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Limited data on infectious disease distribution exposes ambiguity in epidemic modeling choices
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Traditional disease transmission models assume that the infectious period is exponentially distributed with
a recovery rate fixed in time and across individuals. This assumption provides analytical and computational
advantages, however, it is often unrealistic when compared to empirical data. Current efforts in modeling
nonexponentially distributed infectious periods are either limited to special cases or lead to unsolvable models.
Also, the link between empirical data (the infectious period distribution) and the modeling needs (the definition
of the corresponding recovery rates) lacks a clear understanding. Here we introduce a mapping of an arbitrary
distribution of infectious periods into a distribution of recovery rates. Under the Markovian assumption to
ensure analytical tractability, we show that the same infectious period distribution at the population level can be
reproduced by two modeling schemes that we call host-based and population-based, depending on the individual
response to the infection, and aggregated empirical data cannot easily discriminate the correct scheme. Besides
being conceptually different, the two schemes also lead to different epidemic trajectories. Although sharing the
same behavior close to the disease-free equilibrium, the host-based scheme deviates from the expected epidemic
when reaching the endemic equilibrium of a susceptible-infectious-susceptible transmission model, while the
population-based scheme turns out to be equivalent to assuming a homogeneous recovery rate. We show this
through analytical computations and stochastic epidemic simulations on a contact network, using both generative
network models and empirical contact data. It is therefore possible to reproduce heterogeneous infectious periods
in network-based transmission models, however, the resulting prevalence is sensitive to the modeling choice for
the interpretation of the empirically collected data on the length of the infectious period. In the absence of higher
resolution data, studies should acknowledge such deviations in the epidemic predictions.

DOI: 10.1103/PhysRevResearch.6.023265

I. INTRODUCTION

The infectious period has a key role in the progression of
an infectious disease. It is the time interval during which an
infected host can transmit the pathogen to other susceptible
individuals, therefore it is closely linked to the ecological
persistence of the disease and the challenges of its eradication.
The infectious period depends both on disease natural history
and on the interventions possibly put in place: treatment,
for instance, can be effective in reducing it. Collecting and
characterizing this type of data is quite challenging, as demon-
strated by statistical studies on measles [1] and long-lived
infections such as HIV [2]. Recent examples about COVID-19
[3] and monkeypox [4] show that a common feature of empir-
ical infectious period distributions is their overdispersion or
underdispersion, deviating from an exponential distribution.
This is in contrast with the traditional analytical approach
adopted in the physics community, based on modeling the
infectious period with a fixed recovery rate. By this approach,
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each infectious host (or node i in a network) recovers at a
rate μi = μ. This paradigm has a twofold advantage. First, it
is easy to handle both analytically and numerically; second,
it maps the process into a spontaneous one-body reaction,
allowing us to borrow solutions from other fields of physics,
like reaction-diffusion processes and decays. However, this
approach uniquely constrains the distribution of the infectious
period τ to an exponential distribution having expected value
〈τ 〉 = μ−1. Therefore, fitting 〈τ 〉 from real data leaves no
extra degrees of freedom to model the dispersion of the data.

Efforts to overcome this problem already exist, e.g.,
through additional infectious compartments [5–7] or by split-
ting hosts into epidemiologically relevant groups [8,9]. An
alternative approach is to directly plug heterogeneous recov-
ery rates into the model [10,11]. All three approaches have
limitations. Adding compartments limits the choice of possi-
ble distributions, partitioning individuals is limited to specific
epidemiological contexts, and using distributed recovery rates
is not justified by a clear link with a corresponding distribution
of the infectious periods. On the other hand, parametrizing
models with an explicit distribution of the infectious period
makes them harder to solve [12].

In this paper, we develop a theory to include arbitrary
distributions of infectious periods, so they can be informed
by real data. We treat both the infectious period τ and the
recovery rate μ as stochastic variables, and determine the
mapping between their probability distributions. We treat

2643-1564/2024/6(2)/023265(10) 023265-1 Published by the American Physical Society

https://orcid.org/0000-0002-0676-0401
https://orcid.org/0000-0002-9246-6195
https://orcid.org/0000-0002-2113-2374
https://ror.org/02k7v4d05
https://ror.org/02en5vm52
https://ror.org/02vjkv261
https://ror.org/05vzafd60
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.6.023265&domain=pdf&date_stamp=2024-06-10
https://doi.org/10.1103/PhysRevResearch.6.023265
https://creativecommons.org/licenses/by/4.0/


DI DOMENICO, VALDANO, AND COLIZZA PHYSICAL REVIEW RESEARCH 6, 023265 (2024)

TABLE I. Mapping from the infectious period distribution g(τ ) to the recovery rate distribution f (μ), and corresponding average infectious
period 〈τ 〉, for some commonly used infectious period distributions. δ is the Dirac delta distribution. H is the Heaviside step function. For
gamma-distributed g, the displayed f is valid for κ < 1. For power-law distributed g, h > 2 ensures the existence of both f and 〈τ 〉.

