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Cone beam neutron interferometry: From modeling to applications
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Phase-grating moiré interferometers (PGMIs) have emerged as promising candidates for the next generation of
neutron interferometry, enabling the use of a polychromatic beam and manifesting interference patterns that can
be directly imaged by existing neutron cameras. However, the modeling of the various PGMI configurations is
limited to cumbersome numerical calculations and backward propagation models which often do not enable one
to explore the setup parameters. Here we generalize the Fresnel scaling theorem to introduce a k-space model for
PGMI setups illuminated by a cone beam, thus enabling an intuitive forward propagation model for a wide range
of parameters and experimental setups. The interference manifested by a PGMI is shown to be a special case of
the Talbot effect, and the optimal fringe visibility is shown to occur at the moiré location of the Talbot distances.
We derive analytical expressions for the contrast and the propagating intensity profiles in various conditions
and provide the first analysis of the PGMI dark-field imaging signal when considering sample characterization.
The model’s predictions are compared to experimental measurements and good agreement is found between
them. Last, we propose and experimentally verify a method to recover contrast at typically inaccessible PGMI
autocorrelation lengths. The presented work provides a toolbox for analyzing and understanding existing PGMI
setups and their future applications, for example extensions to two-dimensional PGMIs and characterization of
samples with nontrivial structures.
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I. INTRODUCTION

Outstanding issues in fundamental physics and ongoing
advances in material science have created a need for the
development of novel interferometry techniques and charac-
terization tools. Neutrons are a powerful probe of nature and
materials, as their nanometer-sized wavelengths and electric
neutrality enable unique scattering capabilities that are com-
plementary to x rays and electrons [1–3]. The development
and deployment of neutron interferometry setups and diffrac-
tion components remains a vibrant research field [4–7].

Traditional Mach-Zehnder designs of neutron interfer-
ometers enjoyed a long record of success in performing
fundamental tests of. nature and exploring neutron interac-
tions [8]. However, the stringent requirements on alignment,
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environmental isolation, and narrow wavelength acceptance
[9–11] have shifted the focus onto grating-based designs that
are capable of working in the full field of the neutron beam and
require a relatively low amount of isolation [12–18]. These
emerging setups employ the “Talbot effect” which describes
the self-imaging that occurs after a wave passes through a
periodic structure [19]. For example, passing neutrons with
wavelength λ through a grating with period pG induces a
self-image of the grating profile after the neutrons propagate
a distance of 2p2

G/λ. A shortcoming in these neutron setups
is the fact that they require the placement of an absorption
grating at the imaging plane in order to observe the self-image.
The self-image from micron-sized gratings is not detectable
via typical neutron cameras with resolution �100 µm.

The newest form of neutron interferometry setups are the
phase-grating moiré interferometers (PGMIs) whose optimal
fringe visibility occurs with periods on the millimeter scale,
thus enabling direct detection with a neutron camera without
the need for an absorption grating [20–24]. The PGMIs are
composed of exclusively phase gratings and work in the full
field of a cone beam [25]. The standard approach to modeling
the PGMIs is through the near-field approximation of the
Kirchhoff-Fresnel diffraction [20,25,26]. However, the rather
large span in the length scales makes the simulation of relevant
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coherent phenomena with cone beam illumination particularly
difficult: The typical values include wavelength distributions
that peak in the angstrom range, diffraction features on the
micrometer scales, and propagation distances that can span
several meters. The work presented here addresses this prob-
lem by introducing a forward propagation model that can be
used to explore complicated geometries and various setup
parameters. The model is derived by extending the Fresnel
scaling theorem [27] to the illumination of multiple objects
and is similar to the k-space formalism in magnetic resonance
[28–30].

The paper is structured as follows: Sec. II provides a
brief introduction to self-imaging and the Talbot effect. Sec-
tion III provides the derivation of the k-space model for
simulating the cone beam illumination of multiple objects.
Analytical equations are provided allowing calculation of the
moiré interference pattern intensity profile and fringe visi-
bility for different setup geometries. In Sec. IV we show
good agreement with previously published PGMI data for
both two-PGMI and three-PGMI setups. In the following
two subsections we provide the first analysis of fringe vis-
ibility with the use of source gratings and the first analysis
of the dark-field imaging (DFI) signal when performing
sample characterization with PGMIs. Last, we predict and
experimentally verify that it is possible to recover fringe vis-
ibility at typically inaccessible interferometer autocorrelation
lengths by varying the location of the phase gratings in the
setup.

II. PHASE GRATINGS AND THE TALBOT EFFECT

After a neutron passes though a material of thickness h
it accumulates a phase shift with respect to passing through
vacuum:

α = 2π (1 − n)h

λ
= Nbcλh, (1)

where n is the material’s index of refraction and Nbc is the
scattering length density. It follows that a binary phase grating
with a 50% duty cycle, an offset of x1, period pG, and height
h induces a periodic phase shift over the wave front:

f (x) = α

2
sgn

{
sin

[
2π

pG
(x − x1)

]}
. (2)

We first take the case of a collimated beam that is propa-
gating along the z direction and is well approximated by kx =
0, kz = |kr | = k0 = 2π/λ. On propagating through the phase
grating the transverse momentum spectra is given by P(kx ) =
|�(kx )|2, where the transverse momentum wave function is
given by:

�(kx ) = � j (kx ) ∗ F{e−i f (x)}, (3)

where

F{e−i f (x)} = δ(kx ) cos

(
α

2

)

+ sin

(
α

2

)∑
m

2e−ikGmx1

πm
δ(kx − mkG), (4)

kG = 2π/pG is the grating wave vector, m = · · · −
3,−1, 1, 3 · · · are the nonzero diffraction orders from a binary

phase grating with a 50% duty cycle, � j (kx ) is the incoming
momentum wave function, δ() is the Dirac delta function, F{}
is the Fourier transform, and ∗ is the convolution operator.
The first term in Eq. (4) is the zeroth diffraction order and the
second term is the sum over the higher odd orders. A typical
diffraction order spectra obtained from Eq. (4) is depicted on
Fig. 1(a) and can be extended to multiple gratings as shown
in Figs. 1(b) and 1(c). The amplitude terms dictate that for a
phase grating with α = π , i.e., a π phase grating, the zeroth
order is suppressed, while α = π/2 prepares a state which
contains an equal amount of the zeroth order and all of the
higher orders combined.

