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Simplicity of mean-field theories in neural quantum states
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The utilization of artificial neural networks to represent quantum many-body wave functions has garnered
significant attention, with enormous recent progress for both ground states and nonequilibrium dynamics.
However, quantifying state complexity within this neural quantum states framework remains elusive. In this
study, we address this key open question from a complementary point of view: Which states are simple to
represent with neural quantum states? Concretely, we show on a general level that ground states of mean-field
theories with permutation symmetry require only a limited number of independent neural network parameters.
We analytically establish that, in the thermodynamic limit, convergence to the ground state of the fully connected
transverse-field Ising model (TFIM), the mean-field Ising model, can be achieved with just one single parameter.
Expanding our analysis, we explore the behavior of the one-parameter ansatz under breaking of the permutation
symmetry. For that purpose, we consider the TFIM with tunable long-range interactions, characterized by an
interaction exponent α. We show analytically that the one-parameter ansatz for the neural quantum state still
accurately captures the ground state for a whole range of values for 0 � α � 1, implying a mean-field description
of the model in this regime.
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I. INTRODUCTION

Representing the wave function of complex quantum mat-
ter is exceedingly difficult. Addressing this challenge has
prompted the proposal of various techniques and approx-
imations [1–6]. However, each method encounters distinct
difficulties. For instance, exact diagonalization becomes
computationally intractable for large systems due to the expo-
nentially growing basis. Quantum Monte Carlo methods can
encounter the sign problem [7] for many interesting systems.
Tensor networks experience an exponentially increasing bond
dimension for systems with volume-law scaling of entangle-
ment entropy [8,9]. Recently, neural quantum states (NQSs)
were introduced as an alternative method to leverage the ex-
pressive power of neural networks to represent the quantum
wave function [10].

This approach has delivered remarkable results in dis-
covering ground states and describing dynamics of quantum
many-body systems in regimes previously inaccessible via
other methods [11–15]. One key feature that distinguishes
NQSs from tensor networks is the ability to represent volume-
law entangled states [16].

Despite demonstrations of the expressive power of NQSs
[17,18], there is a critical need to understand a metric of com-
plexity for it, similar to how bond dimension and circuit depth
are utilized to characterize tensor networks and quantum
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circuits, respectively. The outstanding question is, What cri-
teria can be employed to quantify the complexity of a neural
quantum state? In a first step we approach this question from a
complementary side: Which states can be easily described by
a neural quantum network? Much like how we know that area-
law states can be efficiently described using a tensor network,
recognizing the states that NQSs can easily describe might be
crucial in advancing our understanding of NQS complexity.

A natural choice is to consider that the complexity is re-
lated to the number of independent variational parameters K
a trained NQS requires to describe a specific quantum state
accurately. In this work, we characterize states that have min-
imal complexity in this sense under the neural quantum states
formalism. In particular, we show that neural quantum states
can describe mean-field theories with permutation symmetry
with a very small number of parameters. We show that, on
a general level, this leads to a reduction in required network
parameters from K × L to just K , where K and L correspond
to the number of hidden neurons and the number of physical
spins, respectively; see Fig. 1 for an illustration.

We demonstrate this using the fully connected transverse-
field Ising model (TFIM). Most importantly, we find that
for this model convergence in the thermodynamic limit is
achieved even with a single parameter, i.e., K = 1. This makes
the mean-field solution of the TFIM as simple as possible
for NQSs. As a next step, we study the behavior of the net-
work beyond mean-field theory by breaking the permutation
symmetry. For that purpose, we consider the long-range in-
teracting TFIM with power-law decaying interactions. This
allows us to tune the deviation from mean field through the
interaction exponent α in a controlled way. We show analyti-
cally that a neural network with a single parameter is sufficient
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(a) (b) (c)

FIG. 1. Permutation-invariant artificial neural networks and training. (a) An unconstrained structure of a general feed-forward network
with one hidden layer. Dashed lines carry no variational parameters, whereas solid lines denote the fact that we compute the product between
the input spin and a variational parameter. (b) Enforcing permutation symmetry leads effectively to a modified neural network architecture,
where the input spin configuration is first transformed into a collective total spin before further processing occurs. (c) Training convergence
and scaling of the ground state search process for the fully connected transverse-field Ising model for different numbers of hidden spins K at a
fixed system size L = 12. Here, εrel is the relative energy error of the neural quantum state with the exact diagonalization result as a reference.

to obtain the ground state for α � 1 in the thermodynamic
limit. As a consequence, we find that the ground state of the
long-range interacting TFIM is still described by a mean-field
theory for this range of values of α.

