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Environmental memory facilitates search with home returns
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Search processes in the natural world are often punctuated by home returns that reset the position of foraging
animals, birds, and insects. Many theoretical, numerical, and experimental studies have now demonstrated
that this strategy can drastically facilitate search, which could explain its prevalence. To further facilitate
search, foragers also work as a group: modifying their surroundings in highly sophisticated ways, e.g., by
leaving chemical scent trails that imprint the memory of previous excursions. Here, we design a controlled
experiment to show that the benefit coming from such environmental memory is significant even for a single,
nonintelligent searcher that is limited to simple physical interactions with its surroundings. To this end, we
employ a self-propelled bristle robot that moves randomly within an arena filled with obstacles that the robot can
push around. To mimic home returns, we reset the bristle robot’s position at constant time intervals. We show that
trails created by the robot give rise to a form of environmental memory that facilitates search by increasing the
effective diffusion coefficient. Numerical simulations and theoretical estimates designed to capture the essential
physics of the experiment support our conclusions and indicate that these are not limited to the particular system
studied herein.
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I. INTRODUCTION

Search processes are common in nature, from animal
forging on the macroscopic scale [1,2] to the search of
biomolecules inside living cells [3,4]. Over the years, search
and first-passage problems attracted considerable attention
in different fields and contexts [5–7]. It has been widely
observed that a proper choice of the stochastic mode of mo-
tion can significantly facilitate search. Finding optimal search
strategies in different conditions and under various constraints
has thus become a central goal of search research [8–14].

Recently, a series of theoretical, computational, and exper-
imental studies demonstrated that resetting a search process
repeatedly can accelerate it regardless of the underlying mode
of stochastic motion [15–22], and as long as the first-passage
time distribution without resetting is sufficiently dispersed
[23]. This counterintuitive fact was pointed out as a major
advantage of search with home returns [24] that is prevalently
displayed by foraging animals, birds, and insects.
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Missing completely from the discussion and analysis of
resetting, and search with home returns, are interactions
between the searching agent and its environment. For exam-
ple, autochemotactic cells mark and sense their environment
[25–27], thus building memory which can in turn be used
to expedite search [28]. Similarly, ants (and other insects)
mark the ground with chemical scents while foraging and
navigating back and forth from the nest in search of a food
source [29,30]. Here again, memory is gradually built into
the environment, which means that the first search attempt is
different from the second, which is in turn different from the
third, and so on and so forth.

Ants tend to follow dominant scent trails that were pre-
viously used and marked by many ants, indicating that
scent trails provide effective means of communication.
This environment-mediated interaction between foraging ants
helps expedite the process of finding food and carrying it back
home [31–34]. Inspired by the amazing ability of a cooper-
ating collective to improve search efficiency by chemically
imprinting the memory of past events onto its surround-
ings; we ask a fundamental question: Can simple physical
interactions between a single, nonintelligent searcher and its
environment facilitate target location?

Here, we address this question within a controlled ex-
perimental setup: A bristle robot searching in a field of
movable obstacles. Bristle robots are devices that convert the
kinetic energy of vibration into forward propulsion using their
flexible bristlelike legs [35]. They exhibit persistent random
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FIG. 1. The experimental setup. (a) A sketch detailing the arena and its dimensions (the inner dimensions are 137 × 63 cm2). (b) Charac-
teristic scales of the bbot and the mobile cubic obstacles. (c) An image of a bbot (in blue) paving its way through the arena and leaving a trail
(orange). (d) Sample trajectory of the bbot (in shades of blue) and its projections onto the axes (in gray). Resetting events are marked with
green arrows.

motion [35,36] and have been applied to study swarm robotics
[37,38] and statistical mechanics out of thermal equilibrium
[39–41].

In our experiment, collisions with the movable obstacles
allow the bristle robot to imprint memory onto its envi-
ronment and simultaneously “sense”, via excluded volume
interactions, the presence of obstacles and of trails it formed
previously. The robot is given a fixed time window to explore
the arena. At the end of this time interval, to mimic a home
return via an existing trail, the robot is returned to its start-
ing position without erasing the trails it created previously.
This process is performed repeatedly, resulting in significant
reshaping of the arena such that it is partitioned into clear trails
and denser obstacle islands. Comparing these experiments to
ones in which we scramble the arena to erase the robot’s foot-
prints, we demonstrate the benefits of environmental memory
on search with home returns.

