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The Morra game, an age-old noncooperative game, traditionally played on one’s hand, has proved to be a
rich setting to study game-theoretic strategies, both classically and within the quantum realm. In this paper, we
study a faithful translation of a two-player quantum Morra game, which builds on previous study by including
the classical game as a special case. We propose a natural deformation of the game in the quantum regime
in which Alice has a winning advantage, breaking the balance of the classical game. A Nash equilibrium can
be found in some cases by employing a pure strategy, which is impossible in the classical game where a mixed
strategy is always required. We prepared our states using photonic qubits on a linear optics setup, with an average
deviation �2% with respect to the measured outcome probabilities. Finally, we discuss potential applications of
the quantum Morra game to the study of quantum information and communication.
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I. INTRODUCTION

Modern game theory, initially developed by J. Nash and J.
Neumann [1,2] for analyzing economic strategies among ra-
tional players in a mathematically consistent model, has found
widespread applications in various fields, including biology
[3], politics [4], choice theory [5], and computer science [6].
However, the emergence of quantum information in the 80′s
and 90′s enabled researchers to study game theoretic models
in the quantum regime and it has turned out that superposition
and entanglement allow new winning strategies that previ-
ously did not exist [7,8]. Quantum games (QG) have already
been used to design quantum cryptographic protocols with
enhanced security [9,10] and optimize networks for frequency
allocation [11]. Moreover, studying QG’s has revealed new
insights on noncooperative games such as prisoners dilemma
where a new equilibrium strategy was found and improved
the payoff to all players [12,13]. Quantum games can now
be implemented on plethora of systems, such as small-scale
quantum processors [14], ion traps [15], or nitrogen vacancies
in diamonds [16]; however, the most common platform has
been photonics [17–20]. This has the benefit that the games
can be played between remote players, and that they can then
be used as primitives for higher level distributed quantum
communication tasks [21].

Here we consider one of the oldest known games that is
still studied today, the Morra game [22,23]. Morra is a non-
cooperative game in which players hide a maximum number
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of coins (or fingers), and each player attempts to guess the
total number. Players are ordered a priori, and the rule is
that a player cannot repeat the guess of the previous ones.
This rule apparently gives the first player an advantage over
the rest, but unexpectedly everyone has an equal chance of
winning. The Morra is a closely related game to the Spanish
Chinos game, which has been studied extensively [24,25]. The
Morra’s game has applications in modeling financial markets,
and information transmission [24].

Quantum versions of Morra’s game have been proposed
in the past [26,27], with the aim of studying the equilibrium
strategies between the two players. The basic idea is to replace
the act of drawing a coin by that of applying an operator on a
quantum state shared by all players, say a boson, or a hardcore
boson (fermions), a qubit, or two qubits. These operations
create a state in which one measures an observable that is
the classical analog of the total number of coins. In some
situations quantum effects may lead to the breaking of the
classical balance of the players.

Here we show an implementation of the quantum Morra
game (QMG) using qutrits that, unlike the previous proposals
[26,27], can reproduce the classical game faithfully. This ver-
sion of the game allows us to deform the underlying rules,
which we shall define later, thereby alterning the outcome
of the game. This implementation makes use of a three level
system as shared resource for players to act on, similar to the
Aharonov three quantum boxes game [16]. We implement this
game employing entangled photonic qubits and obtained good
agreement between the theory and the experimental results.

A. Classical Morra game

We shall consider the simplest version of the Morra game
that involves two players, Alice and Bob, who can draw each
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from 0 to 1 coins and guess the total number of coins with
the restriction that Bob cannot repeat the result predicted by
Alice. This game can be generalized to more players and coins
[26]. We distinguish between pure strategies, which involve
players selecting a specific number of coins, and mixed strate-
gies, where players randomize their coin choices based on
probabilities assigned to each possible number of coins. A
noncooperative game, which allows mixed strategies is guar-
anteed to have at least one Nash equilibrium [28], a situation
where neither player can improve their payoff by unilaterally
changing their strategy, as long as their opponent does not
change their strategy. We refer to a strategy as optimal when it
leads to a Nash equilibrium [2]. The optimal strategy for Alice
is to choose at random cA = 0, 1 coins and to guess always
gA = 1, so as not to reveal information to Bob [26]. This is
based on the fact that with four possible outcomes, the most
probable value of the sum is 1. Bob’s optimal strategy is to
choose cB = 0, 1 coins at random and make his guess gB in a
rational way [29].

