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Flying-cat parity checks for quantum error correction
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Long range, multiqubit parity checks have applications in both quantum error correction and measurement-
based entanglement generation. Such parity checks could be performed using qubit-state-dependent phase shifts
on propagating pulses of light described by coherent states |α〉 of the electromagnetic field. We consider
“flying-cat” parity checks based on an entangling operation that is quantum nondemolition for Schrödinger’s cat
states |α〉 ± |−α〉. This operation encodes parity information in the phase of maximally distinguishable coherent
states |±α〉, which can be read out using a phase-sensitive measurement of the electromagnetic field. In contrast
to many implementations, where single-qubit errors and measurement errors can be treated as independent,
photon loss during flying-cat parity checks introduces errors on physical qubits at a rate that is anticorrelated
with the probability for measurement errors. We analyze this trade-off for three-qubit parity checks, which
are a requirement for universal fault-tolerant quantum computing with the subsystem surface code. We further
show how a six-qubit entangled “tetrahedron” state can be prepared using these three-qubit parity checks. The
tetrahedron state can be used as a resource for controlled quantum teleportation of a two-qubit state or as a source
of shared randomness with potential applications in three-party quantum key distribution. Finally, we provide
conditions for performing high-quality flying-cat parity checks in a state-of-the-art circuit QED architecture,
accounting for qubit decoherence, internal cavity losses, and finite-duration pulses, in addition to transmission
losses.
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I. INTRODUCTION

The ability to scale up quantum computers is crucial for
the long-term goal of performing computations fault toler-
antly. Many current proposals for scaling up take a modular
approach where groups of qubits at the nodes of a network
are linked by quantum photonic interconnects [1–3]. Recent
experiments have shown significant progress, demonstrating
entanglement distribution across nodes that are separated by
tens of meters [4–6]. In a distributed architecture, the ability
to perform long-range (internode) parity checks would also
provide a clear path towards implementing quantum error
correction [7,8].

Many quantum error correcting codes, including the sur-
face code [9–11], fall within a class of stabilizer codes [12]
known as Calderbank-Shor-Steane (CSS) codes [13,14]. In
CSS codes, errors can be detected by measuring the parities
of groups of qubits, given by the eigenvalues of stabilizer
operators of the form X ⊗n and Z⊗m, where X and Z are
Pauli-X and Pauli-Z operators, respectively. Here, n and m
are integers giving the weight of the stabilizer, equal to the
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number of qubits on which the operator acts nontrivially. A
parity check can be performed using a sequence of entangling
gates applied between an ancilla qubit and each of several
code qubits. The ancilla qubit can then be measured to infer
the parity of the code qubits.

There are many strategies that can be used to implement
two-qubit gates at long range. Given a source of distributed
entanglement, these gates can be performed by teleportation
[15–18]. Alternatively, long-range two-qubit gates can be re-
alized in solid state systems by coupling qubits via the real or
virtual excitations of superconducting [19–23], ferromagnetic
[24,25], or normal-metal [26] elements.

Rather than mapping parity onto an ancilla qubit, parity
information can more broadly be extracted by measuring
any observable—not necessarily corresponding to a qubit
observable—whose outcome depends on parity. In a circuit
quantum electrodynamics (QED) architecture, for instance,
this could be a shift in the resonance frequency of a mi-
crowave resonator dispersively coupled to multiple code
qubits [27–32].

In an architecture involving photonic interconnects, a natu-
ral way to connect qubits is using pulses of light. An internode
parity check could then be performed via qubit-state-selective
phase shifts α → eiφα on a light pulse prepared in a co-
herent state |α〉. Such state-selective phase shifts have been
analyzed theoretically as a means of implementing quan-
tum gates [33,34]. In addition, small conditional phase shifts
(φ < π ) generated from weak light-matter interactions have
been theoretically considered as a resource for parity mea-
surements [35,36]. More recently, large phase shifts (φ � π )
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have been realized experimentally in both the optical [37,38]
and microwave [39–42] domains. These experiments demon-
strate the enabling technology for parity checks based on
“flying-cat” states given by superpositions of macroscopically
distinct coherent states, |C±〉 ∝ |α〉 ± |−α〉, associated with
propagating pulses of optical or microwave light. In ancilla-
based parity checks (involving gates on a common ancilla
qubit), measurement errors and gate errors typically have in-
dependent physical origins and thus occur with independent
probabilities. This is not the case for flying-cat parity checks,
where these two error sources are correlated with the average
number of photons in the coherent state, |α|2. In particular,
there is a trade-off between the rate of measurement errors
(errors made in discriminating |±α〉) and the rate of errors on
code qubits due to backaction arising from photon loss. While
the coherent-state distinguishability is controlled by a finite
overlap 〈α| − α〉 that decreases with increasing |α|2, the rate
of photon loss increases with increasing |α|2.

