number u is defined by u := s
ε
.

(3) Existence of the noise term: The noise term is as-
sumed to be present even for ε → 0 and thus the variance
term is nonzero:

σ 2 = A2[ = 0] > 0. (46)

The assumption of linear stability around � = 0 implies
that the velocity v̂t typically relaxes to zero. In other words,
we are focusing on stationary processes; nonstationary pro-
cesses, where the state variable can go to infinity (such as for
the Brownian motion), are not considered in Sec. V.

In addition, as a technical assumption, we assume that all
the considered integrals converge. This assumption implies
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that physically singular processes, such as with long time tail
with decaying speed slower than t−1, are out of the scope of
this paper. Note that the above stability assumptions parallel
the conventional stability assumption for the Markovian jump

process (see Appendix C for their comparison). Also, we
note that all even-order KM coefficients are positive under
assumption 3, such that Ak[0] > 0 for all even k due to
Pawula’s theorem [23].

B. Asymptotic derivation of the functional Fokker-Planck equation

Given the following rescaled variables:

t := εt, u := s

ε
, V := v√

ε
, Z (u) := z(s)√

ε
, G := (V, {Z (u)}u), (47)

we obtain the following functional Fokker-Planck equation for ε → 0:

∂Pt[G]

∂t
=
[

∂

∂V

{
γV +

∫ ∞

0
du2ϒ(u2)Z (u2)

}
+

∫ ∞

0
du1

δ

δZ (u1)

{
uZ (u1) + γV +

∫ ∞

0
du2ϒ(u2)Z (u2)

}

+ σ 2

2

{
∂

∂V
+

∫ ∞

0
du

δ

δZ (u)

}2]
Pt[G]. (48)

See Appendix D 1 for the detailed derivation. This result is
an analog to the system-size expansion for Markovian jump
processes (see Appendix C for comparison).

The functional Fokker-Planck (48) is equivalent to the
stochastic dynamics described by

dV̂t

dt
= −γ V̂t −

∫ ∞

0
duϒ(u)Ẑt(u) + σ ξ̂G

t , (49a)

∂Ẑt(u)

∂t
= −uẐt(u) − γ V̂t −

∫ ∞

0
duϒ(u)Ẑt(u)

+ σ ξ̂G
t , (49b)

with standard white Gaussian noise ξ̂G
t that is common to the

stochastic dynamics of V̂t and Ẑt(u).

C. Asymptotic derivation of the generalized Langevin equation

The stochastic dynamics (49) is equivalent to the GLE,

dV̂t

dt
= −γ V̂t −

∫ t

−∞
dt′M(t − t′)V̂t′ + η̂t, (50a)

with memory kernel M(t) given by expression (54) and
colored Gaussian noise:

η̂t := σ ξ̂G
t + σ

∫ t

−∞
dt′M(t − t′)ξ̂G

t′ . (50b)

This is the third main result, implying that the GLE is a
minimal model for the coarse-grained description of general
non-Markovian jump processes in the weak coupling limit
ε → 0 under the stability condition (Sec. V A). The memory
effect naturally manifests itself in both the friction and noise

terms, stemming from the historical dependence inherent in
the original non-Markovian jump process. See Appendix D 2
for the detailed derivation.

The memory kernel M(t) and the noise statistics can be
explicitly derived as follows. Let us define the matrix K (u, u′),

K (u, u′) := uδ(u − u′) + ϒ(u′), (51)

and the corresponding eigenvalue μ and eigenfunctions
{e(μ; u)}μ, satisfying∫ ∞

0
du′K (u, u′)e(μ; u′) = μe(μ; u). (52)

The matrix K (u, u′) has the following properties (see Ap-
pendix F): (i) All of its eigenvalues are real and positive μ >

0. (ii) K (u, u′) is a positive symmetric matrix and thus has an
inverse matrix K−1(u, u′). We assume that the eigenfunctions
{e(μ; u)}μ constitute a complete set, and have inverse matrices
e−1(u; μ′) such that6∫ ∞

0
due(μ; u)e−1(u; μ′) = δ(μ − μ′),

∫ ∞

0
dμe−1(u; μ)e(μ; u′) = δ(u − u′). (53)

6In N-dimensional linear algebra, the set of all eigenvectors {ei}i

with ei = (ei1, . . . , eiN ) of a symmetric matrix constitute a com-
plete set. In addition, the matrix A := (ei j ) has the inverse matrix
A−1 = (e−1

i j ), such that
∑

j ei je
−1
jk = δik and

∑
j e−1

i j e jk = δik . This
property is a straightforward generalization from finite-dimensional
to infinite-dimensional linear algebra.
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With these notations, the memory kernel and the noise statistical properties are, respectively, given by

M(t) :=
∫ ∞

0
ν(μ)e−μt dμ, ν(μ) :=

∫ ∞

0
κ (μ)ϒ(u)e(μ; u) du, κ (μ) :=

∫ ∞

0
e−1(u; μ) du, (54)

〈η̂t〉 = 0,
〈
η̂t1 η̂t2

〉 = σ 2

[
δ(t1 − t2) + M(|t1 − t2|) +

∫ ∞

0
dt′M(t′)M(t′ + |t1 − t2|)

]
. (55)

D. Physical interpretation

It is interesting that the colored Gaussian noise emerges
from the system-size expansion, while our starting point is the
non-Markovian jump process. This approximate result can be
interpreted within the law of large numbers and the central
limit theorem. In formulating the system-size expansion, the
rescaled time t := εt is assumed to be order 1. This assump-
tion implies that the original time t = t/ε is very large; the
typical number of collisions during [0, t ) is very large like-
wise. Therefore, both the law of large numbers and the central
limit apply. The time-delayed friction term results from the
law of large numbers, while the colored Gaussian noise term
results from the central limit theorem. In other words, we have
developed a formal application of the law of large numbers
and of the central limit theorem for general non-Markovian
jump processes.