A. Encoding memory and sensing using mechanical interactions

Figures 1(a) and 1(b) depict details of the experimen-
tal setup. We employ commercially available self-propelled
bristle robots (bbots, Hexbug’s Nano Newton series) and an-
alyze their motion in an arena (outer 150 × 90 cm2 and inner
137 × 63 cm2 dimensions) containing cubic mobile obstacles
(0.953 cm3 Perspex cubes, m = 1 g). Bbots are active particles
that convert electric energy stored in a battery to vibrations.
The tilted elastic legs of the bbots transform the vibrations to
persistent forward motion [with some chirality, Supplemental
Material (SM) [42] Fig. 1]. Since active particles tend to move
along boundaries, we fashion the arena’s edges in a way that
injects the bbots inwards and away from the boundaries. The
area fraction of the mobile obstacles in the arena was set to
φ = 0.3.

When a bbot is introduced to the arena, it clears obstacles
from its path by colliding with them [see Fig. 1(c) and SM
video S1], which is typical for active particles in crowded
environments [43,44]. At later times, it can either return to
previously cleared trails, create new trails, or destroy existing
ones. Thus, the trail pattern formed in the arena remembers
the bbot’s path, which we will henceforth refer to as environ-

mental memory or simply just memory. Similar environmental
memory was observed on microscopic scales in a mixtures of
active and passive particles [44]. Since the bbot moves more
freely when it revisits previously cleared trails, environmental
memory also feeds back onto the bbot’s motion. We record
the motion of the bbot using a webcam (BRIO 4K, Logitech)
at a rate of 60 FPS. We use conventional particle tracking
algorithms [45] to extract trajectories.

We perform resetting experiments using the following pro-
tocol: Initially, the obstacles are scattered randomly across the
arena. The experiments start by releasing a bbot from the cen-
ter of the arena. The bbot then carves its path by pushing aside
obstacles that it encounters. Following a fixed time interval
from its release, or if the bbot reaches the arena boundaries,
the bbot is plucked out of the arena and repositioned at the
origin. Thus, the bbot’s position is reset (SM video S2). This
procedure is aimed to mimic random search followed by the
bbot’s return home via an existing trail. The bbot is positioned
at a new orientation after each resetting event to ensure uni-
form sampling of the initial direction of motion. The manual
resetting process is cut out of the recorded trajectories of
the bbot. An excerpt of a typical trajectory, including two
resetting events, is shown in Fig. 1(d).

B. Environmental memory enhances mobility

To study the effect of environmental memory on the
steady-state distribution of the bbot and its passage times to a
certain location in the arena, i.e., the search time, we perform
two sets of experiments: with and without environmental
memory. In the experiments with environmental memory,
only the bbot’s position is reset while obstacles are untouched.
In contrast, in the experiments without environmental
memory, we manually rescatter the obstacles upon resetting.
Rescattering of the obstacles results in full resetting of the
system: the bbot’s position and its environment. We use a
resetting protocol in which the bbot is reset approximately
at constant time intervals of τ = 20 s, i.e., sharp resetting
[17,46–48]. In addition, in both experiment versions, we reset
the bbot’s position when it reaches the arena’s boundaries.
The resulting resetting time distribution (SM Fig. 4) is spread
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FIG. 2. Comparison of typical arenas and the bbot’s motion with and without environmental memory, top and bottom panels, respectively.
(a), (b) Images of typical arenas with and without memory, 30 min into the experiment. (c), (d) Trajectories of the bbot with and without
memory (in gray). The colored trajectories show the evolution in time of a single trail. A white cross marks the origin. (e), (f) Histograms of
the number of visits to different locations in the arena with 0.252 cm2 sized bins.

between ≈5 s to ≈25 s with an average of 〈R〉 = 13.2 ± 5.7 s
and 〈R〉 = 12.9 ± 5.6 s for experiments with and without
memory, respectively. We stress that, regardless of the
resetting event type, the sharp resetting timer starts fresh
when the bbot’s position is reset to the origin.

