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Quantum state tomography (QST) is the art of reconstructing an unknown quantum state through measure-
ments. It is a key primitive for developing quantum technologies. Neural network quantum state tomography
(NNQST), which aims to reconstruct the quantum state via a neural network ansatz, is often implemented via a
basis-dependent cross-entropy loss function. State-of-the-art implementations of NNQST are often restricted
to characterizing a particular subclass of states, to avoid an exponential growth in the number of required
measurement settings. To provide a more broadly applicable method for efficient state reconstruction, we present
“neural-shadow quantum state tomography” (NSQST)—an alternative neural network-based QST protocol that
uses infidelity as the loss function. The infidelity is estimated using the classical shadows of the target state.
Infidelity is a natural choice for training loss, benefiting from the proven measurement sample efficiency of the
classical shadow formalism. Furthermore, NSQST is robust against various types of noise without any error
mitigation. We numerically demonstrate the advantage of NSQST over NNQST at learning the relative phases of
three target quantum states of practical interest, as well as the advantage over direct shadow estimation. NSQST
greatly extends the practical reach of NNQST and provides a novel route to effective quantum state tomography.
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I. INTRODUCTION

Efficient methods for state reconstruction are essential
in the development of advanced quantum technologies. Im-
portant applications include the efficient characterization,
readout, processing, and verification of quantum systems in
a variety of areas ranging from quantum computing and quan-
tum simulation to quantum sensors and quantum networks
[1–6]. However, with physical quantum platforms growing
larger in recent years [7], reconstructing the target quantum
state through brute-force quantum state tomography (QST)
has become much more computationally demanding due to an
exponentially increasing number of required measurements.
To address this issue, various approaches have been proposed
that are efficient in both the number of required measurement
samples and in the number of parameters used to characterize
the quantum state. These include classical shadows [8] and
neural network quantum state tomography (NNQST) [9]. The
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goal of NNQST is to produce a neural network representation
of a complete physical quantum state that is close to some
target state. In contrast, the classical shadows formalism does
not aim to reconstruct a full quantum state, but rather to
obtain a reduced classical description that allows for efficient
evaluation of certain observables.

A neural network quantum state ansatz has been shown
to have sufficient expressivity to represent a wide range of
quantum states [10–13] using a number of model parameters
that scales polynomially in the number of qubits. Furthermore,
as methods for training neural networks have long been in-
vestigated in the machine learning community, many useful
strategies for neural network model design and optimization
have been directly adopted for NNQST [14–16]. Following
the introduction of neural network quantum states [17], Torlai
et al. proposed the first version of NNQST, an efficient QST
protocol based on a restricted Boltzmann machine (RBM)
neural network ansatz and a cross-entropy loss function [9].
NNQST has been applied successfully to characterize var-
ious pure states, including W states, the ground states of
many-body Hamiltonians, and time-evolved many-body states
[9,18,19]. Despite the promising results of NNQST in many
use cases, the protocol faces a fundamental challenge: An
exponentially large number of measurement settings is re-
quired to identify a general unknown quantum state (although
a polynomial number is sufficient in some examples [20]).
During NNQST, a series of measurements is performed in
random local Pauli bases B for n qubits (B = (P1, P2, . . . , Pn),
where Pi ∈ {X,Y, Z}). Because this set is exponentially large,
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some convenient subset of all possible B must be selected
for a large system, but this subset may limit the ability of
NNQST to identify certain states. An important example is
the phase-shifted multiqubit GHZ state, relevant to applica-
tions such as quantum sensing. In this case, the relative phase
associated with nonlocal correlations cannot be captured by
measurement samples from almost-diagonal local Pauli bases,
i.e., bases with m � n indices i for which Pi = X or Pi = Y .
Nonetheless, this limited set of almost-diagonal Pauli bases is
widely used in NNQST implementations to avoid an exponen-
tial cost in classical postprocessing [9,18].

To address this challenge, we use the classical shadows of
the target quantum state to estimate the infidelity between the
model and target states. This is in contrast with approaches
that use the conventional basis-dependent cross-entropy as the
training loss for the neural network. This choice is motivated
by two main factors. First, infidelity is a natural candidate
for a loss function compared to cross-entropy; the magni-
tude of the basis-dependent cross-entropy loss is in general
not indicative of the distance between the neural network
quantum state and the target state. Additionally, infidelity is
the squared Bures distance [21], a measure of the statistical
distance between quantum states that enjoys metric properties
such as symmetry and the triangle inequality. The infidelity is
therefore a better behaved objective function for optimization.
Second, the classical shadow formalism of Huang et al. was
originally developed to address precisely the scaling issues of
brute-force QST [8]. Instead of reconstructing the unknown
state, shadow-based protocols, first proposed by Aaronson
[22], predict certain properties of the quantum state with
a polynomial number of measurements. Therefore, classical
shadows provide the following two main advantages in our
work: (i) they are provably efficient in the number of required
measurement samples for predicting various observables (e.g.,
the infidelity), and (ii) there is no choice of measurement bases
required and therefore no previous knowledge of the target
state is assumed.

Our new pure-state QST protocol, “neural–shadow quan-
tum state tomography” (NSQST), reconstructs the unknown
quantum state in a neural network quantum state ansatz by
using classical shadow estimations of the gradients of infi-
delity for training [Fig. 1(b)]. In our numerical experiments,
NSQST demonstrates clear advantages in three example tasks:
(i) reconstructing a time-evolved state in one-dimensional
quantum chromodynamics, (ii) reconstructing a time-evolved
state for an antiferromagnetic Heisenberg model, and (iii) re-
constructing a phase-shifted multiqubit GHZ state. Moreover,
the natural appearance and inversion of a depolarizing chan-
nel from randomized measurements in the classical shadow
formalism makes NSQST noise-robust without any calibra-
tion or modifications to the loss function, while one of these
two extra steps is required in noise-robust classical shadows
[23,24]. We numerically demonstrate NSQST’s robustness
against two of the most dominant sources of noise across
a wide range of physical implementations: two-qubit CNOT
errors and readout errors. The rest of this paper is organized
as follows: In Sec. II, we summarize the methods used in our
numerical simulations, including the neural network quantum
state ansatz, NNQST, classical shadows, NSQST, and NSQST
with pretraining. In Sec. III and Sec. IV, we provide numerical

(a)

(b)

FIG. 1. Overview of the NNQST and NSQST protocols. Panel
(a) shows the NNQST protocol with the cross-entropy loss function
Lλ. The training data determine p�(s, B), the measured probability
distribution of measurement outcomes s for measurements of the tar-
get state |�〉 performed in the local Pauli basis B. The feedback loop
on the right-hand side indicates the iterative first-order optimization
for neural network training. Panel (b) displays the NSQST protocol
described in Sec. II D, where the training data set consists of classical
shadows only and where the network parameters λ are trained via an
infidelity loss function Lλ. The expression ρ̂i (U †

i , bi ) is the stored
classical shadow of the target state |�〉 with the Clifford unitary U †

i

and bit-string |bi〉.

simulation results for NNQST, NSQST, and NSQST with
pretraining in three useful examples, both noise-free and in
the presence of noise. In particular, we provide a comparison
to direct shadow estimation in Sec. III D. Finally, Sec. V
summarizes the key advantages of NSQST and some possi-
ble future directions. We provide additional technical details
and suggestions for further improvements to NSQST in the
Appendices.

II. METHODS

In this section, we describe existing methods for charac-
terizing quantum states and then introduce and describe two
variants of NSQST. We introduce neural network quantum
states in Sec. II A. State-of-the-art NNQST implementations
and the classical shadow protocol are summarized in Sec. II B
and Sec. II C, respectively. Our proposed NSQST protocol
is described in Sec. II D. In addition, a modified NSQST
protocol with pretraining is described in Sec. II E.