A rational player seeks to maximise their expected payoff
or benefit [30]; for example, users competing for bandwidth
in a radio network [31], or prisoners minimizing their jail sen-
tence [12]. In the context of the Morra game, if Bob chooses
cB = 0, then by reason he must exclude the option gB = 2, and
if he chooses cB = 1, then he must exclude gB = 0. Playing
the optimal strategy, each player wins on average half of
the time, resulting in a symmetric game with equal winning
probabilities.

This strategy is also Pareto optimal [32], since no player
can improve their own payoff without reducing their oppo-
nents payoff. In game theory, this scenario is called a zero-sum
game [1]. This result is also valid for two players and a general
number of coins [26].

II. QUANTUM MORRA GAME

In our version of the QMG, first we will associate the total
number of coins, namely 0, 1, 2, to three orthogonal states
|0̃〉, |1̃〉, |2̃〉 that form the basis of a qutrit. To produce these
states, the players have two unitary operators, O0 and O1, that
correspond to the number of coins they have in their hands at
the start of each roll. The joint state created by Alice and Bob
is given by

|ψa,b〉 = OA
aOB

b |φ〉, a, b = 0, 1, (1)

where |φ〉 is an initial state and note |ψ0,1〉 and |ψ1,0〉 are
identical states (a relative phase between them is unobserv-
able). Using this equation the basis states are obtained as |0̃〉 =
|ψ0,0〉, |1̃〉 = |ψ0,1〉 = |ψ1,0〉 and |2̃〉 = |ψ1,1〉. Choosing O0

as the identity operator we find that |φ〉 = |0̃〉 and

|1̃〉 = O1|0̃〉, |2̃〉 = O2
1|0̃〉. (2)

The operator O1 has to be unitary. A solution compatible with
(2) is O1 = X , where X is the Pauli matrix for qutrits,

X =
⎛
⎝0 0 1

1 0 0
0 1 0

⎞
⎠, (3)

that satisfies X 3 = I. In the quantum game, the operator X 3

never arises because the maximum number of X operators is 2.

However, we shall consider that having three coins in the box
is the same as having none.

The outcome of a round of the game is determined by
measuring the observable

N̂ =
2∑

n=0

n|ñ〉〈ñ|. (4)

The state after such measurement will be |0̃〉, |1̃〉, or |2̃〉,
thereby revealing the number of coins. The winner of the
round is the player whose guess matches the number of coins.
Our game can be generalized to to n-players, which we show
in the Appendix E. The scalability of potential moves im-
proves within this encoding scheme compared to previous
implementations [26,27] due to the binary choice of the coin
operator. The original game employed four operators [26] and
the single qubit game uses three operators [27]. Consequently,
our game scales as 2N , where N is the number of players,
compared to the previous 4N and 3N for the respective games.

A. Quantum deformation

In this section we will precisely define what a deformation
is in the context of our game. We are specifically referring
to the players encoding operator (3) that controls the unitary
evolution of the shared state, and the underline probability
distribution of the game. To go beyond the classical setting
we use a parameter θ to smoothly deform the operator away
from (3). The physical meaning of this deformation is that the
players are able to toss a certain superposition of the number
of coins instead of just the classical options.

We have translated the classical Morra game into a quan-
tum game by means of a one-to-one correspondence between
classical and quantum objects. The quantum realm allows
us to define the superposition of coin states, in analogy to
the superposition of cat states. For this we use the quantum
Fourier transform

F | ĵ〉 = 1√
3

2∑
k=0

ω jk|k̃〉, ω = e2iπ/3. (5)

Measuring the number of coins in each of the states (5) yields
the values 0, 1, or 2 with equal probability 1/3. Moreover,
applying the operator X to (5), that is adding a quantum coin,
just multiply these states by a global phase, X | ĵ〉 = ω− j | ĵ〉.