Infectious period distribution g(τ ) Recovery rate distribution f (μ) 〈τ 〉
Exponential r e−rτ Dirac delta δ(μ − r) r−1

Gamma (κ, θ ) τκ−1e−τ/θ

�(κ )θκ Power law sin(κπ )
π μ

(θμ − 1)−κH (θμ − 1) κθ

Power law (h, ε) (h − 1)εh−1(τ + ε)−h Gamma (h − 1, ε−1) εh−1μh−2 e−εμ

�(h−1)
ε

(h−2)

recovery of an individual node i as a spontaneous process
occurring at a given rate μi, but we sample that rate from a
distribution f appropriately chosen so the resulting distribu-
tion of infectious periods τ at the population level follows a
desired distribution g, possibly fitted on data. Our mapping
allows to analytically derive f (μ) from g(τ ).

This mapping also provides a clear understanding of
the link between empirical data (the infectious disease dis-
tribution) and the modeling needs (the definition of the
corresponding recovery rate). The infectious period distri-
bution g(τ ) is usually reconstructed from population data
collected through surveillance and observational studies. The
recovery rate μ, instead, is a variable defined by the modeling
scheme at the individual level. This implies a degeneracy of
models that may assign individual rates differently, but pro-
duce the same g(τ ). We study this by defining the host-based
scheme, by which each host i is given a recovery rate μi that
is fixed in time and sampled from f , and the population-based
scheme, by which every time a host recovers it resamples its
recovery rate from f (i.e., μi varies with time). The latter
scheme models a scenario in which the chance of recovery
for a specific host changes after each reinfection, for instance,
because of a difference in the immunity response. We show
that both schemes recover the same distribution g computed
from f through our mapping. However, we prove that, while
the two schemes share their critical behavior (close to the
epidemic threshold), they significantly differ in the endemic
equilibrium. This has far-fetching implications, as the choice
of the correct scheme may be nonunivocal, depending on the
epidemic context, but data collection often does not allow us
to empirically discriminate between the host-based and the
population-based schemes.

In Sec. II, we build and discuss the analytical mapping
from g to f . We also define the host-based and population-
based schemes. We then characterize the epidemic threshold
(Sec. III) and the endemic equilibrium (Sec. IV). We then
apply our methodology to two real-world scenarios, i.e., the
spread of nosocomial infections in health-care settings using
empirical contact data collected from sensors (Sec. V) and
the spread of livestock disease over an empirical network of
cattle trade movements (Sec. VI). In Sec. VII, we discuss the
implications of our results for the modeling community.

II. MAPPING INFECTIOUS PERIODS INTO
RECOVERY RATES

We consider the susceptible-infectious-susceptible (SIS)
model [13,14]. A susceptible individual becomes infected at

rate λ upon contact with an infected host. It then recovers
spontaneously to the susceptible state at rate μ. Recovery con-
fers no immunity. The transmission rate λ is constant, while
the recovery rate μ is a stochastic variable with distribution f .
A varying λ with constant μ was studied in Ref. [15] for other
purposes. Let τ be the stochastic variable representing the
infectious period, with distribution g. In the case of a constant
μ, the distribution g would be the exponential distribution.

Just as in a standard reaction-diffusion process, recovery is
Markovian once the recovery rate is fixed, i.e., τ |μ ∼ Exp(μ).
Under this assumption, we now write g(τ ) as a marginal
probability, borrowing methods usually adopted in the field
of superstatistics [16,17]. We can write

g(τ ) =
∫ ∞

0
dμ f (μ)μe−μτ = − d

dτ
L[ f ](τ ), (1)

where L is the Laplace transform operator. By integrating in
τ and solving for f , we obtain

f (μ) = L−1[Ĝ](μ), (2)

where Ĝ is the tail distribution function of τ , i.e., Ĝ(τ ) =∫ ∞
τ

dx g(x). Equation (2) is solvable either by explicit compu-
tation of the inverse Laplace transform—when possible—or
by numerical integration [18]. In the latter case, it is possible
to determine beforehand if the solution exists by noticing that
one can generate the moments of f by repeatedly deriving
Eq. (1) with respect to τ , and then setting τ = 0:

m0 = 1; (3)

mn = (−1)n−1 dn−1

dτ n−1
g(τ )

∣∣∣∣
τ=0

∀n ∈ N \ {0}, (4)

where mn is the n-th moment of f , i.e., mn = ∫ ∞
0 dμμn f (μ).

As such, determining if the solution of Eq. (2) exists maps
onto a Stiltjes moment problem [19] (see Appendix A).

Table I reports the expression of f (μ) for some commonly
used distributions of infectious periods: exponential, gamma,
and power law.

The mapping introduced above works for both the host-
based and population-based schemes. The difference relies
on the fact that in the former scheme each host i samples
its μi from f only once at the beginning, while in the latter
each host resamples its μi every time it recovers. Therefore,
in terms of infectious period, in the population-based scheme
each individual follows the same infectious period distribu-
tion g(τ ), while in the host-based scheme each individual is
characterized by a different (exponential) infectious period
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distribution, producing the distribution g(τ ) when aggregated
at the population level.