In Figs. 2(a) and 2(b), we show snapshots of the arena
30 minutes into the start of the experiment. The difference
between Fig. 2(a) (with memory) and Fig. 2(b) (without) re-
sults in different characteristics of the ensemble of trajectories
shown in Figs. 2(c) and 2(d) (gray lines). Near the origin, the
trajectories are sparser in the system with memory and denser
in the system without. This observation implies that, in exper-
iments with environmental memory, the bbot tends to revisit
and stabilize existing trails. As a result, we observe striking
differences in trajectory patterns. Specifically, the occurrence
of extended trails is enhanced in the presence of environmen-
tal memory. We further visualize this effect in Figs. 2(e) and
2(f), where we present histograms of the number of visits to
different locations in the arena. Quantifying the persistence
length of the bbot from orientation correlation decay of typ-
ical trajectories, we find �p = 14.3 cm (with memory) and
�p = 10.0 cm (without), which provides quantitative support
to the observations made above.

One of the hallmarks of random motion with resetting
is the emergence of a nonequilibrium steady state for the
position of the reset particle [20]. Such a steady state is also
reached in our experiments when considering the position of
a bbot that is reset without keeping environmental memory.
However, the situation is more complicated when we allow
the environment to retain the memory of the bbot’s motion,
as the arena itself also evolves with time. In experiments
conducted with environmental memory, the bbot constantly
creates and destroys previous trails. As a result, obstacles are
dynamically rearranged until the bbot’s environment reaches
a quasi-steady-state (see SM Figs. 2 and 3 for quantitative
assessment).

We characterize the bbot’s motion and the resulting po-
sition distribution under these quasi-steady-state conditions.
First, we calculate the typical mean squared displacement
(MSD) of the bbot along the long axis of the arena, which
we henceforth denote as x. We concentrate our analysis on the
x axis, as the robot’s motion along the y axis exhibits similar
behavior but is more sensitive to edge effects. The MSD is
computed by taking an average, over all N resetting events, of
the bbot’s squared displacement

〈�x2(t )〉 = 1

N

N∑
i=1

(�xi(t ))2, (1)

where �x2(t ) = (x(t ) − x(0))2, and t is the lag time since
the last resetting event. In Fig. 3(a), the MSD of the bbot
is shown for the two sets of experiments, with and without
memory. Both curves have a similar shape starting with a short
superdiffusive segment that transitions into a diffusive (linear)
regime, as expected for persistent motion in the presence of
obstacles [49]. Indeed, the bbot performs directed motion at
short timescales and is scattered randomly by collisions with
the obstacles at longer times. Eventually, the bbot reaches
the boundaries and is reset. Therefore, we truncate the MSD
curves at a cutoff that is smaller than the typical time it takes
the bbot to reach the arena’s boundaries. The diffusion coef-
ficient of the bbot’s motion is extracted from the slope of the
MSD at the linear regime. We find D = 34.7 ± 0.3 cm2/s and
D = 21.9 ± 0.2 cm2/s with and without memory, providing
further support for the observation that the bbot diffuses more
efficiently with memory, i.e., when it can revisit existing trails.
Thus, the faster motion along a previously carved trail allows
the robot to reach further before being reset, leading to an
enhanced diffusion coefficient in a system with memory.

To further quantify this effect, we measure the probability
distribution of the bbot’s position along the long axis of the
arena at a given time, t , indicating the lag time from the
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FIG. 3. Characteristics of the bbot’s motion within the quasi-steady-state phase, with and without memory. (a) MSD as a function of the
lag time, calculated from an ensemble of N = 1223 (with memory) and N = 670 (without memory) resetting events. (b) Position distributions
along the x axis, at a lag time t = 5 s from a resetting event. Experimental measurements (markers) and fits to Eq. (2) (solid lines). (c) Steady-
state position distributions of the bbot along the x axis, for resetting with and without memory. Experimental measurements (markers) and fits
to Eq. (3) (solid lines). In all panels, observe the enhanced mobility under environmental memory conditions.

previous resetting event [Fig. 3(b)]. In agreement with our pre-
vious observation, the distribution of position in a system with
memory is wider. In addition, we find that this distribution is
roughly Gaussian

G(x, t |x0, 0) = 1√
4πDt

e− (x−x0 )2

4Dt , (2)

thus allowing us to map the problem to that of a particle per-
forming free diffusion with an effective diffusion coefficient
D, where x0 is the origin.

