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Superfluid stiffness and Josephson quantum capacitance: Adiabatic approach and topological effects
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We bring forward a unified framework for the study of the superfluid stiffness and the quantum capacitance of
superconducting platforms exhibiting conventional spin-singlet pairing. We focus on systems which in their
normal phase contain topological band touching points or crossings, while in their superconducting regime
feature a fully gapped energy spectrum. Our unified description relies on viewing these two types of physical
quantities as the charge current and density response coefficients obtained for slow spatiotemporal variations
of the superconducting phase. Within our adiabatic formalism, the two coefficients are given in terms of Berry
curvatures defined in synthetic spaces. Our paper lays the foundation for the systematic description of topological
diagonal superfluid responses induced by singularities dictating the synthetic Berry curvatures. We exemplify our
approach for concrete one- and two-dimensional models of superconducting topological (semi)metals. We dis-
cuss topological phenomena which arise in the superfluid stiffness of bulk systems and the quantum capacitance
of Josephson junctions. We show that both coefficients become proportional to a topological invariant which
counts the number of topological touchings or crossings of the normal phase band structure. These topological
effects can be equivalently viewed as manifestations of chiral anomaly. Our predictions appear experimentally
testable in topological semimetals with proximity-induced pairing, such as in graphene-superconductor hybrids
at charge neutrality.
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I. INTRODUCTION

It is well-known that the superfluid stiffness of a single-
band conventional superconductor (SC) is inversely propor-
tional to the effective mass of this band [1]. This result further
predicts that, when this band is nondispersive, i.e., flat, the
superfluid stiffness that it carries vanishes. Strikingly, recent
theoretical [2–7] and experimental [8,9] works have estab-
lished that the above prediction breaks down for multiband
SCs. Indeed, a careful analysis shows that the superfluid stiff-
ness of a flat band is not only nonzero [2] but it can be even
bounded from below. Such a restriction has been understood
using topological arguments [10–15]. Specifically, the expla-
nation for this counterintuitive result relies on the fact that the
superfluid stiffness of a given band in a multiband SC takes an
additional contribution which has purely interband character
[2]. This extra contribution is also termed geometric when it
happens to be given by the quantum metric of the occupied
bands [2].

The discovery of topological bounds on the superfluid stiff-
ness naturally leads to the following question: Is it possible
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to identify systems whose superfluid stiffness is not only
bounded by a topological invariant, but instead is equal to a
topological invariant itself? This pursuit is crucial, since it
paves the way to a quantized superfluid stiffness which can
be robust against perturbations. This, in turn, can uncover a
plethora of topologically equivalent platforms governed by the
same universal superfluid response. Moreover, it can lead to
a rich interplay between quantum geometry and topology in
superfluid transport.

In this paper, we bring forward that superconducting topo-
logical semimetals (STSs) provide a playground for observing
the quantization of the total superfluid stiffness due to the
nontrivial topology in their normal phase. To transparently
present the above result and set the stage for the search
of topological superfluid responses, in general, we here put
forward an alternative approach for the investigation of the
superfluid stiffness. In particular, we propose to equivalently
define the superfluid stiffness tensor elements Di j = Dji as the
coefficients which relate the charge current components Ji(r)
to the spatial derivatives of the superconducting phase φ(r),
through the relation

Ji(r) = −Di j
∂ jφ(r)

2
, (1)

with i, j = x, y, z for 3D systems. The above relation is ex-
pressed in a unit system where the reduced Planck’s constant
h̄ and the electric charge unit e are set to unity.

We focus on metals and semimetals which preserve time-
reversal symmetry (TRS) and also experience conventional
spin-singlet superconductivity. The combination of these two
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features ensures that there exists a full gap in their energy
spectrum and, in turn, that the current can be obtained by
assuming that the phase varies slowly in space. This alter-
native but fully equivalent point of view, lies in the core of
the adiabatic approach proposed here. Using our framework,
each superfluid stiffness element Di j is expressed as a prod-
uct of the normal phase group velocity operator υ̂i(p) and a
Berry curvature operator F̂p jφ (ε, p, φ) which is defined in a
synthetic space spanned by the energy ε, the momentum pj ,
and the phase φ. Our reformulation reveals that, while the
elements of the superfluid stiffness tensor are not, in general,
topological invariant quantities, they can still take quantized
values for STSs. The quantization in the situations of interest
stems from the presence of monopoles in the synthetic Berry
curvature mentioned above. We remark that the quantization
discussed here is not universal, i.e., while the superlfuid stiff-
ness is proportional to a topological invariant, its “quantum”
is in units which involve a material dependent constant. Our
companion work shows that the quantization is robust against
weak uncorrelated disorder while, in 2D, it additionally results
in a universal topological quantum admittance effect [16].

In what follows, we first motivate our adiabatic approach,
subsequently formulate it, and finally apply it to a variety of
SCs defined in different spatial dimensions. We focus on SCs
which in their normal phase can be metallic or semimetallic,
featuring topological band touching points (BTPs). Among
others, this paper provides further support to Ref. [16],
wherein which the adiabatic approach presented here in detail
was initially introduced. We remind the reader that in Ref. [16]
we provide a transparent explanation for the predicted quan-
tization of the superfluid stiffness in bulk superconducting
graphene [17–20] in terms of the nontrivial topological prop-
erties of the STS which stem from the Dirac BTP.

As mentioned in Ref. [16], the topological properties of
superconducting graphene can also be viewed as the result
of 1D chiral anomaly. The emergence of the latter is further
clarified in this paper. The added benefit of establishing such a
connection between chiral anomaly and superfluid response is
that it brings to light another quantity which observes topolog-
ical effects in STSs. This quantity is the quantum capacitance
per area cQ [21–26] that dictates a Josephson junction built
from two superconducting plates which are kept at a voltage
difference V and are separated by a spacer consisting of a
quantum material and a high-efficiency dielectric.

The standard definition of the here-termed Josephson quan-
tum capacitance (JQC) is given through the relation ρc =
cQV , where ρc denotes the excess charge density appearing in
each one of the Josephson junction capacitor plates due to the
voltage bias. In analogy to the alternative adiabatic approach
that we introduce for the superfluid stiffness, gauge invariance
also allows us to bring forward an equivalent definition for
the JQC, which instead involves the time derivative of the su-
perconducting phase difference characterizing the Josephson
junction. With no loss of generality, we assume that the value
of the superconducting phase is zero in one of the leads and
equal to φ in the other. Under this gauge choice, we propose
to define the JQC through the following expression:

ρc(t ) = cQ
∂tφ(t )

2
. (2)

Equations (1) and (2) allow us to unify the superfluid stiff-
ness and JQC in superconducting (semi)metals by viewing
them as the adiabatic charge density and current responses to
spatiotemporal gradients of the superconducting phase. This
unified picture further hints at a JQC of topological origin.
Indeed, such a possibility was first discussed in Ref. [16]
for Josephson junctions involving superconducting (strained)
graphene [20,27–32]. There it was also shown that the JQC
for strained graphene is directly connected to the quantum
metric of the zero energy state of the so-called pseudo-Landau
levels [33–41]. Hence, our approach also unveils connections
between diagonal (non-Hall type) topological responses and
the quantum geometry arising in currently experimentally ac-
cessible materials and nanodevices.

The presentation of the above topics is organized as fol-
lows. First, in Sec. II, we review the standard approach
employed for the evaluation of the superfluid stiffness, which
we apply in Sec. III for STSs in various dimensions. In
Sec. IV, we proceed with introducing our alternative method
to obtain the superfluid stiffness. We exemplify how our
method works in Secs. V and VI, where we focus on the 1D
and 2D systems discussed in Sec. III. Next is the discussion of
topological effects in the JQC, which are analyzed in Sec. VII.
There, we present the standard approach to JQC, we intro-
duce the here-proposed reformulated method, and afterward
evaluate the JQC for the systems investigated in Secs. V
and VI. Section VIII considers the effects of a Zeeman field
on the quantized phenomena encountered above. Section IX
summarizes our findings and provides an outlook. Finally,
Appendixes A–E provide further technical details.

II. STANDARD THEORY OF SUPERFLUID TRANSPORT

In this section, we review the routinely used procedure
to obtain the current and superfluid stiffness which dictate
the superfluid transport in a SC with a conventional pairing
gap � � 0. In the standard approach, one desires to obtain
the electrical current J as a response to a spatially uniform
and time-independent vector potential A. The elements of the
superfluid stiffness tensor Di j are symmetric in i ↔ j, and are
defined through the relation

Di j = −1

2

(
∂Ji

∂Aj
+ ∂Jj

∂Ai

)
A=0

. (3)

In the absence of disorder, the SC of interest is described
by the following generic bulk Hamiltonian:

Ĥ (p) = ĥ(p)τ3 + �̂τ1. (4)

Here, p is the momentum labeling the energy dispersions
of the bulk SC. The matrices τ1,2,3 define Pauli matrices acting
in Nambu space. The latter space is spanned by electrons
with spin up and momentum p, and, their hole partners re-
lated by time reversal (TR) with spin down and momentum
−p. The normal phase Hamiltonian ĥ(p) respects TRS while
the pairing matrix �̂ is p independent and thus symmetric.
Although, these two matrices will be specified later on, we
here stress that our framework and the results obtained in this
paper hold for systems which preserve the full SU(2) spin
rotational group or at least a U(1) subgroup of it [42,43].
In the latter case, odd-under-inversion Rashba-type spin-orbit
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coupling terms are also allowed as long as they are oriented in
the direction of the spin quantization axis.

To obtain the current J using linear response theory, one
needs to evaluate the expectation values of the paramagnetic

and diamagnetic current operators Ĵ
(p)

and Ĵ
(d )

, respectively.
These are determined by including in the Hamiltonian the
spatially uniform and time-independent vector potential A.
The latter enters through the minimal coupling substitution
p �→ p + Aτ3. At lowest order in A, the current operators are
determined by the expressions

Ĵ (p)
i (p) = −υ̂i(p)1τ , (5)

Ĵ (d )
i (p) = −∂p j υ̂i(p)τ3Aj ≡ −∂2

p j pi
Ĥ (p)Aj, (6)

where υ̂(p) = ∂pĥ(p) denotes the Bloch electron group ve-
locity in the normal phase. Note that the equivalence in
the second row of Eq. (6) holds only by virtue of the p-
independent pairing gap considered in this paper. Moreover,
we remark that in the above we adopted the convention of
repeated index summation. This is also considered throughout
the remainder of this paper. In addition, we employed 1τ to
denote the identity matrix in Nambu space. In most instances,
unit matrices are dropped for notational convenience.

Given the above, we find that the total current per volume
flowing in the bulk of the SC reads as

Ji = −
∫

dP Tr[υ̂ j (p)1τ Ĝ(ε, p)υ̂i(p)1τ Ĝ(ε, p)]Aj

−
∫

dP Tr
[
Ĝ(ε, p)∂2

p j pi
Ĥ (p)

]
Aj, (7)

where the symbol Tr denotes trace over all internal degrees
of freedom. In addition, we employed for compactness the
shorthand notation∫

dP ≡
∫

BZ

d p
(2π )d

∫ +∞

−∞

dε

2π
. (8)

The momenta are here defined in a d-dimensional Brillouin
zone (BZ), since the SC is considered to be a crystalline
material defined in d spatial dimensions. The conclusions
to be obtained also hold when the BZ is replaced by a
more general compact space and is crucial for deriving the
standard expressions for superfluid stiffness, cf. Ref. [44].
In the above, we also employed Ĝ(ε, p), which is the zero
temperature Euclidean Green’s function, whose inverse satis-
fies Ĝ−1(ε, p) = iε + B − Ĥ (p). Here, B is an energy scale
which sets the Bogoliubov-Fermi level and arises from the
coupling of electrons to a Zeeman field. Moreover, we intro-
duced the energy variable ε ∈ (−∞,+∞) which is obtained
as the zero-temperature limit of the fermionic Matsubara
frequencies [45].

From the above results, we immediately obtain the expres-
sion for the elements of the superfluid stiffness tensor:

Di j =
∫

dP Tr[υ̂ j (p)1τ Ĝ(ε, p)υ̂i(p)1τ Ĝ(ε, p)]

+
∫

dP Tr
[
Ĝ(ε, p)∂2

p j pi
Ĥ (p)

]
. (9)

Elementary manipulations presented in Appendix A reveal
that the diamagnetic contribution is exactly canceled out by

a term contained in the paramagnetic contribution [6]. As a
result, the superfluid stiffness ends up being given only by the
following expression:

Di j =
∫

dP Tr{υ̂ j (p)τ3[τ3, Ĝ(ε, p)]υ̂i(p)1τ Ĝ(ε, p)}, (10)

where the presence of the commutator [τ3, Ĝ(ε, p)] guaran-
tees that the superfluid stiffness is nonzero only for a nonzero
pairing gap �̂. To make analytical progress, we restrict to the
relevant case [ĥ(p), �̂] = 0̂, which yields

Ĝ(ε, p) = − i(ε − iB) + ĥ(p)τ3 + �̂τ1

(ε − iB)2 + ĥ2(p) + �̂2
(11)

and results in the relation τ3[τ3, Ĝ(ε, p)] = −D̂(ε, p)τ1,
where we introduced the matrix operator,

D̂(ε, p) = 2�̂

(ε − iB)2 + Ê2(p)
,

along with Ê (p) =
√

ĥ2(p) + �̂2. After carrying out the trace
in Nambu space, we obtain the expression

Di j =
∫

dP tr[υ̂i(p)D̂(ε, p)υ̂ j (p)D̂(ε, p)]. (12)

The symbol tr denotes trace over the degrees of freedom
spanning the matrix space in which ĥ(p) is defined.