III. EPIDEMIC THRESHOLD

The epidemic threshold is the critical value λc of the trans-
mission rate that discriminates between the disease-free state
(λ < λc), and the endemic regime (λ > λc). The computation
of the epidemic threshold provides an important public health
metric to evaluate intervention policies [9,20].

The epidemic threshold depends on both disease features
(transmission, recovery), and the topology of the underlying
network of contacts along which the spreading occurs. We
assume a network of N nodes with adjacency matrix A. Let
xi(t ) be the probability that node i is infectious at time t , with
i = 1, . . . , N . In the host-based scheme, node i has a fixed
recovery rate μi. Following the microscopic Markov chain
formalism [21–23], we can write the differential equations de-
scribing the evolution of the disease as a perturbation of the
disease-free state [thus neglecting O(xix j ) and higher orders]:

dxi(t )

dt
= −μixi(t ) + λ

∑
j

Ai jx j (t ). (5)

In matrix form, this reads ẋ = (−M + λA)x, where x =
(x1(t ), . . . , xN (t )) and M = diag{μ1, . . . , μN } is the diagonal
matrix containing all the recovery rates, which have been
sampled from f (μ) at t = 0. The epidemic threshold λc then
solves the equation

ρ(−M + λcA) = 0, (6)

as proven in Refs. [23,24], where ρ indicates the spectral
radius, i.e., the largest eigenvalue.

In the population-based scheme, we can observe that, close
to the disease-free equilibrium, reinfection events are sup-
pressed and can thus be dropped in the threshold computation
as higher-order terms. This means that we can neglect the up-
date mechanism of μ and retrieve the same epidemic threshold
as in the host-based scheme.

In the standard case of exponentially distributed τ (i.e.,
constant μ), Eq. (6) reduces to

λc = μ

ρ(A)
= 1

〈τ 〉ρ(A)
, (7)

given that the rate of the exponential distribution coincides
with the inverse of its expected value. We now solve Eq. (6)
in the case of a nonexponential distribution g(τ ), i.e., with
heterogeneous recovery rates μi. In practical applications,
the matrix A often comes from a generative network model
designed to reproduce key topological features of the con-
tact structure of the population under study. Reference [25]
argues that generative network models are representable in
terms of adjacency matrices whose rank equals the number
of node features constrained. For instance, if one just fixes
the expected degree of each node (the so-called configuration
model [26–29]), one will get the rank-one adjacency matrix
A = KKT /(N〈k〉), where K is the N-dimensional vector con-
taining the expected degree of each node and 〈k〉 is the average
expected degree. The activity-driven model introduced in
Ref. [30] is an example of a rank-two model (see Appendix E).

For a generic rank-r model, one can write

A = V �V T , (8)

where V is an N × r matrix encoding node properties and
� is a r-dimensional bilinear form encoding the geometry
of the model (see Ref. [25]). The epidemic threshold of the
generic network model requires plugging Eq. (8) into Eq. (6),
and working out the calculations under the assumption that
the node properties fixed by the model are uncorrelated with
recovery rates (see Appendix B for explicit computations).
Unexpectedly, this leads to the following expression of the
epidemic threshold:

λc = 1

〈τ 〉ρ(A)
, (9)

which is the same as Eq. (7), when expressed in terms of
the average infectious period. This result shows that only
the average infectious period impacts the epidemic threshold.
The distribution g(τ ) may be arbitrarily complex, but its first
moment is enough to discriminate between disease extinction
and endemicity. A model with fixed μ is therefore sufficient
to study the critical behavior of disease spreading, and this
is beneficial in two aspects: (i) such a model is analytically
and numerically the simplest possible, and (ii) estimating 〈τ 〉
from data is easier than fitting the full distribution, especially
if the available sample is small. However, Eq. (9) also warns
us about the misuse of the recovery rate. It rigorously proves
that the relevant observable is indeed the average infectious
period and not the average recovery rate. Replacing 1/〈τ 〉 with
〈μ〉 in Eq. (7) would lead to an overestimation of the epidemic
threshold, because the identity

〈τ j〉 = j!〈μ− j〉, ∀ j ∈ N (10)

[provable from Eq. (1)], combined with Jensen’s inequality
[31], implies that 〈μ〉 � 〈τ 〉−1. Overestimating the epidemic
threshold is potentially harmful, as it leads to underestimation
of the risk of the disease becoming endemic.

IV. ENDEMIC PREVALENCE

Above the epidemic threshold, the SIS model converges
to an endemic equilibrium characterized by a certain disease
prevalence (i.e., fraction of population infected at a given
time) [32]. Quantifying the endemic prevalence, alongside
the epidemic threshold, is relevant from a public health per-
spective, as it allows to anticipate the impact of the disease
spreading in the long-term.

The endemic equilibrium is typically harder to derive an-
alytically concerning the epidemic threshold: no closed-form
solution exists beyond homogeneous mixing even in the case
of exponentially distributed τ . Here we focus on homo-
geneous mixing, i.e., a sequence of Erdős–Rényi networks
[33], and compute the corresponding endemic prevalence in
the population-based and host-based scheme. Appendix C
contains a generalization to the configuration model for the
population-based scheme.