To determine the transverse intensity profile as the beam
propagates after the phase grating we must take into account
the coupling between the momentum in the transverse and
propagation directions. From conservation of momentum we
can infer that the phase grating effectively rotates each diffrac-
tion order in k space. Therefore, the mth diffraction order
gains a transverse wave vector of mkG and its longitudinal
wave vector becomes

βm =
√

k2
0 − (mkG)2 ≈ k0

(
1 − m2k2

G

2k2
0

)
= 2π

λ

(
1 − m2λ2

2p2
G

)
,

(5)

where the right-hand side is obtained via the paraxial approx-
imation; which is valid for the relevant neutron experiments
where typically λ ≈ 10−9 m and pG ≈ 10−6 m. The total mo-
mentum wave function after a collimated beam passes through
a phase grating is then given by:

�(kx, kz ) = δ(kx, kz − k0) cos

(
α

2

)

+ sin

(
α

2

)∑
m

2e−ikGmx1

πm
δ(kx − mkG, kz − βm)

(6)

and the intensity for any point after the phase grating can be
computed from:

I (x, z) = |F−1{�(kx, kz )}|2. (7)

Using the equations above, we can determine the intensity
profile after the phase grating:

I (x, z) =
∣∣∣∣∣cos

(
α

2

)
+ sin

(
α

2

)∑
m

2

πm
e−i

(
m2k2

G
2k0

)
zeimkG(x−x1 )

∣∣∣∣∣
2

.

(8)

Here we can note that the phase shifts proportional to m2

(m) manifest themselves in the intensity profile as a translation
along the propagation (transverse) direction. The latter can
be obtained by translating the grating along the transverse
direction and thus varying x1. This is commonly referred to
as “phase-stepping.”

The Talbot effect, or self-imaging, is a near-field phe-
nomenon that is observed after periodic structures are
illuminated by waves [19]. It arises from the interference
of the diffraction orders before they propagate into the
far field and become spatially separated. For special val-
ues of z we can retrieve the original wave function and
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(a) (b) (c)

FIG. 1. Central section of the diffraction spectra in phase-grating interferometers for (a) a single binary π/2 phase grating with 50%
duty cycle, (b) two-phase-grating moiré interferometer, and (c) three-phase-grating moiré interferometer. The amplitude of the diffraction
orders is dependent on the induced phase shift, in these examples α = π/2, except for the middle grating of the three PGMI where α = π .
The wave-vector groups that provide the main contribution to a moiré pattern in two-PGMI and three-PGMI are highlighted in red and
blue.

thereby achieve self-imaging. Substituting z = 4πk0/k2
G =

2p2
G/λ yields e−i2πm2 = 1 for all integer values of m, and

hence the result is equivalent to setting z = 0. While setting
z = 2πk0/k2

G = p2
G/λ yields e−iπm2 = −1 for all integer val-

ues of m, and the only difference is that there is a minus
sign in front of the diffraction order sum. This represents
the wave function at z = 0 where the phase grating has been
translated by half a period, as e−imkGx1 = −1 for all m when
x1 = pG/2. The first and second distances are known as the
Talbot (zT = 2p2

G/λ) and half Talbot distance (zT/2 = p2
G/λ),

and they are displayed in Fig. 2.

III. k-SPACE MODEL FOR CONE BEAMS

The Fresnel scaling theorem states that the intensity ob-
tained with cone-beam illumination of an object can be
modeled as a scaled parallel-beam illumination [27]. The
theorem dictates a geometrical magnification to the intensity
profile as follows: To compute the intensity profile I (x, z) after
a propagation of distance z following a previous propagation
of distance z0 we can scale the transverse and longitudinal
coordinates as (x → x/M, z → z/M ) where:

M = (1 + z/z0). (9)

Here we introduce a k-space model for PGMI setups
by extending the Fresnel scaling theorem to the illumi-
nation of multiple objects that are spatially separated. In
order to do that, we have to consider the geometrical ex-
pansion of the wave function �(kx, kz ) as the cone beam
propagates. The model is based on the following set of
postulates:

(1) The geometrical scaling of the spatial coordinates
in the Fresnel scaling theorem can equivalently be inter-
preted as an input wave whose wave vector is being scaled
with propagation, k0 → k0/M. That is, eik0(r/M ) = ei(k0/M )r . It
follows that the transverse and longitudinal wave vectors are
being scaled as well: kx → kx/M and kz → kz/M; while the

angle of propagation remains constant with propagation: θ =
sin−1(kx/k0) = sin−1(Mkx/Mk0).

(2) Each new object with a spatial phase profile of f (x)
introduces a convolution between F{e−i f (x)} and the incoming
momentum-space wave function. That is, each diffraction or-
der of e−i f (x) rotates each incoming wave vector to point along
a new direction. The previous section outlines this for the case
of a single phase grating. We can observe that as a conse-
quence of postulate 1, in a system consisting of two identical
phase gratings that are spatially separated, the second phase
grating will produce a different amount of rotation compared
to the first. Note that in the case of attenuating objects the
convolution kernel becomes F{ f (x)}.

(3) A propagation of distance z induces a phase shift of
eikzz/M onto each magnified diffraction order.

(4) A new z coordinate (z′) is defined after each new ob-
ject, where z′ = z/M is the scaled old coordinate (z) and z′ =
0 is set at the location of the new object. This extra scaling fac-
tor is necessary because the induced phase due to propagation
(postulate 3) is not linear with z because the magnification is
coupled to the z coordinate. Take for instance the propagation
of a distance L1 followed by propagation of a distance L2, re-
sulting in a phase of eikzL1/(1+L1/L0 )eikzL2/[(1+L1/L0 )(1+L2/(L0+L1 )].
This is not equivalent to eikz (L1+L2 )/(1+(L1+L2 )/L0 ), which would
result from considering a direct propagation distance of
L1 + L2. This behavior is unlike the case of simple plane
waves where eikzL1 eikzL2 = eikz (L1+L2 ). The definition of z′ recti-
fies this whereby eikzL1/(1+L1/L0 )eikzL2/([1+L2/(L0+L1 )][1+L1/L0]2 ) =
eikz (L1+L2 )/(1+(L1+L2 )/L0 ).

(5) The intensity profile after the final object is computed
according to Eq. (7): I (x, z) = |F−1{�(kx, kz )}|2.

(6) The “contrast” or “visibility” of a particular transverse
wave vector (kM ) is computed by V = 2|H (kM )/H (0)|,
where H (kx ) is the autocorrelation function of
�(kx ).