A. Neural network quantum state

Our pure-state neural network quantum state ansatz is
adopted from Ref. [18]. The parameterized model is based
on the transformer architecture [15], widely used in natural
language processing and computer vision [25,26]. As com-
pared to older architectures such as the RBM, the transformer
is superior in modeling long-range interactions and allows for
more efficient sampling of the encoded probability distribu-
tion due to its autoregressive property [18].
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The transformer neural network quantum state ansatz takes
a bit-string s = (s1, . . . , sn) ∈ {0, 1}n corresponding to the
computational basis state |s〉, and produces a complex-valued
amplitude 〈s|ψλ〉 = ψλ(s) parameterized by λ = (λ1, λ2) as

ψλ(s) = √
pλ1 (s)eiϕλ2 (s), (1)

where λ1 and λ2 are vectors of real-valued model parame-
ters for the normalized probability amplitudes pλ1 (s) and the
phases ϕλ2 (s) of the neural network quantum state. These
amplitudes and phases may be parameterized by the neural
network quantum state in various fashions. One approach is
to use two completely disjoint models, independently param-
eterized by λ1 and λ2 for the amplitude and phase values,
respectively [9,27]. Another approach is to use a single model
parameterized by λ to encode both the amplitude and phase
outputs, either via complex-valued model parameters [17,28]
or by using real-valued model parameters with two disjoint
layers of output neurons connected to a common preceding
neural network [18]. In our numerical experiments, we use the
later parametrization for NNQST and NSQST, but the modi-
fied NSQST protocol with pretraining in Sec. II E uses two
separately parameterized neural networks. See Appendix A
for a more detailed account of the transformer architecture.

Given a trained neural network quantum state, observables
and other state properties of interest can be predicted by
drawing (classical) samples from the neural network model.
The number of samples required to predict the expectation
value of an arbitrary Pauli string (independent of its weight)
and fidelity to a computationally tractable state with bounded
additive error is independent of the system size [29]. Compu-
tationally tractable states include stabilizer states and neural
network quantum states. Thus, if sampling can be performed
efficiently, the prediction errors from neural network quan-
tum states are primarily due to imperfect training. We also
note that not every neural network quantum state ansatz has
this property of efficient observable and fidelity prediction,
where an important example is a class of generative models
trained on informationally complete positive-operator valued
measures (IC-POVMs) [30,31].

B. Neural network quantum state tomography (NNQST)

NNQST [Fig. 1(a)] aims at obtaining a trained neural net-
work representation that closely approximates an unknown
target quantum state. The training is done by iteratively ad-
justing the neural network parameters along a loss gradient
estimated from the measurement samples in various local
Pauli bases (obtained by applying single-qubit rotations be-
fore performing measurements in the computational basis)
[18]. We denote a local Pauli basis as B = (P1, P2, . . . , Pn),
with Pi ∈ {X,Y, Z}. If a measurement sample s ∈ {0, 1}n is
obtained after performing rotations to the Pauli basis B, we
store the pair (s, B) as a training sample, corresponding to a
product state |s, B〉.

After choosing a subset B of Pauli bases for collecting
measurement samples, we estimate a loss function that repre-
sents the distance between the target state |�〉 and the neural
network quantum state |ψλ〉. The loss function in NNQST is
based on the cross-entropy of the measurement outcome dis-
tributions for the target and neural network states in each basis

B, which is then averaged over the set of bases B. Ignoring a
λ-independent contribution arising from the average entropy
of the target-state measurement distribution, this procedure
gives the cross-entropy loss function for NNQST [18]:

Lλ = − 1

|B|
∑
B∈B

∑
s∈{0,1}n

p�(s, B) ln pψλ
(s, B). (2)

Here, p�(s, B) is the probability of measuring the outcome s
from the target state |�〉 after rotating to the Pauli basis B and
pψλ

(s, B) is defined as

pψλ
(s, B) =

∣∣∣∣∣∣∣∣
∑

t∈{0,1}n

〈s,B|t〉�=0

〈s, B|t〉〈t |ψλ〉

∣∣∣∣∣∣∣∣
2

, (3)

where the overlap between the Pauli product state and the
neural network quantum state requires a summation over the
computational basis states |t〉 that satisfy 〈s, B|t〉 �= 0. Note
that the number of these states |t〉 is 2K , with K being the
number of positions i where Pi �= Z . This suggests that an
efficient and exact calculation of pψλ

(s, B) requires the pro-
jective measurements to be in almost-diagonal Pauli bases for
a generic neural network quantum state |ψλ〉 [18].

Using the law of large numbers, the cross-entropy loss can
be approximated via a finite training data set DT as

Lλ ≈ − 1

|DT |
∑

|s,B〉∈DT

ln pψλ
(s, B). (4)

An approximation for the gradient ∇λL is then directly found
from Eq. (4). During training, the gradient is provided to an
optimization algorithm such as stochastic gradient descent
(SGD) or one of its variants (e.g., the Adam optimizer [16]).
In this paper, we exclusively use the Adam optimizer.

C. Classical shadows

Shadow tomography relies on the ingenious observation
that a polynomial number of measurement samples is suf-
ficient to predict certain observables for quantum states of
arbitrary size [22]. The classical shadow protocol further ex-
ploits the efficiency of the stabilizer formalism, making this
procedure ready for practical experiments [8,32–34]. In this
paper, we focus on estimating linear observables of the form
Tr(Oρ) for a pure state ρ = |�〉〈�|. An important example
(for O = |ψλ〉〈ψλ|) is the fidelity between the target state |�〉
and a reference state |ψλ〉. The first step in the protocol is
to collect the so-called classical shadows of |�〉. To obtain a
single classical shadow sample, we apply a randomly sampled
Clifford unitary Ui ∈ Cl(2n) to the quantum state and measure
all n qubits in the computational basis, resulting in a sin-
gle bit-string |bi〉. The stabilizer states |φi〉 = U †

i |bi〉 contain
valuable information about ρ. Using representation theory
[35], it can be shown that the density matrix obtained from
an average over both the random unitaries and the measured
bit-strings M(|�〉〈�|) := EU∼Cl(2n ),b∼P�(b)[|φ〉〈φ|] coincides
with the outcome of a depolarizing noise channel:

M(ρ) = Dn,1/(2n+1)(ρ), (5)
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where Dn, f (ρ) = f ρ + (1 − f ) I
2n denotes the depolarizing

noise channel of strength f . The original state can then
be recovered as an average over classical shadows by in-
verting the above formula, |�〉〈�| = E[M−1(|φ〉〈φ|)]. We
emphasize that the original state can only be recovered after
sampling from a prohibitively large number of Clifford uni-
taries, and for each of them sampling an exponentially large
number of bit-strings. The classical shadows are therefore
defined by [8]

ρ̂i(Ui, bi ) := M−1(|φi〉〈φi|) = (2n + 1)|φi〉〈φi| − I. (6)

More generally, in the presence of a gate-independent,
time-stationary, and Markovian noise channel E afflicting the
segment of the circuit between the preparation of the state ρ

and the measurements, this definition extends to [23]

ρ̂i(E,Ui, bi ) = 1

f (E )
|φi〉〈φi| +

(
1 − 1

f (E )

)
I

2n
. (7)

Here, f (E ) is the strength of a depolarizing noise channel
Dn, f (E ) composed of the combined effects of the channel
in Eq. (5) and the twirling of the additional noise by the
random Clifford unitaries, effectively imposing further depo-
larization. Koh and Grewal [23] derived an analytic expression
for f (E ) as

f (E ) = fid(E ) − 1

22n − 1
, (8)

where

fid(E ) = Tr(E ◦ diag) =
∑

s∈{0,1}n

〈s|E (|s〉〈s|)|s〉 (9)

is the sum of fidelities for the noise channel E acting on
each of the computational basis states |s〉 (fid(E ) ∈ [0, 2n];
at the lower bound, fid(E ) = 0, the depolarizing parameter
becomes negative, f (E ) < 0, but the associated depolarizing
channel remains physical [23]). When the noise channel is
not exactly known, extra calibration procedures are required
in noise-robust classical shadow protocols [24].

Once the classical shadow samples {ρ̂i}N
i=1 are collected,

we calculate ô(i) := Tr(ρ̂iO) for each of the N classical shad-
ows and obtain an estimator for the observable from an
average over the N samples (alternatively, the median-of-
means can be used to improve the success rate of the protocol;
see Ref. [8] for more details). The key advantage of classical
shadows is the bounded variance of observable estimations
which, in turn, provides a bound on the number of classical
shadow samples required to predict linear observables of the
quantum state within a target precision. Indeed, as shown
in Refs. [23,24], the number of classical shadow samples N
required to estimate M arbitrary linear observables {Oj}M

j=1,
up to an additive error ε, scales as

N = O
(

22n log M

ε2fid(E )2
max

1� j�M
Tr

(
O2

j

))
. (10)

In the case of noise-free Clifford tails, E = I, we have
fid(I) = 2n, f (I) = (1 + 2n)−1, and we recover the sam-
ple complexity O(max1� j�M Tr(O2

j ) log M/ε2) presented in
Ref. [8], which is indeed independent of the system size
n. The variance of observable estimators is also bounded

as Var(ô) � 3Tr(O2) in this case and is independent of the
system size.