In this paper, we quantify the performance of flying-cat
parity checks in the presence of photon loss. To do this, we
derive a superoperator describing the backaction of photon
loss on code qubits during a weight-3 flying-cat parity check.
From this superoperator, error patterns on code qubits together
with their associated error probabilities can be identified. This
knowledge can then be used to optimize α to minimize the
total error probability. High quality weight-3 parity checks
have applications in both universal quantum computing with
surface codes [43] and entanglement distribution in multinode
quantum networks. As a short-term demonstration of these
ideas, we further show that weight-3 Pauli-X and Pauli-Z
parity checks can be used to prepare a particular six-qubit
entangled state. This state can be used for three-party con-
trolled quantum teleportation of an arbitrary two-qubit state.
It also provides a natural testbed for flying-cat parity checks
in early implementations, en route to the more ambitious goal
of performing fault-tolerant quantum computation.

The layout of this paper is as follows. In Sec. II, we
describe how qubit-state-selective phase shifts imprint parity
information onto propagating light pulses. In Sec. III, we
discuss the aforementioned trade-off between measurement
errors and errors due to photon loss. Next, in Sec. IV, we
illustrate how flying-cat parity checks can be used to generate
entanglement in a multinode network. In particular, we show
how they can be used to prepare a six-qubit entangled state
that provides a resource for three-party controlled quantum
teleportation. Finally, in Sec. V, we establish conditions for
implementing flying-cat parity checks in a state-of-the-art cir-
cuit QED architecture, accounting for imperfections due to
finite-bandwidth pulses, internal cavity loss, qubit decoher-
ence, and transmission losses.

II. COHERENT STATES AS PARITY METERS

A parity measurement of two or more physical qubits can
be performed by allowing a propagating light pulse in co-
herent state |α〉 to interact with each qubit according to the
entangling operation described by

|0,±α〉 → |0,±α〉,
|1,±α〉 → |1,∓α〉, (1)

FIG. 1. A qubit-state-selective phase shift on an incoming co-
herent state |α〉 occupying some propagating quasimode of the
electromagnetic field can be obtained by resonantly coupling a cavity
mode having frequency ωc to the transition |0〉 ↔ |e〉 involving qubit
state |0〉 and some auxiliary level |e〉 [33,34,38,40,41].

where |0〉 and |1〉 are the qubit Pauli-Z eigenstates [with
Z|s〉 = (−1)s|s〉 for s = 0, 1]. This operation can be realized
by coupling a three-level system with states |1〉, |0〉, and |e〉
to a single quantized cavity mode, such that the |0〉 ↔ |e〉
transition is resonantly coupled to the cavity mode [33,34]
(Fig. 1). An input coherent state |α〉 occupying a propagating
spatiotemporal mode (light pulse) that is resonant with the
decoupled cavity frequency ωc will then acquire a different
phase upon reflection from the cavity, depending on the qubit
state. When the qubit is in state |1〉, the cavity frequency is
unaffected by the presence of the qubit and the input pulse is
reflected with a π phase shift [44]. However, when the qubit
is in state |0〉, hybridization of the qubit and cavity suppresses
the cavity density of states at ωc and the input pulse is reflected
with no phase shift. This is of course not the only way of
realizing the interaction given in Eq. (1). Another way to
realize this scenario can be achieved in the dispersive regime
(see Sec. V below for a detailed discussion of this second
strategy).

After interacting with n qubits in state |s1s2 . . . sn〉 (si ∈
{0, 1}), |α〉 will have acquired a total phase shift (−1)s = eisπ ,
where s = ∑

i si (mod 2) is the Z-basis parity of the n qubits:

|s1s2 . . . sn〉|α〉 → |s1s2 . . . sn〉|eisπα〉. (2)

The use of such an entangling interaction for continuous stabi-
lization of a Bell state was analyzed theoretically in Ref. [45]
and demonstrated experimentally (with phase shifts < π due
to a small dispersive coupling) with superconducting qubits in
Ref. [46].

Switching from Z-basis to X -basis parity checks simply
requires that Hadamards be applied to the qubits both before
and after the entangling operation described in Eq. (1):

|+,±α〉 H→ |0,±α〉 → |0,±α〉 H→ |+,±α〉,
|−,±α〉 H→ |1,±α〉 → |1,∓α〉 H→ |−,∓α〉, (3)

where here X |±〉 = ±|±〉. Hence, for both X - and Z-basis
parity checks, the parity of the code qubits can be inferred
by measuring the phase of the coherent-state amplitude.