VI. APPLICATION 2: PRICE DYNAMICS BASED ON
NONLINEAR HAWKES PROCESSES

In this section, we illustrate another application of our
formalism. We focus on modeling financial price dynamics
based on a nonlinear Hawkes process. Linear Hawkes pro-
cesses have become popular in econophysics as well as in
econometrics of market microstructure.

A. Model

Let us consider a stochastic financial model based on the
nonlinear Hawkes processes, which has recently become pop-
ular to describe the price dynamics of financial assets [49,50].
Let us denote v̂t the logarithm of the price of some stock at
time t . The log-price dynamics is given by

dv̂t

dt
=

N̂t∑
k=1

ŷkδ(t − t̂k ), (56a)

where ŷk is kth jump size of the log price occurring at time
t̂k . The amplitude of the jumps are independently and iden-
tically distributed with mark distribution ρ(y). The sequence
of jumps defines the jump size series {ŷk}k and the jump time

series {t̂k}. We denote by N̂t the total number of jumps during
[0, t ). We assume that both excitatory and inhibitory effects
are balanced, which is realized when the mark distribution is
symmetric:

ρ(y) = ρ(−y). (56b)

The intensity λ̂t of the jumps is assumed to obey the nonlinear
Hawkes process

λ̂t = g

⎛
⎝ N̂t∑

k=1

ŷkh(t − t̂k )

⎞
⎠, (56c)

with non-negative intensity function g > 0 and memory ker-
nel h(t ). Recall that the intensity λ̂t gives the probability per
unit time for the next jump to occur: λ̂t dt is the probability
for the next jump to occur during [t, t + dt ). See Fig. 6 for the
schematic paths of this model regarding the intensity λ̂t and
the log-price v̂t .

This model is an example of a history-dependent Poisson
processes. Indeed, the following specific history-dependent
Poisson process:

dv̂t

dt
= ξ̂CP

λ(y|{v̂τ }τ�t ),

λ(y|{v̂τ }τ�t ) := ρ(y)g

(∫ ∞

0
h(τ )ât−τ dτ

)
, (57)

ât := dv̂t

dt

is equivalent to the nonlinear Hawkes price model (56)
[34,35].

B. Markovian embedding

Our Laplace-convolution Markovian-embedding scheme
(23) fully converts the nonlinear non-Markovian Hawkes
process (56) into a Markovian field process. Indeed, by de-
composing the memory kernel as the sum of exponentials

h(t ) :=
∫ ∞

0
e−st h̃(s) ds, (58)

FIG. 6. Schematic paths of the intensity λ̂t and the price v̂t described by the nonlinear Hawkes model (56) for the financial price dynamics.
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the conditional intensity can be rewritten as

λ[y|] = ρ(y)g

(∫ ∞

0
h̃(s)ẑt (s) ds

)
. (59)

This is equivalent to the Markov-embedding representation
introduced in our previous works [32–35].

C. Field master equation

The fME for the nonlinear Hawkes price model (56) is

∂Pt []

∂t
=

∫ ∞

0
ds

δ

δz(s)
(sz(s)Pt [])

+
∫ ∞

−∞
dyρ(y)[G[z − y1]Pt [ − �y]

− G[z]Pt []], (60a)

with

G[z] := g

(∫ ∞

0
h̃(s)ẑt (s) ds

)
and ̂t = (v̂t , {ẑt (s)}s).

(60b)

By integrating out both sides over v̂t , this fME reduces
to the fME for a marginal PDF Pt [z] := ∫

Pt [] dx that was
introduced in our previous works [32–35] (see Appendix G
for the explicit derivation). In addition, the reduced fME has
been analytically solved in Refs. [32–35] for the asymptotic
intensity PDF in the steady state.

D. Diffusive approximation

Let us apply the diffusive approximation by using the KM
series (36a) for the fME (60) and truncating it at second
order. This leads to the following approximate Fokker-Planck
equation:

∂Pt []

∂t
�

∫ ∞

0
ds

δ

δz(s)
(sz(s)Pt [])

+ 1

2

(
∂

∂v
+

∫ ∞

0
ds

δ

δz(s)

)2

α2[]Pt [] (61)

with

α2[] := σ 2g

(∫ ∞

0
h̃(s)z(s) ds

)
, σ 2 :=

∫ ∞

−∞
y2ρ(y) dy.

(62)
This field Fokker-Planck equation is equivalent to

dv̂t

dt
= Dt ξ̂

G
t , Dt := σ 2λ̂t . (63)

This recovers the standard Geometric Brownian Motion
model of price dynamics for constant λ̂t . For nonconstant
λ̂t , Eq. (63) recovers the general class of stochastic volatility
models [51]. Here, we derived that the volatility is propor-
tional to the intensity λ̂t of the underlying point process.
In other words, our nonlinear Hawkes (56) combined with
our Markovian embedding and the diffusive approximation
provide an interpretation of the source of stochastic volatility,
which is here interpreted as resulting from the underlying
jump intensity and its nonlinear memory structure.

VII. DISCUSSION AND CONCLUSION

This section delves into the ramifications of our research
and outlines our perspective on several outstanding technical
challenges yet to be addressed. We finally conclude this paper
with some remarks.

A. Comparison with the projection-operator formalism

Our formulation bears similarities to the projection-
operator formalism, as both theories pertain to the derivations
of the GLEs. In this subsection, we juxtapose the two
approaches, evaluating their respective advantages and disad-
vantages.