The above postulates allow us to compactly implement
a model for a general setup consisting of q objects with
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FIG. 2. The top row considers the propagating intensity profile in a parallel beam geometry after a single π/2 phase grating with period
pG and after two π/2 phase gratings with slightly different periods manifesting a moiré period of pm. The single phase grating manifests the
well-known Talbot effect whereby a self-image is obtained after a propagation of z = 2p2

G/λ ≡ zT . The interference between the diffraction
orders of two phase gratings with slightly different periods gives rise to the moiré period pm, Talbot-moiré distance zT m, average period pa,
and average Talbot distance zTa. The bottom row considers a cone beam geometry whereby the moiré arises even when the two phase gratings
have the same period. The moiré parameters are typically observed in a neutron PGMI setup, whereas the higher frequency interference effects
(shown in the inset) are not resolved. Last, we can note that in the case of the cone beam illumination the period of the interference patterns as
well as the self-imaging distances are continuously magnified by a factor M = (1 + z/z0), where z0 is the distance from the source to the last
grating.

periodic structures, where the first object is a distance of
L1 from the slit, the second object is a distance of L2 from
the first object, and so on. For an implementation example

with the two-PGMI and the corresponding pseudocode, see
Appendix 1. The intensity profile after the last object is given
by:

I (x, z) =
∣∣∣∣∣

∑
m1,m2...mq

(
am1 am2 · · · amq

)
ei k0L2

M1
cos θm1 e

i k0L3
M2

1 M2
cos θm1 ,m2 · · · e

i
k0Lq

M2
1 M2

2 ...Mq−1
cos θm1,m2 ...mq−1

× e
i 1

M1M2 ···Mq−1
1

1+z/(L1+L2+L3+···+Lq ) k0( z
M1M2 ...Mq−1

cos θm1,m2 ...mq +x sin θm1,m2 ...mq )

∣∣∣∣∣
2

, (10)

where z = 0 is the location of the last object,
∑

mj
amj are

the Fourier coefficients of the jth object, Mj = 1 + Lj+1/

(L1 + L2 + · · · + Lj ) is the scaling factor between object
j and j + 1, and θm1,m2...,mj = sin−1[(M1M2 · · · Mj−1kG1 +
M1M2 . . . Mj−2kG2 + . . . + kGi )/(M1M2 . . . Mj−1k0)] are the
diffraction angles after the object j with wave vector kGi. See
Appendix A 2 for a derivation of the two- and three-PGMI
intensity profiles.

A. Effects of experiment parameters: Wavelength distribution,
slit width, and camera pixel size

The observed interference pattern at the camera is built
up by the incoherent sum of each wavelength contribution.
Therefore, to account for wavelength spread we can simply
integrate over the particular wavelength distribution. Wave-
length dependence shows up in the k0 term as well as the
diffraction amplitude terms.
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The analysis so far has considered a cone beam from a
point source. However, a typical neutron PGMI setup incor-
porates the use of a slit. Note that the displacement of the
point source directly results in a displacement of the inter-
ference pattern at the camera. Therefore, the slit manifests an
incoherent sum of displaced interference patterns. This can
either be accounted for with a straightforward convolution of
output intensity with a step function of slit sized width or by
integrating the point source location over the slit’s width.

The last consideration is the camera resolution. Although
the typical values of the effective camera pixel size are rel-
atively large, they are still smaller than the slit size which
creates a similar averaging effect. Pixel size can be incorpo-
rated through a convolution with a rectangular function or by
binning the final intensity into pixel-sized intervals.

B. Fringe visibility or contrast

The “fringe visibility” or “contrast” (V ) of the observed
intensity profile (I ) is a measure of interference, and it is
typically defined as:

V = Imax − Imin

Imax + Imin
. (11)

The presented k-space model allows us to determine the
intensity profiles at the camera from which we can determine
the fringe visibility. Fitting the observed interference pattern
to a sinusoid with a specific spatial frequency:

I = A + B cos(2πx/pM + φ0), (12)

where pM is the period of the oscillation and φ0 is the phase
shift, the fringe visibility of the particular frequency kM =
2π/pM is given by V (kM ) = B/A. In addition to computing
the contrast from the fit, the contrast value could also be
computed from the Fourier transform of the intensity profile
H (kx ), where V (kM ) = 2|H (kM )/H (0)|. Determining the visi-
bility at each pixel using a combination of phase stepping (see
Sec. II) and the Fourier transform is a typical procedure.

As per the Wiener-Khinchin theorem, the presented k-
space model also allows us to calculate the contrast from the
autocorrelation of �(kx, kz ):

F{I (x, z) ∗ fslit(x) ∗ fpixel(x)}
= [�(kx, kz ) ∗ �∗(kx, kz )] × Fslit(kx ) × Fpixel(kx ). (13)

This result is extremely powerful and makes the determina-
tion of contrast computationally straightforward for arbitrary
configurations.

IV. OBSERVATIONS AND MODEL APPLICATIONS

A. Moiré of the Talbot effects

The first observation we can make is that the observed
interference in a PGMI setup is the moiré of the Talbot effects.
Consider the case of a collimated beam illuminating a system
of two phase gratings f1(x) and f2(x) with different periods
p1 and p2. It is important to note that the neutron two-PGMI
is concerned with phase profiles given by f1(x) + f2(x) that
results from the sum of two independent binary phase grat-
ings. This is different from the conventional concept of a
beat grating with a profile in the form of α

2 sgn{cos[ 2π
p1

(x −

x1)] + cos[ 2π
p2

(x − x1)]}. The profile of the conventional beat
gratings possesses two amplitude values while the profile of
f1(x) + f2(x) possesses three. With a collimated beam input,
the moiré period (pm), average period pa, Talbot-moiré dis-
tance zT m, and the average Talbot distance zTa are given by:

pm = p1 p2

p1 − p2
zT m = zT 1zT 2

zT 1 − zT 2
= 2p2

1 p2
2

λ
(
p2

2 − p2
1

) , (14)

pa = 2p1 p2

p1 + p2
zTa = 2zT 1zT 2

zT 1 + zT 2
= 4p2

1 p2
2

λ
(
p2

1 + p2
2

) . (15)

These parameters are depicted on Fig 2.
With cone beam illumination, these parameters get magni-

fied as the cone beam propagates along z: pM = M pm, zT M =
MzT m, pA = M pa, zTA = MzTa, where M = (1 + z/z0), see
Eq. (9). A typical two-PGMI setup is composed of two grat-
ings with equal periods (p1 = p2 = pG), where the distance
from the slit to the first grating is L1, distance between the
two gratings is d , and the distance from the second grating to
the camera is L2. We can rewrite the relevant variables at the
location of the camera as:

pM = LpG

d
zT M = 2p2

GL(d + L1)

λd (d + 2L1)
, (16)

pA = 2LpG

d + 2L1
zTA = 4p2

GL(d + L1)

λ
(
d2 + 2dL1 + 2L2

1

) , (17)

where L = L1 + d + L2 is the distance from the slit to
the camera. These parameters and their magnification with
propagation are depicted on Fig. 2. pM and zT M are typ-
ically observed in a neutron PGMI setup, whereas the
higher-frequency interference effects (shown in the inset) are
not resolved. It is expected that the development of high-
resolution neutron cameras [31] should enable the direct
observation of these finer interference effects.

B. Two-PGMI analysis

Let us now consider applying the described k-space model
to the previously published works on the two-PGMI. The
computational simplicity of the provided equations allows us
to compute the contrast of a setup without the need for typical
approximations, for example neglecting the |m| > 1 terms.
We can directly determine the contrast of a two-PGMI setup
while taking into account the slit size, wavelength distribution,
and camera resolution.