A. Weight-3 checks are enough

Many quantum error correcting codes are formulated as
stabilizer codes [12] defined by a stabilizer group S . The
associated code space C is then given by the span of the
vectors |ψ〉 stabilized by S , i.e., satisfying Sj |ψ〉 = |ψ〉 for all
stabilizers S j ∈ S . In the usual surface code [11], for instance,
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FIG. 2. (a) Unit cell of the subsystem surface code [43]. Physical qubits represented by solid black dots are located on the edges and
vertices of a square lattice. (b) Gauge operators: each stabilizer can be represented as the product of two weight-3 gauge operators. Gauge
operators do not all mutually commute, but they do commute with all stabilizers and therefore preserve the code space. (c) Stabilizers of the
subsystem surface code: each unit cell hosts two stabilizers, one of the form Z⊗6 (left) and one of the form X ⊗6 (right). (d) A light pulse is
prepared in a coherent state |α〉 and interacts sequentially with three qubits. The interaction of the light pulse with each qubit results in the
entangling operation of Eq. (1). Photon loss in transit is modeled by a series of beam splitters having reflectivities ηi (i = 1, 2, 3). The parity
of the code qubits is inferred by performing a phase-sensitive measurement of the coherent state amplitude. This phase-sensitive measurement
could be achieved through homodyne detection by interfering the light pulse with a reference signal and measuring the resulting intensity.

correctable errors can be detected by measuring weight-4
stabilizers of the form X ⊗4 and Z⊗4.

A surface code can alternatively be operated as a subsystem
code [43] [Figs. 2(a)–2(c)]. A subsystem code [47–49] is
defined by a non-Abelian gauge group G together with an
Abelian stabilizer subgroup S ⊆ G. This construction allows
the code space C stabilized by S to be partitioned into subsys-
tems, C = A ⊗ B. Here, the subsystems A and B are defined by
the action of gauge operators g ∈ G, which may act nontriv-
ially only on subsystem B: g|ψA〉 ⊗ |ψB〉 = |ψA〉 ⊗ |ψ ′

B〉 for
|ψA〉 ∈ A, |ψB〉, |ψ ′

B〉 ∈ B. Errors acting on the code space are
then defined only up to an equivalence relation involving G. In
particular, error operators E and E ′ are equivalent in their ac-
tion on encoded logical information (in subsystem A) if E ′ =
Eg for some g ∈ G. Much of the appeal of subsystem codes
comes from the fact that stabilizer eigenvalues can be inferred
from measurements of lower-weight gauge operators. For the
subsystem surface code [43] [Figs. 2(a)–2(c)], for instance,
the eigenvalues of the weight-6 stabilizers X ⊗6 can be inferred
by multiplying together the measurement outcomes of two
weight-3 gauge operators of the form X ⊗3. Correctable errors
in a surface code can therefore be detected using weight-3
parity checks only (as opposed to the usual weight-4 parity
checks), with a fault-tolerance threshold of order 1% [43,50].
Gates on logical qubits can be performed as in the usual sur-
face code [11,43]. With this long-term application in mind, we
consider error sources—photon loss and finite coherent-state
distinguishability—that are specific to weight-3 flying-cat
parity checks [Fig. 2(d)] and show how to minimize their total
impact. Further error sources (finite-duration pulses, internal
losses, and qubit decoherence) are assessed in Sec. V below.

An important advantage of the subsystem surface code is
that errors on ancilla qubits used for syndrome readout propa-
gate onto at most one other qubit—modulo gauge operators
[43]. The extra degree of freedom provided by the gauge
group therefore eliminates the horizontal hook errors consid-
ered in Ref. [51] for the surface code, wherein ancilla-qubit
errors propagate onto several qubits.

III. TRADE-OFF BETWEEN MEASUREMENT ERRORS
AND ERRORS DUE TO PHOTON LOSS

Parity checks performed using coherent states exhibit an
unavoidable trade-off between error sources depending on
the average number of photons per pulse, |α|2. Due to the
nonorthogonality of |±α〉, larger field amplitudes α yield
better measurement fidelities. However, they also produce a
stronger backaction on the code qubits in the presence of pho-
ton loss. In this section, we consider these two competing er-
ror sources: measurement errors and errors due to photon loss.

In a real-world implementation, there may be a number
of other error sources affecting the quality of the opera-
tion required for parity checks [Eq. (1)]. For example, the
qubit-state-dependent conditional phase introduced may not
be precisely π , phase noise or thermal light may corrupt the
prepared coherent states, and photodetectors may suffer from
amplifier noise, dark counts, etc. In this section, we assume
that these implementation-dependent imperfections lead to
a background error rate that can be controlled, leaving the
effects of photon loss and imperfect coherent-state distin-
guishability as the dominant error sources. These effects are
likely to be common to any implementation. We consider
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FIG. 3. Horizontal hook error Z2Z3 due to photon loss during a
parity check.

several additional sources of error in the specific context of
a circuit-QED setup in Sec. V.