The projection-operator formalism originated in the 1950s
and 1960s, crafted by pioneers like Nakajima, Mori, Zwanzig,
and Kawasaki [28,52–56]. Particularly, Mori’s approach fo-
cuses on establishing a microscopic foundation for the GLEs.
In the projection-operator formalism, the selection of several
slow variables is necessitated, guided by physical intuitions
or empirical findings, as these variables cannot be determined
theoretically. Subsequently, a projection operator is defined to
dissect the phase-space dynamics between the function space,
exclusive to slow variables, and the remainder.

Through the application of integral identities associated
with projection operators, GLEs are derived. A notable merit
of this approach is the formal derivation of GLEs from
microscopic dynamics, providing a rigorous connection to un-
derlying physical processes. However, a significant drawback
lies in the inherent ambiguity of the approximation involved.
While all calculations are theoretically exact, eliciting non-
trivial predictions mandates the approximate computation
of noise statistics and friction coefficients. This level of
approximation is notably more intricate compared to conven-
tional statistical-physics theories. In fact, the determination
of theoretical key perturbation and control parameters for the
conclusive deduction of the GLEs from microscopic dynamics
remains unambiguous, making this process elusive.

Within the foundational framework of statistical physics
pertaining to the GLEs, a drawback of our theory is the
requisite assumption of the one-dimensional non-Markovian
jump process (16) as an initial standpoint. This assumption
is fundamentally heuristic, primarily rooted in phenomeno-
logical considerations. Conversely, a significant advantage of
our approach is the explicit definition of the key perturbation
parameter. Specifically, the small-jump scaling parameter,
ε—generally anticipated to represent the mass ratio between
the Brownian particle and surrounding entities—serves a
crucial and explicit role in our asymptotic computations.
This is particularly coherent for modeling dynamics of mas-
sive Brownian particles. In this sense, we have successfully
established the GLEs through a physically plausible coarse-
graining process, pinpointing the essential control parameter
for mathematical derivation, a contrast to the methodologies
embedded in the projection-operator formalism.

B. Future issue 1: Physical validation
of the non-Markovian jump model

Our theory is premised on the non-Markovian jump model
(16). While intrinsic to models in seismic activity, finance, and

023270-12



STANDARD FORM OF MASTER EQUATIONS FOR GENERAL … PHYSICAL REVIEW RESEARCH 6, 023270 (2024)

Excitation Relaxation

Relaxation time

FIG. 7. Absence of time-reversal symmetry for the auxiliary field
variables {ẑt (s)}. According to the SPDE (23a), the path of ẑt (s)
responds to the excitations due to jumps and then relaxes toward zero.
The relaxation is time-irreversible, and the auxiliary field variables
have thus no time-reversal symmetry.

social science—for instance, the Hawkes process is a subset
of this model—its applicability in physics remains indeter-
minate. Addressing this uncertainty will necessitate further
theoretical or data-driven analysis in the future.

From a theoretical standpoint, the Markovian ME formal-
ism (8) has been substantiated in the dynamics of Brownian
particles amid dilute gases [57–59]. Indeed, the linearized
Boltzmann equation, derivable from Newtonian microscopic
dynamics through the Bogoliubov-Born-Green-Kirkwood-
Yvon hierarchy [57,58] in the low-density limit, is an instance
of a Markovian jump process, thus allowing systematic the-
oretical validation of the Markovian ME formalism (8) via
kinetic theory.

Conversely, theoretical validation for the non-Markovian
jump model (16) is yet to be achieved. Formulating a sta-
tistical physics theory analogous to the Markovian kinetic
theory to derive the non-Markovian jump process (16) from
microscopic Hamiltonian dynamics is imperative.

C. Future issue 2: Time-reversal symmetry
of our field master equation

Exploring time-reversal symmetry is crucial when exam-
ining stochastic dynamics influenced by equilibrium fluc-
tuations. Regrettably, this symmetry is not upheld for the
fME (27). The indispensable condition for general master
equations, fully detailed in Gardiner’s textbook [22] and Ap-
pendix H, is invariably breached in our fME (27).

The absence of time-reversal symmetry in our Laplace-
type embedding representation can be intuitively understood
by considering a typical path of {ẑt (s)}s. Indeed, the SPDE
(23a) states that the dynamics of ẑt (s) is composed of the exci-
tation due to the Poisson jump ξ̂CP

λ[y|̂t ]
and the relaxation due to

the term −sẑt (s) with the characteristic timescale � 1/s. Since
the relaxation dynamics is time irreversible, the dynamics of
{ẑt (s)}s has no time-reversal symmetry by construction (see
Fig. 7). Also, the Laplace-embedding can be interpreted as
an exponential-moving average of the history, which is time-
irreversible, intuitively.

The maintenance of time-reversal symmetry in a ME
largely depends on the selected state variables [60]. To high-
light this mathematical fact, let us consider a trivial example
based on Hamiltonian dynamics. The canonical equation for a

harmonic oscillator is given by

x := (p, q),
dp

dt
= −q,

dq

dt
= p. (64)

The corresponding master equation is called the Liouville
equation,

∂Pt (x)

∂t
=

[
− ∂

∂ p
A1(x) − ∂

∂q
A2(x)

]
Pt (x), (65)

with A1(x) := −q and A2(x) := p. This Liouville equa-
tion satisfies the detailed-balance condition (H2) by defining
the time-reversal operators (ε1, ε2) = (−1, 1) and Bkl (x) = 0
for any k and l . Thus, this process represented by x := (p, q)
has the time-reversal symmetry.

As another mathematically equivalent representation, let us
consider the following state variables:

y := (r, q) := (p + q, q),
dr

dt
= r − 2q,

dq

dt
= r − q.