To proceed, we divide compartments I and S into sub-
classes according to the recovery rate. Classes I j (t ) and S j (t )
represent, respectively, the number of infected and susceptible
individuals at time t with recovery rate equal to μ j . Recovery
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rate thus gets formally discretized in an arbitrarily large num-
ber of values. The spreading equations are

d

dt
I j (t ) = −μ j I j (t ) + λ

1

N
Sj (t )

∑
h

Ih(t ), (11)

where the average connectivity of the homogeneous network
is absorbed in the transmission rate λ. At time t = 0, we have
a fraction f (μ j )dμ j of the total number of individuals N that
have rate μ j . In the population-based scheme, as time passes,
large values of μ are replaced sooner, as they generate, on
average, shorter infectious periods. Likewise, smaller values
of μ persist longer. This implies that the fraction of hosts
with rate μ j at a given time deviates from the initial frac-
tion f (μ j ) dμ j as time passes. Notwithstanding, if we look
exclusively at compartment S j (t ), we can state that S j (t ) =
f (μ j )dμ j S(t ) because a new μ j is assigned after recovery,
and the interevent time between recovery and reinfection does
not depend on the recovery rate μ j of the susceptible indi-
vidual. By inserting this in Eq. (11), we can then set the
right-hand side (rhs) equal to zero and sum over j to get
rid of the discretization and obtain the endemic prevalence at
equilibrium:

xeq = Ieq

N
= 1 − 1

〈τ 〉λ. (12)

So we find that, as for the epidemic threshold, the endemic
equilibrium in the population-based scheme depends only on
the average infectious period, regardless of its distribution,
and coincides with the equilibrium obtained assuming a ho-
mogeneous recovery rate μ = 〈τ 〉−1.

It is a different matter for the host-based scheme. We find
another formula to analytically derive endemic prevalence
xeq for homogeneous mixing as a solution of the following
equation:

L[g](λxeq) = 1 − xeq. (13)

Details of the derivation can be found in Appendix D. In
general, Eq. (13) is solvable numerically. In some cases, it
leads to an analytic expression for xeq. One such case is ob-
viously when τ is exponentially distributed, giving the same
result as in Eq. (12). If τ is gamma distributed (see Table I),
Eq. (13) becomes relatively simple: (1 + xeqλ〈τ 〉/κ )−κ =
1 − xeq, where we used the parametrization 〈τ 〉 = κθ . Then,

further assuming κ = 1/2, gives xeq = 1 − 1+√
1+8〈τ 〉λ

4〈τ 〉λ . This
example explicitly shows how different the endemic equilib-
rium can be from the exponentially distributed case [Eq. (12)].

In Sec. III, we showed that the average infectious pe-
riod 〈τ 〉 alone completely determines the epidemic threshold.
Equation (13) instead shows that higher moments of τ have
an impact on the endemic equilibrium, in the case of the
host-based scheme. In Fig. 1, we keep 〈τ 〉 fixed and ex-
plore different levels of dispersion around it in case of
gamma-distributed and power-law-distributed infectious pe-
riods. Comparison with exponentially distributed τ (at same
〈τ 〉) shows that in the host-based scheme: (i) higher variance
gives consistently lower endemic prevalence and (ii) at fixed
variance, gamma-distributed τ leads to lower prevalence than
power-law-distributed τ .

FIG. 1. Endemic prevalence in the host-based scheme as a func-
tion of the relative variance in g(τ ). The gray line represents the
endemic equilibrium for exponentially distributed τ (constant μ).
Red and blue dots represent the numerical solution of Eq. (13),
respectively, for gamma-distributed and power-law-distributed τ (see
also Table I). Box-plots represent values of the endemic equilibrium
obtained from 100 SIS stochastic simulations on an Erdős–Rényi
network of N = 103 nodes and average degree 5. Disease parameters
were fixed at 〈τ 〉 = 300 time steps, λ = 5λc.

Figure 1 shows results obtained assuming a homogeneous
network. We also performed numerical simulations of disease
spreading on a heterogeneous network (namely, the activity-
driven network introduced in Ref. [30]). We include the results
in Appendix E. The results are qualitatively similar to the ones
discussed above.

V. APPLICATION TO MRSA DIFFUSION
IN HEALTHCARE SETTINGS

Methicillin-resistant Staphylococcus aureus (MRSA) is
responsible for severe bacterial infections. Its acquired re-
sistance to antimicrobial treatment makes it one of the most
dreaded infections occurring in health-care settings [34].
Patients can get colonized through direct contact with asymp-
tomatic carriers (including health-care workers). Outbreaks of
MRSA infection increase mortality, hospitalization times, and
are difficult and costly to contain [34].

MRSA carriage duration is nonexponentially distributed.
We analyzed data on time to observed clearance [35] to recon-
struct the distribution of carriage time g(τ ). We fitted the data
through maximum likelihood using exponential and gamma
distributions. The Akaike information criterion (AIC) selected
the gamma distribution as the best-fitting model (see Fig. 2).
This supports, therefore, the application of the approach pre-
sented here, as accurate model predictions are needed to
improve surveillance and response against MRSA diffusion.