II. NEURAL QUANTUM STATES
AND PERMUTATION INVARIANCE

Neural quantum states offer a framework that leverages
the expressive capabilities and generalization power of neural
networks to represent quantum wave functions. This approach
relies on the notion of expressing a wave function within a
complete basis set denoted as |s〉, characterized by the expan-
sion

|�〉 =
∑

s

�W(s)|s〉. (1)

Here, �W(s) represents the neural network ansatz which
depends on a set of variational parameters W that we learn
according to a prescription of choice. In this work we will
consider a one-dimensional lattice of size L with periodic
boundary conditions and spin-1/2 degrees of freedom. We
take as a basis |s〉, the spin configuration in the computational
basis.

We are particularly interested in the structure of W for a
permutation-invariant Hamiltonian as it appears naturally for
mean-field theories. For this, we will approximate the wave
function by an artificial neural network. So we consider a
general feed-forward neural network with L input units, K
hidden neurons, no bias, and, last, a single output neuron that
returns the value of ln[�W(s)]. A schematic depiction of the
initial architecture can be found in Fig. 1(a).

One important technique to minimize the number of pa-
rameters needed to describe the wave function in NQSs is to
take advantage of the symmetries at the level of the weight
matrix [10], reducing the number of independent parameters.
As a consequence, given that the network does not need to find
the symmetry on its own, the computational cost of NQSs can
be greatly reduced without compromising the accuracy of the
model.

The variational ansatz for our architecture can be
expressed as

�W(s) = 〈s|�〉 = exp

[∑
i

f (yi(s))

]
, (2)

where yi(s) ≡ ∑
j Wi js j , f denotes the activation function

and Wi j represents the weight matrix elements. However,
to ensure that the output remains invariant under any per-
mutation of the input configuration, we impose a constraint
between the elements of Wi, j . For this, we consider the set
of all possible permutations of the form π : s j → sπ ( j), i.e.,
π (s) ≡ (sπ (1), . . . , sπ (L) ) and we require that

yi(s) − yi(π (s)) =
∑

j

Wi j[s j − π (s) j]
!= 0. (3)

Given that due to the nature of permutations π is a bijective
mapping and hence there is a unique π−1, we then rewrite our
constraint in a more convenient way as∑

j

(Wi j − Wiπ−1( j) )s j
!= 0. (4)

Since this is supposed to hold for any permutation and to be
independent of the values of s j , it follows that the quantity in
parentheses has to vanish, e.g., Wi j = Wiπ−1( j). Given that we
include all possible permutations of our input configurations,
this immediately implies that all elements along the rows are
constrained to be exactly identical (Wi j = Wi). Therefore, our
weight matrix now has the form

W =

⎡
⎢⎣ �w1

...

�wK

⎤
⎥⎦, �wi ≡ Wi [1, 1, · · · , 1]︸ ︷︷ ︸

L

. (5)

Enforcing the permutation symmetry effectively reduced
the number of independent parameters from L × K in the
general weight matrix to K in the constrained case. This is
reminiscent of the implementations of symmetry for trans-
lational invariance in [10,19,20], where the weight matrix is
reduced to a set of circulant matrices [21] and each matrix
can be treated as a convolutional kernel that is applied on all
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translated versions of the spin configuration s. It is worth men-
tioning that permutation symmetry imposes a much stronger
constraint than translation invariance.