In certain instances it is more convenient to express the
superfluid stiffness as a band property. Such a procedure is
presented in Appendix B and allows us to link our results
with previous works [2–6]. Notably, however, our formalism
presents a unique feature. This is the inclusion of the Zeeman
coupling to a magnetic field which sets the Fermi level of the
Bogoliubov energy bands and, thus, controls the occupancy of
each energy dispersion.

In experiments, the application of an external Zeeman field,
in principle, allows us to isolate the here-sought-after quan-
tized contributions to the superfluid stiffness [16], which stem
from topological BTPs of the nonsuperconducting Hamilto-
nian. As mentioned earlier, we restrict to SCs which preserve
the full SU(2) spin rotational invariance or a U(1) subgroup
of it. In the former case, there is, in principle, no restriction
on the direction of the applied Zeeman field, other than being
such so it can sustain superconductivity. In contrast, in the
second case, the field is additionally required to be oriented
along the spin axis which generates the U(1) subgroup.

III. SUPERFLUID STIFFNESS OF SUPERCONDUCTING
TOPOLOGICAL METALS

The expression in Eq. (12) is particularly convenient to
use when examining the properties of SCs which in their
nonsuperconducting phase are either topological semimetals
containing BTPs or metals exhibiting topologically protected
dispersive electrons. To show this, we first assume that ĥ(p)
satisfies the property ĥ2(p) = ε2(p)1h, where 1h is the iden-
tity matrix in the matrix space in which ĥ(p) is defined. Under
this condition, the energy integration in Eq. (12) is straight-
forward and by further considering B = 0 and assuming
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�̂ = �1h, it leads to

Di j =
∫

BZ

d p
(2π )d

�2

E3(p)
tr[υ̂i(p)υ̂ j (p)]. (13)

Apart from the trivial case in which ĥ(p) is simply given
by a zero-dimensional matrix, i.e., the energy dispersion ε(p)
itself, the property ĥ2(p) = ε2(p)1h is typical for Hamilto-
nians defined using Clifford algebras. In such situations, the
normal phase Hamiltonian can be expressed according to
ĥ(p) = d(p) · �̂, with the matrices {�̂a, �̂b} = 2δab1h gener-
ating a special orthogonal Clifford algebra. The vector d(p) is
expressed as d(p) = ε(p)n(p), with the unit vector n(p) being
defined in the respective internal space. For such Clifford
systems, the superfluid stiffness takes the simplified form

Di j = dh

∫
BZ

d p
(2π )d

�2

E3(p)
[∂pi d(p) · ∂p j d(p)], (14)

where dh is equal to the matrix dimension of ĥ(p). We note
that one can further express the inner product appearing inside
the brackets according to ∂pi d(p) · ∂p j d(p) = υi(p)υ j (p) +
ε2(p)∂pi n(p) · ∂p j n(p), where we introduced the Bloch group
velocity vector υ(p) = ∂pε(p). As shown in Ref. [46], the
second term has a quantum geometric character, since it is
proportional to the elements of the quantum metric tensor
gi j (p) of the occupied bands.

In the remainder of this section, we employ the above
results to infer the superfluid stiffness for concrete experi-
mentally accessible SCs. Specifically, we focus on continuum
models which describe systems containing topological band
crossings and band touchings. For the moment, we restrict
ourselves to inferring only the contribution of these regions
of momentum space in the band structure. Note that this may
appear to contradict the assumptions under which Eq. (12)
was derived since, for this equation to hold, the momenta
should be embedded in a compact space. The approach fol-
lowed here should be understood as aiming at identifying the
contribution of the topological band touching and crossing
electrons, hence discarding the contributions of electrons from
momenta belonging to the remainder of the momentum space,
with the latter still assumed to be compact.

A. 1D superconducting topological semimetals

Our first case study concerns strictly 1D SCs and, in par-
ticular, the edge of a two-dimensional quantum spin Hall
insulator [47–50] which is here assumed to feature a conven-
tional pairing gap due to its proximity to a neighboring bulk
SC. See Fig. 1 for an illustration. In the normal phase, the
topological edge harbors a helical electron branch consisting
of two sub-branches with dispersions ±υD px and opposite
spin projection. Such a helical branch is described by the
normal phase Hamiltonian ĥN (px ) = υD pxsz, with sz denot-
ing the third spin Pauli matrix and px ∈ (−pc,+pc), where
pc a momentum cutoff. Note that the Hamiltonian ĥN (px )
is expressed in the electron instead of the Nambu basis.
This basis is spanned by the following two electron states:
{|e,↑, px >, |e,↓, px >}.

To describe the superconductive case, we include the hole
excitations and obtain a Hamiltonian Ĥ (px ) of the form

FIG. 1. Interface of a quantum spin Hall insulator and a con-
ventional spin-singlet superconductor. The spin-filtered helical edge
modes appearing on the interface with the superconductor inherit
a pairing gap whose strength is controlled by a tunnel barrier. The
helical edge modes see opposite spin polarizations denoted {⊗,�}.
Moreover, for low energies, the dispersions of the helical edge modes
are linear and feature group velocities ±υD. The contribution of
the interface helical modes to the superfluid stiffness for supercur-
rent flow in the x direction is quantized according to υD/π . This
quantized contribution can be experimentally disentangled by com-
paring the superfluid stiffness of the superconducting platform in the
topologically trivial and nontrivial phases of the quantum spin Hall
insulator, in which edge modes are absent and present, respectively.

discussed in Eq. (4). This Hamiltonian is defined in the
Nambu basis {|e,↑, px >, |h,↓, −px >}, which is also intro-
duced by employing the two-component spinor:

�†(px ) = (ψ†
↑(px ), ψ†

↓(−px )). (15)

In the Nambu basis, the superconducting topological edge
is described by a Hamiltonian ĥ(px ) = υD px, since spin is
already absorbed in the definition of the basis.

1. Quantization of superfluid stiffness and hints of topology

To study the superfluid transport for this system when
B = 0,1 we first start from Eq. (13) and evaluate the superfluid
stiffness Dxx. The algebraic manipulations are elementary and
we end up with

Dxx = υD

π

∫ +pc

−pc

d px
υD�

2

2E3(px )
, (16)

where E (px ) =
√

(υD px )2 +�2. The integral retains contri-
butions mainly from the neighborhood of px = 0. This allows
us to take the limit pc → ∞ and find∫ +∞

−∞
d px

υD�
2

2E3(px )
= 1, (17)

which implies that the superfluid stiffness is quantized in units
of υD/π . We remark that, while υD is material dependent,
this behavior can be still viewed as universal in a certain
sense. This is because Dxx is proportional to a topological
invariant quantity which counts the number of Dirac points
in the normal phase Hamiltonian ĥ(px ).

Notably, the above integral also appears in the theory of
chiral anomaly for 1D Dirac electrons [51–54], and dictates

1As we have previously announced, modifying the level occupancy
by means of sweeping the strength of an externally imposed Zeeman
field (along the spin z axis here) can further disentangle the contribu-
tion of topological band crossings and touchings.
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the topological response induced by spatiotemporal variations
in the phase of the Dirac mass [55]. Here, it is the pairing
gap � that plays the role of the Dirac mass, and the phase
involved is the superconducting phase φ, which enters through
� �→ �eiφ . This connection becomes clear by equivalently
viewing the uniform probe vector potential Ax as the result
of a constant spatial gradient of the superconducting phase,
i.e., Ax = ∂xφ/2.

The above replacement leads to the following relation:

Jx = −υD
∂xφ

2π
, (18)

which establishes the connection between the superfluid re-
sponse and the Goldstone-Wilczek formula [55], albeit the
following differences: (i) here it is the charge current Jx in-
stead of the charge density ρc, which is induced by a spatial
gradient of the phase of the Dirac mass, and (ii) an extra factor
of υD appears due to the exchanged role of charge density
and current. In the upcoming sections, we clarify how chiral
anomaly emerges and explain the different roles played by the
physical quantities involved.

B. 2D superconducting topological semimetals

After exemplifying our approach for a 1D superconducting
topological band crossing point, we now employ Eq. (14)
to obtain the superfluid stiffness of a single superconducting
Dirac cone defined in 2D. This allows us to establish a con-
nection to the result found in Ref. [17] for 2D superconducting
monolayer graphene in the Dirac-cone regime, and that was
recently also studied in our related work in Ref. [16]. In
the Dirac regime and at charge neutrality, the normal phase
graphene Hamiltonian consists of two blocks, each of which
describes a single valley labeled by λ = ±1 [33]. In the
Nambu basis, we find

ĥλ(p) = υD(pxσ1 + λpyσ2),

where υD is the Dirac velocity and σ1,2,3 denote Pauli ma-
trices acting in the sublattice space spanned by the two
interpenetrating triangular lattices of graphene [33]. The val-
ley Hamiltonians feature identical eigenenergies with εσ (p) =
σε(p), where ε(p) = υD|p|, and σ = ±1.

1. Quantization of superfluid stiffness

We now obtain the superfluid stiffness elements for a single
Dirac cone appearing in graphene using Eq. (14). Specifi-
cally, we focus on λ = 1 and restrict to B = 0. The symmetry
properties which dictate the Hamiltonian of a given graphene
Dirac cone imply that Dxx = Dyy ≡ D and Dxy = 0. We use
the relation ∂px ĥλ(p) = υDσ1, along with the property ĥ2

λ(p) ∝
1σ , which holds at charge neutrality, and find that both val-
leys contribute equally to the stiffness, with a single-valley

contribution,2

D = 2
∫

d p
(2π )2

υ2
D�

2

E3(p)
, (19)

where E (p) =
√
ε2(p) +�2 and (px, py) ∈ (−pc,+pc)2.

Since, similar to the 1D case, also here the integral retains
contributions mainly from the neighborhood of p = 0, we
extend the integration domain to R2. We subsequently employ
cylindrical coordinates, carry out the trivial integration over
the angle in momentum space, and conclude with the expres-
sion for a single Dirac cone,

D = �

π

∫ ∞

0
dζ

ζ√
1 + ζ 2

3 = �

π
, (20)

where we set ζ = υD px/�. We therefore recover the result
that was first obtained in Refs. [17,18]. We remind the reader
once again that the above holds at charge neutrality and, thus,
a zero chemical potential. Expressing the respective current Jx

in terms of ∂xφ yields

Jx = −�∂xφ

2π
, (21)

and further coincides with the obtained by Titov and
Beenakker for short graphene Josephson junctions [57], when
the limit of small phase differences is considered.

As we demonstrate in the upcoming paragraphs, the quan-
tized contribution of the Dirac cone part of the band structure
to the superfluid stiffness for superconducting graphene can
be understood by either extending the conclusions relating to
the emergence of 1D chiral anomaly or by directly accounting
for the topological properties of the 2D graphene Hamiltonian.

C. Superfluid stiffness from higher-order band
touching points in 2D

A natural extension of a single Dirac cone in 2D is to
consider a BTP which features a topological charge of higher
order. To model such a situation, we consider the normal phase
Hamiltonian in the Nambu basis,

ĥ(s)(p) = εD

(
p

pD

)|s|
{cos[sθ (p)]σ1 + sin[sθ (p)]σ2}, (22)

which gives rise to a single BTP which carries a topological
charge of s ∈ Z units. In analogy to graphene, the assumption
of TRS generally requires additional BTPs to be present. Here,
we are interested in the contribution of only a single BTP de-
scribed by the Hamiltonian above. In Eq. (22), we introduced
the angle tan[θ (p)] = py/px, while εD is a characteristic en-
ergy scale, and pD a momentum. As in the previous section,
(px, py) ∈ (−pc,+pc)2, and pc will be taken to infinity.