D. Neural–shadow quantum state tomography (NSQST)

Given a pure target state |�〉, our goal in NSQST
[Fig. 1(b)] is to progressively adjust the model parameters
λ, such that the associated pure state |ψλ〉 [see Eq. (1)]
approaches |�〉 during optimization. We approximate the
fidelity between the model and target states using the clas-
sical shadow formalism described in Sec. II C, taking Oλ =
|ψλ〉〈ψλ| as a linear observable, averaged with respect to
ρ = |�〉〈�|. The number M of observables we predict during
optimization therefore coincides with the number of descent
steps taken by the optimizer, as updating λ changes the ob-
servable |ψλ〉〈ψλ| in every iteration. By collecting N classical
shadows, we can approximate our loss function (the infidelity)
via

Lλ(E ) := 1 − |〈ψλ|�〉|2

≈ 1 − 1

N

N∑
i=1

Tr(Oλρ̂i )

= 1 − 1

N

N∑
i=1

〈ψλ|ρ̂i(E,Ui, bi )|ψλ〉

= 1 − 1

2n

(
1 − 1

f (E )

)
− 1

N f (E )

N∑
i=1

|〈φi|ψλ〉|2.

(11)

In the noise-free case E = I, this expression simplifies to

Lλ(I) ≈ 2 − 2n + 1

N

N∑
i=1

|〈φi|ψλ〉|2. (12)

We see that, independent of the specific form of E , training the
model is simply equivalent to increasing the average overlap
between the random stabilizer states and the model quantum
state.

The next step in NSQST requires classical postprocessing
to estimate the overlaps 〈φi|ψλ〉. For certain states |ψλ〉 (e.g.,
stabilizer states), the overlap can be calculated efficiently.
Many states of interest do not fall into this class, leading
to a potential exponential overhead. However, we can obtain
a Monte Carlo estimate of the overlap by sampling from
the model quantum state |ψλ〉. In the model, we associate a
probability

pλ(s) = |ψλ(s)|2 (13)

to each computational basis state |s〉. Therefore,

〈φi|ψλ〉 =
∑

s

φ∗
i (s)

ψ∗
λ (s)

pλ(s) =
〈
φ∗

i (s)

ψ∗
λ (s)

〉
ψλ

. (14)

It is now straightforward to provide a Monte Carlo estimate
of the above quantity [36] (see Appendix D for an alternative
approach). For each sample s from the neural network, we
have direct access to the exact complex-valued amplitudes
ψλ(s) of the neural network quantum state in the computa-
tional basis. Moreover, we can compute the stabilizer state
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projections φi(s) = 〈s|U †
i |bi〉 in O(n2) time, in view of the

Gottesman-Knill theorem [37–39]. Note that decomposing a
randomly sampled Clifford operator into primitive unitary
gates (e.g., with Hadamard, S, and CNOT gates) still takes
O(n3) time [39,40]. However, this is a one-time procedure
to be run for each Ui and can be done in advance of state
tomography.

For first-order optimization methods (such as SGD and
Adam), it is the gradient of the loss function rather than the
loss function itself that must be estimated. From Eq. (11) and
using the log-derivative trick, we obtain the gradient

∇λL(E ) ≈ −2

N f (E )

N∑
i=1

�
[〈

φ∗
i (s)

ψ∗
λ (s)

Dλ(s)

〉
ψλ

〈
φi(s)

ψλ(s)

〉
ψλ

]
,

(15)

where we define the diagonal operator Dλ as

Dλ(s) = 1

ψλ(s)

∂ψλ(s)

∂λ
= ∇λ ln 〈s|ψλ〉

= ∇λ(ln
√

pλ(s) + iϕλ(s)). (16)

A simple but important observation is that the noise enters
Eq. (15) only in the overall prefactor ∝ 1/ f (E ). Thus, the
noise may affect the learning rate, but it will not affect the
direction of the gradient. This suggests that gradient-based
optimization schemes can yield an accurate neural network
quantum state without any noise calibration or mitigation.
This is despite the fact that this same noise generally biases
the estimated infidelity [see Eq. (11)].

We now discuss a possible limitation of our approach to
classical postprocessing. Given N classical shadows collected
experimentally, and L computational basis samples collected
from the neural network quantum state, the number of Monte
Carlo samples collected from the neural network quantum
state must be L ∼ O(1/N2 f (E )2) to guarantee a bounded stan-
dard error in the approximation of the gradient from Eq. (15).
Since f (E ) � 1/(1 + 2n), this suggests that there may be an
exponential cost in performing the Monte Carlo estimations.
We emphasize that this potential exponential cost in classi-
cal postprocessing does not affect the required number of
classical shadows from measurements. As system sizes grow
significantly larger, it will eventually become hopeless to per-
form an exact sum over all 2n computational basis states and
the Monte Carlo average may still lead to successful conver-
gence with only a sub-exponential number of samples in some
cases (further details and an alternative approach to perform-
ing the Monte Carlo average are discussed in Appendix D).
In our numerical simulations with six qubits (see Sec. III),
having 26 = 64 computational basis states, we have evaluated
Eq. (15) using 5000 Monte Carlo samples. With this many
samples, the Monte Carlo estimation error is negligible and
statistical fluctuations in the gradient are predominantly due
to the finite number of classical shadows collected.

E. NSQST with pretraining

Along with the standard NSQST protocol, we also outline
a modified NSQST protocol we call “NSQST with pretrain-
ing,” which combines the resources used in NNQST and the

FIG. 2. Overview of the NSQST with pretraining protocol. The
neural networks learning pλ1 (s) and φλ2 (s) are separately parame-
terized, and pλ1 (s) is pretrained using NNQST with training data
derived from measurements only in the computational basis.

standard NSQST protocol. NSQST with pretraining aims to
find a solution with a lower infidelity than either of the other
protocols alone. In this protocol we train two models with
disjoint sets of parameters λ1 and λ2. We call these models the
probability amplitude model and the phase model. Figure 2
provides a visual overview of the protocol for NSQST with
pretraining.

First, the parameters λ1 are optimized to produce an
accurate distribution pλ1 (s)  p�(s, B) from measurements
performed exclusively in the computational basis [B =
(Z1, Z2, · · · , Zn)]. Note that we can efficiently evaluate the
loss function, Eq. (4), and its gradient in this case as they de-
pend only on the probabilities and not on the phases. Next, we
perform NSQST to train the model parameters λ2, learning the
phases ϕλ2 (s). However, unlike the case of standard NSQST,
to perform a Monte Carlo estimate of the gradient, Eq. (15),
here we select random samples from a set of computational
basis states s according to the pretrained distribution pλ1 (s).
Since the NSQST Monte Carlo approximations do not follow
the model λ2 in an on policy fashion, resampling in every iter-
ation is no longer necessary. Nevertheless, we still resampled
in our numerical experiments (described below) to reduce the
sampling bias, and since the classical sampling procedure was
not computationally costly in our examples.

NSQST with pretraining resembles coordinate descent op-
timization, with λ1 and λ2 being the two coordinate blocks.
Optimizing λ1 first and fixing it for the optimization of λ2

reduces the dimension of the parameter space for the optimiz-
ers throughout the training. However, this does not guarantee
convergence to a better local minimum in the loss landscape.
We do not intend to demonstrate a clear advantage for NSQST
with pretraining over the standard NSQST protocol, as the
former uses more computational resources both experimen-
tally (by requiring more measurements) and classically (in the
form of the memory, time, and energy consumed to train the
neural network quantum state). See Appendix C for a com-
parison of the number of model parameters and the number of
measurements used for each of the two approaches. Another
motivation for introducing this modified NSQST protocol is to
provide new perspectives on the differences between learning
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the probability amplitudes and the phases of a target quantum
state, as well as to inspire other useful hybrid protocols in the
future.

III. NUMERICAL SIMULATIONS WITHOUT NOISE

In this section, we first demonstrate the advantage of our
NSQST protocols over the NNQST protocol in three phys-
ically relevant scenarios, then demonstrate advantages over
direct shadow estimation. Specifically, we consider a model
from high-energy physics (time evolution for one-dimensional
quantum chromodynamics), a model from condensed-matter
physics (time evolution of a Heisenberg spin chain), and a
model relevant to precision measurements and quantum in-
formation science (a phase-shifted GHZ state).