As a key consequence of the above considerations, we can
map the symmetry-imposed weight matrix to a new feed-
forward network that takes as input the total magnetization
Ms = ∑

i si and returns the value of ln �(s) [see Fig. 1(b)].
Using this structure, the symmetry-imposed output wave func-
tion can be written as

ln(〈s|�〉) =
K∑

k=1

f (WkMs). (6)

It is important to note that this neural network wave func-
tion is not generally equivalent to a product state ansatz.
Therefore, it opens the possibility to capture finite-size effects
or correlations that could not be accounted for otherwise.
Product states can still be captured by our ansatz, as we will
show in Sec. III, where in the thermodynamic limit this ansatz
becomes a product state asymptotically.

Therefore, when one aims to describe the ground state
of a permutation-invariant Hamiltonian, Eq. (6) provides an
ansatz that accurately approximates the exact value for suffi-
ciently many parameters Wk . This can be guaranteed due to the
fact that multilayer feed-forward neural networks have been
shown to be universal function approximators [22]. Thus, for
any targeted error ε, there exists a K such that∣∣∣∣∣

K∑
k=1

f (WkMs) − ln �(s)

∣∣∣∣∣ < ε. (7)

That is, we may bound our approximation error by an arbitrary
amount ε by tuning the value of K . The natural questions
are, How many parameters are necessary, and how does this
number depend on system size? We discuss them in detail in
the remainder of this paper.

III. LEARNING THE FULLY CONNECTED
TFIM GROUND STATE

We proceed by benchmarking the ansatz proposed in the
previous section for a particular permutation-invariant Hamil-
tonian. This class of systems which give rise to mean-field
models with permutation symmetry can be cast as long-range
spin or boson models [23]. Concretely, we consider the fully
connected TFIM, whose Hamiltonian in terms of the Pauli
matrices Sρ (ρ = x, y, z) takes the form

H = − J

L

∑
i �= j

Sz
i Sz

j − g
∑

i

Sx
i . (8)

This model exhibits a quantum phase transition at gc = 2J
separating a ferromagnetic phase from a paramagnetic phase
[24]. This critical point, as well as ground states and excited
states, was studied previously in [23,25,26]. In the remainder
of this work, we fix the value of J = 1.

Although we expect that the choice of activation function
is not crucial, we will take as the ansatz the one defined in
Eq. (6), with f (x) = ln[cosh(x)] being the activation func-
tion, which is the choice that maps our model to a restricted
Boltzmann machine, which is a common reference for NQSs

FIG. 2. Relative energy for one variational parameter K = 1 un-
der training iterations for several system sizes L. We used exact
sampling when averaging over spin configurations.

[10,11,16]. Therefore, the wave function ansatz we will use in
the following is given by

ln �W(s) =
K∑

�=1

ln cosh(W�Ms). (9)

In order to numerically obtain the ground state of this
model we will use stochastic reconfiguration [27,28] to min-
imize the variational energy E (W ) [see Eq. (13)]. It is of
particular interest to study how the convergence of the model
is affected by the choice of K . That is, for a given system size
L how many parameters do we need to converge to the exact
ground state?

To evaluate the accuracy of this ansatz for finding the
ground state of the fully connected TFIM, we train the model
and track the relative energy,

εrel ≡ |〈H〉 − EED|
EED

, (10)

where the expectation values are defined as 〈· · · 〉 ≡
〈�W| · · · |�W〉, with appropriate normalization of the wave
function, and EED denotes the ground state energy obtained
by exact diagonalization. As a further measure for the accu-
racy of our obtained wave function, we also study the energy
fluctuation density, defined as

σ 2(H ) = 1

L
[〈H2〉 − 〈H〉2]. (11)

If our variational wave function is the targeted ground state,
we will have σ 2(H ) = 0 on fundamental grounds.

In Fig. 1(c) we show the results of the ground state search
training for several choices of K at a fixed small system size
of L = 12. The averages were computed by summing over
the full Hilbert space basis configurations, which we refer to
as exact sampling. We find that as one increases the number
of independent variational parameters K , the model is able
to decrease the error further. This coincides with our claim
emerging from the universal function approximator theorem
in Eq. (7), according to which we can reduce our error arbi-
trarily by taking more parameters K .