We use the estimated g(τ ) to simulate the spread of MRSA
carriage on a real network of contacts among 590 individu-
als (both patients and health-care workers) collected through
wearable sensors in a long-term and rehabilitation facility in
Northern France [36,37]. We simulated both the host-based
and population-based schemes. We also considered the sce-
nario of constant recovery rate (exponentially distributed τ ) as
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(a) (b) (c)

FIG. 2. MRSA infection spreading over an empirical contact network within a hospital. (a) Gamma vs exponential estimated cumulative
distribution for MRSA colonization duration. Black dots represent empirical data on time to clearance from Ref. [35]. Values of parameters
estimated at maximum likelihood: r = 0.007, κ = 0.62, θ = 238.04 (see Table I for the definition). AIC = 316 and 319 for gamma and
exponential distributions, respectively. (b) Colonization prevalence over time, for the host-based (red) and population-based schemes (green)
with a gamma-distributed infectious period in comparison with the homogeneous scheme (black), assuming an exponential distribution and a
constant recovery rate. Here λ was fixed at 0.2. (c) Colonization prevalence at equilibrium for different values of transmissibility λ. Results are
averaged over 100 stochastic runs. Uncertainty bars and shaded areas indicate 95% probability ranges. Parameters of the gamma-distributed τ

are the fitted estimates. The rate of the exponential distribution is fixed to have the same 〈τ 〉 as the gamma-distributed one. Contact data are
aggregated at a weekly time scale, getting a time-evolving, weighted network where weights encode contact duration over a specific week.

benchmark, with the same 〈τ 〉. The results of the simulations
are displayed in Figs. 2(b) and 2(c).

Epidemic trajectories in Fig. 2(b) show that heterogeneity
in the recovery rates has an effect in slowing down disease
spread with respect to the homogeneous scheme. When ap-
proaching the endemic equilibrium, Fig. 2(c) confirms that
the homogeneous modeling scheme with a fixed rate and the
population-based scheme share the same endemic prevalence,
even in the case of a realistic temporal contact network.
Instead, in the host-based scheme the predicted endemic
prevalence turns out to be smaller. As the transmission rate λ

decreases, the values for the three schemes converge, support-
ing the idea that they all hold the same epidemic threshold.

VI. APPLICATION TO LIVESTOCK DISEASE
AND CATTLE TRADE NETWORK

Livestock infectious diseases threaten animal health and
welfare, and ineffective epidemic control can have severe
consequences for the economy of a country [38]. Livestock
diseases can persist long enough in a given area, becoming
endemic. For example, bovine tuberculosis has been affecting
the cattle population in Italy for decades, and still circulates
in southern regions [39]. Here, we considered outbreak data
and cattle trade movements in Sicily, the Italian region with
the highest prevalence of tuberculosis.

In a network perspective, livestock disease spreading are
often modeled at the farm level, where a node is a farm and

(a) (b) (c)

FIG. 3. Bovine tuberculosis spreading over an empirical network of farms connected through cattle-trade movements. (a) Gamma vs
exponential estimated probability distributions for duration of an outbreak in a farms. Grey bars represent empirical data on outbreak duration
observed in Sicily (Italy). Values of parameters estimated at maximum likelihood: r = 0.002, κ = 0.82, θ = 699.9 (see Table I for the
definition). AIC = 21 553 and 21 592 for gamma and exponential distribution, respectively. (b) Fraction of infected farms over time for the
host-based (red) and the population-based scheme (green) with a gamma-distributed infectious period in comparison with the homogeneous
scheme (black), assuming an exponential distribution and a constant recovery rate. Here λ was fixed at 0.5. (c) Fraction of infected farms at
equilibrium for different values of transmissibility λ. Results are averaged over 100 stochastic runs. Uncertainty bars and shaded areas indicate
95% probability ranges. Parameters of the gamma-distributed τ are the fitted estimates. The rate of the exponential distribution is fixed to have
the same 〈τ 〉 as the gamma-distributed one.
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links are represented by livestock movements between farms
due to cattle trade [9,40]. A farm is considered infected if there
is an ongoing outbreak, hence duration of the outbreak in a
farm represents the infectious period of the node. We used a
database on tuberculosis outbreaks managed by IZSAM (Isti-
tuto Zooprofilattico Sperimentale dell’Abruzzo e del Molise).
The database contains records of the duration of 1468 tuber-
culosis outbreaks in cattle occurring in Sicily between 1983
and 2015. Fitting an exponential and a gamma distribution,
we found that a gamma distribution best described the data
in terms of AIC (Fig. 3). We thus applied our framework to
model a gamma-distributed infectious period distribution. In
the context of livestock diseases, the host-based scheme can
model a scenario in which there are farms with faster recovery
rates than others because of better surveillance systems and
better compliance to public health recommendations.