For all three physical settings, we compare the perfor-
mance of NNQST, NSQST, and NSQST with pretraining by
measuring the exact infidelity of the trained model quantum
states to the target state averaged over the last 100 iterations
of training (or epochs for NNQST, see Appendix C). For
NNQST’s basis selection, since none of our target states is
known to be the ground state of a k-local Hamiltonian (i.e., a
Hamiltonian with each term acting nontrivially on at most k
qubits), we simply use all of the almost-diagonal and nearest-
neighbour local Pauli bases (i.e., Pauli bases with at most
two neighboring terms being non-Z). The number of these
bases scales linearly with the system size (4n − 3 bases). All
NSQST protocols use only N = 100 resampled classical shad-
ows per iteration for model parameter updates. We perform
ten independent trials of each protocol (NNQST, NSQST, and
NSQST with pretraining) in each of the three examples.

Finally, we adopt an improved pretraining strategy de-
scribed in Appendix D and fix N = 200 Clifford shadows
without resampling to demonstrate advantages of NSQST
over direct shadow estimation with Clifford shadows or Pauli
shadows.

A. Time-evolved state in one-dimensional quantum
chromodynamics

Quantum chromodynamics (QCD) studies the fundamen-
tal strong interaction responsible for the nuclear force [41].
Lattice gauge theory, an important nonperturbative tool for
studying QCD, discretizes spacetime into a lattice and the
continuum results can be obtained through extrapolation [42].
Although lattice gauge theory has been extremely successful
in QCD studies, simulations of many important physical phe-
nomena such as real-time evolution are still out of reach due to
the sign problem in current simulation techniques. Quantum
computers are envisioned to overcome this barrier in lattice
gauge theory-based QCD simulations and they may open the
door to new discoveries in QCD [43–46].

We consider a Trotterized time evolution with the gauge
group SU(3) and aim to reconstruct the time-evolved
quantum state after a given amount of time. To this end,
we use the qubit formulation in Ref. [47] and study a
single unit cell of the lattice. This corresponds to n = 6
qubits representing three quarks (red, green, blue) and three
antiquarks (antired, antigreen, antiblue) as shown in Fig. 3(a).
The Trotterized time evolution starts from the initial state

(a)

(c)

(b)

FIG. 3. Tomography of the quantum state following a one-
dimensional QCD time evolution. Two Trotter steps are used for a
total evolution time of t = 1.8. Panel (a) displays the average final-
state infidelity for each of the three protocols. In each trial, we extract
the (exactly calculated) average state infidelity Lλ, averaged over the
last 100 iterations (and further averaged over ten trials). The error bar
is the standard error in the mean calculated over the ten trials. The
embedded schematic shows the qubit encoding for a unit cell, con-
taining up to three quarks (filled circles) and up to three antiquarks
(striped circles). In panel (b), the plot compares the expectation value
of the kinetic energy, evaluated for the neural network quantum state
found in the last iteration of each trial, and averaged over ten trials
for each protocol. In panel c, the optimization progress curves are
displayed for a typical trial, where the adjusted iteration refers to
epochs for NNQST, but rather indicates increments of ten iterations
for the two NSQST protocols (a total of 2000 iterations were run in
these cases). Panel (c) shows the NNQST (blue) loss Lλ in the top
plot, the estimated NSQST (infidelity) loss function Lλ (with and
without pretraining, green and red, respectively) in the middle plot
(fluctuations are dominated by the finite number N = 100 of classical
shadows taken for each estimate), and the exact infidelity is shown in
every (adjusted) iteration for all three protocols in the lower plot.

|�0〉 = |↓↓↓〉|↑↑↑〉, which is known as the strong-coupling
baryon-antibaryon state. The Hamiltonian governing the
evolution is (from Ref. [47]):

HSU (3) = Hkin + m̃Hm + 1

2x
He, (17)

where

Hkin = − 1
2

(
σ+

1 σ z
2σ z

3σ−
4 − σ+

2 σ z
3σ z

4σ−
5

+ σ+
3 σ z

4σ z
5σ−

6 + H. c.
)
,

Hm = 1
2

(
6 − σ z

1 − σ z
2 − σ z

3 + σ z
4 + σ z

5 + σ z
6

)
,

He = 1
3

(
3 − σ z

1σ z
2 − σ z

1σ z
3 − σ z

2σ z
3

)
, (18)

with m̃ = am and x = 1/(ga)2 for a lattice spacing a, where
m is the bare quark mass and g is the gauge coupling constant.
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(a)

(b)

(c)

FIG. 4. Typical neural network quantum states following optimization, approximating the state after a one-dimensional QCD time
evolution. Panel (a) displays a typical state found in the last iteration of NNQST training: the left plot shows the square root of the probability
of the final neural network quantum state compared to the exact target state and the right plot shows the phase output of the state over the set
of computational basis states s. To highlight the dominant contributions, the phase output has been truncated for states s with

√
pλ1 (s) < 0.1.

For the purpose of better visualization, the overall (global) phase of the neural network quantum state is chosen by aligning the phase of the
most probable computational-basis state to that of the target state. The dashed line corresponds to a phase of 2π , since we choose our phase
predictions to be in the range [0, 2π ]. Panels (b) and (c) show typical final states from NSQST and NSQST with pretraining. We observe that
both NSQST protocols succeed at learning the phase structure while NNQST fails at the same task.

We use two Trotter steps in our simulation, each for time
t = 1.8. See Appendix B and Ref. [47] for more details on the
circuit and the physical significance of this time evolution.

Figure 3 shows the results of simulating tomography on
the time-evolved state |�SU (3)〉 using NNQST, NSQST, and
NSQST with pretraining. Note that, although the NSQST
protocols (with and without pretraining) are run for 2000
iterations, we use increments of ten iterations in the plot
to provide a visual comparison with NNQST (which is run
for 200 epochs due to faster convergence of Lλ in op-
timization). For NSQST with pretraining, we display the
optimization progress curve only after the probabilities pλ1 (s)
have been pretrained. This explains the lower initial infidelity
for NSQST with pretraining. See Appendix C for further
details on the simulation hyperparameters.

Based on Fig. 3, NSQST and NSQST with pretraining
both result in a lower final-state infidelity, relative to NNQST,
and both predict the mean kinetic energy values better than
NNQST. Figure 3(c) further depicts the optimization progress
curves of a typical trial. We see that for NNQST, the cross-
entropy loss Lλ quickly converges with very little fluctuations,
despite the continued fluctuations of the state infidelity in the
lower plot near Lλ  1, indicating a very small overlap with

the target state. However, standard NSQST and NSQST with
pretraining both converge to a final state very close to the tar-
get state, despite fluctuations in the loss function caused by the
finite number of classical shadows in each iteration. Moreover,
we notice that NSQST with pretraining not only starts with a
state of lower infidelity after pretraining, but also converges
to a solution of lower infidelity than standard NSQST, with
much more stable convergence in the end. One unexpected
outcome is that NSQST with pretraining does not have a
better kinetic energy prediction than the standard NSQST
despite having lower infidelity. However, this can perhaps be
an artifact of insufficient statistics given only ten trials. The
predicted total energy and mass are also plotted in Fig. 13
(Appendix E), where NSQST and NSQST with pretraining
yield significantly better predictions of total energy but not
the local observable Hm.

In Fig. 4, the amplitudes and phases are displayed for
typical final neural network quantum states for each protocol.
We see that the NNQST protocol fails at learning the phase
structure of the target state, despite accurately learning the
probability distribution. This observation is consistent with
NNQST’s convergence to a poor local minimum in the lower
plot of Fig. 3(c), with the infidelity values stuck at around 1.0.
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However, standard NSQST and NSQST with pretraining are
both successful at learning the phase structure of the target
state, while NSQST with pretraining also learns the probabil-
ity distribution better.

B. Time-evolved state for a one-dimensional
Heisenberg antiferromagnet

The Heisenberg model describes magnetic systems quan-
tum mechanically. Understanding the properties of the
quantum Heisenberg model is crucial in many fields, includ-
ing condensed matter physics, material science, and quantum
information theory [48–50]. In this example, we perform to-
mography on a state that has evolved in time under the action
of the one-dimensional antiferromagnetic Heisenberg (AFH)
Hamiltonian. We use four Trotter time steps to approximate
the time evolution.

The one-dimensional AFH model Hamiltonian is

HAFH =
n−1∑
i=1

(
σ x

i σ x
i+1 + σ

y
i σ

y
i+1 + σ z

i σ z
i+1

)
. (19)

We choose n = 6 for our simulation and we take open bound-
ary conditions. The 6-qubit initial state is set to the classical
Néel-ordered state |�0〉 = |↑↓↑↓↑↓〉 and our target state
occurs after evolving under the Heisenberg Hamiltonian up
to time t = 0.8. The circuit describing the Trotterized time
evolution is given in Appendix B.