There are three independent two-PGMI setups that were
characterized at the National Institute for Standards and
Technology Center for Neutron Research (NCNR) [20]. The
first setup labeled “Monochromatic” had the following pa-
rameters: grating period pG = 2.4 µm, grating height h =
9.3 µm, L1 = 1.2 m, L = 3.04 m, λ = 4.4 Å, slit size 200 µm,
and camera resolution of 100 µm; the second setup labeled
“Bichromatic” had the following parameters: grating period
pG = 2.4 µm, grating height h = 9.3 µm, L1 = 1.73 m, L =
3.51 m, 1/4.2 intensity λ = 2.2 Å and 3.2/4.2 intensity λ =
4.4 Å, slit size 200 µm, and camera resolution of 100 µm;
the third setup labeled “Polychromatic” had the following
parameters: grating period pG = 2.4 µm, grating height h =
6.1 µm, L1 = 4.65 m, L = 8.36 m, a wavelength distribution
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TABLE I. Parameters from the three independent two-PGMI setups that were characterized in Ref. [20]. The “slit fit” is obtained here with
the k-space model using a least-squares fit on the slit size. The simulated curves with the best-fitted slit width are shown in Fig. 3.

L1 (m) L (m) pG (µm) h (µm) Res (µm) λ (Å) Slit (µm) Slit fit (µm)

Mono 1.2 3.04 2.4 9.3 100 4.4 200 230 ± 24
Bi 1.73 3.51 2.4 9.3 100 24% 2.2 and 76% 4.4 200 230 ± 24
Poly 4.65 8.36 2.4 6.1 150 Appendix A 3 500 590 ± 46

somewhat resembling a Maxwell-Boltzmann distribution with
λc = 5 Å (see Appendix A 3), slit size 500 µm, and a cam-
era resolution of 150 µm. All of the parameters are listed in
Table I.

The comparison between the experimentally measured
contrast vs grating separation (d ) in these three setups and the
simulated contrast using the k-space model is shown in Fig. 3.
The simulations are done with a least-squares fit on the slit
size to obtain the following best fit values: 230 µm ± 24 µm
for Monochromatic and Bichromatic setups and 590 µm ±
46 µm for the Polychromatic setup. Good agreement is found
between the measured data and the simulation.

C. Three-PGMI analysis

Given the versatility of the model we can easily explore
the three-PGMI setup that was reported in Ref. [22]. Let us
consider the setup parameters of Ref. [22]: grating period
pG = 2.4 µm, first and third grating height h = 16 µm and
middle grating height of h = 30 µm, distance from the slit
to the first grating 4.704 m, distance from first to middle
grating 4.6 cm, slit size 500 µm, and a camera pixel size
150 µm. Exploring the contrast for the given parameters with
the k-space model shows several interesting features as shown
on Fig. 4(a). First, if we consider a monochromatic beam at
5 Å and the first diffraction order approximation, then the

FIG. 3. The experimentally measured contrast data as a function
of grating separation (d ) reported for the three independent setups
in Ref. [20], and the corresponding simulations (lines) done with
the k-space model. Data uncertainties shown are purely statistical.
The simulations were computed directly with the reported setup
parameters and a least-squares fit for the slit size was performed.
Good agreement is shown between the simulation and the measure-
ments. All of the PGMI parameters for the three setups are shown in
Table I.

contrast profile has the familiar shape and reaches a maximum
of 40%. However, if we include the coherence up to the fifth
order, then the contrast profile changes and shows a significant
dip near the area of the expected maximum contrast. Further
modeling can show that the location of the dip varies with the
relative position of the middle grating to the middle of the
setup L/2. This is important to note that if working with a
monochromatic, three-PGMI setup as the first-order diffrac-
tion approximation is not adequate to describe the behavior.
Last, if we account for the polychromatic wavelength distribu-
tion shown in Appendix A 3, then the contrast profile is again
of the familiar shape even with the higher orders included.

The reported contrast in Ref. [22] was 3% and it was
surprisingly lower than the expected peak contrast of ≈32%.
Reference [32] suggested that the cause of the problem might
have been the vertical rotational alignment of the middle
grating which possesses a high aspect ratio. The analysis was
centered on computing the magnitude of the grating diffrac-
tion orders as a function of grating rotation, and extrapolating
this change to be a change in maximum obtainable contrast.
Here, with the k-space model, we can compute and explore the
behavior of the contrast profile directly. Projecting the SEM
profile of the middle grating (see Fig. 2 of Ref. [32]) along
different angles we can compute the effective profiles that the
neutron would see when transversing the rotated grating [33].
Plugging the resulting profile into the model (see Postulate
2 in Sec. III) allows us to simulate the entire system. If we
consider the additional degree of freedom of grating rotations,
then a good estimate for the observed contrast can be obtained.
Shown on Fig. 4(b) is one such example where the first and
third grating were rotated around the vertical axis by 3.5◦
and the middle grating by 4.4◦. These misalignments are well
within the possible experiment setup errors. The simulation
was done with a consideration of diffraction orders spanning
from m = −5 to 5 in steps of 0.1. This was necessary because
the diffraction spectrum of the rotated grating contains appre-
ciable amplitudes at noninteger values of diffraction orders.

D. Sample characterization with dark-field imaging

Grating interferometers can be used to measure the mi-
crostructure of samples via a technique called DFI. Similarly
to spin-echo small-angle neutron scattering (SESANS), it has
been shown that in a grating interferometer with monochro-
matic illumination the ratio of contrast with the sample (Vs) to
the contrast without the sample (V0) is directly proportional
to the real space correlation function of the sample (C[ξ ])
[34–36]:

DFI(ξ ) = Vs(ξ )

V0(ξ )
∝ C(ξ ), (18)
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(a) (b)

FIG. 4. (a) Simulated contrast for a three-PGMI setup with setup parameters reported as in Ref. [22] but with considering ideal grating
shape and alignment. Shown is the case of a monochromatic beam with λ = 5 Å and with the first and fifth (blue and red) diffraction order
approximation. The change in shape with the contrast dip is important to note if working with a monochromatic, three-PGMI setup. The black
curve is the simulation that considers the polychromatic wavelength distribution of Ref. [22] (see Appendix A 3) and the fifth diffraction order
approximation. Therefore, the measured contrast of ≈3% of Ref. [22] was well below the expected maximum contrast of ≈30%. (b) The
middle grating possessed a high aspect ratio and baseball batlike shape (see Fig. 2 of Ref. [32]) thereby increasing the influence of grating
rotations about the vertical axis. If we consider the additional degree of freedom of grating rotations, then a good estimate for the observed
contrast can be obtained. Shown is one such example where the first and third grating were rotated by 3.5◦ and the middle grating by 4.4◦.
These misalignments are well within the possible experiment setup errors.

where

ξ = λLs

pM
= λLsd

pGL
(19)

is referred to as the autocorrelation length of the interferom-
eter and Ls is the distance of the sample to the detector if the
sample is downstream of the gratings or the distance to the
source if the sample is upstream of the gratings. The DFI mea-
surements therefore involve obtaining the two contrast values
as ξ is varied, either by varying the phase-grating separation
distance d or the distance between the sample and the detector
Ls.