We then constructed a daily temporal network starting
from the data set of cattle trade movements in Sicily from
January 2006 to December 2012, provided by IZSAM [40].
The network includes over 14 000 nodes. We accounted for
the number of traded animals to define the risk of trans-
mission between farms. Transmission may occur from an
infected farm i to a susceptible one j upon trading animals
at time t with a probability 1 − (1 − λ)Wt,i j , where Wt,i j is
the number of animals moved and λ indicates the per-animal
risk of transmission, as done in Ref. [40]. We then simulated
disease spreading over the network for different values of
λ, with gamma-distributed infectious periods under the host-
based and population-based schemes, in comparison with an
exponential distribution with the same mean. We found qual-
itatively similar results with respect to the case of MRSA
spreading in hospital. The endemic prevalence of tuberculosis
in the population-based scheme coincides with the one ob-
tained with exponentially distributed infectious periods, while
the host-based scheme leads to a lower endemic equilib-
rium (Fig. 3). With respect to the previous case study, the
fitted gamma-distribution is closer to an exponential distri-
bution (shape parameter k = 0.82 for tuberculosis outbreak
duration while k = 0.62 for MRSA colonization), hence the
differences between the host-based and the population-based
schemes are less evident, but they are still significant.

VII. DISCUSSION

A fixed recovery rate across individuals and through-
out the epidemic outbreak fails in reproducing realistic
distributions of infectious periods. Yet, it is the key modeling
ingredient of traditional approaches because it treats recovery
as a Markovian process, i.e., a spontaneous decay. This as-
sumption allows analytical calculations, and largely simplifies
numerical implementations. Based on a mapping of the in-
fectious period distributions into a recovery rate distribution,
we introduced a modeling framework that can capture and
integrate arbitrary infectious period distributions that can be
informed by empirical data, while remaining analytically and
numerically treatable.

Collected empirical data usually provide information on
the infectious period at the population level, not at the in-
dividual level, through a distribution of values. This lack of

resolution at the host level opens the path to two possible
modeling schemes, assuming either an immutable recovery
rate per host (host-based scheme) or a rate that can be updated
at each infection episode because it is altered by factors affect-
ing the immune response of the individual (population-based
scheme). When data on reinfection of the same individual
are too scarce to estimate a distribution for each host (as is
often the case, with a few exceptions [41]), the two schemes
become empirically equivalent, but they conceal significant
differences in terms of predictions.

We analytically prove that the epidemic threshold, in the
case of any generative network model for hosts interactions,
does not depend on the scheme chosen. We also prove that
such threshold depends only on the average infectious period,
making the standard assumption of constant recovery rate suf-
ficient to correctly model the behavior around the disease-free
state. Differences emerge when the system moves away from
the critical point. The endemic disease prevalence—a predic-
tor of how easy it is to eradicate a disease in a population—is
quantitatively different in each scheme, as shown in theo-
retical examples of disease spread and in two case studies
applied to the spread of the multiresistant bacteria MRSA in
health-care settings and persistence of bovine tuberculosis in
Sicily.

The difference extends to the out-of-equilibrium dynamics,
as disease spreading in the population-based scheme is faster
with respect to the host-based scheme.

Our findings show that modeling heterogeneity within the
population-based or the host-based paradigms, although ap-
parently equivalent, has a considerable impact on the endemic
disease prevalence, and caution should be taken when ad-
dressing specific epidemic contexts where data do not allow
to distinguish between the schemes. This problem might dis-
appear naturally in contexts in which individual recovery rates
have a concrete meaning or can be measured directly, e.g., in
information diffusion processes [42], but in the general case of
biological diseases, modelers should be aware that an arbitrary
choice of the scheme may represent a potential source of bias
to be considered.
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APPENDIX A: EXISTENCE OF THE FUNCTION f

The conditions on g(τ ) under which there exists a proba-
bility density function f (μ) solving Eq. (1) can be described
in terms of a moment problem [19]. Let us evaluate the nth
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derivative of g(τ ) in τ = 0 from Eq. (1),

dn

dτ n
g(τ )

∣∣∣∣
τ=0

= (−1)n
∫ +∞

0
dμ f (μ) μn+1 = (−1)nmn+1,

(A1)

where mn indicates the nth moment of f (μ). Thus, a solution
of Eq. (1) exists if and only if the sequence

mn+1 = (−1)n dn

dτ n
g(τ )

∣∣∣∣
τ=0

∀n ∈ N

m0 = 1 (A2)

is a Stieljies moment sequence, i.e., it represents the sequence
of moments of a measure on the interval [0,+∞). We set
m0 = 1 as we are looking for a probability measure. A suf-
ficient and necessary condition for a real sequence {mn}n∈N to
be a Stieljies moment sequence states that the Hankel matrices

H (1)
n =

⎛
⎜⎜⎝

m0 m1 . . . mn

m1 m2 . . . mn+1
...

...
. . .

...

mn mn+1 . . . m2n

⎞
⎟⎟⎠, (A3)

H (2)
n =

⎛
⎜⎜⎝

m1 m2 . . . mn+1

m2 m3 . . . mn+2
...

...
. . .

...

mn+1 mn+2 . . . m2n+1

⎞
⎟⎟⎠ (A4)

need to be positive semidefinite for any n ∈ N [19]. This prop-
erty is useful to assess if the framework in terms of recovery
rates is applicable or not given a certain g(τ ).