Figure 5 shows the simulation results for performing to-
mography on the time-evolved AFH state using NNQST,
NSQST, and NSQST with pretraining. We see that NSQST
and NSQST with pretraining both reach a lower final state
infidelity than NNQST in Fig. 5(a). Figure 5(b) displays the
mean staggered magnetization (along x) at each site. We
observe that NSQST with pretraining results in a tighter
spread of values about the exact result, relative to NNQST
or NSQST across all sites. Comparing NNQST and standard
NSQST, we observe that the standard NSQST protocol has
significantly worse predictions at sites 3 and 4 than NNQST,
with a mean more than one standard error away from the
exact value, despite having a significantly lower final state
infidelity. This is likely due to the fact that NNQST is trained
using nearly diagonal measurement data, providing direct ac-
cess to the staggered magnetization observable of interest,
whereas NSQST was trained using the infidelity loss. This
result demonstrates that reaching a lower infidelity does not
necessarily imply a better prediction of local observables,
although we can improve the standard NSQST protocol by
using more classical shadows per iteration. Finally, the typical
optimization progress curves in Fig. 5(c) are consistent with
the statistical results shown in Fig. 5(a). For NNQST, the
infidelity does not converge stably, despite the convergence
of its loss function.

The probability amplitudes and phases obtained after train-
ing on a time-evolved AFH state are shown in Fig. 6. Here,
the two highest peaks in pλ(s) correspond to the two Néel
states |↑↓↑↓↑↓〉 and |↓↑↓↑↓↑〉 [51]. Figure 6 further con-
firms the advantage of NSQST with pretraining. Not only
does NSQST with pretraining find more accurate phases, it
also finds a better description of the probability distribution

(a)

(c)

(b)

FIG. 5. Training and results for a simulation of tomography on
the time-evolved state for a one-dimensional AFH model. Four
Trotter steps are used for a total evolution time of t = 0.8. Panel
(a) compares the final state infidelity, averaged over ten trials for
the three protocols, following the same procedure used for one-
dimensional QCD time evolution. Panel (b) compares the predicted
mean staggered magnetization in the x direction (where Sx

j = 1
2 σ x

j ),
following a Trotterized time evolution under the AFH model, for
all the three protocols. In panel (c), we show optimization progress
curves for a typical run, with the NNQST (blue) loss Lλ in the top
plot, NSQST loss functions (with and without pretraining, green and
red, respectively) in the middle plot, and the exact infidelity in every
adjusted iteration for all three protocols in the lower plot.

since the pretraining involves many measurement samples
from the all-Z basis (whereas NNQST splits the same number
of measurement samples over multiple bases).

C. The phase-shifted GHZ state

In this last example, we consider the tomography of a
phase-shifted GHZ state. Here, our target is a 6-qubit GHZ
state with a relative phase of π

2 . A GHZ state is a maximally
entangled state that is highly relevant to quantum information
science due to its nonclassical correlations [52]. Moreover,
the GHZ state is the only n-qubit pure state that cannot
be uniquely determined from its associated (n − 1)-qubit re-
duced density matrices [53], indicating genuine multipartite
entanglement.

As shown in Fig. 7(a), both NSQST and NSQST with
pretraining result in a significantly lower average final state
infidelity than NNQST. The optimization progress curves
displayed in Fig. 7(b) confirm this result, as we see that the in-
fidelity of the NNQST state is rapidly fluctuating during train-
ing, quite distinctly from the previous two examples. Given
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(a)

(b)

(c)

FIG. 6. Typical final neural network quantum states, trained on the time-evolved state of a one-dimensional AFH model. Panel (a) displays
a typical final state in the last iteration of NNQST optimization, generated using the same procedure from Fig. 4. Panels (b) and (c) show the
typical final states from NSQST and from NSQST with pretraining, respectively.

that we have employed a widely used adaptive optimizer
and that we have chosen a reasonable initial learning rate
(5 × 10−3), the occurrence of such a divergence is likely due
to the fact that the NNQST loss function does not incorporate
tomographically complete information about the target GHZ
state.

D. Comparison with direct shadow estimation

So far we have only compared the performance of NNQST,
NSQST, and NSQST with pretraining, but an important ques-
tion is whether any of the above methods has an advantage
over direct shadow estimation. In this subsection, we com-
pare the performance of NSQST with pretraining and direct
shadow estimation for a one-dimensional QCD time-evolved
state from Sec. III A. In addition, we perform a scalability
study of the phase-shifted GHZ state with up to 40 qubits,
comparing NSQST to direct shadow estimation. To minimize
the number of Clifford shadows used for training, we fix 200
Clifford shadows as training data and do not resample in
every iteration. In addition to the original pretraining protocol
from Sec. II E, we adopt the improved pretraining strategy de-
scribed in Appendix D. A typical optimization progress curve
with the improved pretraining strategy is shown in Fig. 14
from Appendix E, where very few iterations are required for
convergence. Once training is completed, we compare the pre-
diction errors of NSQST with pretraining, Clifford shadows,
and Pauli shadows.

As shown in Fig. 8, we have compared the absolute pre-
diction error of NSQST with pretraining (with and without
an improved strategy) and two types of direct shadow esti-
mation methods. For a fair comparison, we have randomly
sampled the same number (1200) measurements for each
method. For shadow reconstruction, 1200 Clifford shadows
or 1200 Pauli shadows were used. For NSQST with pre-
training, 1000 computational-basis measurements were used
for pretraining and 200 shadows were used. In Fig. 8(a), we
observe that using an improved strategy, NSQST with pre-
training achieves a significantly smaller prediction error than
either Pauli shadows or Clifford shadows. This is expected,
as the kinetic-energy Hamiltonian Hkin in Eq. (18) contains
high-weight Pauli strings, and Pauli shadows are provably
efficient at predicting only local observables [8]. However,
Clifford shadows have an exponentially growing variance
bound for any Pauli observables irrespective of locality [since
Tr(O2) = 2n in Eq. (10)], which explains the large prediction
error for kinetic energy. In Fig. 8(b), we report the predicted
error in the fidelity to the ideal time-evolved state. The Pauli
shadows yield the largest prediction error in fidelity estimation
due to the exponentially growing variance bound for nonlocal
observables. Finally, in Fig. 8(c), we apply the four methods to
the problem of predicting a single Pauli string with increasing
weight, where we change the identity matrix to Pauli-X at
each site as the weight increases. The nonlocal observable
of interest 〈X...〉 corresponds to the Wilson loop operator in
lattice gauge theory with Z2 symmetry [54]. Since predicting
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(a)

(b)

FIG. 7. Simulation of tomography on a six-qubit phase-shifted
GHZ state. Panel (a) compares the final state infidelity, averaged
over ten trials for each of the three protocols. Panel (b) shows typical
optimization progress curves for NNQST (blue), NSQST (red), and
NSQST with pretraining (green).

high-weight observables is a hard task for both shadow pro-
tocols, the prediction error from NSQST with pretraining is
much lower than for either Clifford or Pauli shadows for most
of the observables. We also observe a consistent increasing
prediction error for the Pauli shadows as the weight increases.
A natural question that arises is the scalability of NSQST’s
advantages over direct shadow estimation. While a trained
neural network quantum state closely approximating the target
state has more predictive power than classical shadows alone,
there is no guarantee of successful convergence during train-
ing. For instance, learning a general multiqubit probability
distribution without any prior knowledge in the pretraining
step is hard [55] and would eventually require exponentially
growing resources. The key to having a scalable advantage is
to leverage prior knowledge of the prepared target state and
to find ways to impose these known constraints in the neural
network ansatz and the loss function [36,56,57].

As a proof of concept, we numerically study the sample
complexity scaling of learning a phase-shifted GHZ state us-
ing NSQST with pretraining and using the improved strategy
from Appendix D. With 3000 measurements in the compu-
tational basis, 200 Clifford shadows, and 5000 Monte Carlo
samples for each system size, we investigate the scaling of
the final infidelity. As shown in Fig. 9(a), the final infidelity
does not grow as the system size increases. This is expected,
as the multiqubit GHZ state is sparse in the computational
basis and only a single relative phase needs to be determined.