The steady-state distribution of diffusion under Poissonian,
i.e., constant rate, resetting has a cusp at the origin and expo-
nentially decaying tails [15,20]. Here, resetting is conducted
at (nonexponential) random time intervals taken from the
resetting time distribution in SM Fig. 4. Thus, we observe a
smoother steady-state position distribution Pss(x) of the bbot
along the x axis [Fig. 3(c)]. Moreover, the functional form
of Pss(x) is similar to that of a normally diffusing particle
undergoing resetting in an obstacle-free system,

Pss(x) = 1

〈R〉
∫ ∞

0

�(t )√
4πDt

e− (x−x0 )2

4Dt dt, (3)

where �(t ) is the survival function of the resetting time R, i.e.,
the probability that the resetting time R is larger than a thresh-
old time t (SM Fig. 5), and 〈R〉 is the mean resetting time.
This prediction of Pss(x) fits well the experimental data of both
systems, with and without memory. The effective diffusion
coefficients extracted from the fits are D = 42.73 cm2/s and
D = 24.49 cm2/s, with and without memory, respectively.
The obtained values are similar to the ones extracted from
MSD measurements.

C. Environmental memory facilitates search

Having established that memory enhances the bbot’s mo-
bility, we now turn to quantify the effect of memory on search.
We introduce a target line to our setup at x = 40 cm [see
Fig 4(a)]. We look at a sequential series of search processes,
each starting at the origin and ending at the target. For each
search process, we define the passage time (PT) as the time
it takes the bbot to reach the target starting from the origin.
Note that the PT includes all the resetting events that happened

prior to the bbot’s arrival at the target. We also reset the bbot’s
position after it reaches the target. In experiments without
environmental memory, we manually rescatter the obstacles
after each resetting event and when the bbot reaches the target.

In some cases, the bbot does not reach the target during
the entire 30 min duration of the experiment. Therefore, we
first measure the fraction of experiments in which the bbot
reached the target. We find that for a system with mem-
ory, Nreach/Ntotal = 329/330 ∼ 99%, whereas Nreach/Ntotal =
79/82 ∼ 96% for a system without memory. This indicates
that the probability of reaching the target in systems with
memory is slightly higher.

For bbots that were able to reach the target, we also mea-
sure the probability density function of the PTs, and plot it
for experiments with and without memory in Fig. 4(b). Av-
eraging over these distributions, we find that the normalized
mean passage times (MPTs) are given by 〈PT/τ 〉 = 4.7 ± 0.4
and 〈PT/τ 〉 = 9.3 ± 1.2 for systems with and without mem-
ory, respectively. Note, that these numbers report means and

(a) (b)

FIG. 4. Characteristics of search under resetting. (a) Projection
of the bbot’s trajectory onto the x axis in a typical experiment
showing two instances in which the bbot reached the target. The
two PTs are marked using double-headed, blue arrows. The target is
positioned at x = 40 cm and is marked by a yellow line. Resetting
events are marked using a series of arrows pointing back at the
origin. (b) Comparison between the probability density functions of
PTs with and without memory. Here, the PT is taken in units of the
time, τ , between sharp resetting events. Markers come from experi-
ments, and continuous lines are used as a guide to the eye. The MPTs
with and without memory are indicated in the inset.
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FIG. 5. (a), (b) The persistent Sokoban random walk and its laws of motion. (c) Comparison between the probability density functions
of PTs with and without memory. Here, the PT is taken in units of the time, τ , between sharp resetting events. The MPTs with and without
memory are indicated in the inset. (d) The mean nth passage time (nMPT) as a function of the number of PTs since the beginning of the
simulation. In simulations with memory, obstacles are scattered only at the beginning of the simulations. Hence memory is continuously
encoded into the environment, and the nMPT first sharply decreases and then slightly increases to the value reported in the inset of (c). In
contrast, in simulations without memory obstacles are rescattered after every resetting event. Thus, the nMPT remains constant.

standard errors in the estimation of the means in units of the
sharp resetting time τ . We thus find that memory significantly
reduces the time it takes a bbot to reach the target line in our
experiment.