Along with the Pauli matrix X for qutrits (3), there is a
matrix Z defined as Z = diag(1, ω, ω2) that satisfies ZX =
ωXZ and is related to X by the Fourier transform,

X = F†ZF , (6)

where F j, j′ = 1√
3
ω j j′ ( j, j′ = 0, 1, 2). This connection will

allow us to deform the quantum game from the phase space.
The two-players game can be deformed by replacing Z in

(6) by Zθ = diag(1, eiθ , e2iθ ) yielding a modified X operator,

Xθ = F†ZθF =

⎛
⎜⎝x0(θ ) x2(θ ) x1(θ )

x1(θ ) x0(θ ) x2(θ )
x2(θ ) x1(θ ) x0(θ )

⎞
⎟⎠, (7)

where

x j (θ ) = 1
3 (1 + ω2 jeiθ + ω je2iθ ). (8)
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The states created by the action of Xθ are

|1θ 〉 = Xθ |0̃〉 = x0(θ )|0̃〉 + x1(θ )|1̃〉 + x2(θ )|2̃〉, (9)

|2θ 〉 = X 2
θ |0̃〉 = x0(2θ )|0̃〉 + x1(2θ )|1̃〉 + x2(2θ )|2̃〉, (10)

where we used that X 2
θ = X2θ . These states are normalized but

are not orthogonal except for θ = 2π/3 and 4π/3. We have
found a general two-qubit quantum circuit for the deformation
unitary (7) using eight local unitaries and three CNOT gates
[33,34], as outlined in the Appendix D. Regarding the physical
interpretation of the deformation, (9) tells us that, now, there
exists the possibility of one player tossing two coins with a
certain probability although in the classical version they only
have one coin in their hands.

We recall that the probabilities are given by

pa,b(n) = |〈n|ψa,b〉|2, (11)

where |n〉 are the states |0̃〉, |1̃〉, |2̃〉, and |ψa,b〉 are the common
states generated by Alice and Bob using the operators Xθ and
X 2

θ . In particular the average probabilities of Alice are given
by Pa(n) = 1

2

∑
b pa,b(n), which becomes

Pa(n) = 1
2 (|xn(aθ )|2 + |xn((a + 1)θ )|2) . (12)

III. EXPERIMENTAL IMPLEMENTATION

We experimentally realize the QMG with a linear optics
circuit, using polarization encoded photons to prepare a two-
qubit state. We can write the qutrit state |ã〉 as a two-photon
state |iAiB〉 where (iA, iB = H,V ) are the horizontal and verti-
cal polarization states of each photon and the indices indicate
a different photon mode. The qutrit to qubit transformation
can be found in the Appendix B, where we arrive at the same
encoding states,

|0̃〉 = |HH〉, (13)

|1̃〉 = 1√
2

(|HV 〉 + |V H〉), (14)

|2̃〉 = |VV 〉. (15)

Figure 1 shows our experiment outlined in three stages;
Alice and Bob input their coin choice to the device, the
device prepares the shared state, and finally measures the
outcome. We prepare our states (9) and (10) using the param-
eterised half-wave plate configuration (α1, α2, α3). We used
solutions that match the desired outcome probability of the
shared state and preserve the entanglement entropy. We re-
frame the problem as an optimization problem and determine
the solution with the L-BFGS-B algorithm [35] implemented
in SCIPY [36], as outlined in the Appendix C. These states
require high fidelity and purity to recreate the game faithfully,
so we take advantage of a bright photon-pair source using
an aperiodically polled potassium titanyl phosphate (apKTP)
crystal, which creates spectrally pure entangled photon pairs
via spontaneous parametric down-conversion (SPDC) [37,38].

A. Results

Approximately 150 000 rounds are played for 34 evenly
spaced values of θ in the interval [0,2π ]. The data collection
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FIG. 1. The QMG experimental implementation. (a) Alice and
Bob’s strategies are input into a device, which prepares the joint
state |ψa,b〉 and subsequently measures it. (b) Alice and Bob play
the QMG by secretly depositing coins cA and cB into the device,
which has some pre-determined parameter θ . Alice makes the first
guess gA, followed by Bob gB. The device deforms the classical coins
into quantum coins using the Unitary X (θ ), performs a measure-
ment and outputs the sum of the coins. (c) The linear optics circuit
for state preparation begins with a photon pair source, constructed
with a apKTP crystal housed in a Sagnac configuration [39,40]
pumped with a ti:sapphire laser centered at 775 nm and prepared in H
with a linear polariser (POL), producing degenerate photon pairs at
1550 nm, which are separated from the pump with a dichroic mirror
(DM). The states |ψa,b〉 are encoded using the three half-wave plates
(HWP) α1, α2, α3, outlined in the Appendix C. The measurement
station consists of two polarizing beam splitters (PBS) that project
the two photons into the Z basis, then coupled to superconducting
nanowire single photon detectors (SNSPD), and 2-fold coincidences
are identified using a time-tagging logic box.