(a)

(c)

(b)

FIG. 8. Comparison of NSQST with pretraining to direct shadow
estimation. In each trial of NSQST with pretraining, 200 Clifford
shadows are used as training data without resampling in every iter-
ation and 1000 measurements in the computational basis are used
in pretraining. For direct shadow estimation, 1200 Clifford shadows
and 1200 Pauli shadows are used. Panel (a) compares the absolute
error in the predicted kinetic energy, averaged over ten trials for each
of the four protocols. Panel (b) compares the absolute error in the
predicted fidelity to the ideal time-evolved state, averaged over ten
trials for each of the four protocols. Panel (c) compares the absolute
error in the predicted expectation value of a Pauli string observable of
various weight in the Pauli-X basis, averaged over ten trials for each
of the four protocols. The data points are slightly shifted relative to
the ticks of the x axis for a better display of error bars.

Although learning the GHZ state using a neural network
ansatz is a trivial example, the sparseness property of the
GHZ state is not exploited by direct shadow estimation and
the collected Clifford shadows as training data would not be
sample-efficient at predicting Pauli observables. In Fig. 9(b),
we observe that direct shadow estimation fails to predict ex-
pectation values 〈XX...XY 〉 accurately and yields only values
of zero as the system size increases. The result presented in
Fig. 9 suggests that there is hope to reconstruct sufficiently
sparse states with sub-exponentially growing resources using
NSQST, and potentially nonsparse states as well with enough
known constraints imposed. Finally, we emphasize that, as
compared to the neural network quantum state ansatz trained
on IC-POVMs data in Ref. [30], our chosen state ansatz
explained in Sec. II A is sample-efficient at predicting Pauli
string observables of arbitrary weight and fidelity to any clas-
sically tractable states.

We make a final remark on the predictive power of ran-
domized measurements alone versus a trained variational pure
state. While one may generally expect the trained pure state
to inherit the features of the training data, this may not be
true in specific cases for NSQST and Clifford shadows, where
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(a)

(b)

FIG. 9. Infidelity and predicted expectation value of the phase-
shifted GHZ state as the system size grows. For each system size, we
generate 3000 computational-basis measurements and 200 Clifford
shadows. In panel (a), with independently sampled measurement data
and 5000 Monte Carlo samples, we run NSQST with pretraining
using the improved strategy for five trials and report the individual
final infidelities. Note that the number of Monte Carlo samples used
during training is much less than the number of basis states, which is
not an issue if the target state is sufficiently sparse, as in the case of
the multiqubit GHZ state. In panel (b), we plot the predicted expec-
tation value of the Pauli string XX...XY , which is one of the target
state’s stabilizers. In comparison, the expectation values predicted
from five trials of direct shadow estimation are plotted, each with
3200 independently sampled Clifford or Pauli shadows. The data
points are slightly shifted relative to the ticks of the x axis for a better
display.

the trained pure state’s predictive power mainly depends on
the global reconstruction error (quantum infidelity), rather
than an estimator for a particular observable. Moreover, the
variational training framework of NSQST is not limited to a
neural network quantum state with Clifford shadows. Other
variational ansatzes such as matrix product states and other
randomized measurement schemes such as Hamiltonian-
driven shadows should be explored with proper locality
adjustments, for practical advantages such as hardware-aware
measurements and scalable classical postprocessing [58–61].

IV. NUMERICAL SIMULATIONS WITH NOISE

We now numerically investigate the noise robustness of
our NSQST protocol, focusing on the same phase-shifted
GHZ state as in Sec. III C. We consider two different sources
of noise affecting the Clifford circuit used to evaluate our
infidelity-based loss function using classical shadows (see
Sec. II D). The first noise model, (a particular case of the
model already introduced in Sec. II C), describes either mea-
surement (readout) errors or gate-independent time-stationary
Markovian (GTM) noise. The second noise model describes

imperfect two-qubit entangling gates in the Clifford circuit.
In the following, we introduce both noise models and discuss
their effects on the fidelity of the reconstructed state.

Our first model is an amplitude damping channel applied
before measurements. The amplitude damping channel is suit-
able for investigating the effect of measurement errors in the
computational basis. The n-qubit amplitude damping noise
channel ADn,p with channel parameter p is defined as

ADn,p = AD⊗n
1,p, (20)

where

AD1,p :

(
ρ00 ρ01

ρ10 ρ11

)
�→

(
ρ00 + (1 − p)ρ11

√
pρ01√

pρ10 pρ11

)
.

(21)

Apart from modeling measurement noise, this noise channel
also serves as a suitable model for studying gate-independent,
time-stationary, and Markovian (GTM) noise [24]. In this
case, each gate that appears in the Clifford circuit Ui is subject
to the same noise map. The resulting noisy random Clifford
circuit Ũi can be decomposed into EUi with E being a noise
channel applied after the ideal Clifford unitary.

To demonstrate the noise robustness of our NSQST pro-
tocol, we first perform tomography on a phase-shifted GHZ
state (having a relative phase of π

2 ). Despite the presence of
the amplitude damping noise E = ADn,p, we simulate NSQST
using the noise-free gradient expression ∇λL(I) in Eq. (15).
As discussed in Sec. II D, the noise-free gradient expression
in NSQST will still yield an estimate that is directed along the
true gradient, being modified only with an overall prefactor.
In contrast, the noise-free loss function L(I) and the true loss
L(E ) are related nontrivially in the presence of noise:

L(E ) = 1

(2n + 1) f (E )
L(I) + (4n − 1) f (E ) − 2n + 1

2n(2n + 1) f (E )
.

(22)

This means that our estimated loss function no longer con-
verges to zero, while the infidelity between the neural network
quantum state and the target state approaches zero during
training.

Figure 10(a) shows the simulation results for the effects
of an amplitude damping noise channel applied before mea-
surement. First, we observe that the average exact infidelity
of the last 100 iterations remains small despite the growing
noise channel strength. The increasing loss function value (red
curves) is evidence of the growing variance in our gradient
estimations, and will eventually lead to failure of the optimizer
to converge to a state close to the target state. Intuitively, since
the classical shadows method only uses the measured bit-
string, but not the phase for postprocessing, only the diagonal
bit-flip errors in Eq. (21) contribute to the noise model and
these are twirled into depolarizing noise by random Clifford
circuits. Finally, the agreement between the exact infidelity
(blue curve) and the transformed loss function [the right-hand
side of Eq. (22) represented by the orange curve] validates
our theoretical account. Here, we have used Eq. (8) to find the
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(a)

(b)

FIG. 10. Simulation of tomography for a phase-shifted GHZ
state in the presence of noise. Panel (a) displays the average loss
function (red) defined in Eq. (23) and the exact infidelity (blue) for
the amplitude damping channel ADn,p (the loss function is averaged
over the last 100 iterations for each trial and then the average is taken
over ten trials). The strength of the noise increases with increasing
1 − p. The noiseless infidelity loss function L(I) is then transformed
into an estimated infidelity for the noisy case L(E ) using Eq. (22) for
the amplitude damping channel E = ADn,p to obtain the transformed
cost function. The error bars represent the standard error in the mean
over ten trials. In panel (b), we show the average loss function
and exact infidelity for the local depolarizing noise model with a
two-qubit depolarizing channel applied after every CNOT gate in
the appended random Clifford circuit Ui. The channel parameter
1 − f characterizes the growing strength of the noise. We do not
plot the transformed loss function in this case because the CNOT-
dependent local depolarizing noise model does not have an analytic
noisy shadow expression.

depolarizing noise channel strength

f (ADn,p) = (1 + p)n − 1

22n − 1
. (23)

Note that f (E ) may be hard to estimate in practice. However,
since this parameter does not affect the direction of the esti-
mated gradient, we expect training to converge to the same
optimal parameters λ with or without noise. It is therefore not
necessary to compensate for noise by computing the linear
transformation in Eq. (22) as long as we can verify the suc-
cessful convergence of training.

We proceed now with a discussion of the second noise
model, which assumes that entangling gates are the dominant
source of error. For numerical simulations, we decompose
each random Clifford unitary Ui into CNOT, Hadamard, and
phase gate operations. Subsequently, a local two-qubit noise
map is applied after each CNOT gate in Ui. We consider the

depolarizing noise channel

Dn, f (ρ) = f ρ + (1 − f )
I

2n
, (24)

with n = 2 and a fixed noise strength 1 − f . This noise model
is not GTM and no longer has an analytic noisy shadow
expression. However, we still expect NSQST to be fairly noise
robust based on the numerically demonstrated robustness of
classical shadows against many non-GTM errors, such as
pulse miscalibration noise [24].