D. Revealing the buildup of environmental memory

Memory in the environment is built gradually, increasing
with every resetting event and the subsequent redistribution
of obstacles in the arena. As a result, we also expect the MPT
to decrease gradually, as time progresses, from a value close
to that of a system without memory to that of a system with
memory. The latter is expected when the obstacles’ configu-
ration in the arena reaches a steady state. However, capturing
this transition requires much more data than is realistically
attainable in experiments. Thus, instead, we use Monte Carlo
simulations to show that the predicted effect is also seen in a
stylized model that captures the essential physics governing
our experiment. To this end, we adapt the Sokoban random
walk, which has recently been introduced to explore the ef-
fect of tracer-media interactions on motion and transport in
disordered media [50].

In the Sokoban simulations, a random walker of unit size
moves on a rectangular, 151 × 91, arena with mobile obsta-
cles of unit size scattered throughout [Fig. 5(a)]. The area
fraction of the mobile obstacles in the arena was set to φ =
0.3, as in the experiments. At each time step, the random
walker tries to move one step in a random direction relative
to the direction of its last step. To imitate a bbot’s motion,
we make the walker persistent by taking the probability of
forward motion to be 0.99, and the probability turning and
moving either left or right to be 0.005. Additional rules were
implemented to take into account interactions between the
random walker and the obstacles scattered across the arena
[Fig. 5(b)], namely, a move always takes place if the walker
tries to move into an unoccupied site. Otherwise, the walker

may try to move into an occupied site by pushing an obstacle
one site forward (in the direction of motion). However, such
a move will only take place if the site to which the obstacle
is pushed is vacant. In other words, unlike in experiments,
the Sokoban walker cannot push multiple obstacles simulta-
neously (SM video S3). If a forbidden step is attempted, the
walker stays put at that given time step.

Next, we performed simulations using a resetting proto-
col that is almost identical to that used in the experiments.
Obstacles are scattered randomly across the arena, and the
simulation starts by releasing the walker at its center. The
walker then carves its path by pushing aside obstacles that
it encounters. As in the experiments, we implement sharp
resetting by returning the walker to the origin at constant
time intervals of τ = 2000 time steps, or when it reached
the boundaries of the arena. The resulting resetting time dis-
tributions are shown in SM Fig. 7, along with the survival
functions. We stress that, regardless of the resetting event
type, the sharp resetting timer starts fresh when the walker’s
position is reset to the origin. To ensure uniform sampling of
the initial direction of motion, the walker is positioned at a
new orientation after each resetting event.

We performed two sets of simulations: with and without
environmental memory. In simulations conducted with en-
vironmental memory, the arena is left untouched, i.e., it is
not randomized after resetting the walker’s position. As a
result, obstacles are dynamically rearranged until the envi-
ronment reaches a steady state (SM Fig. 6(a)). In contrast to
the experiment, where only a quasi-steady-state is achieved,
in the Sokoban simulations, a steady state is characterized by
obstacle configurations that the walker can no longer modify.
Hence, we eventually observe obstacle configurations that are
fixed in time. Sample trajectories for simulations with and
without memory are shown in SM Figs. 6(b) and 6(c).

To characterize the effect of memory on the walker’s
motion, we repeated the analysis reported in Fig. 3 for the
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simulated data. At short times (t � 50 steps), we observe
the effect of directed motion on the MSD, per expectations
and experimental observations. At longer times, the MSD be-
comes linear with a diffusion constant of D = 0.119 ± 0.014
and D = 0.073 ± 0.002 with and without memory, respec-
tively [SM Fig. 8(a)]. Note that the forward motion probability
of the walker was chosen such that the ratio of MSDs, with
and without memory will be similar to the experimentally
measured one. As in the experiment, we find that the proba-
bility distribution of the walker’s position along the long axis
of the arena is approximately Gaussian. The enhanced mobil-
ity of the walker under environmental memory conditions is
clearly reflected on the propagator level [SM Fig. 8(b)] and
when comparing steady-state position distributions along the
x axis [SM Fig. 8(c)].