A. Photon-loss-induced backaction

In this subsection, we evaluate the backaction of photon
loss on the state of the three code qubits involved in the parity
check. Photon loss during a flying-cat parity check can lead
to two-qubit correlated errors on the code qubits (horizontal
hook errors, Fig. 3). As is the case for parity measurements
via noisy ancilla qubits [43], these horizontal hook errors are
gauge equivalent to single-qubit Pauli errors and they can
therefore be corrected as if they were single-qubit Pauli errors.
This key advantage of the subsystem surface code is therefore
retained for flying-cat parity checks.

To perform a weight-3 parity check, a coherent state |α〉
will interact with three qubits. In what follows, it will be
helpful to define the even and odd (Z-basis) parity subspaces
given by

H+ = span{|000〉, |110〉, |011〉, |101〉},
H− = span{|001〉, |010〉, |100〉, |111〉}. (4)

We write the state |�〉 of the three qubits prior to the parity
check as

|�〉 = c+|�+〉 + c−|�−〉, (5)

where |�±〉 ∈ H± and where
∑

σ=± |cσ |2 = 1. In the absence
of photon loss, the states |�±〉 are preserved by Eq. (1):
|�〉|α〉 → c+|�+〉|α〉 + c−|�−〉|−α〉. To perform an X -basis
parity check, Hadamards are simply applied before/after the
Z-basis parity check, as described in Eq. (3). In that case, we
take |�〉 to describe the state of the three qubits after the first
set of Hadamards.

In the presence of photon loss, the parity check has a
backaction on the code qubits that leads to the introduction
of errors beyond the background error rate. We model the
effect of photon loss to the environment via a beam-splitter
interaction [52]

R(η) = earcsin
√

η(a†


a−H.c.), (6)

where here a is an annihilation operator defined such that
a|α〉 = α|α〉, a
 is associated with an environmental loss
mode into which photons may be scattered, and η is the
beam splitter reflectivity. Under this operation, R†(η)aR(η) =√

1 − ηa + √
ηa
. The amplitude α of |α〉 is therefore reduced

according to

R(η)|α〉|0〉
 = |
√

1 − ηα〉|√ηα〉


, (7)

where here | 〉
 is the state of the loss mode. Although
coherent-state amplitude may be lost to many different en-
vironmental modes in principle, these modes can be treated
as a single effective mode since the state of the environ-
ment will eventually be traced over. To account for the effect
of loss at different points in the parity-check operation, we
imagine that the light pulse undergoes such a beam-splitter
interaction R(ηi), i = 1, 2, 3, after every entangling operation
[Fig. 2(d)]. Accounting for loss in this manner, the initial
state |s1s2s3〉|α〉|0, 0, 0〉
 of the qubits, coherent state, and
environment (here, |0, 0, 0〉
 denotes the vacuum state of the
three loss modes) evolves into

|s1s2s3〉|(−1)sᾱ〉|(−1)s1α1, (−1)μα2, (−1)sα3〉
, (8)

where s = s1 + s2 + s3 (mod 2) is the Z-basis parity of
|s1s2s3〉, μ = s1 + s2 (mod 2) and where

ᾱ = α

3∏
i=1

(1 − ηi )
1/2,

αi = αη
1/2
i

∏
j<i

(1 − ηi )
1/2. (9)

The joint state ρ of the qubits and electromagnetic field fol-
lowing the entangling operations (but prior to measurement)
can then be obtained by tracing over the loss modes:

ρ =
∑

σ,σ ′=±
ρσ,σ ′ |σ ᾱ〉〈σ ′ᾱ|, (10)

where ρ±,± ∈ H±. For |�+〉 = ∑
i=0,3,5,6 ci|i〉, where here

i is the base-10 value of s1s2s3 in binary, ρ+,+ takes the
following form in the basis {|0〉 = |000〉, |3〉 = |011〉, |5〉 =
|101〉, |6〉 = |110〉}:

ρ+,+
|c+|2 =

⎛
⎜⎜⎜⎜⎜⎝

|c0|2 c0c∗
3e−2|α2|2 c0c∗

5e−2(|α1|2+|α2|2 ) c0c∗
6e−2|α1|2

c3c∗
0e−2|α2|2 |c3|2 c3c∗

5e−2|α1|2 c3c∗
6e−2(|α1|2+|α2|2 )

c5c∗
0e−2(|α1|2+|α2|2 ) c5c∗

3e−2|α1|2 |c5|2 c5c∗
6e−2|α2|2

c6c∗
0e−2|α1|2 c6c∗

3e−2(|α1|2+|α2|2 ) c6c∗
5e−2|α2|2 |c6|2

⎞
⎟⎟⎟⎟⎟⎠

. (11)
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The block ρ−,−/|c−|2 takes the same form as Eq. (11) un-
der the mapping (0, 3, 5, 6) �→ (1, 2, 4, 7). The off-diagonal
blocks ρ±,∓ ∝ c±c∗

∓ in Eq. (10) appear as a result of consid-
ering an initial state |�〉 [Eq. (5)] of mixed parity and will be
suppressed exponentially ∼e−2|ᾱ|2 in the final postmeasure-
ment state.

In the absence of photon loss (η j = 0 for j = 1, 2, 3),
ρσ,σ ′ = cσ c∗

σ ′ |�σ 〉〈�σ ′ | and ᾱ = α. With η j �= 0, however,
ρσ,σ ′ �= cσ c∗

σ ′ |�σ 〉〈�σ ′ | due to the photon-loss-induced back-
action of the parity check. Hence, while the interaction with
the electromagnetic field remains quantum nondemolition
(QND) in the parity of |s1s2s3〉 in the presence of photon loss,
it is no longer QND in |�±〉 as desired. It may be verified
that the backaction leading to this non-QND character can be
described by the composition of two dephasing channels:

ρ±,±
|c±|2 = (

Ep1,E1 ◦ Ep2,E2

)
(|�±〉〈�±|), (12)

where Ep,E (ρ) = (1 − p)ρ + pEρE†, E1 = Z2Z3, E2 = Z3,
and where

p1 = 1
2

(
1 − e−2|α1|2) � η1|α|2,

p2 = 1
2

(
1 − e−2|α2|2) � η2|α|2. (13)

The approximations in Eq. (13) are valid to leading order
in η j � 1.

The operators E1,2 can be understood as follows. In the cat-
state basis |C±〉 ∝ |α〉 ± |−α〉, Eq. (1) describes a CZ gate
for any nonzero α. Since |C±〉 are eigenstates of the photon-
number parity operator eiπa†a, the loss of a photon constitutes
an X error, |C±〉 → |C′

∓〉, up to a change in coherent-state
amplitude, |α〉 → |α′〉 [53]. Hence, as a result of the CZ gates
involved in the parity check, photon loss leads to Z errors on
the code qubits. (Generally speaking, an X error on qubit a,
propagated through a CZ acting on qubits a and b, leads to a
Z error on qubit b.) These Z errors appear in the combination
E1 = Z2Z3 for photon loss occurring between qubits 1 and 2
(Fig. 3) and as E2 = Z3 for photon loss occurring between
qubits 2 and 3.

In a surface code where stabilizer parity checks are per-
formed using propagating pulses of light, photon loss would
therefore lead to correlated (horizontal hook) errors on code
qubits. However, due to the gauge degree of freedom intro-
duced by the gauge group, the horizontal hook error Z2Z3

introduced by the parity check [cf. Eq. (12)] is equivalent to
the single-qubit error Z1 [9]. This is because Z2Z3(Z1Z2Z3) =
Z1, where Z1Z2Z3 ∈ G. Since X -basis parity checks differ only
by some additional Hadamards applied to ρ [Eq. (10)], the
effects of photon loss during X -basis parity checks are instead
equivalent, up to a gauge operator, to single-qubit X1 and X3

errors occurring with the same probabilities (Table I). These
errors are not detected by the parity check in which they are
introduced (since Z-basis parity checks only detect X errors
and vice versa), but may be detected in the next parity check
of the other basis.

B. Measurement errors

Determining the parity of two or more qubits using
this approach requires a phase-sensitive measurement of

TABLE I. Errors arising due to photon loss during a Z⊗3 gauge-
operator parity check are equivalent (up to a gauge transformation)
to Z1 or Z3 errors arising with probabilities p1 and p2, respectively.
During an X ⊗3 parity check, these errors are instead equivalent to X1

or X3 errors.