(66)
The corresponding Liouville equation is given by

∂Pt (y)

∂t
=

[
− ∂

∂r
A′

1(y) − ∂

∂q
A′

2(y)

]
Pt (y) (67)

with A′
1(x) := r − 2q and A′

2(x) := r − q. For any definition
(ε′

1, ε
′
2), the detailed-balance condition (H2a) is always vio-

lated in the representation y. Indeed, we obtain

ε′
1A′

1(ε′y)Pss(y) + A′
1(y)Pss(y)

= 2[r − (1 + ε′
1ε

′
2)q]Pss(y) �= 0 (68)

for the steady-state PDF Pss(y), by assuming (ε′
1)2 = 1 and

B′
kl (y) = 0 for any k and l . Thus, the detailed-balance con-

dition (H2) does not hold for the new representation y, even
though it holds for the original representation x. This example
clearly shows that the time-reversal symmetry of the obtained
ME depends on the selection of the state variables.

This key mathematical insight reveals that multiple
Markovian-embedding approaches can be applied to the same
ME, even when the stochastic dynamics are uniquely defined.
Consequently, time-reversal symmetry may be effectively
captured in certain Markovian-embedding models. As such,
an alternative Markovian-embedding approach might be more
appropriate for expressing time-reversal symmetry when it
holds true at the microscopic level. Addressing this aspect is
crucial for advancing the development of stochastic thermo-
dynamics and energetics [61,62], particularly in the context of
non-Markovian jump processes. Further exploration and reso-
lution of this matter are planned for future research endeavors.

D. Future issue 3: The fluctuation-dissipation
relation of the second kind

When the environment is in thermal equilibrium, the
thermal fluctuation of the GLE must satisfies the fluctuation-
dissipation relation of the second kind:〈

η̂t1 η̂t2

〉 = 2T {γ δ(t1 − t2) + M(|t1 − t2|)}, (69)

where the left-hand side is the cross-correlation between η̂t1

and η̂t2 , T is the temperature and we have taken units where
the Boltzmann constant is unity. This fluctuation-dissipation
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relation of the second kind is equivalent to the time-reversal
symmetry of the GLE. This was one of the most important
issues for the statistical-physics foundation of the GLE partic-
ularly within the context of linear response theory [1] and the
projection-operator formalism [28].

Since our Markovian-embedding formulation does not yet
convert the time-reversal symmetry of the fME, the necessary
and sufficient condition for this fluctuation-dissipation rela-
tion of the second kind is not yet identified. The identification
of these conditions is also an important future challenge.

E. Future issue 4: Formal relations to quantum field theory

Our fME is formally related to quantum field theory. In-
deed, the field Fokker-Planck equation for the GLE with
time-reversal symmetry is equivalent to a non-Hermitian
quantum field theory with the Hermitian part of its Hamil-
tonian describing a field of harmonic oscillators [33]. Also,
a similar renormalisation issue appears regarding the infinite
zero-point energy of the field harmonic oscillators. Since the
first-order contribution of the system-size expansion for the
non-Markovian jump process leads to the GLE, its next-order
perturbation theory might require the use of methods devel-
oped in quantum field theory, such as the Feynman-diagram
expansion. Establishing such field-theoretical techniques will
be an interesting future topic.

F. Future issue 5: The backward field master equation

Technically, the fME (27) is a forward master equation,
for which the time-evolution goes from the past to the future
with imposed initial conditions. On the other hand, there is
another ME called the backward master equation, for which
the time evolution goes from the future to the past with im-
posed final conditions. Generally, the backward MEs can be
essentially derived as the self-adjoint equation of the forward
MEs. Therefore, it is straightforward to derive the backward
fME corresponding to the forward fME (27). Studying the
properties of the backward fME will be an interesting avenue
for future research.

G. Conclusion

In conclusion, we have introduced a comprehensive
stochastic framework through a field master equation, encom-
passing all one-dimensional non-Markovian jump processes.
Utilizing the Laplace-convolution embedding representation,
we have demonstrated the transformation of any non-
Markovian jump process into Markovian-field dynamics. We
subsequently derived the corresponding field master equa-
tion and procured an asymptotic solution using a generalized
system-size expansion. In essence, this framework can be
applied to any jump processes, assuming one-dimensional
dynamics are driven by collisions. We posit that this model’s
flexibility makes it adept at accommodating a wide array of
point-process data, proving invaluable for data analyzation.
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APPENDIX A: DIRAC’S δ FUNCTION
AND FUNCTIONAL DERIVATIVE

In this Appendix, we formally define the Dirac δ func-
tion and the functional derivatives. While our formulation is
systematic enough at the theoretical-physics level, presenting
mathematically rigorous formulations is out of scope in this
paper.

1. Formal definition

a. Dirac’s δ function

Dirac’s δ function is formally defined by

δ(s − s′) =
{

0 (s �= s′)
∞ (s = s′)

,

∫ ∞

−∞
ds f (s)δ(s − s′) = f (s′),

(A1)
with any real numbers s and s′. The δ function is the continu-
ous analog of the Kronecker δ for discrete variables, which is
defined by

δi j =
{

0 (i �= j)

1 (i = j)
,

∑
k

δik fk = fi (A2)

for any integers i and j.
Dirac’s δ function can be formally constructed via a lattice

model. Let us discretize the real number line (0,∞), such that
sk = k ds with the lattice constant ds > 0 and any integer k >

0. The Dirac δ function is formally defined by

δ(s − s′) := lim
ds↘0

1

ds
δi j, (A3)

where s ∈ [si, si+1) and s′ ∈ [s j, s j+1). Indeed, with this defi-
nition, we obtain the consistent relationship∫ ∞

−∞
ds f (s)δ(s − s′) = lim

ds↘0

∑
i

dsi f (si )
1

ds
δi j = f (s′).

(A4)

b. Functional derivative

Let us define the functional derivatives as a formal limit
from the finite-dimensional vector function (i.e., a lattice
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model). Let us consider the K-dimensional vector z :=
(z1, . . . , zK ) and an arbitrary function f (z). The partial deriva-
tive of f (z) is written as (∂ f (z))/(∂zk ) for an integer k.