At this point, one further question arises: How do the
parameter requirements scale with systems size? To address
this question, in Fig. 2 we show the relative energy for several
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L using only one parameter, K = 1. Here, we use exact diag-
onalization to compute the ground state energy and compare
the results to our variational ansatz. It appears that as L grows,
the K = 1 result improves, signaling that convergence in fact
requires fewer parameters as we increase system size. To
further study this apparent behavior, in the following section,
we will attempt to understand analytically how far we can get
with a single-parameter ansatz.

A. Thermodynamic limit

In this section, we demonstrate that the ground state of
the fully connected TFIM can be exactly described with
only one variational parameter in the thermodynamic limit,
building upon the observed trend in finite-size systems in
Fig. 2. We argue that this result signals the low complexity
of permutation-symmetric models for neural quantum states.
By taking the one-parameter case (K = 1) we can take the
following ansatz:

ln �W (s) = ln[cosh(W Ms)]. (12)

Due to the fact that this ansatz has only one variational pa-
rameter we can compute quantities such as the magnetization,
energy, and energy fluctuations analytically. This will allow
us to show the asymptotic convergence to the ground state in
the thermodynamic limit. To proceed with this computation
we will restrict our system, without loss of generality, to the
ferromagnetic phase and assume that L is sufficiently large.
Under these assumptions, the typical configurations s are such
that |Ms| ∼ L, and hence, we can approximate the ln cosh
function as ln[cosh(W Ms)] ≈ W Ms for W Ms ∼ L 
 1. We
emphasize that the analytics conducted are applicable to any
activation function exhibiting asymptotically linear behavior.
This generality in our findings underscores the broader appli-
cability of the results.

Details on all the following computations can be found in
the Appendix. We first compute the energy

E =
∑

s

Eloc(s)
|〈s|�〉|2
〈�|�〉 , Eloc(s) ≡ 〈s|H |�〉

〈s|�〉 , (13)

as a function of W [10]. For the energy we obtain

E (W ) = −J (L − 1) tanh2(2W )

+ gL tanh(2W ) sinh(2W ) − gL cosh(2W ). (14)

For the ground state we minimize Eq. (14), yielding the value
of W in the ground state, which is given by

W = 1

2
cosh−1

[
2J

g

(
1 − 1

L

)]
. (15)

We can go one step further and relate this single parameter
directly to the mean-field order parameter. If we compute the
magnetization M ≡ L−1 ∑

i〈Sz
i 〉, we find that the parameter W

is related to the magnetization by

M = tanh(2W ) = ±
√

1 − g2

4J2
, (16)

where the second equality was obtained by substituting the
value of W in the ground state equation (15). It is worth men-
tioning that this equation is identical to the self-consistency

equation for the mean-field solution of the nearest-neighbor
Ising model at zero temperature. Then we can identify that
W ∼ M. Hence, it serves as an example of how the network
parameters can be directly related to physical quantities, and
studying their structure may be beneficial to understand NQS
complexity. As a next step, we show that this state is an
eigenstate of our Hamiltonian asymptotically in L. To do this,
we make use of the energy fluctuations. In the Appendix we
obtain as an analytical expression

σ 2(H ) = g4L2

8J2(L − 1)3
. (17)

This result indicates that the scale of the energy fluctuations
asymptotically vanishes as 1/

√
L, implying that, in the ther-

modynamic limit, our ansatz becomes an exact eigenstate
of the Hamiltonian. The one-parameter ansatz also provides
plenty of information about the physics of the model. For
instance, from Eq. (15) one may also extract the critical g sep-
arating the ferromagnetic and paramagnetic regions. This can
be detected by noticing that the cosh−1 becomes undefined for
g > 2J .