methods are discussed in Appendix A. The normalized
probabilities for states |1θ 〉 and |2θ 〉 can be found in
Appendix C. To analyze how these new outcome probabilities
affect the players strategies we have averaged Bob’s two
plays over each of Alice’s choices using (12). The results
have been plotted in Fig. 2(a) when Alice plays zero coins, and
Fig. 2(b) when Alice plays one coin. The experimental values
closely align with the theoretical expectation, deviating by a
maximum of 2% and confirms a successful implementation
of the QMG. We have measured a fidelity, compared to the
ideal states |0̃〉, |1̃〉, and |2̃〉, of 97%. The main causes for the
uncertainties in our experimental data are due to factors such
as imbalances on the PDC photon generation loop, losses and
depolarization on the single-mode fibers and imperfections in
the retardance of the half-wave plates.

In Table I we summarize the most notable points in Fig. 2,
where Pi(G) is Alice’s probability of winning by guessing G
when playing i coins.

At θ values close to 2π/3, the classical regime is recov-
ered, matching the values predicted by the theory in Fig. 2.
Similarly, at 4π/3, the classical probabilities are reproduced,
but the guesses for coins 1 and 2 are flipped. This creates
a classically impossible situation since Alice plays no coins
and can expect a 50% probability of winning by guessing two
coins.
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FIG. 2. Alice’s probability of winning vs θ , when playing 0 and
1 coin. The probabilistic outcome of obtaining (0,1,2) coins when
Alice plays no coins (I) (a) and when she plays one coin (b) have
been plotted on top of the theoretical curves. Error bars are calcu-
lated assuming Poisson statistics, but found to be O(10−4), therefore
neglected.

Notably, for θ equaling 0 and 2π , the game undergoes a
complete deformation, resulting in all coin states overlapping
into the 0 coin outcome, as we can see in Table I. In this case,

TABLE I. Alice’s probability of winning (Pi) for different θ

values, depending on the amount of coins in play (i).

θ 0 2π/3 π 4π/3

P0(0) 0.99 0.50 0.57 0.51
P0(1) 1.19 × 10−3 0.49 0.30 1.43 × 10−3

P0(2) 7.63 × 10−3 2.46 × 10−3 0.13 0.49
P1(0) 0.98 7.86 × 10−3 0.57 1.26 × 10−2

P1(1) 2.46 × 10−3 0.50 0.30 0.49
P1(2) 1.67 × 10−4 0.49 0.13 0.49

Alice will always win if she guesses 0 coins, regardless of the
number of coins in play.

When θ = π , the probable outcome for each coin is identi-
cal regardless of the coin Alice picks. Even so, Alice still has
an advantage over Bob as guessing |0̃〉 yields a winning result
higher than 0.5.

IV. STRATEGIES

The deformation θ opens up the possibility for new strate-
gies in which Alice’s winning probability is higher than 50%.
We focus on analyzing the best strategies for each player when
they play randomly, as well as characterizing the optimal strat-
egy as a function of the deformation. Each player’s strategy is
defined by the probability of playing zero or one coin, as well
as their guesses for each situation. Since Alice plays first, we
consider strategies in which her guess is independent of the
number of coins she plays, in order to not reveal information,
similarly to the classical case. The winning probability of
Alice given a strategy where she plays a coins with proba-
bility P̃A

a and guesses n coins, while Bob plays b coins with
probability P̃B

b is

PA
win =

∑
a,b

P̃A
a P̃B

b pa,b(n), (16)

where pa,b is given in (11). On the contrary, Bob can change
his guess nb based on the number of coins he plays, but it
must be different from Alice’s guess. The winning probability
of Bob is

PB
win =

∑
a

P̃A
a

(
P̃B

0 pa,0(n0) + P̃B
1 pa,1(n1)

)
. (17)

We say that a player’s strategy is stable when his probability
of winning is higher than that of the other players even if they
change their strategies.