Operator Error E introduced
being measured by photon loss Prob(E )

Z⊗3 Z1 p1

Z3 p2

X ⊗3 X1 p1

X3 p2

the electromagnetic field (to infer the sign of α). Such a
measurement can be implemented via homodyne detection
[54]. In homodyne detection, a signal field is first mixed on a
50:50 beam splitter with a local oscillator in coherent state |β〉
and the output intensity is then measured, giving information
about the phase of the signal relative to the local oscillator.
In this case, the signal field is the propagating light pulse
entangled with the state of the qubits [Eq. (10)]. Without loss
of generality, we assume that α is real and positive, α ∈ R+.
With a strong local oscillator (β ∈ R � α), homodyne
detection implements a projective measurement |x〉〈x| onto
the x eigenbasis [54], where here |x〉 is an eigenstate of
x̂ = (a† + a)/

√
2. The sign ± = sgn(x) of the measured

displacement can then be taken as an inference of even (+)
or odd (−) parity for the state of the qubits. In the event that
α is complex, the measured quadrature can be adjusted by
introducing a phase on the local oscillator: β → β ei(ϕ−π ).
In that case, the projection is instead onto an eigenstate of
x̂ϕ = x̂ cos ϕ + p̂ sin ϕ, where [x̂, p̂] = i [54].

Given ρ [Eq. (10)], the state ρx of the code qubits condi-
tioned on the measurement outcome x is then given by

ρx = TrEM{|x〉〈x|ρ|x〉〈x|}
p(x)

, (14)

where p(x) = Tr{|x〉〈x|ρ} and where TrEM{· · · } denotes a
partial trace over the state of the electromagnetic field. This
quantity can be evaluated straightforwardly using the repre-
sentation 〈x|ᾱ〉 = π−1/4e− 1

2 (x−√
2ᾱ)2

of |ᾱ〉. For a thresholded
decision, where x > 0 (x < 0) is taken to indicate even parity
(odd parity), the postmeasurement state for an inference of
even parity is given by

�+ =
∫ ∞

0
dx p(x)ρx, (15)

with a similar expression for �− involving an integral from
−∞ to 0. The joint probability P(“±”, ∓) of the state being
odd/even (∓) for an inference of even/odd parity (“±”) is

P(“ ± ”,∓) = Tr{�̂∓�±} = |c∓|2
2

erfc(
√

2ᾱ), (16)

where �̂± is a projector onto H± and erfc(x) is the com-
plementary error function. The error pM associated with the
measurement is then given by

pM = P(“ + ”,−) + P(“ − ”,+) = 1
2 erfc(

√
2ᾱ). (17)
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FIG. 4. The total error ptot [Eq. (18)] is given by the sum of
competing terms: measurement errors, which decrease with α, and
errors due to photon loss, which increase with α. For simplicity, we
assume that ηi = η for all i.

The total probability of an error occurring as part of a
parity check—either an incorrect parity inference or a code-
qubit error—is then (neglecting corrections of order pi p j

for pi � 1)

ptot = pM + p1 + p2 � 1

2

e−2α2

α
√

2π
+ 1

2

∑
j=1,2

η j |α|2. (18)

In the second, approximate equality, we have neglected sub-
leading corrections in η j |α|2 < 1 and approximated the error
function by its asymptotic form for |α| > 1. Since errors in-
troduced by photon loss occur at a rate that increases with
α (∼η j |α|2), while measurement errors are suppressed for
large α (∼α−1e−2α2

), there is an inherent trade-off between the
two types of error as a function of coherent-state amplitude.
Their total impact can therefore be minimized by optimizing
α (Fig. 4).

In light of the nonlinear (exponential) suppression of pM

with |α|2, it is natural to consider whether repeating the mea-
surement can lead to a smaller error. In this case, a single-shot
measurement with a coherent state of amplitude α = √

Nα0

leads to the same measurement error pM as a sequence of
N measurements performed with smaller coherent state am-
plitudes α0. However, this equivalent performance can only
be reached if a soft decision is made, where each measure-
ment outcome xk (k = 1, 2, . . . , N ) is assigned a confidence
p(±|xk ) = Tr{�̂±ρxk } and where the individual outcomes are
correlated in determining the most likely parity. If, instead,
each of the N measurements is thresholded independently
leading to a majority-vote decision, the error is less favor-
able, pM,th ∼ √

pM (up to logarithmic corrections for large N)
[55]. The large discrepancy between the error for a thresh-
olded (hard) decision and the soft decision is a feature of the
Gaussian distribution of measurement outcomes xk [55,56],
a model that is accurately realized for measurement of a
coherent state quadrature. Exploiting this soft-decision advan-
tage in repeated measurements with weak pulses may prove
useful if the amplitude of each coherent state is limited for

technical reasons (nonlinearity, unwanted qubit excitation,
amplifier noise, etc.).