We then consider a formal continuous limit from such a
finite-dimensional models. Let us introduce sk := k(ds) with
the lattice constant ds > 0 for integer k > 0, and take the con-
tinuous limit ds ↘ 0 and K → ∞. The functional derivative
is defined by

δ f [z]

δz(s)
:= lim

ds↘0
K→∞

1

ds

∂ f (z)

∂z(sk )
, (A5)

where sk = k ds and s ∈ [sk, sk+1) with an integer k.

2. Useful identities

a. First-order functional Taylor expansion

For a finite-dimensional vector function f (z), the first-
order Taylor expansion is given by

d f (z) =
K∑

k=1

∂ f (z)

∂zk
dzk, (A6)

with d f (z) := f (z + dz) − f (z) for infinitesimal dz :=
(dz1, . . . , dzK ). In the continuous limit, we apply the
replacement

K∑
k=1

ds[. . . ] →
∫ ∞

0
ds[. . . ],

∂ f (z)

∂z(sk )
→ ds

δ f [z]

δz(s)
,

dzk → δz(s) (A7)

to obtain the first-order functional Taylor expansion

δ f [z] =
∫

ds
δ f [z]

δz(s)
δz(s) + O(δz2), (A8)

with δ f [z] := f [z + δz] − f [z] with infinitesimal δz.

b. Full-order functional Taylor expansion

For a finite-dimensional vector function f (z), the full-order
Taylor expansion is given by

f (z + �z) − f (z) =
∞∑

n=1

1

n!

(
K∑

k=1

�zk
∂

∂zk

)n

f (z), (A9)

with �z := (�z1, . . . ,�zK ). In the continuous limit based on
the formal replacement (A7), we obtain the full-order func-
tional Taylor expansion:

f [z + �z] − f [z] =
∞∑

n=1

1

n!

(∫
ds�z(s)

δ

δz(s)

)n

f [z].

(A10)
We note that this calculation can be readily generalized for
a two-argument functional f [v; z] with a real value v and a
function {z(s)}s, such that

f [v + �v; z + �z] − f [v; z]

=
∞∑

n=1

1

n!

(
�v

∂

∂v
+

∫
ds�z(s)

δ

δz(s)

)n

f [v; z], (A11)

with small �v and {�z(s)}s. Particularly, the Maclaurin series
is given by

f [v; z]=
∞∑

n=0

1

n!

(
v

∂

∂χ
+
∫

dsz(s)
δ

δζ (s)

)n

f [χ ; ζ ]

∣∣∣∣
(χ,{ζ (s)}s )=0

,

(A12)

where the dummy argument variables χ and ζ are introduced
to distinguish the arguments involved in the derivatives from
the arguments v and z of the function f [v; z].

c. Variable transformation formula

Let us consider a simple variable transformation

s̃ = as, (A13)

with a positive constant a. Considering the definition (A5), we
obtain

δ

δz(s)
:= lim

ds↘0
K→∞

a

(a ds)

∂

∂z(sk )
= a lim

ds̃↘0
K→∞

1

ds̃

∂

∂z(s̃k )
= a

δ

δz(s̃)
,

(A14)
which leads to the invariant integral relationship:∫

ds
δ

δz(s)
=

∫
ds̃

δ

δz(s̃)
. (A15)

d. Partial integration

For a finite-dimensional vector z, the partial integration is
given by∫ ∞

−∞
P(z)

∂ f (z)

∂zk
dz = −

∫ ∞

−∞
f (z)

∂P(z)

∂zk
dz (A16)

by assuming vanishing boundary conditions lim|z|→∞ P(z) =
0. As a straightforward generalization, by considering the
formal definition (A5), the partial integration of a functional
f [z] is given by∫

P[z]
∂ f [z]

∂z(s)
Dz = −

∫
f [z]

δP[z]

δz(s)
Dz (A17)

by also assuming vanishing boundary conditions.

APPENDIX B: BRIEF REVIEW OF THE WHITE GAUSSIAN
AND POISSON NOISES

1. White Gaussian noise

Let us consider the following SDE with finite time step dt :

Ŵt+dt = Ŵt +
√

dt η̂G
t , (B1)

with the standard normal random variable η̂G
t that is inde-

pendent and identically distributed: 〈η̂G
t η̂G

t ′ 〉 = 1 for t = t ′ and
〈η̂G

t η̂G
t ′ 〉 = 0 for t �= t ′.

We then consider the stochastic dynamics for the infinites-
imal time step limit dt → 0 to define the Wiener process Ŵt .
The formal derivative of the Wiener process is called the white
Gaussian noise,

ξ̂G
t := dŴt

dt
, (B2)

which satisfies the relationship of the white noise:〈
ξ̂G

t ξ̂G
t ′
〉 = δ(t − t ′). (B3)
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2. White Poisson noise

The white Poisson noise is composed of the sum of δ

functions, such that

ξ̂P
t,λ(y) :=

N̂ (t )∑
i=1

ŷiδ(t − t̂i ), (B4)

which is characterized by the intensity density function λ(y).
{t̂i}i is the time sequence of jump events, {ŷi}i is the sequence
of jump sizes (called mark in the context of point processes),
and N̂ (t ) is the total number of jump events during the interval
[0, t ). The probability that an event with jump size ŷi ∈ [y, y +
dy) occurs during [t, t + dt ) is given by

λ(y) dy dt . (B5)

When the total intensity λtot := ∫ ∞
−∞ λ(y) dy is finite (λtot <

∞), an event occurs during [t, t + dt ) with the probability

λtot dt (B6)

and the jump size distribution is given by

ρ(y) = λ(y)∫ ∞
−∞ λ(y) dy

. (B7)