In the classical game, it is possible to achieve a Nash
equilibrium with a mixed strategy where each player wins half
the time by choosing 0 or 1 coins at random. However, the
deformation θ allows Alice to have an advantage over Bob
when both playing randomly because she can make guesses
that increase her winning probability or the draw probability
as shown in Fig. 3(a). In general, these strategies are not
stable, and both Alice and Bob can improve them, provided
they know each other’s strategies. Although Alice’s winning
probability is higher than Bob’s, she can further increase it, as
shown in Fig. 3(b). Bob can try to improve his strategy as well,
but in some cases, he is unable to turn the situation around,
and Alice’s winning probability remains higher as shown in
Fig. 3(c). In these cases, Alice’s strategy is stable, although
not optimal.

Figure 3 allows us to verify if there are values of θ that
allow an optimal strategy when playing randomly apart from
the classical case. This is possible for θ = 4π/3 since it is
equivalent to the classical case under the exchange of states
|1θ 〉 and |2θ 〉. Remarkably, for θ = π , it is also possible to
achieve equilibrium by playing randomly, although Alice’s
winning probability is higher than Bob’s. In this case, Al-
ice must guess zero coins and Bob one or two. For other
values of theta, Alice and Bob’s improved strategies are
pure. For instance, in the optimal strategy for θ = π/3, Alice
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FIG. 3. (a) The winning probabilities of Alice (red) and Bob (green), as well as the probability of a draw (gray), when both players choose
0 or 1 coin at random but make their best guess. (b) Alice plays her best strategy knowing that Bob plays randomly. (b) Bob plays his best
strategy knowing that Alice plays randomly. The experimental results have been plotted on top of the theoretical values.

consistently plays 0 coins and guesses 0, while Bob plays 1
coin and guesses 1. In this scenario, Alice’s winning prob-
ability is 0.46, Bob’s winning probability is 0.44, and the
probability of a draw is 0.1. This case highlights the coun-
terintuitive nature of the deformed game, as in classical terms,
this strategy would allow Bob to win every time.

A. Optimal strategies

We have calculated the winning probabilities for each
player using the experimental data for the overlaps, demon-
strating a strong agreement with the theory (see Figs. 4 and
3). One may wonder how the optimal strategy of each player
changes depending on the θ deformation. To find these strate-
gies, we utilize an exhaustive search approach. Initially, we
define Alice’s strategy and identify the strategy for Bob to

FIG. 4. Optimal strategies for Alice and Bob. The winning prob-
abilities for Alice (red) and Bob (green) are shown when each of
them plays with their best strategies. The probability of a draw, where
neither of them wins, is indicated in gray. The shaded area shows the
values of θ for which the strategies are pure. The experimental results
have been plotted on top of the theoretical values.

maximize his winning probability. Then, we check whether
the best strategy for Alice, considering Bob’s strategy, aligns
with our initial choice. If this is the case, these strategies
establish a Nash equilibrium; otherwise, we iterate the process
by changing Alice’s strategy. It is important to note that these
strategies rely on information from both players. Therefore,
it would not be possible for either of them to discover these
strategies beforehand due to the lack of complete information.
The winning probabilities for each player when following
the optimal and stable strategy as a function of θ are shown
in Fig. 4. These strategies are mixed for θ ∈ [4π/9, 14π/9],
while for the remaining values, they are pure. The transition
between mixed and pure strategies occurs at nontrivial θ val-
ues, these are determined by the construction of the operator
X (θ ). Multiple applications of X (θ ) will change the phase
relation between the states, which can be seen in the exponent
of (8), therefore this transition point is expected to be different
with more players.

V. DISCUSSION AND CONCLUSION

In contrast to the classical game, the deformation θ gives
Alice an advantage because she wins more often than Bob,
and Bob cannot do anything to change it. Another significant
aspect that sets it apart from the classical case is the possibility
of both players losing. When playing optimally, the classical
game has been shown to be a zero-sum game. This is not true
for the quantum game and is more likely to occur at θ = π

where there is a 20% chance that nobody wins. Moreover,
the Nash equilibrium outside the classical case is no longer
Pareto-optimal except at θ = 0, 4π/3, and 2π .

The search for an optimum strategy using shared resources
is closely aligned with other competitive games, such the
spectrum scarcity problem [11]. Our analysis has shown that
sometimes pure or mixed strategies are available, but may
come with different resource overheads. However, we did not
consider these resource costs in this paper and leave it as an
open problem for future work.