In Sec. II, we presented the analytical form of the distribu-
tion of recovery rates f (μ) when g(τ ) is a gamma(κ, θ ) with
κ < 1. We can show that such distribution does not exist when
κ = 2. Indeed, for g(τ ) = θ−2τe−τ/θ , the sequence turns out
to be mn = −(n − 1)θ−n and the Hankel matrix H (1)

2 is not
positive semidefinite.

APPENDIX B: EPIDEMIC THRESHOLD OF THE
GENERIC NETWORK MODEL

The generic rank-r network model is defined by its metade-
grees (r properties for each node), encoded in the n × r matrix
V , and the signature of the nonsingular metric �. See Ref. [25]
for further details. The adjacency matrix of such model is
the rank-r matrix A = V �V T . Let M be a diagonal matrix
containing the recovery rate μ j of node j in its jth diagonal
entry. Then, the linearized evolution of the disease close to
the disease-free state follows the vector equation ẋ = (−M +
λV �V T )x, where x j (t ) is the probability that node j is infec-
tious at time t . Finding the epidemic threshold means finding
the lowest value of λ for which −M + λV �V T as a zero
eigenvalue. We can compute the characteristic polynomial
of this matrix using Ref. [43]: p(t ) = det{�−1 − λV T (t +
M )−1V }. The condition of the zero eigenvalue is then det{1 −
λV T M−1V �} = 0. The threshold condition that follows is
λc = 1/ρ(V T M−1V �), where ρ is the spectral radius.

The last step consists of proving the following:
V T M−1V � = 〈μ−1〉V T V �. Let us call Z = V T M−1V �

and compute its entry Zαβ ,

Zαβ =
N∑

i, j=1

r∑
γ=1

Viαδi jμ
−1
i Vjγ �γβ

=
r∑

γ=1

�γβ

N∑
i=1

Viαμ−1
i Viγ

=
r∑

γ=1

�γβ

N∑
i=1

(vα )iμ
−1
i (vγ )i

=
r∑

γ=1

�γβ〈vαμ−1vγ 〉N

= 〈μ−1〉
r∑

γ=1

�γβ〈vαvγ 〉N

= 〈μ−1〉
r∑

γ=1

N∑
i=1

ViαViγ �γβ

= 〈μ−1〉Bαβ,

under the assumption 〈vαμ−1vγ 〉 = 〈μ−1〉〈vαvγ 〉, where vα is
the αth column of the matrix V , i.e., the αth metadegree, and
B is the matrix V T V �, obtained from A after rank reduction,
following the notation in Ref. [25]. As the matrixes A and B
share spectral properties, we can conclude that

λc = 1

ρ(V T M−1V �)
= 1

〈μ−1〉ρ(B)
= 1

〈τ 〉ρ(A)
. (B1)

APPENDIX C: ENDEMIC EQUILIBRIUM IN THE
POPULATION-BASED SCHEME

In this Appendix, we derive the endemic prevalence in the
population-based scheme and show that it coincides with the
one obtained when using a homogeneous recovery rate. We
consider a contact network with a fixed degree distribution
P(k), the so-called configuration network model [44].

Within the homogeneous modeling scheme, a constant re-
covery rate μ is assigned to each individual in the population,
so the infectious period τ is exponentially distributed with
mean 〈τ 〉 = μ−1. Let xk (t ) be the probability that a node with
degree k is infected at time t . According to the degree-based
mean-field approximation [45,46], the equation describing the
evolution of the SIS model is

dxk (t )

dt
= −μxk (t ) + λ(1 − xk (t ))k

∑
k′

P(k′|k)xk′ (t ),

where P(k′|k) is the probability that a node with degree k is
connected with a node of degree k′. To derive the number of
infected individuals at equilibrium, one must solve for Ik the
following equation:

Ik = 1

μ

[
λ

N
(Nk − Ik )k

∑
k′

P(k′|k)

P(k′)
Ik′

]
(C1)

where Ik is the number of infected at equilibrium that have
degree k.
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Now we assume the population-based scheme and consider
a general distribution g(τ ) for the infectious period and the
corresponding distribution f (μ) for the recovery rates derived
from Eq. (2). Each individual is assigned a recovery rate μ j

from f (μ), updated by resampling after each recovery. We
can still reason in terms of classes of degree k, but we need to
further divide each class according to the recovery rate. Let us
define x jk (t ) as the probability that a node with recovery rate
μ j and degree k is infected at time t . Then we can write

dx jk (t )

dt
= − μ jx jk (t )

+ λ(1 − x jk (t ))k
∑

k′

∑
h

P(μh, k′|μ j, k)xhk′ (t ),

where P(μh, k′|μ j, k) is the probability that a node with re-
covery rate μ j and degree k has a link to a node with recovery
rate μh and degree k′. We assume that recovery rate and
degree are uncorrelated, i.e., P(μh, k′|μ j, k) = P(μh, k′|k) =
P(μh)P(k′|k), so we obtain

dx jk (t )

dt
= −μ jx jk (t ) + λ(1 − x jk (t ))k

∑
k′

P(k′|k)xk′ (t ),

since
∑

k′ P(k′|k)
∑

h P(μh)xhk′ (t ) = ∑
k′ P(k′|k)xk′ (t ). In

terms of number of infected I jk with recovery rate μ j and
degree k, we obtain

dI jk (t )

dt
= −μ j I jk (t ) + λ

N
Sjk (t )k

∑
k′

P(k′|k)

P(k′)
Ik′ (t ).