3. White noise

The white noise ξ̂W(t ) is the time-homogeneous noise
without time correlation and is defined as the formal time-
derivative of the Lévy process. The Lévy process L̂t is defined
as the stochastic process satisfying the following properties:
(i) L0 = 0. (ii) For any 0 � t1 < t2 < · · · < tn, Lt2 − Lt1 , Lt3 −
Lt2 , . . ., Ltn − Ltn−1 are independent of each other. (iii) For any
s < t , the PDF of Lt − Ls is equal to that of Lt−s. With mean
m′ := 〈ξ̂W〉, the white noise has no correlation, such that〈(

ξ̂W
t − m′)(ξ̂W

t ′ − m′)〉 = δ(t − t ′). (B8)

According to the Lévy-Itô decomposition, any white noise
is decomposed of the sum of a constant drift, the white Gaus-
sian noise, and the white Poisson noise as given by Eq. (4).
Thus, the white Gaussian and Poisson noises are the funda-
mental components of the Markovian noise sources.

APPENDIX C: REVIEW OF THE SYSTEM-SIZE
EXPANSION FOR THE MARKOVIAN JUMP PROCESS

Let us briefly explain the system-size expansion for the
Markovian jump process (9). With the scaling assumption
(11), the master equation (8) can be rewritten as

∂Pt (v)

∂t
= 1

ε

∫ ∞

−∞
dy

[
W

(y

ε

∣∣∣v − y
)

Pt (v − y) − W
( y

ε

∣∣∣v)Pt (v)
]

=
∞∑

n=1

(−ε)n

n!

∂n

∂vn
[An(v)Pt (v)], (C1)

with the transformation y = εY and the ε-independent KM
coefficient defined by

An(v) :=
∫ ∞

−∞
Y nW (Y |v) dY. (C2)

We assume the following stability conditions around v = 0:
(1) Linear stability: The first-order KM coefficient has a

single stable point, such that

A1(0) = 0, γ := − ∂

∂v
A1(v)

∣∣∣∣
v=0

= −A(1)
1 (0) > 0, (C3)

with A(k)
n (v) := ∂kAn(v)/∂vk .

(2) Existence of the noise term: The Gaussian noise term
is assumed to be present even for ε → 0, such that

σ 2 := A2(0) > 0. (C4)

(3) Scaled variables: Furthermore, we apply the transfor-
mation of variables:

t := εt, V := v√
ε
. (C5)

These scaled variables are introduced to focus on the
long-time limit [i.e., t = O(1) ⇐⇒ t = O(ε−1) � 1] and to
enlarge the peak of the velocity PDF (i.e., V = O(1) ⇐⇒ v =
O(ε1/2) � 1) in the small-noise limit.

With these assumptions, the KM series (C1) can be rewrit-
ten as

∂Pt (V )

∂t
=

∞∑
n=1

∞∑
k=0

∂n

∂V n

[ ∞∑
k=1

V k (−1)nε
k+n

2 −1

n!

A(k)
n (0)

k!
Pt (V )

]

= γ
∂

∂V
[V Pt (V )] + σ 2

2

∂2

∂V 2
Pt (V ) + o(ε1/2), (C6)

where we applied the Taylor expansion of the nth-order KM
coefficient:

An(v) =
∞∑

k=0

εk/2V k

k!
A(k)

n (0). (C7)

In the small-noise limit ε → 0, we obtain the Fokker-Planck
(FP) equation,

∂Pt (V )

∂t
= γ

∂

∂V
[V Pt (V )] + σ 2

2

∂2

∂V 2
Pt (V ), (C8)

which is equivalent to the Langevin equation

dV̂

dt
= −γ V̂ + σ ξ̂G. (C9)
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APPENDIX D: DETAILED CALCULATIONS FOR THE SYSTEM-SIZE EXPANSION APPLIED
TO THE NON-MARKOVIAN JUMP PROCESSES

This Appendix offers the detailed calculations for the system-size expansion applied to the non-Markovian jump processes.
In particular, we derive Eqs. (48) and (50).

1. Derivation of Eq. (48)

With the assumptions in Sec. V A, let us formulate the system-size expansion for this model and derive the result (48). We
have ∫ ∞

0
ds

δ

δz(s)
(sz(s)Pt []) = ε

∫ ∞

0
du

δ

δZ (u)
(uZ (u)Pt []) (D1)

and (
∂

∂v
+

∫ ∞

0
ds

δ

δz(s)

)n

αn[]Pt [] =
(

ε−1/2 ∂

∂V
+ ε−1/2

∫ ∞

0
du

δ

δZ (u)

)n

εnAn[]Pt []

= εn/2

(
∂

∂V
+

∫ ∞

0
du

δ

δZ (u)

)n

An[]Pt []. (D2)

We also consider the functional Maclaurin series (A12) for the KM coefficient around  = 0,

An[] = An[0] +
∞∑

k=1

1

k!

(
v

∂

∂χ
+

∫ ∞

0
dsz(s)

δ

δζ (s)

)k

An(χ ; {ζ (s)}s)

∣∣∣∣
(χ,{ζ (s)}s )=0

= An[0] +
∞∑

k=1

εk/2

k!

(
V

∂

∂χ
+

∫ ∞

0
duZ (u)

δ

δζ (u)

)k

An(χ ; {ζ (u)}u)

∣∣∣∣
(χ,{ζ (u)}u )=0

, (D3)

with the dummy-variable arguments χ and ζ . This relation implies that

A1[] = A1[0] +
∞∑

k=1

εk/2

k!

(
V

∂

∂χ
+

∫ ∞

0
duZ (u)

δ

δζ (u)

)k

A1(χ ; {ζ (u)}u)

∣∣∣∣
(χ,{ζ (u)}u )=0

= 0 − ε1/2

(
γV +

∫ ∞

0
duϒ(u)Z (u)

)
+ O(ε) (D4)

and

An[] = An[0] +
∞∑

k=1

εk/2

k!