We note that the arising rotational symmetry of the
given model guarantees that Dxx = Dyy ≡ D while Dxy = 0.
The diagonal elements of the superfluid stiffness are more

2Note also that for graphene, electrons couple to holes of different
valleys [56]. Hence, here the BdG spinor follows from Eq. (15),
but after being suitably adjusted along the lines of Ref. [56] to also
encode the valley degree of freedom.
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conveniently evaluated using the formalism introduced in
Sec. III. Hence, we follow this section and introduce the two-
component unit vector n(p) = (cos[sθ (p)], sin[sθ (p)]) along
with the energy dispersion ε(p) = εD(p/pD)|s| with p = |p|.
The above steps lead to the expression

D(s) =
∫

d p
(2π )2

�2

E3(p)

x,y∑
i

{
υ2

i (p) + [
ε(p)∂pi n(p)

]2}
. (23)

It is straightforward to confirm that each one of the two
terms in the brackets contributes equally to the stiffness.
Specifically, the contribution of each term is [sε(p)/p]2. By
plugging the latter in the expression for the superfluid stiffness
yields that

D(s) = |s|�
π
. (24)

Hence, we conclude that the absolute value of the topo-
logical charge of a BTP is imprinted in its contribution to the
superfluid stiffness, which is a property that can be in principle
harnessed for its detection.

D. 3D superconducting topological semimetals

Our investigation of topological semimetals concludes
with the study of the superfluid stiffness of a single supercon-
ducting Weyl cone, which is described by the Nambu-space
normal phase Hamiltonian: ĥ(p) = υD p · σ. As follows from
the analysis of the previous paragraphs, the superfluid stiff-
ness tensor is diagonal and isotropic, i.e., Dyz,zx,xy = 0 and
Dxx,yy,zz = D. We thus obtain

D = 2
∫

d p
(2π )3

υ2
D�

2

E3(p)

 υD

(
�

πυD

)2

ln

(
2�

e�

)
, (25)

where � corresponds to an ultraviolet energy cutoff and e is
the Euler number. This is an approximate result obtained in the
limit � � �. The above reveals that the outcome in 3D is not
independent from the theory’s cutoff and, most importantly,
receives negligible contributions from the Weyl point located
at p = 0.

At this point, it is interesting to comment on the depen-
dence of the superfluid stiffness on the superconducting gap.
For a conventional 3D SC, one expects to find that the super-
fluid stiffness is at least proportional to �2, similarly to what
has been found in the Weyl case. However, the 1D and 2D
cases clearly deviate from this standard behavior, thus hinting
that different mechanisms are responsible for the superfluid
transport. The independence of the current on the Dirac mass
is typical for chiral anomaly and this is exactly what we
observe in 1D. The 2D case appears to constitute the inter-
mediate regime where the pairing gap influences transport but
with a scaling that does not follow the usual rule.

Based on the above, we thus conclude that the topological
features of Weyl band touching points cannot be discerned
in measurements of the superfluid stiffness. Nevetheless, it
may still be possible to obtain signatures in the superfluid
stiffness when additional external fields are imposed, which
lead to higher order current responses. Indeed, the strong
topology of 3D systems typically manifests itself in current
responses which require the simultaneous presence of two

external fields. For instance, this is the case for 3D chiral
anomaly in Weyl systems [43,51,52,58]. However, such pos-
sibilities go beyond the scope of this paper and we plan to
address such 3D scenarios in a separate dedicated future work.

IV. ADIABATIC REFORMULATION OF SUPERFLUID
TRANSPORT

The above results point toward the involvement of anoma-
lies and nontrivial topology. As we show below, the underly-
ing role of such phenomena becomes transparent by following
an alternative route to evaluate the superfluid stiffness. Specif-
ically, for this purpose, we propose to reformulate the theory
for superfluid transport by equivalently considering linear re-
sponse to the spatial derivatives of the superconducting phase.
Since a SC is a charged superfluid, the coordinate space gradi-
ents ∇φ(r) of the superconducting phase φ(r) effectively act
as a vector potential A(r), since gauge invariance implies the
substitution A(r) �→ A(r) + ∇φ(r)/2.

As already mentioned in the Introduction, within the here-
proposed approach, we employ an alternative definition for
the superfluid stiffness tensor, which is obtained by relat-
ing the ith component of the electrical current Ji(r) to the
jth spatial gradient ∂ jφ(r) of the phase superconducting
phase. Notably, while the standard theory for the superfluid
stiffness is obtained as a response to a spatially uniform
and time-independent vector potential, the reformulation pre-
sented here relies on the response to a spatially varying and
time-independent phase bias. Therefore, it is here vital to em-
ploy a coordinate space description that properly embodies the
nontrivial spatial dependence of the phase. For this purpose,
we consider the coordinate-space defined Hamiltonian,

Ĥ ( p̂, r) = ĥ( p̂)τ3 + �̂τ1e−iφ(r)τ3 , (26)

where now ĥ( p̂) depends on the momentum operator which
takes the differential form p̂ = −i∇. Note that within the adi-
abatic approach, the only restriction on the pairing gap matrix
�̂ is for it to lead to a fully gapped spectrum for φ(r) = 0. For
a uniform φ, the Hamiltonian in Eq. (26) respects translational
invariance in all directions, since the nonpairing part ĥ( p̂) is
assumed to depend only on the momentum operator p̂, and the
Hamiltonian coincides with the one in Eq. (4).

To obtain the total current J, it is sufficient to evaluate the
expectation value of the paramagnetic current operator Ĵ

(p)
.

To justify this, we discuss the general expression of the energy
functional E (r) for the gauge invariant vector potential, which
is obtained after integrating out the fermions of the SC. Since
the SC is assumed to respect TRS for A(r) = ∇φ(r) = 0, we
obtain that

E (r) = Di j[Ai(r) + ∂iφ(r)/2][Aj (r) + ∂ jφ(r)/2]/2. (27)

As a result, the electrical current is given by

Ji(r) = − δE (r)

δAi(r)
= −Di j[Aj (r) + ∂ jφ(r)/2], (28)

which implies that the elements Di j are obtainable from a cor-
relation function with vertices involving the vector potential
and the gradient of the supercoducting phase, where each one
of these is considered at first order. Hence, since A enters
at first order, only the paramagnetic current is required to
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be evaluated, and similarly to the previous section, the total
current operator within the present framework is given in
terms of the limit:

Ĵ = − lim
A→0

[∂ ĥ( p̂ + Aτ3)/∂A]τ3. (29)

To proceed, we first consider small deviations of the su-
perconducting phase φ(r) away from the TR-invariant value
φ = 0. This allows us to approximate the Hamiltonian in the
following fashion:

Ĥ ( p̂, r) ≈ ĥ( p̂)τ3 + �̂τ1 − �̂φ(r)τ2. (30)

To carry out the linear response program, it is more con-
venient to expand the superconducting phase in terms of
Fourier components φ(q) = ∫

dr e−iq·rφ(r). To obtain the de-
sired expectation value for the current operator, we employ the
zero-temperature Green’s function method as in the previous
section. However, in the present case translational invariance
is broken, and the Green’s function can be either described in
coordinate space using two position arguments or in momen-
tum space using two momentum arguments. For details, see
Appendix C.

Starting from the Dyson equation, we take into account
the first-order correction to the single-particle matrix Green’s
function Ĝ due to the perturbation term −�̂φ(r)τ2. Specifi-
cally, we consider a symmetrized expression of the ensuing
Dyson equation, which leads to

Ĝ(1)(ε, p, q) ≈ Ĝ(ε, p)

2
[(2π )dδ(q) − �̂φ(q)τ2Ĝ(ε, p − q)]

+ [(2π )dδ(q) − Ĝ(ε, p + q)�̂φ(q)τ2]

× Ĝ(ε, p)

2
, (31)

where one observes the involvement of the bare matrix
Green’s function defined in Eq. (11). In view of the here-
assumed slow spatial variation of φ(r), we take the limit
q → 0 and consider a uniform phase gradient ∇φ(r), so
φ(r) ≈ ∇φ · r. In this limit, we obtain the translationally in-
variant modified matrix Green’s function which is defined as
Ĝ(1)(ε, p) = ∫ dq

(2π )d eiq·rĜ(1)(ε, p, q), and in the present case
takes the form

Ĝ(1)(ε, p) ≈ Ĝ(ε, p) + ∇φ · Ĝ(ε, p)
�̂τ2

2i
∂pĜ(ε, p)

−∇φ · [∂pĜ(ε, p)]
�̂τ2

2i
Ĝ(ε, p). (32)

Having identified the perturbed Green’s function, we now
move ahead and obtain the expectation value for the current,
which is given by the following expression:

J = −
∫

dP Tr[υ̂(p)1τ Ĝ(1)(ε, p)]. (33)

We note that no current flows in the absence of the super-
conducting phase gradient, since the system preserves TRS.
Hence, under the assumed spatial uniformity of the phase
gradient ∇φ, the above considerations lead to the following

expression for the current:

Ji = −∂ jφ

∫
dP Tr

{
υ̂i(p)1τ

[
Ĝ(ε, p)�̂τ2∂p j Ĝ(ε, p)

− [
∂p j Ĝ(ε, p)

]
�̂τ2Ĝ(ε, p)

]}
/2i.

For a sufficiently weak ∇φ, we can rewrite the term in
brackets in the following approximate fashion:{

Ĝ(ε, p)�̂τ2∂p j Ĝ(ε, p) − [
∂p j Ĝ(ε, p)

]
�̂τ2Ĝ(ε, p)

}
/2i

≈ e−iφτ3/2F̂p jφ (ε, p, φ)eiφτ3/2,

where we introduced the matrix function F̂p jφ (ε, p, φ), de-
fined as

F̂p jφ = 1/2(∂εĜ−1)Ĝ(∂φĜ−1)Ĝ
(
∂p j Ĝ−1

)
Ĝ − ∂φ ↔ ∂p j . (34)

In the above, we suppressed the arguments of the various
functions for notational convenience and, most importantly,
we introduced the matrix Green’s function through:

Ĝ−1(ε, p, φ) = iε + B − Ĥ(p, φ), (35)

which is defined in the synthetic energy-momentum-phase
space and results from the adiabatic Hamiltonian:

Ĥ(p, φ) = ĥ(p)τ3 + �̂τ1e−iφτ3 , (36)

which is similarly defined in momentum-phase (p, φ) space.
Hence, under the assumption of a weak and uniform ∇φ,

and by employing the above newly defined quantities, we find
that the current per volume which flows in the ith direction
due to a phase gradient imposed in the jth direction, takes the
compact form

Ji = −∂ jφ

∫
dP Tr[υ̂i(p)1τ F̂p jφ (ε, p, φ)]. (37)

Equations (35)–(37) are the key relations for the refor-
mulation of superfluid response at zero temperature and key
general results of this work. Extensions to finite temperature
are straightforward by considering the finite-temperature Mat-
subara Green’s function framework [45].

V. ADIABATIC APPROACH: APPLICATION
TO 1D SYSTEMS

In the remainder, we apply the above formalism to various
superconducting systems. We begin by considering strictly
1D SCs and demonstrate how the superfluid transport can
be viewed as a manifestation of 1D chiral anomaly. Subse-
quently, we proceed with 2D systems and demonstrate how
the arising quantization of the superfluid stiffness can be
understood through either dimensional extension of the 1D
chiral anomaly or the emergence of genuinely 2D topological
effects.

A. 1D superconducting Dirac cone

Our first case study concerns a superconducting Dirac cone
in 1D as described in Sec. III A and is experimentally realiz-
able on the edge of a 2D spin Hall insulator with proximity
induced conventional superconductivity. Within our adiabatic
framework, the resulting synthetic space Hamiltonian obtains
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the form

Ĥ(px, φ) = υD pxτ3 +�τ1e−iφτ3 . (38)

The above Hamiltonian features an antiunitary charge-
conjugation symmetry which is effected by the operator �̂ =
τ3K, where K̂ defines the operation of complex conjugation
in synthetic space, i.e., it inverts both momentum and phase.
Consequently, the synthetic space Hamiltonian belongs to
symmetry class D, and can, in principle, be characterized by a
Z topological invariant [43], which is associated with the first
Chern number C1 of the occupied band [59]. This is given by

C1 =
∫

d px

∫ 2π

0

dφ

2π
�pxφ (px, φ), (39)

where we introduced the Berry curvature �pxφ (px, φ) of the
occupied band. We remark that, in general, the first Chern
number is quantized according to C1 ∈ Z. This happens under
the condition that px is defined in a compact space, which is
obviously not the case here since px ∈ (−pc,+pc). However,
for the case of an odd number of Dirac electron branches and
the cutoff momentum pc taken to infinity, one still obtains that
C1 ∈ Z [52]. This is a manifestation of chiral anomaly and
stems from the fact that the phase φ which twists the Dirac
mass does not enter the energy spectrum. In this case, |C1|
counts the number of Dirac points in the band structure.