IV. BREAKING PERMUTATION SYMMETRY

We now study the effect of deviating from mean field by
breaking the permutation symmetry. For this, we will study
the convergence to the ground state of the long-range inter-
acting TFIM with periodic boundary conditions (PBCs). The
Hamiltonian for this model is given by

H = − J

N (L, α)

∑
i �= j

1

|i − j|α Sz
i Sz

j − g
∑

i

Sx
i , (18)

where N (L, α) ≡ 1
L−1

∑
i �= j

1
|i− j|α is the so-called Kac nor-

malization factor used to ensure that the energy is extensive.
We take |i − j| to be the minimum distance between two
lattice sites under PBCs. When α = 0, the model is equivalent
to the fully connected TFIM studied before, while as α → ∞,
the model reduces to the nearest-neighbor transverse-field
Ising model. This model can be realized experimentally in
trapped-ion simulators for 0 � α � 3.5 [29–35] and is known
to go through several phase transitions as a function of α

[36–57]. This setup is ideal for our purposes because we can
adjust the deviation from mean field upon tuning the value of
α, observing the eventual breakdown of our ansatz.

To verify the convergence to the ground state of this model
as we vary the interaction range α, we compute the energy
fluctuation density σ 2(H ) of the one-parameter ansatz. We
deduce an analytical expression which allows us to establish
its system-size dependence:

σ 2(H ) = g2 tanh2(2W ) − 4Jg

(
1 − 1

L

)
tanh2(2W )

cosh(2W )

+ 4J2[tanh2(2W ) − tanh4(2W )]

N (L, α)2 L

×
∑

i �= j �=k

1

|i − j|α| j − k|α

+ 2J2[1 − tanh4(2W )]

N (L, α)2 L

∑
i �= j

1

|i − j|2α
. (19)
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FIG. 3. Normalized energy fluctuations of the long-range in-
teracting transverse-field Ising model are shown as a function of
interaction range α for various system sizes. The fluctuations are
normalized by the coupling J due to the inaccessibility of the gap
in the thermodynamic limit for nonzero values of α. In red we show
the limiting curve in the thermodynamic limit.

The details of this computation can be found in the Appendix.
Given that we are interested in the thermodynamic limit be-
havior, we go ahead and rewrite the two remaining sums in
terms of the generalized harmonic numbers Hn,r ≡ ∑n

k=1 k−r .
For r > 1, we make use of the fact that, in the limit when
n → ∞, Hn,r converges to the Riemann zeta function defined
as ζ (r) ≡ ∑∞

k=1 k−r . This allows us to obtain the energy fluc-
tuations in the thermodynamic limit directly as

σ 2(H ) = g4

16J2

⎧⎨
⎩

H∞,2α

H2∞,α
, if α � 1,

ζ (2α)
ζ (α)2 , if α > 1.

(20)

By analyzing the generalized harmonic series ratio con-
vergence as a function of α in Eq. (20), we find that, in
general, for α � 1 the energy fluctuations will vanish. This
result implies that even though we have broken the permuta-
tion symmetry, our ansatz is still able to exactly approach the
ground state for large enough systems, which is remarkable.

For the case of α > 1, we no longer have diverging sums
and can write the entire expression as a function of the ratio
of the Riemann zeta functions. With this, we have the precise
scaling with which the energy fluctuations decay as a function
of α in the thermodynamic limit. In Fig. 3, we plot the expres-
sion σ 2 for different system sizes. Remarkably, we observe
that the fluctuations vanish asymptotically as 1/

√
L for α �

1/2 precisely, like for the α = 0 mean-field case. In contrast,
for 1/2 < α � 1 the fluctuations still vanish asymptotically,
but with a slower decay. For this last interval the decays
at the edges (α = 1/2, 1) follow the scalings

√
ln(L)/L and√

ζ (2)/ ln(L), respectively. For values of α > 1, we also plot
the limiting curve, where we see that the energy fluctua-
tions steadily increase until they saturate to an upper bound
value of g2/4J . This value comes from evaluating the energy
fluctuation density at the ground state with the W given by
Eq. (15).