As shown in Fig. 10(b), NSQST exhibits some measure
of noise robustness even in the presence of a more realis-
tic non-GTM noise model. This is reflected in the positive
curvature of the blue curve for decreasing noise, 1 − f → 0,
leading to a weak-noise limit where the exact infidelity (blue
curve) is small relative to the estimated infidelity (red curve).
Our randomly sampled six-qubit unitary Ui has an average
of 21 CNOT gates (see Appendix C), leading to a substan-
tial accumulation of errors. Thus, the noise parameter 1 − p
controlling one-time measurement errors is not comparable to
the parameter 1 − f controlling the noise on the individual
CNOT gates. A transformed loss function curve is not pre-
sented in Fig. 10(b) because our local (two-qubit) depolarizing
noise model does not yield an analytic f (E ) expression. The
robustness of the classical shadows formalism against many
other non-GTM noise models (with an extra calibration step)
has been well studied in Ref. [24], while our NSQST protocol
holds a similar noise robustness without any extra calibration
steps.

V. CONCLUSIONS AND OUTLOOK

In this work, we have proposed a new QST protocol,
neural–shadow quantum state tomography (NSQST). We have
demonstrated its clear advantages over state-of-the-art im-
plementations of neural network quantum state tomography
(NNQST) in three relevant settings, as well as advantages over
direct shadow estimation. We have further shown that NSQST
is noise robust. Our study of the benefits of NSQST suggests
that the choice of infidelity as a loss function has great po-
tential to broaden the applicability of neural network-based
tomography methods to a wider range of quantum states.

In Appendix D we describe technical developments (reuse
of classical shadows and alternative Monte Carlo methods)
that can be pursued to further enhance the performance of
NSQST. Another direction for future work would be to tailor
NSQST more closely to emerging quantum hardware plat-
forms. This can be done by exploring NSQST with alternative
shadow protocols. In particular, it would be interesting to in-
vestigate hardware-aware classical shadows that use the native
interactions of the quantum device [58,59,62]. In addition,
future work should extend NSQST to mixed-state protocols
[31].

Relative to classical shadow protocols, which only allow
for efficient fidelity and local observable predictions, but
no efficient state reconstruction, NSQST achieves the goal
of reconstructing a physical state that approximates a target
quantum state via a variational ansatz. The variational ansatz
in NSQST comes with the convenience of a quantum state
and can be used to predict many global observables of interest
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beyond the reach of direct shadow estimation [63]. Moreover,
NSQST inherits the advantages of NNQST. For example, we
can incorporate symmetry constraints of the target state, re-
ducing the computational resources needed [36,56,64]. Once
trained, relative to the large number of classical shadows that
must be collected, the variational ansatz in NSQST may yield
a more efficient classical representation of the state. Finally,
as demonstrated in NSQST with pretraining, the trained vari-
ational ansatz approximating the target state can be fed into
a second round of optimization, performed with respect to a
new loss function. This possibility provides great flexibility
in addressing a variety of tasks, including, for example, error
mitigation in classical postprocessing [18].

NSQST is an efficient state reconstruction method. It will
be useful as a benchmarking tool, an important element for
testing the performance of near-term quantum devices as they
scale up. In particular, NSQST can be used to construct a
“digital twin” [65] of the prepared target state, where a neural
network quantum state can be used for experimentally rele-
vant simulation [66,67], cross-platform verification [68], error
mitigation [18] and other uses. Having access to a digital twin
of the target quantum state will become increasingly relevant
for accelerating the development of quantum technologies.
Further down the road, we also foresee great potential for
NSQST as a stepping stone for interfacing classical proba-
bilistic graphical models and quantum circuits, where data
stored in quantum circuits can be transferred to classical
memory and vice versa, leading to new hybrid computing
approaches.
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The numerical implementation of NNQST from Ref. [18]
can be found at Ref. [71]. The numerical implementation of
NSQST can be found at Ref. [72].

APPENDIX A: NEURAL NETWORK QUANTUM
STATE ARCHITECTURE

For NNQST and NSQST, we use the transformer-based
neural network quantum state ansatz directly adopted from
Ref. [18]. A central component in the ansatz is the transformer
layer, which has a self-attention block followed by a linear

layer. With a bit-string s = (s1, . . . , sn) ∈ {0, 1}n as input, s is
extended to s̃ = (0, s) by prefixing a zero bit. Then, each bit
s̃ j is encoded into a D-dimensional representation space using
a learned embedding governed by f jd , yielding the encoded
bit e(0)

jd with j ∈ {0, . . . , n} and d ∈ {1, . . . , D}. The encoded
input is then processed using K transformer layers.

We outline the parameters involved in a single transformer
layer indexed by k in the ansatz, and refer the reader to
Ref. [18] for more details:

(1) The query, key, value matrices Q(k)
hid, K (k)

hid , and V (k)
hid ,

where h ∈ {1, . . . , H}, d ∈ {1, . . . , D}, i ∈ {1, . . . , D/H}. We
require D/H to be an integer.

(2) A matrix to process the output of the self-attention
heads, O(k)

de , with d, e ∈ {1, . . . , D}.
(3) A weight matrix and a bias vector of the linear layer,

W (k)
de and b(k)

d , with d, e ∈ {1, . . . , D}.
Once we have passed the final transformer layer, scalar-

valued logits � j are obtained by using an extra linear layer.
The conditional probabilities directly used in sampling are
then given by

pλ(s j = 1|s1, . . . , s j−1) = σ (� j−1), (A1)

where σ (� j−1) = 1
1+e−� j−1

is the logistic sigmoid function.
Since the outcome at index j is conditional on the preceding
indices j̃ � j, we can efficiently draw unbiased samples from
the probability distribution pλ(s) by proceeding one bit at a
time. The phase output ϕλ(s) is obtained by first concatenat-
ing the output of the final transformer layer to a vector of
length n, then projecting the vector to a single scalar value
using a linear layer [separate from the linear layer used in
obtaining pλ(s)].

For NSQST with pretraining, our pλ1 (s) is parameterized in
the same way as in standard NSQST, except that we remove
the phase output layer. The phase outcome ϕλ2 (s) is encoded
in a separate transformer-based neural network ansatz, where
we remove the other linear layer (the one producing scalar-
valued logits representing the probability amplitudes). Thus,
the encoded quantum state in NSQST with pretraining has its
probability distribution and phase output separately parame-
terized by model parameters λ1 and λ2, respectively.

APPENDIX B: TROTTERIZED TIME
EVOLUTION CIRCUITS

In this section, we elaborate on the details of Trotterized
time evolution circuits for the two noiseless numerical exper-
iments (Secs. III A and III B).

1. One-dimensional QCD time evolution

For the one-dimensional QCD Hamiltonian in Eq. (17),
we choose m̃ = 1.2 and x = 0.8. Two Trotter steps are used
for a total evolution time of t = 1.8. With the initial state
chosen as |�0〉 = |↓↓↓〉|↑↑↑〉, Fig. 11 shows the circuit
(from Ref. [47]) used to generate the time-evolved target state
|�SU (3)〉.
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FIG. 11. Simulation circuit for the one-dimensional QCD model. The initial state preparation circuit (before the barrier) and a single Trotter
step (after the barrier) are drawn using Qiskit [69]. In our numerical experiments an evolution for time t = 1.8 is decomposed into two Trotter
steps.

2. One-dimensional AFH time evolution

For the one-dimensional AFH model Hamiltonian in
Eq. (19), we choose the initial state |�0〉 = |↑↓↑↓↑↓〉 and
set the total evolution time as t = 0.8, decomposed into four
Trotter steps to generate the target state. Figure 12 shows the
initial state preparation and the circuit of one Trotter step.

APPENDIX C: SIMULATION HYPERPARAMETERS

For all n = 6 transformer-based neural network quantum
states, we have used two transformer layers (K = 2), four
attention heads (H = 4), and eight internal dimensions (D =
8). The neural network quantum states for NNQST and the
standard NSQST have 858 model parameters. NSQST with
pretraining uses two neural networks for the same quantum
state, where the probability distribution ansatz pλ1 (s) has
801 model parameters and the phase output ansatz ϕλ2 (s)
has 849 model parameters, a total of 1650 model parame-
ters. It is likely that we have used more model parameters

than necessary for a 6-qubit pure state, as the focus of our
demonstrations is studying the new loss function. For n > 6
transformer-based neural network quantum states used for
NSQST with pretraining, we have used three transformer lay-
ers (K = 3), four attention heads (H = 4), and eight internal
dimensions (D = 8), corresponding to a number of model
parameters from 2466 to 3186 for system size from n = 10
to n = 40.