1. Reformulated theory of superfluid
transport – topological pumping

The emergence of chiral anomaly and the topological na-
ture of superfluid transport is described more naturally using
the reformulated theory introduced in this paper. Since for the
present model υ̂x(px ) = υD, Eq. (37) implies that the current
for B = 0 takes the transparent form

Jx = −υD

∫ +pc

−pc

d px

2π
�pxφ (px, φ) ∂xφ, (40)

where we introduced the Berry curvature,

�pxφ (px, φ) =
∫ +∞

−∞

dε

2π
Tr

[
F̂pxφ (ε, px, φ)

]
, (41)

which is defined in the synthetic (px, φ) space. Since we
assume that B = 0, the Berry curvature takes contributions
only from the occupied band of the Hamiltonian in Eq. (38).
Relations similar to Eq. (40) are typical for 1D chiral anomaly
[54] and topological pumps [60]. The connection to the former
is established by noticing that

∫ +pc

−pc
d px �pxφ (px, φ) = 1 for

pc → ∞, thus allowing us to reach once again to the quanti-
zation of the superfluid stiffness in units of the Fermi velocity,
i.e., Dxx = υD/π .

We remind the reader that the current Jx defines the current
per length of the 1D SC. Therefore, we can further define
the current Ix which flows through a finite-sized system with
length Lx, across which, φ(x) becomes modified by �φ.
Hence, by integrating Eq. (40) over the x coordinate for a finite
length of the system Lx, we find that the total current flowing
in the x direction is

Ix =
∫ +Lx/2

−Lx/2
dx Jx = −υD

∫ φ(+Lx/2)

φ(−Lx/2)

dφ

2π
= −υD

�φ

2π
. (42)

Thus, when �φ is (π ) 2π , Ix becomes (fractionally) quan-
tized in units of υD. Interestingly, Eq. (40) defines a Thouless
pump in coordinate space [59], in analogy to the usual Thou-
less pump defined in the time domain [60].

2. Emergence of chiral anomaly

The quantization of the superfluid stiffness can be alter-
natively attributed to the emergence of chiral anomaly. For
1D Dirac electrons, the realization of chiral anomaly is man-
ifested in the particular form of the effective action S which
describes the respective U(1) scalar a0 and vector a1 poten-
tials, along with their chiral analogs, the U(1) scalar b0 and
vector b1 chiral gauge potentials. Specifically, by integrating
out the massless (massive) Dirac electrons defined in d = 1,
the effective action one obtains for the two types of U(1)
gauge fields reads as [51,52,54]

S = − 1

π

∫∫
dtdx εμνaμbν . (43)

The above action is expressed using the relativistic co-
ordinate vector xμ = (t, x) and the metric tensor ημν =
diag{1,−1}, where μ, ν = 0, 1. We also introduced the an-
tisymmetric Levi-Civita symbol εμν , while summation of
repeated Greek indices is implied throughout.

The phenomenon of chiral anomaly dictates the noncon-
servation of the chiral charge even when the Dirac electrons
become massless. In particular, the chiral two-current is de-
fined as jμb = −δS/δbμ, and is given by the expression

jμb = − 1

π
εμνaν . (44)

The fact that chiral charge is not conserved is reflected in
the relation

∂μ jμb = − 1

π
εμν∂μaν ≡ −Ex

π
. (45)

In the above, we made use of the fact that in d = 1 the term
εμν∂μaν is equivalent to the electric field Ex of the respective
U(1) gauge field. On the other hand, the U(1) two-current is
given by the analogous expression:

jμa = 1

π
εμνbν . (46)

In spite of the obvious similarity arising for the expressions
obtained for the usual and chiral currents, the U(1) charge is
conserved, since the chiral gauge fields bμ can be generally
expressed in the form bμ = ∂μϕ/2. Here, ϕ constitutes the
phase which twists the Dirac mass. This specific property that
is satisfied by the chiral gauge fields is vital for obtaining the
local conservation law of the U(1) charge, i.e., ∂μ jμa = 0.

The discussion and results regarding 1D chiral anomaly
directly apply to the present situation. To make the connection
clear, it is first required to identify the usual and chiral U(1)
gauge fields. First, we remark that the phase ϕ coincides here
with the superconducting phase φ. In addition, we find that
the U(1) chiral gauge fields are given by the expressions

b0 = V − ∂tφ/2 and b1 = Ax + ∂xφ/2. (47)

Therefore, due to the oppositely charged electrons and
holes, the usual electromagnetic potentials play here the role
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of U(1) chiral gauge fields. This was already pointed out
earlier, e.g., in Ref. [61]. As a result, the U(1) gauge fields
are here given by the expressions

a0 = −υD(Ax + ∂xφ/2) and a1 = −(V − ∂tφ/2)/υD.

(48)

The antisymmetric relation satisfied by the usual and chiral
U(1) gauge fields is crucial to recover the action of a 1D SC
which reads as

S = υD

2π

∫∫
dtdx

[
(V − ∂tφ/2)2/υ2

D − (Ax + ∂xφ/2)2
]
.

(49)

The above is manifestly gauge invariant, as required for a
SC, and gives rise to the electrostatic and Meissner screening
effects [45]. Even more, differentiating the action with respect
to Ax also allows us to recover the result we obtained earlier
in Eq. (18) for the current Jx.

Besides recovering the quantization of the superfluid stiff-
ness, the underlying role of chiral anomaly implies that there
exists an additional physical phenomenon which accompa-
nies the quantization of superfluid stiffness. To identify the
associated physical quantity which also becomes quantized in
“suitable units,” we consider the derivative with respect to V .
The latter yields the excess charge density:

ρc = − ∂S

∂V
= 1

υD

∂tφ

2π
. (50)

Since a time dependence in the phase can be induced
in a Josephson junction by a scalar potential V , ρc can, in
principle, be detected as the excess charge density developing
across the voltage-biased Josephson junction. As we discuss
in detail in Sec. VII, the JQC which is defined after cQ =
ρc/(∂tφ/2) constitutes the chiral anomaly partner quantity of
the superfluid stiffness. As such, it is also expected to exhibit
topological phenomena.

B. Superconducting 1D electron gas

The above results are not restricted to pristine Dirac sys-
tems, such as topologically protected boundary modes, but
are also applicable to platforms which exhibit an emergent
Dirac behavior. For example, this is the case for a 1D electron
gas which is described by the quadratic energy dispersion
ĥ(px ) = p2

x/2m − EF , where EF defines the Fermi energy in
the normal phase.

Indeed, a 1D electron gas can effectively demonstrate
Dirac physics in the so-called quasiclassical limit where
EF � � holds. In this limit, the dispersion can be linearized
about each Fermi point ±pF lying at energy EF . See also
Fig. 2 for an illustration. This results in right and left mover
electrons with dispersions (υF = pF/m):

ĥ±(px ) = ±υF (px ∓ pF ). (51)

Based on our calculation for the supercurrent carried by
the topological edge of a spin Hall insulator with proximity
induced conventional pairing, we here obtain that

J1DEG
x = −2υF

∂xφ

2π
. (52)

FIG. 2. Conventional superconductor interfacing a
one-dimensional electron gas (1DEG) confined in a single-channel
quantum nanowire. When the Fermi level of the 1DEG is sufficiently
larger than the proximity-induced pairing gap on the nanowire,
the quadratic energy dispersion of the nanowire can be linearized
about the two Fermi points ±pF . Hence, within the linear dispersion
approximation, the superfluid stiffness of the superconducting
nanowire is twice the stiffness of the superconducting helical edge
modes in Fig. 1. This is because the 1DEG carries both spin degrees
of freedom ↑,↓.

Notably, the above result coincides with the current ob-
tained for a 1D Josephson junction in the long junction limit
[62].

VI. ADIABATIC APPROACH: APPLICATION
TO 2D SYSTEMS

After exemplifying our approach for 1D superconducting
semimetals, we now employ Eq. (37) to obtain the super-
fluid stiffness for a 2D superconducting Dirac cone. A also
pointed out in our work in Ref. [16], this result also allows
us to explain the quantized outcome for the superfluid stiff-
ness found in Ref. [17] for 2D superconducting monolayer
graphene in the Dirac-cone regime. As we show in the upcom-
ing paragraphs, the quantized contribution of the Dirac-cone
part of the band structure to the superfluid stiffness can be
either understood by extending to 2D the conclusions obtained
from the emergence of chiral anomaly in 1D or by directly
accounting for the topological properties of the 2D Dirac
Hamiltonian.

A. Superfluid stiffness of a superconducing 2D Dirac cone
as a result of 1D chiral anomaly

We now consider the description of superfluid transport
using our approach and evaluate the superfluid stiffness of a
single 2D Dirac cone by means of the expression in Eq. (37).
Following this route allows us to naturally expose the under-
lying role of the phenomenon of 1D chiral anomaly discussed
earlier. To proceed, we first introduce the respective adiabatic
Hamiltonian for a single superconducting Dirac cone in 2D
with �̂ = �1σ ,

Ĥ(p, φ) = υD(pxσ1 + pyσ2)τ3 +�τ1e−iφτ3 , (53)

and reexpress it in the limit of small φ according to

Ĥ(p, φ) = Û (py)[υD pxσ1τ3 + m(py)τ1 −�φτ2]Û†(py),

where we introduced the effective Dirac mass m(py) =√
(υD py)2 +�2, and the unitary matrix,

Û (py) = Exp[iγ (py)σ2τ2/2],
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with a phase γ (py) which is given by the defining relation
cos[γ (py)] = �/m(py). Using the above, we now transfer to
a new frame with

Ĥ′(p, φ) = Û†(py)Ĥ(p, φ)Û (py)

= υD pxσ1τ3 + m(py)τ1 −�φτ2. (54)

The Hamiltonian is block diagonal in the new frame,
since it commutes with σ1. The same property holds for
F̂ ′

pxφ
(ε, p, φ) and the respective matrix Berry curvature

�̂′
pxφ

(p, φ) = �′
pxφ

(p, φ)σ1. Note that the quantity �′
pxφ

(p, φ)
corresponds to the Berry curvature of the negative energy
band of the σ1 = 1 block of Ĥ′(q, φ).

To proceed, we assume that φ � 1 and find the expression
[53,59]

�′
pxφ

(p, φ) = 1

cos[γ (py)]

υD�
2

2
√

(υD px )2 + [m(py)]23 . (55)

The matrix structure of �̂′
pxφ

(p, φ) ∝ σ1 reflects that it
belongs to the Euler class [10,63,64]. Consequently, tracing it
over the σ sublattice indices yields zero. Therefore, convolut-
ing the Berry curvature with the normal phase Bloch electron
group velocity operator in the new frame defined as

υ̂ ′
x(p) = Û†(py)υDσ1Û (py)

= υD cos[γ (py)]σ1 − υD sin[γ (py)]σ3τ2

is crucial to obtain a nonzero current, in analogy to the non-
linear Hall effect induced by Berry dipoles [65–67].

Indeed, also here we have dipoles consisting of Berry
monopoles with charges σ1 = ±1. These are Weyl points in
synthetic (px, φ,m(py )) space with locations identified by the
singularities of �′

pxφ
(p, φ). In Eq. (55), the Weyl point loca-

tions are independent of φ, as it is customary for topological
responses governed by chiral anomaly [54].

Since F̂ ′
pxφ

(ε, p, φ) ∝ σ1, only the part of υ̂ ′
x(p) which is

proportional to σ1 contributes. Therefore, by assuming B = 0,
Eq. (40) implies that the current becomes

Jx

∂xφ
= −

∫ +pc

−pc

d py

π
υD cos[γ (py)]

∫ +pc

−pc

d px

2π
�′

pxφ
(p, φ).

(56)

The evaluation of Eq. (56) for pc → ∞ provides in a
straightforward fashion

Jx = − �

2π
∂xφ, (57)

as a result of 1D chiral anomaly occurring for an infinite set of
uncoupled sectors each of which is labeled by the transverse
momentum py.

B. Quantization due to nontrivial topology in 2D

The result of the previous paragraph is certainly remark-
able, since the quantization effects encountered in the purely
1D chiral anomaly also persist when considering a 2D Dirac
system. Such a result cannot be a coincidence, but should
instead be well rooted to the properties of the synthetic Dirac
Hamiltonian in Eq. (53) which dictates the superfluid trans-
port of a superconducting Dirac cone in 2D.

To reveal the underlying reason for this quantization by
means of a genuinely 2D point of view, let us first analyze
in further depth the topological properties of the respective
2D Hamiltonian. We find that the Hamiltonian in Eq. (53)
is identical to the one discussed by Jackiw and Rossi [68].
Specifically, it possesses a chiral symmetry {Ĥ(p, φ), �̂} =
0̂, which is generated by the action of the operator �̂ =
σ3τ3. Moreover, one additionally finds antiunitary symmetries
[42,43]. Specifically, the Hamiltonian is invariant under the
action of a charge conjugation and a generalized TR trans-
formation, which are effected by the operators �̂ = σ1τ3K̂
and T̂ = iσ2K̂, respectively. We remind the reader that invari-
ance under charge conjugation implies that {Ĥ(p, φ), �̂} = 0̂,
while invariance under TR results in [Ĥ(p, φ), T̂ ] = 0̂.