With the k-space model we can easily analyze the effect
of a sample on the observed DFI signal for a wide range of
parameters. Let us consider the sample to be an ideal 50%
duty cycle phase grating with period ps and phase shift φs =
Nbcλh:

fs(x) = φs

2
sgn

(
sin

[
2π

ps
x

])
. (20)

The top row of Fig. 5 shows the DFI signal (Vs/V0) as a
function of ps and grating separation d , for sample phase shift
of φs = π/2 and for both the monochromatic and polychro-
matic cases. Here we can note that the largest contrast drop
is obtained for ps = pG when the sample is placed near the
middle of the setup Ls ≈ L/2 and the two-PGMI is in the
optimal contrast condition of d = p2

G/λ. Therefore, the two-
PGMI typically probes sample periodicity on the order of the
grating period (micrometers) similar to a one grating Talbot-
Lau grating interferometer [36] but with the added benefit that
the observed contrast is in the moiré regime (millimeters).

The bottom row of Fig. 5 shows the DFI signal for ps = pG

and various sample phase shifts φs. The x axis is redefined
from d to ξ according to Eq. (19). From the monochromatic
case it is evident that the DFI signal (triangular wave) is pro-
portional to the autocorrelation function of the sample profile
(square wave) for any ps. We can derive the equation for the

expected DFI signal to be

DFI(ξ ) ≈ |C[ξ ](1 − cos[φs]) + cos[φs]|. (21)

As seen in the bottom row of Fig. 5, a higher-order har-
monic appears for φs > π/2. This behavior has been observed
with the inverse Talbot-Lau setup [37]. The polychromatic
case is somewhat different because although each wavelength
would produce the autocorrelation function of the sample
profile, the amount that each wavelength contributes to the
total observed intensity is different and cannot be decoupled
without a forward propagation simulation. In order to deter-
mine the sample autocorrelation function from polychromatic
data one could simply perform the k-space simulation for the
exact experimental parameters.

E. Dilute solutions of hard spheres

Due to their presence in numerous applications [38–40],
dilute solutions of hard spheres are typically used as a bench-
mark sample in interferometry measurements [34–36]. Let
us consider the case of a sample with thickness t , volume
fraction φV , sphere radius R, and macroscopic scattering
cross section � = 3

2φV (�ρλ)2R, where �ρ = (Nbc)spheres −
(Nbc)solution. The real-space correlation function of the sample
is given by [41]:

C(ξ ) =
√

1 −
(

ξ

2R

)2
[

1 + 1

2

(
ξ

2R

)2
]

+ 2

(
ξ

2R

)2
[

1 − 1

4

(
ξ

2R

)2
]

ln

⎡
⎢⎣

∣∣ ξ

2R

∣∣
1 +

√
1 − (

ξ

2R

)2

⎤
⎥⎦.

(22)

Neutrons passing through such a sample can be scattered a
various number of times by the hard spheres. The two cases
of most interest are “single scattering,” where the neutron is
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FIG. 5. The simulated two-PGMI DFI signal when considering an ideal phase grating of period ps and phase φs as the sample. DFI = Vs/V0

where Vs (V0) is the contrast with (without) the sample. The left column is for the monochromatic case and the right column is for the
polychromatic case (shown in Appendix A 3). The top row shows the DFI dependence on ps and grating-separation d when φs = π/2 and
Ls ≈ L/2. The red line along ps = 2Lsλd/LpG shows the location of the highest DFI sensitivity (largest contrast drop). The bottom row shows
the dependence of the DFI signal on the interferometer autocorrelation length ξ [see Eq. (19)] for various sample phases φs when ps = pG and
Ls ≈ L/2. The monochromatic case nicely depicts how the DFI signal (triangular wave) is the real space correlation function of the sample
(rectangular grating).

scattered zero times or once, and “multiple scattering,” where
the neutron can be scattered any number of times. From
SESANS [42], it has been shown that for a monochromatic
beam and single scattering the DFI signal is given by:

DFI(ξ ) = 1 + �t[C(ξ ) − 1], (23)

and in the multiple scattering limit:

DFI(ξ ) = e�t[C(ξ )−1]. (24)

To determine the action of the sample in the k-space model
we can note that the transmission probability of a neutron
scattered up to M times is given by [43]:

TM =
M∑

j=0

1

j!
(−�t ) j . (25)

Then the neutron transverse wave function after the sample
is given by

�out(kx ) = �in(kx ) ∗
√

(δ(kx )(TM )−M + 1 − T −M
M

||F{C(ξ )}||F{C(ξ )})∗M, (26)

where ( f )∗M = f ∗ f ∗ · · · ∗ f (M times) denotes the convolution power [i.e., ( f )∗3 = f ∗ f ∗ f ], ||F{C(ξ )}|| =∫ |F{C(ξ )}|dkx, and �in(kx ) is the incident wave function. As M corresponds to the maximum number of times an incoming
neutron is scattered by the spheres in the sample, we can simply set M = 1 to model the single-scattering case and M to be a
large value to model the multiple scattering case.

To discretize Eq. (26) for use in a numerical simulation, the −2R to 2R range of the correlation function C(ξ ) is discretized
into 2n + 1 points. It follows that we have a k-space range of kx ∈ {−nK, . . . ,−K, 0, K, . . . , nK}, where K = 1

2R
n

2n+1 . The wave
function after the sample is then given by:

�out(kx ) = �in(kx ) ∗

√√√√√
⎛
⎝δ(kx )(TM )−M +

n∑
j=−n

[
δ(kx − jK )

1 − T −M
M

�
F{C(ξ )}

]⎞⎠
∗M

, (27)

where � = ∑
∀kx

|F{C(ξ )}|. Note that the convolution power
used in this expression is now the discrete convolution power.