Having established that memory enhances the walker’s mo-
bility, similar to its observed effect in experiments, we turned
to quantify the effect of memory on search. We introduced a
target line to our simulations at x = 40 and collected statistics
for the PT to the target. In Fig. 5(c), we compare the proba-
bility density functions of the PTs for simulations conducted
with and without memory. Following the experiments, simula-
tions with memory were conducted at steady-state conditions
of the arena. Similar to the experiments, here too we find that
a small fraction of walkers fail to reach the target. These are
excluded from the PT distributions. Averaging over the PT
distributions, we find that MPTs are given by 〈PT/τ 〉 = 30.1
and 〈PT/τ 〉 = 49.9, for systems with and without memory
respectively.

Finally, we characterize the change in the MPT due to
the structural evolution of the environment as memory is
built into the arena. We do so by calculating the mean nth
passage time (nMPT), which is averaged over many realiza-
tions as a function of the number of PTs since the start of
the experiment. In simulations without memory, obstacles are
rescattered in the arena after each resetting event. We thus
expect the nMPT to remain constant, i.e., not to depend on
the passage number and the time elapsed since the onset
of the simulation. In contrast, for simulations with memory,
we expect the nMPT to decrease with time, evolving with
the changes in the obstacles’ distribution in the arena from
a value close to that of a system without memory to that
of a system with memory at steady-state conditions. These
expectations are in good agreement with simulation results
that are plotted in Fig. 5(d). The transition observed in the sim-
ulations agrees with the two limiting conditions measured in
experiments.

Concluding this section, we see that the broader implica-
tions of our experimental findings become evident through
their manifestation in a different model system: the Sokoban
random walk. While this stylized model differs from our
experiment in the fine details of its microscopic dynamics,
it nevertheless captures the fundamental physics and is able
to qualitatively reproduce main results. Intriguingly, we find
that motion in the model must be persistent to reproduce the
decrease in search time resulting from environmental memory.
This finding emphasizes that environmental memory from the
type studied here must be paired with persistent motion in
order to benefit search.

E. Long-term memory leads to ergodicity breaking

Since the bbot effectively displays diffusive behavior, it is
only natural to ask if the measured values of the diffusion
coefficients can be used to provide a theoretical estimate that
captures the experimental MPTs. To answer this question, we
construct a simplified model of our experiments. We assume
that (i) the bbot’s motion can be described by simple diffusion,
(ii) motion along the x direction is independent of motion
along the y direction, and (iii) resetting occurs after a fixed
time τ or when one of the boundaries at the y direction is
reached. This neglects resetting events from the far boundary
(x = −68.5 cm), which are relatively rare. For resetting with-
out memory, these simplifications allow us to approximate the
MPT using a known formula from the theory of first-passage
under restart.

Letting T denote the passage time without resetting and
R denote a statistically independent resetting time, we have
〈PT〉 = 〈min(T,R)〉

Pr(T <R) [17]. To apply this formula in our case, we
approximate T with the analytically known first-passage time
of diffusion in an interval with an absorbing boundary at x =
40 cm and a reflecting boundary at x = −68.5 cm. To approxi-
mate R, we take the minimum between the sharp resetting time
τ and the analytically known first-passage time of diffusion in
an interval with absorbing boundaries at y = +31.5 cm and
y = −31.5 cm. The mean of the minimum of T and R can
then be easily calculated, and the same goes for the probability
that first passage will occur before resetting. Overall, taking
D = 21.9 cm2/s that was extracted from the experiment and
τ = 20 s, this calculation gives 〈PT/τ 〉 ≈ 6.04. Performing
a similar calculation for the Sokoban random walk without
memory (note the slightly different arena dimensions), we
plug in D = 0.073 and τ = 2000, and find 〈PT/τ 〉 ≈ 52.