From this symmetry analysis, we conclude that the syn-
thetic Hamiltonian belongs to class DIII. Hence, it can be
topologically classified using a winding number denoted w3

[43]. The latter is an integer when the synthetic space is
compactified. Remarkably, however, for φ ∈ [0, 2π ) and the
Dirac Hamiltonian in question, the winding number also takes
integer values, i.e., w3 ∈ Z. Note that this is in spite of the fact
that the base space is not compact. We remind the reader that
a similar behavior was observed for the firrst Chern number
in Eq. (39), and can also here be attributed to the fact that the
energy spectrum is independent of φ.

This topological invariant can be expressed in terms of the
Hamiltonian Ĥ(p, φ) in the following fashion:

w3 = εi jk

48π2

∫
d3 p̃ Tr

(
�̂ Ĥ−1∂p̃iĤ Ĥ−1∂p̃ j Ĥ Ĥ−1∂p̃kĤ

)
,

(58)

where we introduced the synthetic momentum vector
( p̃1, p̃2, p̃3) = (px, py, φ) and the antisymmetric Levi-Civita
symbol εi jk , where i, j, k = 1, 2, 3. The phase integration over
φ takes place in the interval φ ∈ [0, 2π ), while one is expected
to extend the integration over p in all real numbers in the plane
R2. The above winding number predicts the appearance of
zero modes pinned by vortices induced in the Dirac mass field
�(r)eiφ(r), as proposed by Jackiw and Rossi [68]. Moreover,
it also dictates the emergence of Majorana zero modes in
the celebrated Fu-Kane model [69] when superconducting
vortices are introduced on the surface of a 3D topological
insulator. Interestingly, the same invariant predicts the pinning
of Majorana zero modes by vortices introduced in magnetic
texture crystals, which interface nodal SCs [70].

At this point, it is important to stress that when the Hamil-
tonian is of the Dirac type, the phase which involves the
twisting of the mass field in coordinate space does not enter
the energy spectrum and, as a result, it does not appear in the
brackets of Eq. (58) after evaluating the various derivatives.
Hence, quantization effects do not only arise for w3 but also
emerge for the winding number density defined according to
expression

w3(φ) =
∫

d p
2π

w3(p, φ), (59)
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where we introduced the winding number density in the full
3D synthetic space:

w3(p, φ) = 1

2

εi jk

3!
Tr

(
�̂ Ĥ−1∂p̃iĤ Ĥ−1∂p̃ j Ĥ Ĥ−1∂p̃kĤ

)
.

(60)

As a matter of fact, an analogous relation holds for Jx and
its integrated counterpart Ix, as shown in Sec. V A 1, with the
former mapping to w3(φ) and the latter to w3. In the case of a
superconducting Dirac cone in 2D, we find that

w3(p, φ) = −2υ2
D�

2

E4(p)
. (61)

Plugging the above in Eq. (59) leads to w3(φ) = −1.
We now proceed with the main goal of this section, which

is to demonstrate that the quantization found in Eq. (57)
emerges due to the fact that the diagonal element of the su-
perfluid stiffness tensor for superconducting graphene in the
Dirac regime is related to w3. To prove this, we start from
Eq. (37) and make use of the relations Dxx,yy = D ⇒ D =
(Dxx + Dyy)/2 to write

D =
∑
i=x,y

∫
dP Tr

[
υ̂i(p)1τ F̂piφ (ε, p, φ)

]
. (62)

We now make use of the relation ∂εĜ−1 = i along with
υ̂x,y(p) = υDσ1,2 to carry out the substitutions:

υ̂x(p)∂εĜ−1 = −�̂υ̂y(p)τ3 ≡ +�̂∂py Ĝ−1, (63)

υ̂y(p)∂εĜ−1 = +�̂υ̂x(p)τ3 ≡ −�̂∂px Ĝ−1. (64)

By plugging the above result into Eq. (62), we find [16]

D = 1

2

∫
dP Tr

[
�̂

(
∂px Ĝ−1

)
Ĝ

(
∂py Ĝ−1

)
Ĝ (∂φĜ−1)Ĝ

]
− 1

2

∫
dP Tr

[
�̂

(
∂px Ĝ−1

)
Ĝ (∂φĜ−1)Ĝ

(
∂py Ĝ−1

)
Ĝ
]

+ 1

2

∫
dP Tr

[
�̂

(
∂py Ĝ−1

)
Ĝ

(
∂φĜ−1

)
Ĝ

(
∂px Ĝ−1

)
Ĝ
]

− 1

2

∫
dP Tr

[
�̂

(
∂py Ĝ−1

)
Ĝ (∂px Ĝ−1)Ĝ (∂φĜ−1)Ĝ

]
.

(65)

We observe that the above is missing two more sequences
of derivatives to complete all six possible permutations of the
form

εi jk
(
∂p̃i Ĝ−1

)
Ĝ

(
∂p̃ j Ĝ−1

)
Ĝ

(
∂p̃k Ĝ−1

)
Ĝ.

However, it is straightforward to confirm that the remaining
two terms can be obtained from the existing terms. Indeed,
the sequences (∂px , ∂py , ∂φ ) and (∂py , ∂φ, ∂px ) are equivalent to
the sequence (∂φ, ∂px , ∂py ), while the sequences (∂px , ∂φ, ∂py )
and (∂py , ∂px , ∂φ ) are equivalent to (∂φ, ∂py , ∂px ). Hence, by
suitably converting parts of the existing terms into the missing
ones, we can write

D = εi jk

3

∫
dP Tr

[
�̂

(
∂p̃i Ĝ−1

)
Ĝ

(
∂p̃ j Ĝ−1

)
Ĝ

(
∂p̃k Ĝ−1

)
Ĝ
]
.

(66)

At this stage, we can further simplify the above expression
and reveal its connection to w3. For this purpose, we take into
account that [Ĥ(p, φ)]

2 = E2(p)1, i.e., all positive (negative)
energies are given by ±E (p) where E2(p) =

√
ε2(p) +�2

with ĥ2(p) = ε2(p)1h. See also Sec. III. Given the above, we
carry out the integral over energy

∫ +∞
−∞ dε/2π , and after the

manipulations discussed in Appendix D we obtain

D =
∫

d p
(2π )2

w3(p, φ) E3(p)
d

dE (p)

{
�[E (p) − |B|]

E (p)

}
,

(67)

which can be further expanded to yield

D = −
∫

d p
(2π )2

w3(p, φ) E (p)�[E (p) − |B|]

+
∫

d p
(2π )2

w3(p, φ) B2 δ[E (p) − |B|]. (68)

From the above, we observe that the superfluid stiffness for
B = 0 simplifies to

DB=0 = −
∫

d p
(2π )2

w3(p, φ) E (p). (69)

It is straightforward to confirm that the above expression
also leads to a quantized superfluid stiffness which is equal to
�/π . The above expression clearly demonstrate that the value
of the superfluid stiffness is set by the winding number density
which, in turn, is also fixed by the topological properties of
the STS. Even more, as we show in Appendix E, the above
formula can be generalized to provide the result of Eq. (22).

The above shown topological nature of the superfluid
stiffness further implies its stability to perturbations which
preserve chiral symmetry. In our companion work in Ref. [16],
we also examine the resilience of the superfluid stiffness
against chiral-symmetry preserving types of perturbations.
Among these, we also investigate the inclusion of disorder
in the modulus �, which renders it spatially dependent, i.e.,
�(r). Our analysis shows that the superfluid stiffness retains
the same form, but with � now being replaced by a spatially
averaged pairing gap.

VII. TOPOLOGICAL ASPECTS OF JOSEPHSON
QUANTUM CAPACITANCE

As found when exploring the superfluid stiffness of 1D
systems, see, for instance, Sec. V, the realization of 1D chiral
anomaly also implies that the quantum capacitance constitutes
another quantity which is expected to exhibit quantization
phenomena. Since we are dealing with superconducting sys-
tems, we are here interested in the study of the quantum
capacitance arising in Josephson junctions, or JQC as we
refer to it. We are essentially interested in junctions whose
two superconducting leads are separated by a highly efficient
dielectric, so that the system acts as a capacitor. In this limit,
the Josephson coupling becomes negligible and charge builds
up on each superconducting plate.

In the cases of interest, we consider that two supercon-
ducting leads sandwich the topological semimetal and the
dielectric, thus, leading to a lateral SC-topological semimetal-
dielectric-SC heterostructure as shown in Fig. 3. In such a
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FIG. 3. Hybrid system for the measurement of the Josephson
quantum capacitance (JQC). The dielectric is assumed to be of high
efficiency so the Josephson coupling across the junction is fully
suppressed and the heterostructure functions as a capacitor. There
exist two contributions to the junction capacitance: the classical (cC�)
and the quantum capacitance (cQ). The latter stems from degrees of
freedom of the topological semimetal which dictate the low energy
sector of the heterostructure and experience a proximity-induced
pairing gap. This is under the assumption of a sufficiently weak
voltage bias or rate for phase time variations, which is much smaller
than the superconducting gap of the bulk superconductors. Lastly, the
classical contribution to the capacitance depends on the characteris-
tics of the junction and originates from the charge response of the
large number of electrons which are occupied below the Fermi level
in the metallic leads.

system, the low-energy degrees of freedom stem from the
topological semimetal which sees a proximity-induced gap.
We consider that the superconducting gap of the supercon-
ducting semimetal, which is controlled by one of the two
conventional supercoducting leads, picks up a time-dependent
phase φ(t ).

It is eligible to restrict to the phase of the STS, since
we can assume that the phase of the other superconducting
lead, which is attached to the dielectric, is set to zero. Hence,
φ corresponds to the phase difference appearing across the
junction, that is further assumed to be biased by a voltage bias
V . Gauge invariance implies that the electrostatic potential
and the superconducting phase appear together according to
V �→ V − ∂tφ/2. The above coupling naturally leads to the
generation of excess charge density ρc for a nonzero ∂tφ. Note
that ρc does not include the charge density stemming from
the electronic states of the two superconducting metallic leads
which lie energetically sufficiently below the Fermi level EF ,
which is here assumed to satisfy EF � |V − ∂tφ/2|.

For a constant ∂tφ, there is an additional contribution to
the capacitive energy per area of the Josephson junction EJJ,
which reads EJJ = −cJJ(V − ∂tφ/2)

2
/2, cf. Eq. (49). Here,

cJJ denotes the total capacitance per area of the Josephson
junction, which includes the classical (cC�) and quantum (cQ)
parts. Since the two capacitances are in series, we have the
relation

1

cJJ
= 1

cC�
+ 1

cQ
. (70)

The classical capacitance is controlled by the geometric
properties of the junction and is, in principle, tunable by mod-
ifying the design parameters of the heterostructure. Therefore,
by rendering cC� much larger than cQ, we can essentially
eliminate the influence of the former.

In the following, we first review the standard approach to
theoretically evaluating the quantum capacitance and, after-
ward, we provide a reformulation which transparently exposes
the emergence of topological effects.

A. Standard theory

The JQC is inferred by evaluating the charge susceptibility
of the junction, i.e., cQ = −∂2EJJ/∂V 2. By restricting to the
case [�̂, ĥ(p)] = 0̂, linear response yields

cQ = −
∫

dP Tr[τ3Ĝ(ε, p)τ3Ĝ(ε, p)]

=
∑
α

∫
d p

(2π )d

{
1 −

[
�α (p)

B

]2
}
δ[Eα (p) − |B|]

+
∑
α

∫
d p

(2π )d

�2
α (p)

E3
α (p)

Pα (p), (71)

where α labels the eigenstates of ĥ(p) with dispersions
εα (p) and pairing gap �α (p) = 〈uα (p)|�̂|uα (p)〉. Hence, we
end up with the Bogoliubov quasiparticle energy Eα (p) =√
ε2
α (p) +�2

α (p). Moreover, we employed the band defined
parity Pα (p) = �[Eα (p) − |B|], which has already been dis-
cussed in Appendix B. Note that for |�α (p)| > |B|, the parity
of the respective band becomes equal to unity. Thus, the
terms in the second row of Eq. (71) are nonzero only for
|B| > |�α (p)|, i.e., when the Bogoliubov-Fermi level set by
the Zeeman energy scale B crosses the bands and the system is
metallic. It is convenient to rewrite the above using the normal
phase density of states. For this purpose, we define the energy
E (h) =

√
h2 +�2(h) and write

cQ =
∫ +∞

−∞
dh �(h)

{
�2(h)

E3(h)
P(h)

+{1 − [�(h)/B]2}δ[E (h) − |B|]
}
, (72)

where we introduced the normal-phase density of states:

�(h) =
∑
α

∫
d p

(2π )d
δ[εα (p) − h]. (73)

In addition, we introduced the parity P(h) = �[E (h) −
|B|] which is obtained after the replacement Eα (p) �→ E (h).
Finally, we note that in the event that �(h) = �, the expres-
sion for the JQC can be compactly expressed in the following
fashion:

cQ =
∫ +∞

−∞
dh �(h)

d

dh

[
hP(h)

E (h)

]
. (74)

B. Adiabatic reformulation

In analogy to our adiabatic approach employed for the
superfluid stiffness, here we need to consider temporal vari-
ations of the superconducting phase. For this purpose, we
consider the time-dependent Hamiltonian,

Ĥ (t, h) = hτ3 +�τ1e−iφ(t )τ3 , (75)

which is expressed in terms of h and an h-independent fixed
value for the pairing gap �. To obtain the excess charge
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density ρc, we evaluate the expectation value of the electric
charge operator ρ̂c = −τ3 in response to ∂tφ. In analogy to
the steps considered for the case of superfluid stiffness in
Sec. IV, we also here start from the Dyson equation and take
into account the first-order correction to the single-particle
matrix Green’s function Ĝ(ε, h) due to the perturbation term
−�φ(t )τ2. The bare Green’s function is here defined accord-
ing to the relation Ĝ−1(ε, h) = iε + B − Ĥ (h) with Ĥ (h) =
hτ3 +�τ1.