The one-parameter ansatz consequently exactly captures
the ground state for a finite range of α values. Interestingly,

we find that the one-parameter ansatz can exactly describe
quantum states even without permutation symmetry in the
thermodynamic limit. Furthermore, it indicates that the long-
range interacting TFIM has a simplified ground state within
the range 0 < α � 1.

This type of long-range Ising model is known to exhibit
quantum phase transitions as a function of α and a Kosterlitz-
Thouless transition at α = 1, and for α � 2 one recovers
short-range behavior [29,36–38]. However, the details of the
ground state properties in particular in the regime of low α

have not been fully settled. For instance, Ref. [37] found that
for even larger α < 5/3 the ground state might be described
by a long-range mean-field theory. It is unclear, however, to
what extent the utilized ε expansion in this high-α regime
remains accurate.

For a comprehensive study of the prior findings related
to this model, we would like to further direct the reader’s
attention to the recent review in Ref. [58]. It is essential
to emphasize that while our conclusion of mean-field type
behavior may appear intuitive, there has been a notable ab-
sence of formal proof establishing this model’s ground state
as a one-parameter simplified ansatz. While previous com-
putations, employing linear spin wave theory, for instance,
indeed yielded results consistent with our own observations,
it is worth emphasizing that a crucial difference has also
remained. Within linear spin wave theory it has been shown
that no inconsistencies are generated [58], which likely makes
the approach reliable, but it is still based on some unproven
assumptions. Here, with our approach no such assumption
is required, providing us with a conclusive and rigorous
proof.

V. CONCLUSION

In this work, we investigated a class of models that demon-
strate minimal complexity within the framework of NQSs in
the sense of the number of parameters required to describe
the ground state. By imposing permutation symmetry on our
networks, we found that NQSs are particularly well suited
to describing permutation-invariant mean-field states. To val-
idate this claim, we investigated the ground state of the fully
connected TFIM. In particular, we showed that, even for finite
systems, the ground state can be accurately captured using a
small number of parameters and this approximation improves
as the system size increases.

An important advantage of our approach is the ability to
capture finite-size effects, entanglement and quantum correla-
tions, as it does not necessarily assume a product state. This
is particularly relevant; as discussed in detail, for instance,
in Ref. [23], permutation symmetry does not always imply
a product state structure, especially for finite-size systems or
for dynamics. For the latter case it is also very important to
note that such permutation-invariant Hamiltonians are key for
the creation of spin squeezed states through one-axis twisting
[59]. Let us note, however, that we furthermore showed that
product states, such as those observed in the thermodynamic
limit of our model, can still be achieved. Specifically, by opt-
ing for an activation function which behaves linearly at least
asymptotically, we can witness the emergence of a product
state structure for the ground state in the thermodynamic limit.
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Motivated by these observations, we proposed a one-
parameter ansatz and analytically showed that the ground
state can be described by a single variational parameter in the
thermodynamic limit. Furthermore, we examined the impact
of breaking permutation symmetry by studying the ground
state of the long-range interacting TFIM and tuning the inter-
action range. Surprisingly, we found that the one-parameter
ansatz remains effective for values of α up to 1, suggesting
that the model is still described by the mean field in this
regime and robustness in the presence of weak symmetry
breaking.

A potential direction for future research lies in exploring
the possibility of learning potential simplifications, such as the
one discussed in this work for permutation symmetry, within
the NQS parametrization directly from the network parame-
ters. Such an approach may have the ability to shed light on
the overall complexity of the network for more complicated
scenarios. Additionally, an intriguing angle to consider is
whether we can uncover underlying physics in the network
parameters, such as the relation found here between the one-
parameter model and magnetization. In other words, can we
demystify the black-box nature of the neural network and
gain insights into the specific physical principles it exploits
to represent the quantum state effectively?

While our work has shed some light on which quantum
states are easy to capture with NQSs, it remains an open
question to identify a general and physical characterization
of states which are difficult for NQSs. Recent developments
have highlighted that even ground states of frustrated quantum
magnets appear to be manageable within NQSs [12], although
very deep networks seem to be necessary in order to achieve
quantitative accuracy. This suggests that the intricate sign
structure in such frustrated quantum magnets might be what
is difficult to represent within NQSs. This would apply equiv-
alently to fermionic quantum matter. However, this question
will have to be explored in further detail in order to eventually
arrive at a physical understanding of NQS complexity in the
end.