The quantity S jk (t ) is the number of susceptible nodes at
time t with recovery rate μ j and degree k. This is equal
to Sk (t ) multiplied by the probability of being assigned the
recovery rate μ j at the time of the last recovery, i.e., S jk (t ) =
P(μ j )Sk (t ):

dI jk (t )

dt
= −μ j I jk (t ) + λ

N
P(μ j )Sk (t )k

∑
k′

P(k′|k)

P(k′)
Ik′ (t ).

Solving for the equilibrium, and summing over the index j,
we obtain

Ik =
∑

j

I jk

=
∑

j

P(μ j )

μ j

[
λ

N
(Nk − Ik )k

∑
k′

P(k′|k)

P(k′)
Ik′

]

= 〈μ−1〉
[

λ

N
(Nk − Ik )k

∑
k′

P(k′|k)

P(k′)
Ik′

]
,

which is equal to Eq. (C1) provided that the mean infec-
tious period 〈τ 〉 = 〈μ−1〉 is the same as the one assumed in
the homogeneous modeling scheme. In conclusion, within
the population-based scheme, the endemic prevalence de-
pends only on the average infectious period, and not on its
distribution.

APPENDIX D: ENDEMIC EQUILIBRIUM IN THE
HOST-BASED SCHEME

In this Appendix, we derive the endemic prevalence in the
host-based scheme, in the case of homogeneous mixing, as
stated in the main text in Eq. (13).

Let x j (t ) be the probability that an individual with recovery
rate μ j is infected at time t . Then,

d

dt
x j (t ) = −μ jx j (t ) + λ

N
(1 − x j (t ))

∑
h

xh(t ), (D1)

where the average connectivity of the homogeneous network
is absorbed in the transmission rate λ. By settingdx j (t )/dt =
0, we find

x j = λxeq/(μ j + λxeq), (D2)

where xeq is the endemic prevalence. In continuous terms, by
integrating on both sides over all possible values of μ, we get
the following equation for the endemic prevalence xeq:

xeq =
∫ ∞

0
dμ f (μ)

[
1 + μ

λxeq

]−1

. (D3)

We rewrite it as follows:

1 = λ

∫ ∞

0
dμ f (μ)μ−1

[
1 + λxeq

μ

]−1

. (D4)

FIG. 4. Results of simulations of the spreading process per-
formed on a temporal activity-driven network. Parameters for the
activity-driven model: N = 2000, ε = 10−3, m = 250, η = 1, γ =
2.8, following the notation in Ref. [30]. Parameters for the epidemic
spreading: 〈τ 〉 = 300, λ = 5λc. The gray line indicates the endemic
equilibrium for the exponentially-distributed τ (homogeneous sce-
nario). In the heterogeneous scenario (nonexponentially distributed
τ ), the endemic prevalence for the population-based and host-based
are shown in shades of green and orange. respectively. We show
results as a function of the variance in g(τ ) assuming two different
distributions for g(τ ): a gamma distribution (darker color) and a
power-law distribution (lighter color). Box plots summarize values of
the endemic equilibrium obtained from 100 stochastic simulations.
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Expanding the inside of the integral as a geometric series, we
get

λ

∞∑
n=0

(−λxeq )n
∫ ∞

0
dμ f (μ)μ−(n+1) = 1. (D5)

The integral in left-hand side (lhs) is 〈μ−(n+1)〉, so we can use
Eq. (10), reindex the sum, and get to

∞∑
n=0

(−λxeq)n 〈τ n〉
n!

= 1 − xeq. (D6)

Now the lhs is by definition the moment-generating function
of g, evaluated in −λxeq. Given that such argument is never
positive, this is also—by definition of moment-generating
function—the Laplace transform of g, evaluated in λxeq. We
thus get to the final form of the equation of the endemic
equilibrium:

L[g](λxeq) = 1 − xeq. (D7)

APPENDIX E: NUMERICAL SIMULATIONS ON A
HETEROGENEOUS NETWORK

The activity-driven model [30] is an example of a rank-two
adjacency matrix, where each node is assigned two features:
activity rate a and attractiveness b. The entries of the ad-
jacency matrix are Ai j = m(aib j + a jbi )/N〈b〉. This model
allows us to generate a time-evolving network, where indi-
viduals’ interactions are heterogeneous. We constructed such
a network as outlined in Ref. [30]. Figure 4 displays the
results of disease spreading simulations over this temporal
network, both within the host-based and population-based
schemes. In line with the analytical results derived in Ap-
pendix C, we found that the endemic equilibrium reached
with the population-based scheme equals the one expected in
the scheme of exponentially-distributed infectious period. In-
stead, the prevalence at equilibrium for the host-based scheme
is reduced and it depends on the shape of the distribution
of infectious period g(τ ). These results corroborate the con-
clusions of the main text found for a homogeneous network
(Fig. 1).
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