IV. ENTANGLED RESOURCE STATES

In addition to enabling quantum error correction, flying-cat
parity checks could also be used to distribute entanglement
in a quantum network, with applications in both quantum
computing and quantum communication. In this section,
we discuss the concrete example of generating three-qubit
Greenberger-Horne-Zeilinger (GHZ) states. GHZ states have
applications in precision sensing and multiparty quantum
communication. They could also be used as the central re-
source for weight-3, ancilla-based internode parity checks
using the approach of Refs. [7,8] (an alternative to the strategy
for direct parity checks described above). We further show
how to create a particular six-qubit entangled “tetrahedron”
state using only X - and Z-basis weight-3 parity checks and
single-qubit gates. This state can be used as a resource for
three-party controlled quantum teleportation of an arbitrary
two-qubit state. Its preparation also provides a convenient
setting in which to benchmark the performance of the parity
checks themselves.

A. Three-qubit GHZ state

An alternative, established approach to long-range parity
checks involves the generation and consumption of four-qubit
GHZ states [7,8]. In this setup, each node houses a code
qubit and (at least) one ancilla. To perform a parity check,
four ancilla qubits located at four different nodes are pre-
pared in a GHZ state. The parity of the code qubits located
at these nodes can then be inferred by applying controlled-
NOT gates between the code qubit and the ancilla located
at each node, then measuring all ancillae. The distributed
GHZ state in this proposal could be generated, in principle,
via flying-cat parity checks. Although the original proposal
of Refs. [7,8] focused on weight-4 parity checks, weight-3
checks are sufficient for operating a subsystem surface code,
as described above, so in this section we consider the prepa-
ration of three-qubit GHZ states. The ancilla-based approach
of Refs. [7,8] may be preferable over a direct flying-cat parity
check in the case where the photon loss rate is high, leading
to a high probability of errors being introduced on the code
qubits. The low-fidelity GHZ states produced in the presence
of high photon loss could then be purified “offline” prior
to being consumed as part of a parity check, as considered
in Refs. [7,8].

A simple measurement-based strategy for three-qubit
GHZ-state preparation begins with preparation of the three
qubits in |+ + +〉. Measuring Z1Z2 and Z2Z3 projects the
qubits into an entangled state, which can then be transformed
into |GHZ〉 ∝ |000〉 + |111〉 with an X -gate correction on the
appropriate qubit. For a measurement outcome Z1Z2 = −1,
this is qubit 1; for Z2Z3 = −1, it is qubit 3; if both outcomes
are −1, it is qubit 2. However, as described above in Sec. III,
a Z-basis flying-cat parity check may introduce Z errors on
the qubits. For a measurement of ZiZ j , these are single-qubit
Zj errors occurring with probability pi j = (1 − e−2ηi j |α|2 )/2,
where here ηi j is the beam splitter reflectivity quantifying the
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strength of the losses incurred while traveling between qubits
i and j. Measurement errors occurring with probability qi j =
erfc[

√
2(1 − ηi j )α]/2 will also result in the wrong correction

operator being applied. In the presence of photon loss and
accounting for measurement errors, the two parity checks and
correction step described above will lead to preparation of the
following mixed state:

σ = (1 − p)|GHZ〉〈GHZ| +
∑

i

pi|i⊥〉〈i⊥|, (19)

where p = ∑
i pi = p12 + p23 − p12 p23 + q12 + q23 + q12q23

and where 〈GHZ|i⊥〉 = 0 for all i.
Since |GHZ〉 can be described as the simultaneous +1

eigenstate of a set of CSS stabilizer generators—namely,
Z1Z2, Z2Z3, and X1X2X3—several noisy copies of σ distributed
across three nodes (“Alice,” “Bob,” and “Charlie”) could be
purified using any CSS error-correcting code, e.g., C4 [57].
In the case of C4, this protocol would require that Alice,
Bob, and Charlie share four copies of σ . They would each
measure the stabilizers of C4 on their four qubits and then
use local operations and classical communication to produce
a less noisy, encoded version of σ [57]. Since the six-qubit
“tetrahedron” state discussed in the following subsection also
has a description in terms of a set of CSS stabilizer generators,
the same protocol [57] could be used to purify this state
as well.

B. Six-qubit entangled state

In this section, we show how weight-3 parity checks can
be used to prepare a “tetrahedron” state—a six-qubit entan-
gled state where each qubit can be associated with one edge
of a tetrahedron [Fig. 5(a)]. This state provides a source of
shared randomness with potential applications for three-party
quantum key distribution. A tetrahedron state can also be
used as a resource for controlled quantum teleportation of
an arbitrary two-qubit state. Independent of these potential
applications, the tetrahedron state provides a natural testbed
for benchmarking the performance of weight-3 flying-cat par-
ity checks (since its preparation requires both X - and Z-basis
parity checks).