A natural extension of the current implementation is to a
three player game, since the four possible outcomes can be en-
coded on just two photons. In fact, the number of qubits scales
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as �log2(M + 1)� (see Appendix E) where M represents the
total number of coins, allowing for the efficient construction
of a network of players. Moreover, the selection of basis states
in this implementation remains arbitrary; we could have opted
for three distinct Bell pairs to encode |0̃〉, |1̃〉, and |2̃〉. Using
entangled states with minor modifications to the game, could
open the possibility of nonlocal strategies enabled by quantum
steering [41,42]. This raises the question whether quantum
games can be exploited within the network context [21], that
gain an advantage from multipartite resources [40,43].

In summary, we have outlined a construction of the two-
player quantum Morra game, providing Alice with a winning
advantage over Bob that surpasses the classical game. The
deformation operator and theoretical states have been realized
within a linear optics setup, achieving high fidelity and low
standard deviation with respect to the measurement outcomes,
which is less than 2%.

This formulation of the quantum Morra game has bridged
the classical and quantum domains by incorporating the
classical game as a particular instance within the extended
quantum game. In analyzing the strategies, we have identified
a new Nash equilibrium that diverges from the classical game.
This has enhanced our understanding of strategies in quantum
game theory and provided insight into the realization of new
quantum games. Surprisingly, it remains unknown whether
the equivalent of a Kakutani fixed-point theorem exists in
a complex space, such a discovery would guarantee a Nash
equilibrium for all quantum games [44]. Therefore, further
theoretical development in quantum game theory is needed to
support the implementation of more complex quantum games.

Finally, by extending the principles and techniques applied
in this work to other quantum games, we can potentially eval-
uate the robustness and efficiency of quantum communication
networks and deepen our understanding of quantum game
theory.
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The Appendices are organized as follows: Appendix A
provides additional details on the experimental setup. Ap-
pendix B provides a detailed description of the qutrit-to-qubit
mapping required for the experimental implementation of
the game. The computation of wave plates parameters and
experimental overlaps is covered in Appendix C. Additionally,

FIG. 5. (a) The linear optics circuit. (b) The encoding scheme for
|HH〉 configuration when pumping in Horizontal polarization and
wave plates {I,II,III}. (c) Pumping with D polarized light. Compo-
nents: Glan-Taylor (GT), half-wave plate (HWP), dual wavelength
polarization beam splitter (DPBS), dichroic mirror (DM), dual wave-
length HWP (DHWP), single-mode fiber (SFM), polarization fiber
controllers (PFC), polarising beam splitter (PBS), superconducting
nanowire single photon detectors (SNSPD), aperiodically polled
potassium titanyl phosphate (aKTP).

the unitary transformation is decomposed into one-qubit gates
and CNOT gates in Appendix D. Appendix E generalises the
deformed game to N players and M coins. Finally, Appendix F
introduces the novel concept of Quantum Deposit, drawing
inspiration from the quantum Morra game.

APPENDIX A: METHODS

We prepare our states using a photon source housed in
a Sagnac interferometer to control the PDC process. Fig-
ure 5 shows a Ti-Sapph laser pumping an aperiodically polled
potassium titanyl phosphate, crystal with 774.8-nm light, cre-
ating spectrally degenerate photons at 1549.6 nm. A lens
focuses the beam onto the crystal for optimum PDC events
and a Glan-Taylor prism ensures only linearly polarized light
enters the Sagnac while a Dichroic Mirror reflects only down
converted photons towards the coupler.

The first half-wave plate (HWP I) engineered for 775 nm
and the the dual wavelength polarization beam splitter con-
trol the pump direction into transmitted and reflected spatial
modes around the Sagnac; horizontal for clockwise direction
and vertical for anticlockwise (AC). A dual-wavelength half-
wave plate inside the Sagnc loop rotates V-pol light (in the
reflected port) into H-pol to facilitate PDC in the counter-
propagating direction. When pumping with D-pol light, the
signal and idler photons are indistinguishable and create a
maximally entangled state (A1),

|�+〉 = 1√
2
|hsvi〉 + eiφ |vshi〉 (A1)

The single photons detected on SNSPs are counted using a
logic box to identify coincidence events in the four detector
patterns shown in Fig. 6. Approximately 150 000 rounds were
conducted for 34 evenly spaced values of θ in the interval
[0, 2π ].
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FIG. 6. The coincidence counts on each of the four pairs of
detectors coupled to the transmitted (T) and reflected (R) ports of
the PBS to reproduce the overlaps for the states |1θ 〉 (a) and |2θ 〉
(b). Error bars have been calculated with Poissonian statistics, but
omitted due to size.