We are thus enabled to explore the effects of the sample
parameters on the DFI signal in a PGMI setup. Figure 6
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FIG. 6. The DFI signal for the single-scattering case (left) and multiple scattering case (right) using the forward-propagation k-space
model. Here we consider a sample of a dilute solution of hard spheres with scattering cross section �, sphere radius R, total thickness t , and
PGMI parameters L = 6.0 m, L1 = 3.0 m, Ls = 2.0 m, pG = 2.5 µm, slit width ws = 100 µm, pixel width wp = 100 µm, neutron wavelength
of 5 Å, and ideal square gratings of height 15.1 µm (corresponding to a phase shift of π/2 for neutrons of wavelength 5 Å). Two examples are
shown, with �t = 0.4, 0.61 and R = 1.0 µm, 0.75 µm, respectively. Furthermore, we show the simulated DFI signal for a bichromatic beam
input (green curve) consisting of 50% 2.5 Å and 50% 5 Å. Last, we consider the DFI signal that would be observed when two sequential
samples (�t = 0.3, R = 0.75 µm, and �t = 0.4, R = 1.0 µm) are placed in the beam path of the monochromatic input. The black dashed
lines are the expected DFI signals from SESANS Eqs. (23) and (24), showing excellent agreement with the k-space model for the standard
experimental configurations. For a monochromatic beam input the the DFI signal beyond ξ = 2R approaches a constant value, with examples
marked by the arrow on each plot.

demonstrates how the forward-propagation k-space model re-
produces standard results which are in excellent agreement
with the known expressions given by Eqs. (23) and (24),
and allows for modeling of more complicated geometries in-
cluding nonmonochromatic wavelength distributions and the
consideration of multiple sequential samples with differing
parameters.

F. Source grating

One way to increase the number of neutrons that reach the
camera is to use an absorption grating as a “source grating,”
which is essentially an array of slits. Simulating a source
grating possessing a period pc with the k-model can be done
through a convolution with the source grating profile in place
of the slit as done before, and the outcome is illustrated in
Fig. 7. The source grating acts as a notch filter selecting out

the contrast for the case where the frequency of the source
grating (2π/pc) equals a multiple of the observed moiré
frequency (2π/pM). It can be observed that the contrast is
suppressed for pM �= npc, while the duty cycle of the source
grating determines the amplitude of the max contrast and the
presence of the higher-order peaks. Last, we can note that
the width (σ ) of the contrast peak with the source grating is
inversely proportional to the beam size at the source grating.

G. Maximum contrast conditions

The source grating is a powerful addition to a PGMI setup
due to the increased neutron flux. It follows that it would be
desirable to increase the maximum contrast at each particular
grating separation distance. From Fig. 2 it is apparent that
maximal contrast of the two-PGMI occurs at L2 = zT M/2,
where L2 = L − d − L1 is the distance from the second grat-

(a) (b)

FIG. 7. The source grating acts as a notch filter selecting out contrast for the case where the frequency of the source grating (2π/pc) equals
a multiple of the observed moiré frequency (2π/pM ). Plotted are three cases of source grating duty cycle (DC) that demonstrate the effect on
filtered contrast and decreased ability to filter higher harmonics with increased duty cycle. (a) The case for a monochromatic beam and (b) for
a polychromatic wavelength distribution that is shown in Appendix A 3. The width (σ ) of the spectrum with the source grating is inversely
proportional to the beam size at the source grating. The shown example is for the consideration of an input beam covering 10 source grating
periods.
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FIG. 8. (a) Ideal contrast vs grating separation distance behavior as the distance from the slit to the first grating (L1) is varied. (b) To test
this prediction an experiment was performed with a pulsed neutron beam and setup parameters: grating period pG = 3 µm, grating height
h = 8.53 µm, camera resolution of 100 µm, and the wavelength distribution is shown Appendix A 3, where the time of flight was set to select
the 5- to 6-Å wavelength range indicated. Note that the phase gratings with h = 8.53 µm were fabricated to act as π/2 phase gratings for
9 Å neutrons. The model fit parameters that were optimized are L = 8.36 m, slit size 450 µm, and L1 = {4.42 m, 3.30 m, 2.64 m} for the three
cases.

ing to the camera and zT M is given by Eq. (16). Therefore we
can calculate the conditions for maximal contrast given the
parameters of a particular setup. With a fixed L, the maximal
contrast occurs for

L − d − L1 = p2
GL(d + L1)

λd (d + 2L1)
. (28)

With the approximation of L1 � d we get:

d ≈ Lp2
G

2λ(L − L1)
≈ p2

G

λ
= zT

2
, (29)

where for the approximation on the right we used L1 = L/2.
In other words, in order for the camera in the two-PGMI setup
to be located at the optimal contrast location of zT M/2 when
the gratings are in the middle of the setup, the second grating
needs to be at the half-Talbot distance (zT/2) of the first grating.

From Eq. (16) we can note that the moiré period at the
camera is independent of L1 and L2 when L is fixed. There-
fore, when the camera stays at a constant distance away from
the source, as is the case in typical setups, as d is varied the
contrast will oscillate according to camera’s location relative
to zT M/2. One approach to maintain higher contrast is to vary
L1 with d:

L1 = L

(
1 − p2

G

2dλ

)
= L

(
1 − zT

4d

)
. (30)

Using the k-space model we can explore this idea to de-
termine several interesting conclusions. Figure 8(a) shows
the contrast behavior as a function of L1 and d . To test this
prediction an experiment was performed with a pulsed neu-
tron beam at the Energy-Resolved Neutron Imaging System
(RADEN) [44], located at beam line BL22 of the Japan Proton
Accelerator Research Complex (J-PARC) Materials and Life
Science Experimental Facility (MLF). The setup parameters
were grating period pG = 3 µm, grating height h = 8.53 µm,
camera resolution of 100 µm, and the wavelength distribution
is shown Appendix A 3, where the time of flight was set to
select out the 5- to 6-Å wavelength range indicated. Note that
the phase gratings with h = 8.53 µm were optimized to act as

π/2 phase gratings for 9 Å neutrons. The model fit parameters
that were optimized are L = 8.36 m, slit size 450 µm, and
L1 = {4.42 m, 3.30 m, 2.64 m} for the three cases. The experi-
mental results along with a simulation are shown on Fig. 8(b).

An interesting note that can be shown with the k-space
model is that the dark bands of low contrast on Fig. 8(a)
are due to the accumulated phase between the two gratings.
Hence, to achieve maximal contrast for every grating sepa-
ration distance requires the removal of the phase evolution
between the two gratings. This can be achieved with two
gratings without a gap where the period of one grating is larger
than that of the other grating. Whereas variable period gratings
are easily achieved in optics in situ with widely available
spatial light modulators [45], the analogous neutron devices
are still in their infancy.

V. CONCLUSION

We have developed a toolbox for analyzing neutron inter-
ferometers illuminated by cone beams. The model postulates
are developed through the generalization of the Fresnel scal-
ing theorem. This forward propagation model allows for
analysis of PGMI intensity and contrast given a wide range of
setup parameters, nonideal considerations, phase structures,
and attenuation structures.

The model was used to simulate experiments with two-
PGMI and three-PGMI setups. Good agreement was found,
and the enabled optimization provided informative estimates
for the parameters that were used in those experiments. In
addition, we provide the first analysis of fringe visibility with
the use of source gratings and the first analysis of the DFI
signal when performing sample characterization with PGMIs.
Furthermore, several interesting conclusions were reached.
For example, it was shown that the “far-field” interference of
PGMIs is a manifestation of a moiré of the Talbot effects from
the two phase gratings. Last, the model predicts an oscillation
of the contrast as a function of the distance between the first
phase grating and the slit. This was experimentally tested and
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FIG. 9. Two-PGMI setup for the pseudocode example.

confirmed with a two-PGMI at the RADEN facility at the
J-PARC.