To proceed, we consider a Wick rotation τ = it to imag-
inary time, we transfer to Fourier space τ �→ ω where ω

denotes the imaginary energy, and we end up with the sym-
metrized expression for the ensuing Dyson equation:

Ĝ(1)(ε, ω, h) ≈ Ĝ(ε, h)

2
[2πδ(ω) −�φ(ω)τ2Ĝ(ε − ω, h)]

+ [2πδ(ω) − Ĝ(ε + ω, h)�φ(ω)τ2]
Ĝ(ε, h)

2
.

(76)

Since here we are interested in an adiabatic approach, we
restrict to the insulating regime and assume slow temporal
variations for φ(t ) so that |ω| � �. These assumptions allow
us to take the limit |ω| → 0. By further considering a uniform
rate ∂tφ, we obtain the approximate time-independent modi-
fied matrix Green’s function:

Ĝ(1)(ε, h) ≈ Ĝ(ε, h) + ∂tφ Ĝ(ε, h)
�τ2

2
∂εĜ(ε, h)

− ∂tφ [∂εĜ(ε, h)]
�τ2

2
Ĝ(ε, h). (77)

Having identified the perturbed Green’s function, we now
move ahead and obtain the expectation value for the excess
charge density:

ρc = −
∫ +∞

−∞
dh �(h)

∫ +∞

−∞

dε

2π
Tr[δĜ(1)(ε, h)τ3]� �→�(h),

(78)

where we substracted the background charge density
∼Tr[Ĝ(ε, h)τ3]. Therefore, in the above we employ the first
order correction of the matrix Green’s function δĜ(1)(ε, h) =
Ĝ(1)(ε, h) − Ĝ(ε, h) in terms of ∂tφ. By replacing the correc-
tion with its explicit form, we find

ρc = ∂tφ

∫ +∞

−∞
dh �(h)

∫ +∞

−∞

dε

2π
Tr{[∂εĜ(ε, h)]

× [�τ2Ĝ(ε, h)τ3 − τ3Ĝ(ε, h)�τ2]/2}� �→�(h).

Within the limit of a weak ∂tφ examined here, we write the
last row in the above expression in the following form:

[∂εĜ(ε, h)][�τ2Ĝ(ε, h)τ3 − τ3Ĝ(ε, h)�τ2]/2

≈ e−iφτ3/2Ĝ(ε, h, φ)F̂hφ (ε, h, φ)Ĝ−1(ε, h, φ)eiφτ3/2,

where we introduced the matrix function F̂hφ (ε, h, φ),

F̂hφ = 1/2(∂εĜ−1)Ĝ(∂φĜ−1)Ĝ(∂hĜ−1)Ĝ − ∂φ ↔ ∂h, (79)

along with the matrix Green’s function:

Ĝ−1(ε, h, φ) = iε + B − Ĥ(h, φ), (80)

which is defined in the synthetic (ε, h, φ) space and results
from the Hamiltonian:

Ĥ(h, φ) = hτ3 +�τ1e−iφτ3 . (81)

By means of the above manipulations, we end up with the
following expression for the JQC:

cQ ≡ ρc

∂tφ/2
= 2

∫ +∞

−∞
dh �(h)�hφ (h, φ), (82)

where we introduced the synthetic space Berry curvature of
the occupied bands:

�hφ (h, φ) =
∫ +∞

−∞

dε

2π
Tr[F̂hφ (ε, h, φ)]� �→�(h). (83)

Notably, we find that in analogy to Eqs. (35)–(37), here
Eqs. (80)–(83) are key for the adiabatic reformulation of
the zero-temperature JQC. Once again, extensions to finite
temperature are straightforward. Finally, we also remark that
evaluating the above synthetic Berry curvature is straight-
forward and allows us to recover the standard expression in
Eq. (72) when the insulating regime is strictly considered.

C. Applications

In the following paragraphs, we demonstrate how the
above applies to the variety of STSs examined earlier. In all
the following cases, we examine the scenario of �(h) = �

and B = 0, in which event one obtains P(h) = 1.

1. 1D superconducting topological semimetals

To evaluate the JQC, we need to first obtain the density
of states. Here, there is only one band with energy dispersion
ε(px ) = υD px and we have

�(h) =
∫ +∞

−∞

d px

2π
δ(υD px − h) = 1

2πυD
. (84)

It is straightforward to obtain the JQC, thanks to the emer-
gence of chiral anomaly, in which case the Berry curvature
�hφ (h, φ) is independent of φ, and its integral counts the
number of touching points. Therefore, we find

cQ = 1

πυD
. (85)

Interestingly, for 1D STSs, the product of the superfluid
stiffness and the JQC obtains a universal value, that is,

DcQ = 1

π2
, (86)

where we set for simplicity D = Dxx. The above result can be
viewed as a constitutive relation for 1D STSs.

2. 2D superconducting topological semimetals

We now proceed with investigating the JQC for a single 2D
Dirac cone. Here, one finds two bands with energy dispersions
ε±(p) = ±υD p and we have

�(h) =
∫

d p
(2π )2

∑
σ=±1

δ(συD p − h)
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=
∫ ∞

0

d p p

2π
[δ(υD p − h) + δ(υD p + h)]

= |h|
2πυ2

D

. (87)

By employing Eq. (82), we find that the JQC in the present
case reads

cQ = 1

πυ2
D

∫ +∞

−∞
dh |h|�h,φ (h, φ)

= 1

πυ2
D

∫ ∞

0
dh h

�2

√
h2 +�23

= �

πυ2
D

. (88)

Also, for this class of system we are in a position to obtain
a constitutive relation linking superfluid stiffness and the JQC,
which reads

DcQ =
(

�

πυD

)2

, (89)

and involves the superconducting coherence length ξsc of the
STS which is given by ξsc = υD/�.

VIII. INFLUENCE OF THE ZEEMAN FIELD

Up to this point, our analysis focused on the case B = 0, in
which only the negative energy bands are occupied. Since the
Zeeman energy B plays the role of a chemical potential and
sets the Bogoliubov-Fermi level, it is important to investigate
its influence on the superfluid stiffness and the JQC for the
two representative systems studied earlier.

1. 1D superconducting topological semimetals

By employing Eq. (12), we find that for an arbitrary value
of B, the superfluid stiffness for the system in examined in
Sec. III A takes the form

Dxx = υD

π

[
1 − �(|B| −�)√

1 − (�/B)2

]
. (90)

The above implies that the superfluid stiffness is discontin-
uous across |B| = �. i.e., when the Dirac band touching point
is crossed. Notably, in the limit |B| → ∞, we find that Dxx

goes to zero.
We now proceed with examining the impact of modifying

the energy-level occupancy on the JQC. Using the expression
in Eq. (72), we find that cQ = 1/πυD, that is, it is indepen-
dent of the Zeeman field. While the robustness of the JQC
against arbitrary Zeeman field variations is remarkable, it also
implies that it is impossible to observe any distinctive features
of the underlying Dirac BTP by means of controlling this
external control knob. Hence, it is only the investigation of
the superfluid stiffness across the |B| = � point that can yield
characteristic signatures of the STS.

2. 2D superconducting topological semimetals

Repeating the same procedure for the case of the single
Dirac cone in two spatial dimensions of Sec. III B leads to the

diagonal superfluid stiffness D = Dxx,yy:3

D = �

π
�(�− |B|). (91)

Notably, as soon as the Zeeman energy exceeds the pairing
gap, the superfluid stiffness vanishes. This remarkable result
highlights that the entire superfluid stiffness is carried by the
Dirac BTP, which in the superconducting phase is split at ener-
gies ±�. Therefore, the superfluid stiffness yields a smoking
gun signature of the STS upon varying the Zeeman energy.
In fact, this property is crucial for disentangling the presence
of the Dirac BTP in a band structure which is not described
by the ideal Dirac cone model. Our partner work in Ref. [16]
discusses how this fingerprint can be employed to infer the
Dirac BTPs from the superfluid stiffness of superconducting
graphene.

The respective JQC can be obtained by employing Eq. (72)
and leads to the expression

cQ = max{�, |B|}
πυ2

D

. (92)

Notably, the variation of the JQC with respect to |B| can
also reflect the presence of the underlying BTP in 2D. Indeed,
while cQ remains continuous across |B| = � its derivative
dcQ/d|B| exhibits a jump of 1/πυ2

D.

3. Experimental feasibility of the desired Zeeman control

Concluding this section, it is important to stress once more
that signatures of STSs are obtained for Zeeman energies
larger than the pairing gap. However, a Zeeman field is known
to have a dramatic effect on spin-singlet superconductivity,
since it leads to net magnetization which tends to break
Cooper pairs. Hence, it is not obvious that the desired con-
dition |B| = � can be met in experiments.

For intrinsic SCs, such a regime is challenging to achieve
experimentally, since uniform superconductivity cannot be
sustained for high Zeeman fields. Specifically, for a thin film
intrinsic STS, superconductivity is expected to be destroyed
when the magnetic energy scale reaches the Chandrasekhar-
Clogston limit (CCL) [71], i.e., BCC = �/

√
2. An alternative

possibility is that the system develops a spatially modulated
so-called Fulde-Ferrell-Larkin-Ovchinikov superconducting
ground state [72,73] before reaching the BCC value. In either
case, the here-predicted phenomena appear to be experi-
mentally inaccessible or at least very difficult to achieve in
intrinsic supercoductors.

However, such an obstacle can be circumvented for topo-
logical semimetals which experience a pairing gap� inherited
by means of proximity from a bulk SC, which plays the
role of a Cooper pair bath. The proximity-induced pairing on
the topological semimetal is generally smaller than the bulk
superconducting gap �sc. For instance, following the analysis
of the superconducting proximity effect in Ref. [74], we can
write the induced pairing gap on the topological semimetal in

3In fact, we can alternatively obtain the expression for D using
Eq. (67) in conjunction with Eq. (61).
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FIG. 4. Band diagram which describes the proximity effect be-
tween a conventional metallic superconductor and a topological
semimetal. As follows from Refs. [75,76], the Fermi level of the
superconductor sets the Fermi level of the entire hybrid system.
The proximity induced gap on the semimetal � is typically smaller
than the pairing gap �sc in the bulk superconductor. Hence, there
is a window for which one can control the contribution of the band
touching point of the topological semimetal to the superfluid stiffness
and quantum capacitance using a Zeeman field, without modifying
the respective contributions originating from the electrons of the bulk
superconductor.

terms of the pairing gap of the parent superconductor accord-
ing to � = (1 − Z )�sc � �sc. Here, Z ∈ [0, 1] denotes the
renormalization factor resulting from the coupling between
the supercoductor and the semimetal.

To observe the discontinuities in the superfluid stiffness
and JQC discussed in the previous sections, the condition
|B| = � needs to be satisfied. At the same time, |B| has to
be smaller than the CCL of the parent superconductor, i.e.,
|B| < �sc/

√
2, so superconductivity is sustained in the entire

hybrid system. The above considerations imply that the mini-
mum value Zmin of Z that is required for |B| = � to be met is
Zmin 
 0.3. Hence, this relatively low required value for Zmin

implies that for high-quality interfaces with a Z much larger
than Zmin, there should be a window for which the Zeeman
energy can exceed the pairing gap in the STS while remaining
safely below the CCL for the parent superconductor.

Lastly, we conclude by providing in Fig. 4 a band diagram
which describes the proximity effect between the conventional
superconductor and a topological semimetal. For further de-
tails on the role of the band alignment on the proximity effect,
see Refs. [75,76].

IX. CONCLUSIONS AND OUTLOOK

In this paper, we unify the diagonal superfluid responses
of spin-singlet superconductors which are characterized by a
fully gapped bulk energy spectrum. We find that for super-
conductors with emergent Lorentz invariance, the superfluid
stiffness D and quantum capacitance cQ satisfy the relation
D = υ2

DcQ [16], where υD defines the ensuing “speed of
light”. The above naturally arises in Dirac-type superconduc-
tors, which in their normal phase contain topological band
touching points and crossings.