APPENDIX B: FROM QUTRITS TO QUBITS

Let us denote by |iAiB〉, (iA, iB = 0, 1) a basis of two qubits
states. The qutrit states will be defined as

|0̃〉 = |00〉, (B1)

|1̃〉 = 1√
2

(|01〉 + |10〉), (B2)

|2̃〉 = |11〉. (B3)

Equation (3) of the main text expresses X in the qutrit basis
|I〉 (I = 0̃, 1̃, 2̃). To implement the operation X on two qubit

states we have to extend the basis |I〉 to a fourth vector

|3̃〉 = 1√
2

(|01〉 − |10〉) (B4)

and promote X → X4 that acts according to

|1̃〉 = X4|0̃〉, |2̃〉 = X 2
4 |0̃〉, (B5)

and trivially on (22)

X4|3̃〉 = |3̃〉. (B6)

The matrix X4 reads in the basis |I〉 (I = 0̃, 1̃, 2̃, 3̃)

X4 =

⎛
⎜⎜⎝

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠. (B7)

To find the action of X4 on the two qubit states we use the
unitary transformation V that expresses the basis |I〉 in terms
of the basis |iAiB〉

|I〉 =
∑
iAiB

ViAiB,I |iAiB〉, I = 0̃, 1̃, 2̃, 3̃ (B8)

where

V =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1√
2

0 1√
2

0 1√
2

0 − 1√
2

0 0 1 0

⎞
⎟⎟⎟⎟⎟⎠. (B9)

The rows are labeled by 00, 01, 10, 11 and the columns by
0̃, 1̃, 2̃, 3̃. The matrix expressing the action of X4 in the two
qubit basis is given by

X2×2 = V X4V
† =

⎛
⎜⎜⎜⎝

0 0 0 1
1√
2

1
2 − 1

2 0
1√
2

− 1
2

1
2 0

0 1√
2

1√
2

0

⎞
⎟⎟⎟⎠ . (B10)

Similarly, to find the action of the deformed unitary Xθ on two
qubits we first let it act trivially on the state |3̃〉, as in (B6),
and perform the change of basis (B8) obtaining X2×2 → Xθ ,

Xθ =

⎛
⎜⎜⎜⎜⎜⎝

x0(θ ) 1√
2
x2(θ ) x2(θ )√

2
x1(θ )

x1(θ )√
2

1
2 (1 + x0(θ )) 1

2 ( − 1 + x0(θ )) x2(θ )√
2

x1(θ )√
2

1
2 ( − 1 + x0(θ )) 1

2 (1 + x0(θ )) x2(θ )√
2

x2(θ ) x1(θ )√
2

x1(θ )√
2

x0(θ )

⎞
⎟⎟⎟⎟⎟⎠.

(B11)
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FIG. 7. Features of the states reproduced by our experimental setup. The theoretical (solid line) and experimental (dots) overlaps |〈n|1θ 〉|2
and |〈n|2θ 〉|2 with n = 0 (blue), 1 (green), 2 (orange) are shown in (a) and (b), respectively. The entanglement entropy of the states |1θ 〉 and
|2θ 〉 is shown in (c). The entanglement entropy calculated by simulating the experimental setup without noise and using the optimal parameters
for the half-wave plates after numerical optimization is indicated by dots.

This operator gives the states |1θ 〉 and |2θ 〉 in the two qubit
basis,

|1θ 〉 = x0(θ )|00〉 + x1(θ )√
2

(|01〉 + |10〉) + x2(θ )|11〉,

|2θ 〉 = x0(2θ )|00〉 + x1(2θ )√
2

(|01〉 + |10〉) + x2(2θ )|11〉.

(B12)

APPENDIX C: PARAMETERISED WAVE PLATES

The purpose of the experiment is to reproduce the prob-
abilities pa,b(n) = |〈n|ψa,b〉|2. Therefore, it is not necessary
to reproduce the states |ψa,b〉, but only to match the modulus
of the coefficients after projecting the state in the Z basis,
qi, j = |〈i, j|ψa,b〉|2 with i = 0, 1 and j = 0, 1.