The introduced model provides a backbone for future
extensions, such as two-dimensional phase gratings and char-
acterization of samples with irregular structures. The model
naturally enables the exploration of various sample structures
and the expected dark-field imaging signal that they would
produce. Furthermore, the addition of the orthogonal wave
vectors and propagators can be accomplished in analogous
fashion to the one-dimensional case presented here [46].
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APPENDIX

1. Pseudocode example

Here we provide an implementation example of the de-
scribed k-space model by describing the pseudocode to
compute contrast and intensity of a typical two-PGMI. Con-
sider the setup of Fig. 9 with the following parameters:
incoming neutrons with wavelength λ, equal period pG and
height h for the two phase gratings, distance from the slit to the
first phase grating L1, distance between the two phase gratings
d , distance from the second phase grating to the camera L2, slit
size s, and camera pixel size w.

The initial wave function is taken to be a plane wave with
wave vector k0 = 2π/λ moving along the z direction: �1 =
δ(kx, kz − k0). For implementing the model it is convenient to
use an array of 2 × 1 matrices where the first value of each
matrix is the transverse wave vector and the second value is
the complex amplitude associated with this particular wave
vector. Therefore the initial array is

P1 = {{0, 1}}. (A1)

Postulate 2 states that each new object with a spatial phase
profile of f (x) introduces a convolution between the incoming
wave function and F{ei f (x)}. After passing through the first
phase grating the convolution kernel is given by Eq. (4):

F{e−i f (x)} = δ(kx ) cos

(
α

2

)

+ sin

(
α

2

)∑
m

2e−ikGmx1

πm
δ(kx − mkG), (A2)

where x1 is the transverse translation of the phase grating
which is typically modulated to achieve phase stepping. Let us
further simplify the example to consider π/2 phase gratings,
that is, α = Nbcλh = π/2. Then after the convolution the
array becomes

P2 =
∑

m

{{mkG, am}}=
{

· · ·
{

− kG,−
√

2eikGx1

π

}
,

{
0,

1√
2

}
,

{
kG,

√
2e−ikGx1

π

}
· · ·

}
. (A3)

Postulate 1 tells us that the propagation from the first grat-
ing to the second grating scales the transverse wave vectors as
kx → kx/M1, where M1 = 1 + d/L1. Postulate 3 tells us that
the amplitude of each scaled wave vector picks up a phase of
Exp[idkz/M1] ≈ Exp[idk0(1 − k2

x /[2k2
0])/M1]. We can factor

out the common phase of Exp[idk0/M1] to get the reduced
phase with propagation Exp[−idk2

x /(2k0M1)]. Therefore our
updated array becomes

P3 =
{{

− kG

M1
,−

√
2

π
e
−idKz

[
− kG

M1
,

k0
M1

]}
,

{
0,

1√
2

}
,

{
kG

M1
,

√
2

π
e
−idKz

[
kG
M1

,
k0
M1

]}}
, (A4)

where for clarity we have set x1 = 0, displayed only the m =
−1, 0, 1 diffraction orders, and defined the function for the
reduced longitudinal wave vector:

Kz[kx, k0] = k2
x /(2k0). (A5)

Similarly to the first phase grating, the second phase grat-
ing does the convolution operation between the incoming
wave function and Eq. (A2),

P4 =
{{

− kG

M1
− kG,

2

π2
e
−idKz

[
− kG

M1
,

k0
M1

]}
,

{
− kG,− 1

π

}
,

{
kG

M1
− kG,− 2

π2
e
−idKz

[
kG
M1

,
k0
M1

]}
,

{
− kG

M1
,− 1

π
e
−idKz

[
− kG

M1
,

k0
M1

]}
,

{
0,

1

2

}
,

{
kG

M1
,

1

π
e
−idKz

[
kG
M1

,
k0
M1

]}
,

{
− kG

M1
+ kG,− 2

π2
e
−idKz

[
− kG

M1
,

k0
M1

]}
,

{
kG,

1

π

}
,

{
kG

M1
+ kG,

2

π2
e
−idKz

[
kG
M1

,
k0
M1

]}}
. (A6)
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FIG. 10. (a) The wavelength distribution for the Cold Neutron Imaging (CNI) facility at the National Institute of Standards and
Technology’s Center for Neutron Research (NCNR). This wavelength distribution was used for the simulation shown in Fig. 4(b) and the
“polychromatic case” simulations of Figs. 3, 4(a), 5, and 7. (b) The wavelength distribution for the RADEN facility at the J-PARC. The
indicated wavelength distribution cutout between 5 and 6 Å was used for the simulations shown in Fig. 8.

Similarly to before, the propagation from the second
grating to the camera scales the transverse wave vectors
as kx → kx/M2, where M2 = 1 + L2/(L1 + d ). Likewise the
reduced phase with propagation is Exp[−iL2Kz[

kx
M2

, k0
M1M2

]],

where kx = mkG/M1. However, given that z = 0 was re-
defined to start at the second grating we need to add an
additional scaling term of M1 (see postulate 4) and get
Exp[−iL2Kz[

kx
M2

, k0
M1M2

]/M1]. The array then becomes

P5 =
{{

− kG(1 + M1)

M1M2
,

2

π2
e
−idKz

[
− kG

M1
,

k0
M1

]
e
−iL2Kz

[
− kG (1+M1 )

M1M2
,

k0
M1M2

]
/M1

}
,

{−kG

M2
,− 1

π
e
−iL2Kz

[ −kG
M2

,
k0

M1M2

]
/M1

}
,

{
kG(1 − M1)

M1M2
,− 2

π2
e
−idKz

[
kG
M1

,
k0
M1

]
e
−iL2Kz

[
kG (1−M1 )

M1M2
,

k0
M1M2

]
/M1

}{
− kG

M1M2
,− 1

π
e
−idKz

[
kG
M1

,
k0
M1

]
e
−iL2Kz

[
− kG

M1M2
,

k0
M1M2

]
/M1

}
,

{
0,

1

2

}
,

{
kG

M1M2
,

1

π
e
−idKz

[
kG
M1

,
k0
M1

]
e
−iL2Kz

[
kG

M1M2
,

k0
M1M2

]
/M1

}
,

{
kG(M1 − 1)

M1M2
,− 2

π2
e
−idKz

[
kG
M1

,
k0
M1

]
e
−iL2Kz

[
kG (M1−1)

M1M2
,

k0
M1M2

]
/M1

}
,

{
kG

M2
,

1

π
e
−iL2Kz

[
kG
M2

,
k0

M1M2

]
/M1

}
,

{
kG(M1 + 1)

M1M2
,

2

π2
e
−idKz

[
kG
M1

,
k0
M1

]
e
−iL2Kz

[
kG (1+M1 )

M1M2
,

k0
M1M2

]
/M1

}}
. (A7)

This array contains all of the information about the wave function at the camera: �5(kx ) = ∑
n anδ(kx − kn), where kn (an) is

the first (second) entry of each matrix in P5. As per postulate 5, the intensity is given by I (x) = |F−1{�(kx )}|2, where I (x) was
written out in Eq. (A13).