(
V

∂

∂χ
+

∫ ∞

0
duZ (u)

δ

δζ (u)

)k

An(χ ; {ζ (u)}u)

∣∣∣∣
(χ,{ζ (u)}u )=0

= An[0] + O(ε1/2) for n � 2. (D5)

From the KM expansion (36a), by introducing t := εt , we obtain

∂Pt[G]

∂t
=

∫ ∞

0
du

δ

δZ (u)
(uZ (u)Pt[G]) +

∞∑
n=1

(−1)nεn/2−1

n!

(
∂

∂V
+

∫ ∞

0
du

δ

δZ (u)

)n

An[G]Pt[G]

=
∫ ∞

0
du

δ

δZ (u)
(uZ (u)Pt[G]) +

(
∂

∂V
+

∫ ∞

0
du1

δ

δZ (u1)

)(
γV +

∫ ∞

0
du2ϒ(u2)Z (u2)

)
Pt[G]

+ σ 2

2

(
∂

∂V
+

∫ ∞

0
du

δ

δZ (u)

)2

Pt[G] + O(ε1/2). (D6)

We thus obtain the functional Fokker-Planck equation (48) in the weak coupling limit ε → 0.

2. Derivation of Eq. (50)

Let us derive the GLE (50) as the leading-order approximation of the system-size expansion. We rewrite expression (49b) as

∂Ẑt(u)

∂t
= −

∫ ∞

0
K (u, u′)Ẑt(u

′) du′ − γ V̂t + σ ξ̂G
t , K (u, u′) = uδ(u − u′) + ϒ(u′). (D7)
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By introducing the representation based on the eigenvectors {e(μ; u)}μ of K (u, u′),

ŵt(μ) :=
∫ ∞

0
e−1(u; μ)Ẑt(u) du, (D8)

we formally obtain the explicit representation of Ẑt(u),

Ẑt(u) =
∫

ŵt(μ)e(μ; u) dμ, (D9)

where we used Eq. (53). We thus obtain

∂ŵt(μ)

∂t
= −μŵt(μ) + κ (μ)

(−γ V̂t + σ ξ̂G
t

)
, κ (μ) :=

∫ ∞

0
e−1(u; μ) du, (D10)

whose solution is given by

ŵt(μ) = κ (μ)
∫ t

−∞
e−μ(t−t′ )(σ ξ̂G

t′ − γ V̂t′
)

dt′, (D11)

which leads to the explicit form of Ẑt as

Ẑt(u) =
∫

dμe(μ; u)κ (μ)
∫ t

−∞
dt′e−μ(t−t′ )(σ ξ̂G

t′ − γ V̂t′
)

(D12)

from Eq. (D9). From Eqs. (49a) and (D12), we obtain

dV̂t

dt
= σ ξ̂G

t − γ V̂t −
∫ t

−∞
dt′

[∫ ∞

0
du

∫ ∞

0
dμκ (μ)ϒ(u)e(μ; u)e−μ(t−t′ )

](
σ ξ̂G

t′ − γ V̂t′
)
. (D13)

This equation can be written as

dV̂t

dt
= −γ V̂t −

∫ t

−∞
M(t − t′)V̂t′ dt′ + η̂t (D14)

with the memory kernel

M(t) :=
∫ ∞

0
ν(μ)e−μt dμ, ν(μ) :=

∫ ∞

0
κ (μ)ϒ(u)e(μ; u) du (D15)

and the colored Gaussian noise:7

η̂t := σ ξ̂G
t + σ

∫ t

−∞
dt′M(t − t′)ξ̂G

t′ . (D16)

APPENDIX E: TRIVIAL MARKOVIAN EMBEDDING FOR
DISCRETE-TIME STOCHASTIC PROCESSES

Here we show a trivial approach of Markovian embedding
available only for discrete-time stochastic processes.

1. Discrete-time stochastic process and Markovian embedding

Let us consider a discrete-time stochastic difference
equation,

x̂t+1 = f (x̂t , x̂t−1, . . . , x̂t−K ), (E1)

with a positive integer K > 0. We assume f includes noise
terms, in general, and can be stochastic, such as the ARIMA
model.

7Any noise composed of a sum of Gaussian random numbers obeys
the Gaussian statistics [1].

This model can be trivially converted onto Markovian dy-
namics by introducing the phase-space vector

�̂t := (x̂t , x̂t−1, . . . , x̂t−K )T, (E2)

with the superscript T signifying the transpose operator. In-
deed, we obtain a first-order stochastic difference equation

�̂t+1 = S�̂t + f (�̂t ), S :=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 0

1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

f (�̂t ) :=

⎛
⎜⎜⎜⎜⎜⎜⎝

f (̂t )

0

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (E3)
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Here S is the finite-dimensional shifting operator, such that

⎛
⎜⎜⎜⎜⎜⎜⎝

0

x̂t

x̂t−1

...

x̂t−K−1

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 0

1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

x̂t

x̂t−1

x̂t−2

...

x̂t−K

⎞
⎟⎟⎟⎟⎟⎟⎠

. (E4)

Similar ideas are used in econometrics [3] regarding the
lag operator. If the time is discrete, this formulation can be
straigtforwardly generalized even for K → ∞, where the em-
bedding dimension is infinite and thus the dynamics is truly
non-Markovian.

2. Technical contribution of the Laplace-convolution
representation

This fact implies that Markovian embedding is trivial for
discrete-time stochastic processes. However, a straightfor-
ward generalization of this specific embedding is difficult for
continuous-time stochastic processes. Indeed, it is challeng-
ing to generalize the shifting operator S for continuous-time
representations, even at a formal level.