Even more importantly, we show that such superconduct-
ing topological semimetals further exhibit topological effects
which stem from the nontrivial topological charge of these

special points in the normal phase band structure. Both D and
cQ become proportional to a topological invariant quantity,
which counts the number of such special points in the band
structure. Hence, the two quantities become quantized but in
units which depend on the material parameters, such as the
speed of light and the pairing gap. Nonetheless, in spite of
the nonuniversal character of these quantized effects, their
topological nature renders them robust against weak uncorre-
lated disorders [16]. Moreover, the expressions found for these
coefficients in the clean case also carry over in the disordered
case, with the only difference that now the bulk material
parameters need to be replaced by their disorder-averaged
counterparts [16].

The main goal of this paper is to reveal the underlying
topological nature of these response coefficients and introduce
a suitable general framework to study and identify such topo-
logical diagonal responses. For this purpose, we show that
viewing the superfluid stiffness and quantum capacitance as
the charge current and density responses induced by spatial
and temporal variations of the superconducting phase allows
expressing them in terms of Berry curvatures defined in ap-
propriate synthetic spaces. This approach provides a natural
explanation for the resulting topological quantization, since it
attributes it to the topological charge of the singularities of
these synthetic Berry curvatures. Even more, we show that
for one- and two-dimensional superconducting topological
semimetals, the emergence of the quantization can be under-
stood as the outcome of chiral anomaly.

The present and our accompanying work in Ref. [16] set
the stage for the exploration of topological diagonal super-
fluid responses and bring the measurements of the superfluid
stiffness and the Josephson quantum capacitance as a means
of diagnosing the presence of Berry singularities in the sys-
tem’s band structure. Therefore, these two quantities can be
viewed as a particular type of Berry singularity makers. The
concept of Berry singularity markers was earlier introduced
in Refs. [77,78]. This method relies on extracting information
regarding the presence of topological band touching points
in a band structure by investigating the diagonal responses
of the system. Nonetheless, our paper not only promises to
motivate further theoretical developments but can also guide
experimentalists to observe the here-found topological effects.

In fact, the observation of the quantization effects dis-
cussed in the main text are, in principle, experimentally
feasible in superconductor-graphene hybrids [79–87], in
which graphene inherits a conventional superconducting gap
due to the proximity effect. Currently, however, it is very
challenging to tune the chemical potential μ of graphene
sufficiently close to the Dirac point so |μ| � � [88]. There-
fore, future fabrication and technological advancements are
required for achieving this goal. Nonetheless, in our compan-
ion paper [16] we discuss that although the stiffness is not
topologically quantized when μ is switched on, the superfluid
stiffness in the antipodal and experimentally accessible limit
|μ| � � remains proportional to the absolute value of the
vorticity of the band touching point; see also Appendix E. As
a result, this observation opens a prominent route to study part
of the topological aspects brought forward in this paper with
presently accessible experimental platforms.
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At this point, it is crucial to remark that in realistic
Dirac-type materials and hybrids, there exist additional con-
tributions to the two coefficients besides the ones studied
here. These originate from the nonrelativistic regions of the
band structure, and they tend to spoil the here-found quan-
tized effects. For the experimentalists to be in a position to
disentangle the desired contribution of the topological band
touchings and crossings to the two quantities of interest, we
propose to externally apply a magnetic field, which couples
only through the Zeeman effect to the system. In this event,
the sole but yet crucial function of the magnetic field is to
set the Bogoliubov-Fermi level of the system. In fact, in
the main text, we showed that the superfluid stiffness and
the Zeeman-field-derivative of the Josephson quantum ca-
pacitance generally exhibit discontinuities when the Zeeman
energy scale exceeds the pairing gap. Meeting this condition
in experiments, however, appears to be a challenging task. For
an intrinsic superconducting topological semimetal, supercon-
ductivity is expected to be either already destroyed in lower
fields [71] or converted into an unconventional Fulde-Ferrell-
Larkin-Ovchinikov phase [72,73]. On the other hand, hybrid
platforms appear more suitable for testing these phenomena,
since we find that such a condition is possible to satisfy, even
for interfaces with a moderate proximity effect.

Before concluding this paper, it is imperative to em-
phasize that our predictions for the topological superfluid
stiffness and the Josephson quantum capacitance are solely
applicable to one- and two-dimensional superconducting
topological semimetals. As we have already briefly mentioned
in Sec. III D, these superfluid responses are not capable of
capturing the topological charge of Weyl points appearing
in three-dimensional topological semimetals. The reason why
these superfluid stiffness cannot be employed to reflect the
topological charges of band touching points in higher di-
mensions is due to the same reason for which the strong
topological properties of a three-dimensional system cannot
be captured by a lower-dimensional topological invariant. In
general, topological systems can be classified into hierarchies
which are related by dimensional extension and reduction
[89,90]. For instance, Chern insulators in two and four dimen-
sions are classified by the first and second Chern numbers C1

and C2, and belong to two distinct hierarchies. This implies
that the topological properties of insulators obtained by di-
mensional reduction and/or extension in each hierarchy can
be linked to C1 and C2.

In the present case, the two topological superfluid re-
sponses in one and two spatial dimensions become linked
because, in a similar sense, these superconducting topolog-
ical semimetals belong to the same hierarchy. In one (two)
dimension(s), we find that the superfluid stiffness is related
to the synthetic-space C1 Chern (w3 winding) number. As
we also show, the two-dimensional case can be also under-
stood by extending chiral anomaly to two dimensions. The
three-dimensional case, however, belongs to a different hier-
archy for which we expect that a synthetic C2 Chern (or a
w5 winding) number is relevant. Hence, the here-discussed
current-current responses are not capable of exposing a C2

or a w5 charge, since the latter can be only associated
with a higher-order current correlation function. Nonethe-
less, the methodology and adiabatic formalism introduced in

this paper lay the foundations for the study of higher-order
response functions that could potentially classify supercon-
ducting topological semimetals in higher dimensions. Hence,
our approach sets the stage for the further exploration and dis-
covery of phenomena in time-reversal superconductors which
originate from nontrivial synthetic (p, φ) topology.
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APPENDIX A: DETAILS ON THE DERIVATION OF THE
STANDARD SUPERFLUID STIFFNESS FORMULA

We now reexpress the paramagnetic current contribution
(first row) of the result shown in Eq. (9), and obtain the
following formula for the paramagnetic contribution D(p)

i j to
the superfluid stiffness:

D(p)
i j =

∫
dP Tr[υ̂ j (p)τ3τ3Ĝ(ε, p)τ3υ̂i(p)τ3Ĝ(ε, p)]

=
∫

dP Tr
{
υ̂ j (p)τ3[τ3, Ĝ(ε, p)]υ̂ j (p)1τ Ĝ(ε, p)

+ ∂p j Ĝ
−1(ε, p)Ĝ(ε, p)∂pi Ĝ

−1(ε, p)Ĝ(ε, p)
}
.

It is straightforward to show that the second contribution to
the paramagnetic term D(p)

i j is opposite to the diamagnetic one,
thus canceling each other out. This can be made transparent by
rewriting the diamagnetic contribution as follows:

D(d )
i j =

∫
dP Tr

[
Ĝ(ε, p)∂p j pi Ĥ (p)

]
≡

∫
dP Tr

[
∂p j Ĝ(ε, p)∂pi Ĝ

−1(ε, p)
]

= −
∫

dPTr
[
∂p j Ĝ

−1(ε, p)Ĝ(ε, p)∂pi Ĝ
−1(ε, p)Ĝ(ε, p)

]
,

where we employed the relation ∂Ĝ = −Ĝ∂Ĝ−1Ĝ. To obtain
the second line, we used a partial integration and relied on the
fact that momentum is defined in a compact space, e.g., a BZ.

APPENDIX B: BAND-DEFINED SUPERFLUID STIFFNESS

To arrive to an equivalent representation which assigns a
superfluid stiffness contribution to each band, one introduces
the eigenstates of ĥ(p), which we label as |uα (p)〉 with en-
ergy dispersions εα (p). Under the assumption [ĥ(p), �̂] = 0̂,
we also set Eα (p) = √

ε2
α (p) +�2

α (p) with the band-defined
pairing gap �α (p) = 〈uα (p)|�̂|uα (p)〉. After carrying out the
integration of Eq. (12) over energy, we end up with the
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band-index-dependent formula

Di j = 2
∫

BZ

d p
(2π )d

∑
α,β

�α (p)�β (p)

[
Pβ (p)

Eβ (p)
− Pα (p)

Eα (p)

]

× 〈uα (p)|∂pi ĥ(p)|uβ (p)〉〈uβ (p)|∂p j ĥ(p)|uα (p)〉
E2
α (p) − E2

β (p)
,

(B1)

where we introduced the parity function for a given Bogoli-
ubov quasiparticle with energy Eα (p) � 0,

Pα (p) = �[B + Eα (p)] −�[B − Eα (p)]

≡ �[Eα (p) − |B|], (B2)

which only takes the values Pα (p) = {0, 1} given that Eα (p) �=
|B|. We observe that due to the chiral symmetry dictating
the Hamiltonian Ĥ (p), the parity function is symmetric with
respect to B ↔ −B and changes from one to zero when
the Zeeman energy crosses one of the two chiral-symmetry-
related levels ±Eα (p). One also finds that in the special case
of �α (p) = � for all α, the parities for all bands satisfy
Pα (p) = 1 given that � > |B|, hence reflecting that the SC
remains fully gapped in spite of the presence of the Zeeman
field.

At this stage, one separates intra- and interband contribu-
tions, cf. Refs. [2–6]. For the intraband α = β contribution,
the matrix element 〈uα (p)|∂pĥ(p)|uβ (p)〉 is simply given by
∂pεα (p). On the other hand, to infer the interband α �= β

contribution, we make use of the standard relation:

〈uα (p)|∂pĥ(p)|uβ (p)〉 = [εβ (p) − εα (p)]〈uα (p)|∂puβ (p)〉.
The above considerations lead to the following result for

the intraband (also termed conventional) contribution:

Dintra
i j =

∑
α

∫
BZ

d p
(2π )d

{Pα (p) − |B|δ[Eα (p) − |B|]}

× �2
α (p)

Eα (p)

∂piεα (p)

Eα (p)

∂p jεα (p)

Eα (p)
, (B3)

as well as to the relation for the interband one:

Dinter
i j =

∑
α �=β

∫
BZ

d p
(2π )d

�α (p)Pα (p)

× 2[εβ (p) − εα (p)]2

E2
β (p) − E2

α (p)

�β (p)

Eα (p)

× [〈
∂pi uα (p)

∣∣uβ (p)
〉〈

uβ (p)
∣∣∂p j uα (p)

〉 + i ↔ j
]
.

(B4)

Notably, since the factor [εβ (p) − εα (p)]2/[E2
β (p) −

E2
α (p)] goes to zero for α = β, the constraint α �= β can be

lifted from the above expression.
This property allows us to express the interband contri-

bution to the superfluid stiffness as a band-dependent sum.
Specifically, after introducing the operator,

M̂α (p) = 2
[ĥ(p) − εα (p)]2

Ê2(p) − E2
α (p)

�̂

Eα (p)
, (B5)

we obtain the following compact expression:

Dinter
i j =

∑
α

∫
BZ

d p
(2π )d

�α (p)Pα (p)

· [〈∂pi uα (p)
∣∣M̂α (p)

∣∣∂p j uα (p)
〉 + i ↔ j

]
. (B6)

Note that there may be cases in which there exist pairs of
bands with α �= β which satisfy E2

α (p) − E2
β (p) even though

εα (p) �= εβ (p). In such situations, which take place for μ = 0,
singularities may be introduced in Dinter

i j . To avoid such issues,
one can consider the evaluation of the interband superfluid
stiffness tensor at μ = 0 by considering a nonzero μ and
taking the limit μ → 0. Finally, we note that in the special
case where �α (p) = � for all bands, the expressions for the
M̂α (p) operator and the superfluid stiffness simplify according
to

M̂α (p) = 2
ĥ(p) − εα (p)

ĥ(p) + εα (p)

�

Eα (p)
, (B7)

we obtain the following compact expression:

Dinter
i j = �

∑
α

∫
BZ

d p
(2π )d

Pα (p)

· [〈∂pi uα (p)
∣∣M̂α (p)

∣∣∂p j uα (p)
〉 + i ↔ j

]
. (B8)

APPENDIX C: DYSON EQUATION FOR A SPATIALLY
VARYING SUPERCONDUCTING PHASE

In the following paragraphs, we show how to describe
the modified matrix Green’s function at first order in spatial
gradients of the superconducting phase. We start from a co-
ordinate space description. Since translational invariance is
broken in the presence of the gradients, we need to define
the single-particle Green’s function at two positions r and r′.
We therefore obtain the expression for the modified Green’s
function in the presence of a general local perturbation V̂ (r):

Ĝ(1)(ε, r, r′) = Ĝ(ε, r − r′)

+
∫

d r̄ Ĝ(ε, r − r̄)V̂ (r̄)Ĝ(ε, r̄ − r′). (C1)

At this stage, we express the matrix Green’s functions and
the perturbation potential using Fourier transforms of the form
f (r) = ∫ dq

(2π )d eiq·r f (q) and end up with

Ĝ(1)(ε, r, r′) =
∫

d p
(2π )d

eip·(r−r′ )Ĝ(ε, p) +
∫

dq
(2π )d

×
∫

dk1

(2π )d

∫
dk2

∫
d r̄

(2π )d
ei(k2+q−k1 )·r̄

× eik1·re−ik2·r′
Ĝ(ε, k1)V̂ (q)Ĝ(ε, k2). (C2)

Carrying out the integration over r̄ leads to the delta
function δ(k2 + q − k1). To proceed, it is more convenient
to write the resulting expression for the Green’s function
in a symmetrized form by splitting the second term in
the above equation into two equal contributions stemming
from scattering with wave vectors (k1, k2) = (p + q, p) and
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(k1, k2) = (p, p − q). This leads to the expression

Ĝ(1)(ε, r, r′)

= 1

2

∫
d p

(2π )d
eip·(r−r′ )

∫
dq

(2π )d
eiq·r

× [Ĝ(ε, p)(2π )dδ(q) + Ĝ(ε, p + q)V̂ (q)Ĝ(ε, p)]

+ 1

2

∫
d p

(2π )d
eip·(r−r′ )

∫
dq

(2π )d
eiq·r′

× [Ĝ(ε, p)(2π )dδ(q) + Ĝ(ε, p)V̂ (q)Ĝ(ε, p − q)].