As per postulate 6, to calculate the contrast of the moiré wave vector km, we need to compute H (kx ) = �5(kx ) ∗
�∗

5 (kx ). Following through with our array in the pseudocode we compute H (kx ) = P5(kx ) ∗ P∗
5 (kx ). Note that there will

be multiple entries with the same wave vector as different combinations of wave vectors contribute to the interference
at a specific frequency. Therefore we need reduce H (kx ) to combine all equal wave-vector entries. For example H (kx ) =
{· · · {ki, a}, {ki, b}, {k j, c}, {k j, d} · · · } → H (kx ) = {. . . {ki, a + b}, {k j, c + d} . . .}. The contrast for a particular wave vector km

is given by:

V (km) =
∣∣∣∣2H (km)

H (0)

∣∣∣∣. (A8)

Let us say that we wish to integrate the effect of a rectangular slit of width “s” and pixel size “w.” Then according to Eq. (13)

V (km) =
∣∣∣∣2H (km)sinc(skm/2)sinc(wkm/2)

H (0)

∣∣∣∣. (A9)

Last, to incorporate a particular wavelength distribution, for example the one depicted on Fig. 10(a) or Fig. 10(b), one simply
needs to calculate H (kx ) = ∫

dλp(λ)P5(kx, λ) ∗ P∗
5 (kx, λ) and follow through to Eq. (A9).

2. Intensity profile equations

After a single object located at L1 from the slit, the intensity at any point (x, z) after the object can be determined from
Eq. (10):

I (x, z) =
∣∣∣∣∣
∑

m

amei 1
1+z/L1

k0(z cos θm+x sin θm )

∣∣∣∣∣
2

, (A10)
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which in the paraxial approximation for a 50% duty-cycle phase grating reduces to

I (x, z) =
∣∣∣∣∣cos

(
α

2

)
+ sin

(
α

2

)∑
m

2

πm
e−imkGx1 e−i

[
m2k2

G
2k0 (1+z/L1 )

]
zei mkG

1+z/L1
x

∣∣∣∣∣
2

, (A11)

where α is given by Eq. (1) and the am terms are given in Eq. (4). Note that Eq. (A11) is identical to Eq. (8) with the added
feature that the wave vectors are being scaled with propagation kx → kx/(1 + z/L1) and kz → kz/(1 + z/L1). It follows that the
size of the self-image as well as the Talbot distance increase with propagation. This is shown in the bottom row of Fig. 2.

Considering the addition of a second object at a distance of L2 from the first object, the intensity at any location (x, z) after
the second object is

I (x, z) =
∣∣∣∣∣
∑
m,n

amanei k0
M1

L2 cos θm ei 1
M1M2

k0( z
M1

cos θm,n+x sin θm,n )

∣∣∣∣∣
2

, (A12)

where M1 = 1 + L2/L1 and M2 = 1 + z/(L1 + L2). In the notation of a two-PGMI let us consider a cone beam that travels
through the first phase grating located a distance of L1 away from the slit, followed by free-space propagation of distance d ,
followed by the second phase grating. In the paraxial approximation we can obtain the intensity profile as the beam propagates
further:

I (x, z) =
∣∣∣∣∣C1C2 + C1S2

∑
n

2

πn
einkG( x

M2
−x2 )e−i

n2k2
G

2k0M2
z + S1C2

∑
m

2

πm
ei

m2k2
Gd

2k0M1 eimkG
x

M1M2 e
−i

m2k2
G

2k0M2
1 M2

z

+ S1S2

∑
n,m

4

π2mn
ei

m2k2
Gd

2k0M1 e−inkGx2 ei( mkG
M1

+nkG ) x
M2 e−i

(m/M1+n)2k2
G

2M2k0
z

∣∣∣∣∣
2

, (A13)

where S j = sin(α j/2), C j = cos(α j/2). Equation (A13) gives an analytical expression for the spatial intensity profile after the
second grating in a two-PGMI, and it is depicted in the bottom row of Fig. 2. Although one has the freedom to include an
arbitrary number of diffraction orders, the seventh orders and above have negligible influence given that the amplitude of the
diffraction orders scale with 1/m.

After three objects the intensity at any location (x, z) after the third object is

I (x, z) =
∣∣∣∣∣
∑
m,n,�

amana�ei k0
M1

L2 cos θm e
i k0L3

M2
1 M2

cos θm,n
ei 1

M1M2
1

1+z/(L1+L2+L3 ) k0( z
M1M2

cos θm,n,�+x sin θm,n,� )

∣∣∣∣∣
2

. (A14)

Let us consider a typical three-PGMI setup with slit to first grating, first grating to second grating, and second grating to third
grating distances being L1, L2, L3, respectively. In the paraxial approximation for binary phase gratings the intensity after the
third grating is given by:

I (x, z) =
∣∣∣∣∣C1C2C3 + C1C2S3

∑
�

2

π�
ei�kG( x

M3
−x3 )ei

�2k2
G

2k0M3
z + C1S2C3

∑
n

2

πn
ei

n2k2
GL3

2k0M2 einkG
x

M2M3 e
−i

n2k2
G

2k0M2
2 M3

z

+ S1C2C3

∑
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2
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e−i

m2k2
GL2

2k0M1 e
i

m2k2
GL3

2k0M2
1 M2 eimkG

x
M1M2M3 e

−i
m2k2

G
2k0M2

1 M2
2 M3

z

+ S1S2C3

∑
n,m

4

π2mn
e−i

m2k2
GL2

2k0M1 e−i
(m/M1+n)2k2
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2k0M2 ei( mkG
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−i
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G

2k0M2
2 M3

z + S1C2S3

∑
m,�

4

π2m�
e−i
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GL2

2k0M1 e
−i
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GL3

2k0M2
1 M2 e−i�kGx3

× ei( mkG
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GL3
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(
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∣∣∣∣∣
2

. (A15)

This equation is rather general, accommodating arbitrary parameters. Considering a standard three-PGMI setup consisting of
π/2, π, π/2 phase gratings and a monochromatic input, half of the terms are removed as C2 = 0.
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3. Wavelength distributions

Here we show the wavelength distributions from the Cold Neutron Imaging (CNI) facility at the National Institute of Standards
and Technology’s Center for Neutron Research (NCNR), and the wavelength distributions from the RADEN facility at the Japan
Proton Accelerator Research Complex (J-PARC).
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