Let us attempt to write the formal continuous representa-
tion from the naive discrete-time embedding equation (E3).
By considering the continuous limit with K → ∞ and dt → 0
for the time interval, let us write the phase-space vector as
{̂t (s)}s�0 parametrized with s � 0 defined by

̂t (s) := x̂t−s. (E5)

Equation (E3) can be formally written as

̂t+dt (s) =
∫ ∞

0
ds′δ(s − dt − s′)̂t (s

′) + f [̂t ]δs,0, (E6)

or, equivalently,

d̂t (s)

dt
=

∫ ∞

0
ds′K (s, s′)̂t (s

′) + f [̂t ]δs,0,

K (s, s′) := d

ds′ δ(s − s′). (E7)

This equation does not make sense even at the theoretical
physics level due to the apparent singularity of the δ function
and its derivative. Thus, the naive embedding (E1) for the
discrete-time processes cannot be straightforwardly general-
ized toward the continuous-time processes, even at the formal
level.

The Laplace-convolution representation technically solves
this problem. The shifting operator S has an analytically
tractable representation in the Laplace-convolution space, and
thus the original non-Markovian dynamics is mapped onto a
first-order Markovian SPDE.

APPENDIX F: EIGENVALUES AND EIGENFUNCTIONS
OF THE MATRIX K(u, u′ )

Let us prove that all the eigenvalues of K (u, u′) defined by
Eqs. (51) are real and positive. We define

K(u, u′) :=
√

ϒ(u)

ϒ(u′)
K (u, u′)=

√
uu′δ(u − u′) +

√
ϒ(u)ϒ(u′),

(F1)
where ϒ(u) is defined by Eqs. (45). Since K is symmetric
[K(u, u′) = K(u′, u)], its eigenvalues μ̃ are real, such that

∫ ∞

0
du′K(u, u′)ẽ(μ̃; u′) = μ̃ẽ(μ̃; u), μ̃ ∈ R, (F2)

with the eigenfunctions {ẽ(μ̃; u)}μ̃. In addition, we find a
positive-definite inequality for any function f (u), such that

∫ ∞

0
f (u1)K(u1, u2) f (u2) du1 du2

=
∫ ∞

0
u f 2(u) du +

(∫ ∞

0

√
ϒ(u) f (u)

)2

du > 0, (F3)

except for the trivial case f (u) = 0 for all u. This implies that
the symmetric matrix K(u, u′) is positive definite, and thus has
only real eigenvalues. In addition, since all the eigenvalues are
positive for the symmetric matrix K(u, u′), it has an inverse
matrix.

Finally, from the definition (F1), we find that

∫ ∞

0
du′K (u, u′)

ẽ(μ̃; u′)√
ϒ(u′)

= μ̃
ẽ(μ̃; u)√

ϒ(u)
, (F4)

implying that all the eigenvalues of K (u, u′) correspond to
those of K(u, u′), such that

μ = μ̃, e(μ; u) = ẽ(μ̃; u)√
ϒ(u)

. (F5)

This means that all the eigenvalues of K (u, u′) are real and
positive. Furthermore, K (u, u′) has an inverse matrix.

APPENDIX G: EXPLICIT RELATION WITH THE FIELD
MASTER EQUATION FOR NONLINEAR HAWKES

PROCESSES PREVIOUSLY DERIVED IN REFS. [34,35]

The fME (60) can be easily transformed. Let us define the
following quantities:

s := 1

x
, z′(x) := h̃′(x)z(s), h̃′(x) := h̃(s)

x2
, (G1)

satisfying h(t ) = ∫ ∞
0 h̃′(x)e−t/x dx and G′[z′] =

g(
∫ ∞

0 z̃′(x) dx). By integrating Pt [] over v̂ to define the
marginal PDF

Pt [z
′] :=

∫
Pt [v; z] dv, (G2)
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we obtain from Eq. (60)

∂Pt [z′]
∂t

=
∫

dx
δ

δz′(s)

(
z′(s)

x
Pt [z

′]
)

+
∫ ∞

−∞
dyρ(y)G′[z′− yh̃′]Pt [z

′ − yh̃′] − G′[z′]Pt [z
′].

(G3)

This equation is equivalent to the fME in Refs. [34,35].

APPENDIX H: TIME-REVERSAL SYMMETRY
OF THE MASTER EQUATION

We review the necessary and sufficient condition of the
validity of time-reversal symmetry according to Ref. [22].
For a finite-dimensional Markovian stochastic processe x :=
(x1, . . . , xK )T, the general master equation is given by

∂Pt (x)

∂t
=
⎡
⎣−

∑
k

∂

∂xk
Ak (x) + 1

2

∑
k,l

∂2

∂xk∂l
Bkl (x)

⎤
⎦Pt (x)

+
∫

dy[λ(x|y)Pt (y) − λ(y|x)Pt (x)], (H1)

where Ak is the drift term, Bkl � 0 is the diffusion term, and
λ(y|x) � 0 is the jump-intensity density for jumps from x to
y.

Let us define the time-reversal operator εk such that εk = 1
if xk is an even variable, and εk = −1 if xk is an odd variable.
Typically, the velocity (position) is an odd (even) variable
because it has odd (even) parity under time reversal. The
necessary and sufficient condition for time-reversal symmetry
to hold is given by

λ(y|x)Pss(x) = λ(εx|εy)Pss(y), (H2a)

εkAk (εx)Pss(x) = −Ak (x)Pss(x) +
∑

l

∂

∂xl
[BklPss(x)],

(H2b)

εkεlBkl (εx) = Bkl (x), (H2c)

with

ε :=

⎛
⎜⎜⎜⎜⎝

ε1 0 . . . 0

0 ε2 . . . 0
...

...
. . .

...

0 0 . . . εK

⎞
⎟⎟⎟⎟⎠. (H2d)
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