All NNQST protocol trials use 21 (4n − 3 with n = 6)
nearly diagonal and nearest-neighbour Pauli bases, where 512
measurement samples are used for each basis. The batch sizes
are 128 and all NNQST simulations are run for 200 epochs,
where one epoch refers to one sweep over the entire training
data set. In all simulations the Adam optimizer is used. For the
one-dimensional QCD and AFH time evolution examples, the
learning rate is set to 10−3. For the GHZ state tomography, a
learning rate of 5 × 10−3 is used.

All n = 6 NSQST protocol trials (including the ones with
pretraining) use 100 classical shadow samples (N = 100) and
5000 neural network quantum state samples (both resampled
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FIG. 12. Simulation circuit for the one-dimensional AFH model. The initial state preparation circuit (before the barrier) and a single Trotter
step (after the barrier) are drawn using Qiskit [69]. In our numerical experiments an evolution for time t = 0.8 is decomposed into four Trotter
steps.

in every iteration) per iteration. All simulations are run for
2000 iterations with the learning rate 10−2 for the Adam op-
timizer. Note that we have not leveraged the reusability of the
classical shadows, which can bring a significant reduction in
the number of measurements. The randomly sampled 6-qubit
Clifford circuits U †

i have 20.8 ± 0.4 CNOT gates, assuming
all-to-all connectivity.

The n = 6 modified NSQST experiment with pretrain-
ing uses 10752 (512 × 21) computational basis measurement
samples in the pretraining stage using NNQST’s optimiza-
tion framework, with identical hyperparameters to that of the
NNQST protocol. NSQST with pretraining (with or without
improved strategy) in Sec. III D uses 1000 computational
basis measurements for n = 6 and 3000 computational basis
measurements for n > 6 in the pretraining stage, and a fixed
set of 200 Clifford classical shadows are used for training the
relative phases.

For predicting observable values given a trained neural
network quantum state, exact calculations are done for n = 6
and 20 000 Monte Carlo samples are used for n > 6.

APPENDIX D: METHOD IMPROVEMENT

For simplicity, we have naively resampled the 100 classical
shadows in every iteration, which is not necessary as the
previously sampled classical shadows could be reused. We
expect many possible improvements could be made to reduce
the number of sampled Clifford circuits and the number of
measurements, such as measuring more bit-strings for each
Ui. Hybrid training protocols beyond NSQST with pretraining
should also be explored.

We recognize that an exponential classical computational
cost may be induced for convergence due to the growing
variance of the gradient in Eq. (15). To intuitively see this,
we note that estimating the overlap in Eq. (14) to within ε̃

additive error with failure probability at most δ requires L ∼
O( 1

ε̃2 log 1
δ
) classical samples drawn from |ψλ〉 [70]. However,

the prefactor 1
N f (E ) in Eq. (15) will make the error ε in esti-

mating the gradient exponentially large. Since we want ε to
be bounded, we demand ε̃ ∼ N f (E ) to be exponentially small
and this directly translates to L ∼ O(1/N2 f (E )2) as discussed
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(a) (b)

FIG. 13. Additional plots for the quantum state following a one-dimensional QCD time evolution. Panel (a) displays the expectation values
of the total energy, evaluated for the neural network quantum state found in the last iteration of each trial, and averaged over ten trials for each
protocol. Panel (b) displays the expectation values of the mass Hamiltonian.

in Sec. II D. Imposing harder constraints on the quantum
state ansatz may remove or alleviate this issue, and numerical
experiments of larger system sizes should be done to explore
NSQST’s limitations in the future.

An additional complication can arise when estimating the
inner product shown in Eq. (14) from a finite number
of Monte Carlo samples. In practice, the overlap is
estimated in terms of a subset S of distinct bit-strings s
using

〈φi|ψλ〉 =
〈
φ∗

i (s)

ψ∗
λ (s)

〉
ψλ


∑
s∈S

P(s)
φ∗

i (s)

ψ∗
λ (s)

. (D1)

Here, P(s) = fs/Ns  pλ(s) = |ψλ(s)|2 is determined from
the frequency fs of the bit-string s found from Ns samples
drawn according to the probability distribution pλ(s). For a
transformer-based neural network architecture, the samples
can be generated efficiently bit-by-bit using the procedure
described in Appendix A. Up to a constant factor, the
right-hand side of Eq. (D1) can be interpreted as the exact
overlap between a stabilizer state |φi〉 and a fictitious state
|�λ〉 with wave function:

�λ(s) := P(s)

ψ∗
λ (s)AS

; A2
S =

∑
s∈S

P2(s)

|ψλ(s)|2 . (D2)

The normalization constant approaches AS = 1 when P(s) =
pλ(s) = |ψλ(s)|2 (e.g., when the sample set S includes all s).
However, a problem arises when we sample only over a subset
of possible bit-strings s. In this case, it may be that |ψ∗

λ (s)| �√
P(s) for some s, leading to AS � 1. Estimating the infi-

FIG. 14. Typical optimization progress curve from NSQST with
pretraining and fixed Clifford shadows. Unlike the other plots, the
iteration number on the x axis is not adjusted and corresponds to
every gradient update during optimization.

delity from classical shadows to obtain the NSQST loss func-
tion [Eq. (11)] through Monte Carlo samples as in Eq. (D1)
requires the estimated overlaps 〈φi|ψλ〉  AS〈φi|�λ〉. When
an incomplete sample set is taken, the factor AS can become
very large, leading to an unphysical blow-up, potentially lead-
ing to estimated overlaps � 1. In this limit, the Monte Carlo
estimate is meaningless. A simple solution to this problem
could be to truncate the set S → S ′, allowing only for
bit-strings s for which |ψλ(s)|/√P(s) exceeds some threshold
value, then we replace the normalization constant AS → AS ′ .
For a given task, it may be difficult to establish truncation
thresholds that maintain convergence to an accurate state. In
the rest of this Appendix, we give an alterative procedure
that does not show the ill-conditioned “blow-up” from a
finite Monte Carlo sample size, while avoiding predetermined
truncation thresholds.

To avoid the pitfalls of representing a Monte Carlo average
as in Eq. (D1), we consider a hybrid NSQST protocol. In
this hybrid protocol, the classical shadows are only used to
learn the phases ϕλ2 (s). The probability amplitudes pλ1 (s)
are learned using NNQST from measurements performed in
the computational basis (similar to NSQST with pretraining):
pλ1 (s)  p�(s, B) with B = (Z1, Z2, · · · , Zn). The difference
between this new hybrid protocol and NSQST with pretrain-
ing is in learning the phases. To train the phase model, we
calculate the gradient of the loss function with an alternative
approximation for the inner product:

〈φi|ψλ〉 ≈ 〈φi|ψ̃λ〉 :=
∑
s∈S

φ∗
i (s)eiϕλ2 (s)

√
P(s), (D3)

where we have introduced an alternative normalized state:

ψ̃λ(s) := eiϕλ2 (s)
√

P(s). (D4)

The estimated loss function in this new hybrid protocol
is the shadow-estimated infidelity between the target state
|�〉 and the state |ψ̃λ〉. The gradient of this infidelity can
be calculated to optimize the phases from variations in the
parameters λ2:

∇λ2L(E ) ≈ −2

N f (E )

N∑
i=1

�[∂λ2〈φi|ψ̃λ〉 · 〈ψ̃λ|φi〉]. (D5)
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We can efficiently evaluate the right-hand side of Eq. (D5)
exactly for a sub-exponential number of distinct bit-strings
s ∈ S . The optimization procedure is then limited only by the
expressivity and accuracy of the sparse approximation ψ̃λ(s)
for the neural network quantum state ψλ(s), arising from a
finite number of samples. This new hybrid NSQST protocol
does not suffer from the “blow-up” described above and it
may converge with a sub-exponential number of samples, es-
pecially when |ψλ〉 is sufficiently sparse in the computational
basis. This alternative strategy was unnecessary in most of
our numerical experiments given the very small system size
n = 6 and the very large number of Monte Carlo samples
Ns = 5000.

APPENDIX E: ADDITIONAL PLOTS

In this section, we provide additional plots relevant to the
numerical simulation results presented in Sec. III.

In Fig. 13, the predicted total energy and mass from the
three protocols are plotted, where we see that NNQST fails
to yield a better prediction of total energy than NSQST in
Fig. 13(a). However, as shown in Fig. 13(b), NNQST predicts
mass Hm more accurately than NSQST, which is a local ob-
servable from Eq. (18).

In Fig. 14, a typical optimization progress curve is plotted
for the numerical results presented in Sec. III D. The iteration
number is not adjusted and pretraining is repeated for every
trial.
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