While these theoretical estimates show good agreement
with the Sokoban MPT reported in Fig. 5(c), there is a relative
error of approximately ≈35% compared to the experimental
MPT reported in Fig. 4(b). One potential source of error is the
nondiffusive nature of the bbot’s motion at timescales shorter
than the persistence time. To address this issue, we also con-
ducted simulations of our simplified diffusion model, keeping
the target line and resetting rules consistent with the experi-
ment. For short time steps, dt � �2

p/2D, we obtained an MPT
that matched the theoretical prediction as expected. Increasing
the simulation time step to dt = �2

p/2D ≈ 2.28 s, and re-
peating the simulations we got 〈PT/τ 〉 ≈ 8.16, which agrees
with experiments (to measurement error). Consequently, we
conclude that the lion’s share of the error associated with the
theoretical prediction originates from the nondiffusive behav-
ior of the bbot at short timescales.

Finally, we ask whether results obtained in the presence
of environmental memory can also be understood in a similar
fashion. At face value, the answer to this question should be
no. The formula used above is based on the renewal assump-
tion, which implies that the past is forgotten after a resetting
event and thus passage attempts are statistically independent
and identical. Clearly, this assumption does not hold for ex-
periments with environmental memory. Surprisingly, when
performing the same calculation as before to estimate the
MPT theoretically with D = 34.7 cm2/s (the measured dif-
fusion coefficient with memory), we obtain 〈PT/τ 〉 ≈ 3.54.
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This value yields a relative error of approximately ≈25%,
which is comparable to the error observed in the absence of
memory. Furthermore, similar to the no-memory case, this
error almost vanishes when accounting for the nondiffusive
behavior of the bbot at short timescales as before.

We thus conclude that the memory in our experiment
primarily influences the effective diffusion coefficient of the
bbot; and that once this is known, correlations between pas-
sage attempts are not strong enough to create significant
deviations from the renewal-based theoretical prediction. This
can be understood by noting that the bbot scrambles the arena
during its motion, which renders correlations short-ranged in
time.

The situation is drastically different for the Sokoban in the
presence of environmental memory. Unlike the experiment,
Sokoban arenas evolve until they reach a fixed configura-
tion of obstacles that the random walker can no longer alter.
This means that the renewal assumption, following reset-
ting events, is asymptotically exact in the long time limit of
a single trajectory. However, for D = 0.119 obtained from
Sokoban simulations with memory, the theoretical estimate
yields 〈PT/τ 〉 ≈ 14.95, which is half the true value. We at-
tribute this discrepancy to the breakdown of ergodicity. The
reported diffusion coefficient is based on an ensemble average
over numerous arena configurations. In contrast, for each time
trace, a single configuration becomes fixed. i.e., there is no
averaging in time. To show that this is indeed the primary
source of error, we modified the Sokoban simulation such
that a new steady-state configuration of the arena is sampled
with each resetting event. We then recover good agreement
with the theoretical estimate, reducing the relative error to
approximately ≈15%.

Concluding this section, we see that one significant differ-
ence between simulations of the Sokoban random walk and
our experiments is the timescale over which environmental
memory persists. In the Sokoban model, the distribution of
obstacles across the arena reaches a steady-state configuration
that is frozen in time. Thus, the system does not self-average
over time, and ergodicity is broken. This ergodicity breaking
is different from the inherent ergodicity breaking of reset-
ting processes [51]. In contrast, in the experiment, obstacles
constantly move: trails are formed and destroyed such that a
dynamic quasi-steady-state is reached. Crucially, the bristle
robot continues to scramble the arena in its motion, which
renders memory and correlation times finite. We expect this
to change in experiments with higher obstacle densities (SM
Fig. 9), which give rise to longer-lasting memory and non-
ergodic behavior. Clearly, another theoretical framework to
understand resetting in the presence of memory and strong
temporal correlations will then be required. A more detailed
characterization of the effect of obstacle density on search and
mobility is left for future work.