The experimental states |ψexp
a,b 〉 produced by our setup

depend on three parameters, 
α = (α1, α2, α3), through the
half-wave plates shown in Fig. 5. We need to find the pa-
rameters 
αopt that best reproduce qi, j . We simulate a noiseless
version of the experimental setup obtaining the parameterized
states |ψ sim

a,b (
α)〉 and the overlaps qsim
i, j (
α). This allows us to

get 
αopt as the solution to an optimization problem in which
we aim to maximize the Hellinger fidelity F between qi, j

and qsim
i, j (
α),

F (
α) =
∑
i, j

√
qi, jqsim

i, j (
α). (C1)

In order to reproduce the entanglement of the system, we also
require that the entanglement entropies of the simulated states
Ssim(
α) reproduce the theoretical entropies S see Fig. 7(c).
Once again, this can be formulated as an optimization problem
where the objective is to minimize |S − Ssim(
α)|. Taking into
account this new term, we seek to minimize

C(
α) = 1 − F (
α) + |S − Ssim(
α)|, (C2)

so that 
αopt = argmin(C(
α)). The minimization is performed
using the L-BFGS-B algorithm [35] implemented in SCIPY

[36], reaching C(
αopt ) < 10−6 for all values of θ .

APPENDIX D: UNITARY DECOMPOSITION

An arbitrary unitary V ∈ U (4) can be implemented as
a quantum circuit using local gates and three CNOTs
[33]. Furthermore, it is possible to use only two CNOTs
iff tr[V (σy)⊗2V t (σy)⊗2]/

√
det(V ) is real [34]. This condi-

tion is satisfied for the deformed unitary (29) when θ =
2π/3 (classical case), 4π/3. As indicated in the main text,
θ = 4π/3 reproduces the classical case under the interchange
of states |1〉 and |2〉. This means that the θ deformation intro-
duces an additional CNOT gate.

The circuits

(D1)

(D2)

with β1 = arccos(−1/3)/2 and β2 = π − β1 implement
(B11) for θ = 2π/3, 4π/3, respectively. For the remaining
values of θ , the circuits have the structure

(D3)

and the parameters 
α j can be determined following the
method proposed in [33].

APPENDIX E: GENERAL QUANTUM MORRA GAME

The game can be generalized to n players and m coins
straightforwardly. Given a pool with r = nm coins, each
player can draw from 0 to m coins and guess the total number
of coins, with the restriction that Bob cannot repeat Alice’s
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guess. Similarly to the game with two players and one coin,
we assign a state | j̃〉 to each possible total number of coins
j = 0, 1, . . . , r. In the classical case, each player has an op-
erator Xr that adds a coin when is applied to a state | j̃〉 with
j < r, and X r+1

r = I. This operator is the r + 1-dimensional
generalization of the Pauli matrix σ1,

Xr =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (E1)

and it is related to the operator Zr = diag(1, ω, . . . , ωr ) with
ω = ei2π/(r+1) by means of the Fourier transform F ,

Xr = F†ZrF . (E2)

Replacing Zr by diag(1, eiθ , . . . , eriθ ) we get the deformed
game and the modified Xr,θ operator, which creates the states

| jθ 〉 = X j
r,θ |0̃〉 = x0( jθ )|0̃〉 + x1( jθ )|1̃〉 + . . . + xr ( jθ )|r̃〉

(E3)

with

xa(θ ) = 1

r + 1

(
1 +

r∑
k=1

ω(r+1−k)aekiθ

)
. (E4)

The generalized quantum Morra game can be implemented
with �log2(r + 1)� qubits.

APPENDIX F: A QUANTUM COIN DEPOSIT

It is well known that qubits belonging to a Bell pair are
indistinguishable, this is a hallmark of entanglement. An in-
triguing consequence of our choice of encoding with a Bell
pair results in the indistinguishably of the coins played by
either player. This may have application in anonymous, se-
cure Quantum Deposit system, wherein the choices of the
participants remain concealed. This system operates indepen-
dently of classical communication channels, offering a sharp
departure from traditional games like Morra, which rely on
some level of communication. The quantum deposit model
could lead to new security protocols that require untraceable
transactions or enhanced privacy. While the exploration of
these applications is beyond the scope of this paper, future
researchers could delve into the development of quantum
cryptographic methods that capitalize on this paper.
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