The data shown in the figures are available from
Zenodo [60].
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APPENDIX: ANALYTICAL COMPUTATIONS

1. Ground state energy

In this Appendix, we provide further details on the analyt-
ical computations discussed throughout the text. We start by

recalling our model Hamiltonian and normalization factor:

H = −J

N (L, α)

∑
i �= j

1

|i − j|α Sz
i Sz

j − g
∑

i

Sx
i , (A1)

N (L, α) = 1

L − 1

∑
i �= j

1

|i − j|α . (A2)

We are interested in computing the local energy, which is
defined as Eloc(s) = 〈s|H |�〉

〈s|�〉 . For our model, the local energy
takes the form

Eloc(s) = −J

N (L, α)

∑
i �= j

sis j

|i − j|α − g
∑

i

〈s′(si)|�〉
〈s|�〉 , (A3)

where s′(si ) means we have flipped the spin in the ith site. Us-
ing the fact that ln〈s|�〉 = ln cosh(W

∑
i si ) from our ansatz,

we can rewrite the second term as

Eloc(s) = −J

N (L, α)

∑
i �= j

sis j

|i − j|α

− g
∑

i

exp

{
ln cosh

(
W

∑
i

s′
i

)

− ln cosh

(
W

∑
i

si

)}
. (A4)

In the ferromagnetic phase, we can use the approximation
ln cosh x ≈ x for x ∼ L 
 1. Making this approximation, the
second term reduces to

Eloc(s) = −J

N (L, α)

∑
i �= j

sis j

|i − j|α − g
∑

i

e−2W si . (A5)

To eliminate the exponential term and have all dependence
on si be polynomial, we can make use of the following iden-
tity:

e−2W si = cosh(2W ) − sinh(2W )si, for si = ±1. (A6)

This simplification may not immediately be obvious, but it
will be helpful when we sum over all spin configurations. Us-
ing this identity, we can simplify our local energy expression
to the form

Eloc(s) = −J

N (L, α)

∑
i �= j

sis j

|i − j|α − gL cosh(2W )

+ g sinh(2W )
∑

i

si. (A7)
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With this local energy, we can compute the total energy of the system as follows:

E =
∑

S

Eloc(s)
|〈s|�〉|2

N
; N ≡

∑
S

|〈s|�〉|2. (A8)

The normalization can readily be computed from our ansatz and the exponential term simplification,

N = |〈s|�〉|2 =
∑

S

e2W
∑

i si =
∑

S

∏
i

e2W si =
∑

S

∏
i

cosh(2W ) − g sinh(2W )si = coshL(2W )2L. (A9)

Analogously, by substituting into the equation for the total energy, we derive the subsequent expression

E = 1

coshL(2W )2L

[
−J

N (L, α)

∑
i �= j

1

|i − j|α
∑

S

sis j

∏
k

[cosh(2W ) + sinh(2W )sk]

+ g sinh(2W )
∑

S

∑
i

si

∏
k

[cosh(2W ) + sinh(2W )sk]

]
− gL cosh(2W ). (A10)

The importance of the polynomial dependence in si becomes evident in this expression. Specifically, in the first term, two
terms in the product will interact with the external si and s j , respectively, namely, [cosh(2W )si + sinh(2W )] and [cosh(2W )s j +
sinh(2W )]. Thus, the first term contains two terms that give sinh(2W ) and L − 2 terms that give cosh(2W ), so that the overall
expression simplifies to

E = 1

coshL(2W )2L

[
−J

N (L, α)

∑
i �= j

1

|i − j|α 2L sinh2(2W ) coshL−2(2W )

+ g sinh(2W )
∑

i

2L sinh(2W ) coshL−1(2W )

]
− gL cosh(2W ). (A11)