II. CONCLUSION

By itself, the ability to mark and sense the environment
does not improve or detract from the efficiency of a search
process. Yet organisms such as ants and bacteria found ways
to expedite the search for nutrients by use of chemical mark-
ings that relay information to the future self (and other

searchers) via the environment. It is natural to ask, What is the
level of complexity required of a searcher to implement such
mechanisms to better its search? Can a simple physical mech-
anism facilitate search by encoding environmental memory?

We conducted a controlled experiment to measure the im-
pact of environmental memory on motion and target location.
We showed that even a single, nonintelligent searcher—a
bristle robot—can expedite its search by taking advantage
of mechanical interactions that combine the ability to mark
and perceive the environment. Using a resetting protocol,
we demonstrated that environmental memory—manifested as
obstacle-free trails—significantly improved the robot’s mo-
bility; consequently leading to a broader distribution of the
bristle robot’s location and reduced search times.

Our results suggest that any memory encoding (and sens-
ing) method, such as mechanical, chemical, or optical, which
enhances the speed or spread of the searching agent, will lead
to lower search times. Moreover, since memory encoded in the
environment can also be used by other searchers, our study
extends to search involving multiple searchers originating
from the same place, although we neglect direct interactions
between the searchers. Enhanced mobility will also expedite
the detection of targets with varying sizes and dimensions.

Here, we focused on elucidating the primary effects of
environmental memory on search, leveraging the theoretical
framework of resetting to quantify its ramifications. While
we focused on a relatively simple setting, broad conclusions
coming from our study are expected to apply more generally.
For example, our choice of the return method—instantaneous
returns—can be extended to finite-time returns, such as direct
returns at constant velocity. It is a reasonable assumption that
the searcher knows its way home and does not need to search
for it. The arising question is whether ballistic returns negate
the effect of memory on search. To assess this, we notice
that the enhanced mobility of a searcher in a system with
memory has two opposing effects on the temporal overhead
of returns compared to a system without memory. On the one
hand, it increases the distance that the searcher should return
from, thus increasing the mean return time. On the other
hand, it reduces the number of search trials, thus reducing
the mean number of returns per first passage event. This
competition between diffusive spreading and ballistic returns
can be analyzed quantitatively (see SM discussion on the
effect of ballistic returns on the search time). Clearly, for high
return velocities—the limit of instantaneous returns—search
benefits from environmental memory as illustrated above.
Moreover, for the systems analyzed here, we find this remains
the case regardless of the return velocity.

Enhanced mobility improves search by allowing the
searcher to reach further away in less time. Yet, in systems
with environmental memory, this may come at the expense of
area coverage. Note, however, that in the conditions of our
experiment, this should not prevent the detection of local-
ized targets since environmental memory is short-ranged. It
is thus virtually impossible that the access to certain regions,
or targets, will be blocked by obstacles. In contrast, in sys-
tems exhibiting kinetically locked nonergodic environments,
such as in the Sokoban model, there can be situations where
certain regions of the arena are inaccessible, thus detracting
from search efficiency. The competition between enhanced

023255-7



AMY ALTSHULER et al. PHYSICAL REVIEW RESEARCH 6, 023255 (2024)

mobility and area coverage is currently under investigation,
specifically in systems with larger obstacle densities.

Our findings also bring to the forefront a theoretical chal-
lenge. The current theoretical framework aimed to predict
first passage under resetting is based on the renewal assump-
tion. This assumption is clearly violated where environmental
memory is long-ranged, which leads to significant prediction
errors. A suitable theoretical framework is thus required to
better understand resetting in the presence of memory and
strong temporal correlations.

In conclusion, we studied the effect of environmental
memory on search with home returns and showcased its bene-
fits in well-controlled laboratory experiments and numerical
simulations. It is now essential to explore how complexity
influences environment-assisted search strategies by taking
a fundamental physics perspective. For instance, how do
nonlinear effects arising from environmental reorganization
impact search efficiency? And what is the effect of different
strengths, types, and durations of trail markings? Introducing

agent complexity, such as memory, sensing, communication,
and computational capabilities—which are common in swarm
robotics—is expected to further amplify search performance.
Yet, a quantitative understanding of the added value brought
by these elements is clearly missing. Progress in this direction
may also shed light on how living organisms use environmen-
tal memory to facilitate search.
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