(C3)

To proceed, it is more convenient to introduce the cen-
ter of mass R = (r + r′)/2 and position difference δ = r − r′
coordinates. Since our primary goal is to obtain a translation-
ally invariant modified Green’s function which is independent
of r and r′, we can approximately set r, r′ ≈ R, and obtain
the matrix Green’s function in momentum space through the
definition

Ĝ(1)(ε, p, q) =
∫

d p e−ip·δ
∫

dq e−iq·R Ĝ(1)(ε, δ,R), (C4)

where Ĝ(1)(ε, δ,R) is found from Eq. (C3) after replacing r
and r′ by δ and R. By relying on the above, we exploit Eq. (C3)
and after replacing V̂ (q) by −�̂φ(q)τ2, we immediately ob-
tain the momentum space defined modified matrix Green’s
function Ĝ(1)(ε, p) in Eq. (31).

APPENDIX D: RELATION BETWEEN SUPERFLUID
STIFFNESS AND SYNTHETIC WINDING NUMBER IN 3D

In this Appendix, we show some of the steps that allow
us to go from Eq. (66) to Eq. (67). It is more convenient
to demonstrate the equivalences of the two expressions by
transferring to the frame in which the operator �̂ effecting
chiral symmetry becomes block diagonal, i.e., it reads �̂ =
diag{1τ ,−1τ }. In the same basis, the adiabatic Hamiltonian
takes the block off-diagonal form

Ĥ(p, φ) =
(

0̂ Â(p, φ)

Â†(p, φ) 0̂

)
. (D1)

In the case of an adiabatic Hamiltonian which satisfies
[Ĥ(p, φ)]

2 = E2(p)1, one can define the normalized off-
diagonal block Hamiltonian Â(p, φ) = Â(p, φ)/E (p), which
satisfies the relation Â(p, φ)Â

†
(p, φ) = 1σ . All the conduc-

tion and valence eigenstates are, respectively, degenerate with
energies ±E (p), and their eigenvectors |U±(p, φ)〉 are given
by the expression

|U±(p, φ)〉 = 1√
2

(
1σ

±Â
†
(p, φ)

)
. (D2)

In the basis of the conduction and valence subspaces, we
have 〈Us(p, φ)|�̂|Us′ (p, φ)〉 = 1−ss′

2 1 ≡ δs′,−s1.
By introducing in Eq. (66) resolutions of identity in the

space defined by the conduction and valence bands, we find

that the superfluid stiffness can be reexpressed as

D = −εi jk

3

∫
dP

∑
s,s′,s′′

tr
[〈U−s|∂p̃iĤ|Us′ 〉Ĝs′

× 〈Us′ |∂p̃ j Ĥ|Us′′ 〉Ĝs′′ 〈Us′′ |∂p̃kĤ|Us〉Ĝs
]
, (D3)

where for convenience we suppressed the arguments (p, φ) ≡
( p̃1, p̃2, p̃3) and introduced the matrix Green’s functions Ĝs

which are projected onto the conduction (valence) subspace
and read

Ĝs ≡ 〈Us|Ĝ|Us〉 = 1σ

iε + B − sE (p)
≡ Gs1σ , (D4)

where Gs(p, φ) = 1/[iε + B − sE (p)]. The above form re-
sults from the degeneracy of the states within the conduction
(similarly for the valence) subspace.

To proceed, we now obtain concrete expressions for the
matrix elements involving derivatives of the Hamiltonian. We
find the following expression for elements involving states of
a given conduction (valence) subspace:

〈Us|∂p̃iĤ|Us〉 = s∂p̃i E1σ . (D5)

In contrast, when such a derivative involves one state from
the conduction band and one from the valence band, we find
the result:

〈Us|∂p̃iĤ|U−s〉 = sEÂ∂p̃i Â
†
. (D6)

Plugging the above results into Eq. (D3), the antisymmetric
tensor εi jk implies that the superfluid stiffness is obtained only
by the following contribution:

D = εi jk

3

∫
d p

(2π )2
E3tr

[(
Â∂p̃i Â

†)(
Â∂p̃ j Â

†)(
Â∂p̃k Â

†)]

·
∫ +∞

−∞

dε

2π

∑
s=±

sGsG2
−s. (D7)

The evaluation of the integral in the second row yields∫ +∞

−∞

dε

2π

∑
s=±

sGsG2
−s = 1

2

d

dE

[
�(E − |B|)

E

]
. (D8)

To demonstrate the equivalences of Eqs. (66) and (67) it is
required to relate the term

εi jk
[(

Â∂p̃i Â
†)(

Â∂p̃ j Â
†)(

Â∂p̃k Â
†)]

to the winding number density defined in Eq. (60). Alter-
natively, we start from Eq. (60) and express it in terms of the
above term. By employing the basis in which the adiabatic
Hamiltonian is block off-diagonal, we find that

Ĥ−1(p, φ) =
(

0̂ [Â†(p, φ)]−1

Â−1(p, φ) 0̂

)
. (D9)

The above implies that the winding number density simpli-
fies to

w3(p, φ) = −εi jk

3!
tr
{(

Â−1∂p̃i Â
)(

Â−1∂p̃ j Â
)(

Â−1∂p̃k Â
)

− [
(Â†)−1∂p̃i Â

†
][

(Â†)−1∂p̃ j Â
†
][

(Â†)−1∂p̃k Â†
]}
/2.
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By virtue of the fact that the winding density is a real
number, we can take the Hermitian conjugate of the term in
the second row in the expression above and find that

w3(p, φ) = −εi jk

3!
tr
[(

Â−1∂p̃i Â
)(

Â−1∂p̃ j Â
)(

Â−1∂p̃k Â
)]
,

where we made use of the relation [(Â†)
−1

]
†

= Â−1. By fur-
ther taking into account that Â−1 = Â†/E2 = Â

†
/E , we write

w3(p, φ) = − εi jk

3!E3
tr
[(

Â
†
∂p̃i Â

)(
Â

†
∂p̃ j Â

)(
Â

†
∂p̃k Â

)]
.

Moreover, by virtue of the combined presence of the anti-
symmetric symbol εi jk and the tr operation, the above result
can be solely rewritten in terms of Â, and we find

w3(p, φ) = εi jk

3!
tr
[(

Â∂p̃i Â
†)(

Â∂p̃ j Â
†)(

Â∂p̃k Â
†)]

, (D10)

where we also took into account that Â∂Â
† = −Â

†
∂Â and

made use of the cyclic property of the trace. By direct com-
parison, we find that Eq. (D7) in conjunction with Eqs. (D8)
and (D10) lead to the equivalence of Eqs. (66) and (67).

APPENDIX E: SUPERFLUID STIFFNESS
OF HIGHER-ORDER BAND TOUCHING

POINTS - ADIABATIC FORMALISM

In this Appendix, we show that our adiabatic formalism
is naturally capable of also recovering the result of Eq. (24)
obtained for the Hamiltonian of Eq. (22) which describes a
single higher-order BTP. For this purpose, we introduce the
nonzero components

dx(p) = εD

(
p

pD

)|s|
cos[sθ (p)], (E1)

dy(p) = εD

(
p

pD

)|s|
sin[sθ (p)], (E2)

of the vector d(p) which parametrizes the Hamiltonian of
Eq. (22) according to ĥ(s)(p) = d(p) · σ.

We now start from the fundamental expression of the su-
perfluid stiffness in Eq. (62) and use the derivative chain rule
to write

D(s) =
x,y∑
i

∫
dP Tr

[
∂ ĥ(s)(p)

∂ pi
1τ F̂piφ (ε, p, φ)

]

=
x,y∑

i, j,k

∫
dP

∂d j (p)

d pi

∂dk (p)

d pi
Tr

[
∂ ĥ(s)(d )

∂d j
1τ F̂dkφ (ε, d, φ)

]

=
x,y∑
i, j

∫
dP

[
∂d j (p)

d pi

]2

Tr

[
∂ ĥ(s)(d )

∂d j
1τ F̂d jφ (ε, d, φ)

]
,

where we obtained the above result by observing that the trace
in the second row is nonzero only when j = k for μ = 0. To
proceed, we make use of the relations below:

∂dx(p)

∂ px
= +∂dy(p)

∂ py
= +|s|ε(p)

p
cos[(|s| − 1)θ (p)],

∂dx(p)

∂ py
= −∂dy(p)

∂ px
= −|s|ε(p)

p
sin[(|s| − 1)θ (p)],

where we introduced the modulus ε(p) = |d(p)|, which here
only depends on the modulus of the momentum, i.e., ε(p) ≡
ε(p) = εD(p/pD)

|s|
. From the above, we find

x,y∑
i

[
∂dx(p)

d pi

]2

=
x,y∑
i

[
∂dy(p)

d pi

]2

=
[
|s|ε(p)

p

]2

, (E3)

which subsequently leads to

D(s) =
x,y∑
i

∫
dP

[
|s|ε(p)

p

]2

Tr

[
∂ ĥ(s)(d )

∂di
1τ F̂diφ (ε, d, φ)

]
.

We note that the contribution of the trace is a function of
only p or, equivalently, ε. Hence, by denoting this f (p) and
f (ε), respectively, we make use of the following relations:

∫
d p(
2π

)2

[
|s|ε(p)

p

]2

f (p) =
∫ ∞

0

d p p

2π

[
|s|ε(p)

p

]2

f (p)

= |s|
∫ ∞

0

d p

2π

dε(p)

d p
ε(p) f (p)

≡ |s|
∫

dd(
2π

)2 f (ε). (E4)

From the above, we obtain that the superfluid stiffness can
be written in terms of the two components of d as

D(s) = |s|
x,y∑
i

∫
dD Tr

[
∂ ĥ(s)(d )

∂di
1τ F̂diφ (ε, d, φ)

]
, (E5)

where we introduced the shorthand notation:∫
dD ≡

∫
BZ

dd
(2π )d

∫ +∞

−∞

dε

2π
.

Since, however, the vector d here plays an analogous role
to υD p, the above expression implies that D(s)(B, μ = 0) =
|s|D(1)(B, μ = 0). Hence, a BTP with vorticity s yields a
stiffness which is |s| times that of a single Dirac point with
vorticity of a single unit (|s| = 1). Even more, one finds that
the above relation actually holds for all μ. This is more con-
venient to demonstrate by employing Eqs. (B3) and (B4) after
setting εα (p) = αε(p) − μ, �α (p) = �, and α = ±. Thus,
this provides that

D(s)(B, μ) = |s|D(1)(B, μ). (E6)

We note that D(1)(B = 0, μ) was initially obtained in
Ref. [18]. Later, it was shown in Ref. [4] that it con-
sists of the intra- and interband contributions given by
D(1)

intra (B = 0, μ) = (|μ|/2π )
√

1 + v2 and D(1)
inter (B = 0, μ) =

(|μ|/2π )v2 ln [(1 + √
1 + v2)/v], respectively, where v =

�/|μ|. Note that in the limit v → 0, only the intraband con-
tribution survives and yields the result D(1)(B = 0, μ;� �
|μ|) = |μ|/2π . In this limit, only one out of the two ±υD p
bands crosses the Fermi energy, which is determined by the
value of |μ|. The noncrossing band lies energetically far away
and does not contribute to the stiffness.
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