Having successfully summed over all spin configurations, we arrive at the final expression for the energy:

E = −J (L − 1) tanh2(2W ) + gL tanh(2W ) sinh(2W ) − gL cosh(2W ). (A12)

The minimization procedure is straightforward from here:

∂E

∂W
= 0 = [1 − tanh2(2W )] [−2J (L − 1) tanh(2W ) + gL sinh(2W )]︸ ︷︷ ︸

cosh(2W )= 2J
gL (L−1)

. (A13)

2. Energy fluctuations

The other quantity we need to compute analytically is the energy fluctuation density,

σ (H )2 = 1

L
[〈H2〉 − 〈H〉2]. (A14)

For the fluctuations, all that remains to be computed is the first term 〈H2〉 since the second term is precisely the energy computed
above 〈H〉 = E . In particular, a good simplification we can perform to rewrite the H2 term in terms of the local energy is

〈H2〉 = 1

N

∑
S

Eloc(s)2 |〈s|�〉|2. (A15)

The form of Eloc(s)2 is given by

Eloc(s)2 = J2

N (L, α)2

∑
i �= j,n �=k

sis jsnsk

|i − j|α|n − k|α + 2JgL

N (L, α)
cosh(2W )

∑
i �= j

sis j

|i − j|α + g2L2 cosh2(2W )

− 2Jg

N (L, α)
sinh(2W )

∑
i �= j,k

sis jsk

|i − j|α − 2g2L cosh(2W ) sinh(2W )
∑

i

si + g2 sinh2(2W )
∑
i �= j

sis j . (A16)

Now, to sum over spin configurations it is convenient to split the sums into sums in which all the indices are different. To give
an example of this we consider the expansion of the first term in Eq. (A16),∑

i �= j,n �=k

sis jsnsk

|i − j|α|n − k|α =
∑

i �= j �=n �=k

sis jsnsk

|i − j|α|n − k|α + 4
∑

i �= j �=k

sisk

|i − j|α| j − k|α + 2
∑
i �= j

1

|i − j|2α
. (A17)
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Analogously, we may rewrite all sums in this way to apply the same method to sum over spin configurations as the one used
in the energy calculation. If we follow this process, we find that the value of the expectation value of H2 is

〈H2〉 = J2

N (L, α)2

⎡
⎣tanh4(2W )

∑
i �= j �=n �=k

1

|i − j|α|n − k|α + 4 tanh2(2W )
∑

i �= j �=k

1

|i − j|α| j − k|α + 2
∑
i �= j

1

|i − j|2α

⎤
⎦

+ 2JgL(L − 1) cosh(2W ) tanh2(2W ) − 2Jg(L − 1) sinh(2W )[tanh3(2W )(L − 2) + 2 tanh(2W )] + g2L2 cosh2(2W )

− 2g2L2 sinh2(2W ) + g2 sinh2(2W ) tanh2(2W )L2 − g2 sinh2(2W ) tanh2(2W )L + Lg2 sinh2(2W ). (A18)

With Eqs. (A12) and (A18) we can now compute the fluctu-
ations directly as a function of the variational parameter W . To
reach the specific expression in Eq. (19) we reuse the identity
in (A17), but now to get rid of the 4 index sum. It is also
convenient to write all the sums in terms of the generalized
harmonic numbers. To do that we use the following two iden-
tities for odd L (the even case can be obtained by subtracting
a correction term due to overcounting):∑

i �= j

1

|i − j|α = 2L H� L
2 �,α, (A19)

∑
i �= j �=k

1

|i − j|α| j − k|α = L
(

4H2
� L

2 �,α − 2H� L
2 �,2α

)
. (A20)

3. Magnetization

To compute the magnetization as expressed in
Eq. (16), we calculate the expected value of the Sz

i
operator with the one-parameter ansatz. The calculation is
performed as follows:

〈
Sz

i

〉 = 1

N

∑
S

si |〈s|�〉|2

= 1

N

∑
S

si

∏
k

[cosh(2W ) + sinh(2W )sk]

= tanh(2W ). (A21)
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