The tetrahedron state spans the code space of a (trivial)
CSS code admitting a set of stabilizer generators that can
be associated with the faces and vertices of a tetrahedron
[Fig. 5(a)]:

S1 = Z1Z3Z5, S4 = X1X3X6,

S2 = Z1Z4Z6, S5 = X1X4X5,

S3 = Z2Z4Z5, S6 = X2X3X5. (20)

It may be verified that the stabilizers associated with the
remaining face and vertex are simply given by S1S2S3 and
S4S5S6.

The stabilizer eigenvector relations Si|T〉 = |T〉, i =
1, 2, . . . , 6, admit one common eigenstate, the tetrahedron
state:

|T〉 = 1

2

∑
β=�±,�±

|β〉12|β〉34|β〉56, (21)

FIG. 5. (a) Six qubits can be associated with the six edges of
a tetrahedron. Each of the stabilizers in Eq. (20) is a product of
three Pauli-Z or Pauli-X operators acting on qubits that neighbor a
common face (Z) or vertex (X ). (b) A potential real-space setup for
applications discussed in the main text: each node (A, B,C) contains
a pair of qubits whose associated tetrahedron edges have no face nor
vertex in common. Every parity check required for preparation of |T〉
[Eq. (20)] involves only one qubit at each node. For nodes (A, B,C)
implemented via the cavity-QED realization shown in Fig. 1, the
three qubits not being measured during a given parity check can be
made inactive by detuning them from their respective cavities.

where |�±〉 = (|00〉 ± |11〉)/
√

2 and |�±〉 = (|01〉 ±
|10〉)/

√
2. If node A houses qubits 1 and 2, node B qubits

3 and 4, and node C qubits 5 and 6 [Fig. 5(b)], then the
outcomes of Bell measurements at nodes A–C are uniformly
distributed across Bell states but perfectly correlated across
nodes. A tetrahedron state can therefore provide Alice, Bob,
and Charlie with two bits of shared randomness, which could
be used to build a shared private key for cryptography.

With the qubits partitioned in the manner described above,
every stabilizer Si in Eq. (20) involves one qubit at each
node. Preparation of |T〉 can be achieved in two steps, start-
ing from a random initial state. In the first step, all Si are
measured using flying-cat parity checks. At this point, each
stabilizer measurement returns a random outcome, σi = ±1.
In the second step, the −1 outcomes are treated like an error
syndrome and the appropriate correction operator (identified
in the manner described below) is applied, transforming the
postmeasurement state into the target state |T〉.

Since |T〉 [Eq. (21)] is the nondegenerate ground state of
−∑

i Si, the code defined by Si is trivial, reflecting the trivial
genus-0 topology of the tetrahedron. Despite the absence of
logical qubits (which, in a toric-code construction [58], re-
quires that −∑

i Si have degenerate ground states), the code
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TABLE II. Syndrome data for decoding class I errors.

j σ1 σ2 σ3 σ4 σ5 σ6

1 −1 −1 +1 −1 −1 +1
2 +1 +1 −1 +1 +1 −1
3 −1 +1 +1 −1 +1 −1
4 +1 −1 −1 +1 −1 +1
5 −1 +1 −1 +1 −1 −1
6 +1 −1 +1 −1 +1 +1

nonetheless serves as a quantum memory for |T〉: given full
syndrome information, consisting of the six eigenvalues σi of
Si, any number of X and Z errors can be corrected using a sim-
ple syndrome-decoding algorithm. The procedure is identical
for X and Z errors, so without loss of generality we give the
decoding procedure for X errors as follows.

(1) Measure the Z-basis stabilizers S1−3. If the syndrome is
(1,1,1), then no correction is required. All other errors can be
divided into two classes.

(2) Class I errors: if syndrome j in Table II is obtained,
then apply an X gate to qubit j.

(3) Class II errors: if the syndrome consists entirely of −1
outcomes, then apply X gates to any pair (1,2), (3,4), or (5,6)
of qubits having no face nor vertex in common.

Any number of X errors can be corrected in this way:
single-qubit errors are reversed, while multiqubit X errors cor-
rected as single-qubit X errors are transformed either into S4−6

or into products thereof, all of which act trivially on |T〉. As an
example, consider the scenario where qubits 1 and 3 have un-
dergone bitflip errors. The syndrome (σ1, σ2, σ3) = (1,−1, 1)
dictates that an X gate be applied to qubit 6 (Table II). This
operation transforms the state X1X3|T〉 into S4|T〉 = |T〉. For
an example of a class II error, consider the scenario where
both qubits 1 and 2 have undergone X errors. In this case,
(σ1, σ2, σ3) = (−1,−1,−1), requiring that X gates be ap-
plied to any pair (1,2), (3,4), or (5,6) of qubits. If (1,2) is
selected, then the errors are reversed. If (3,4) is selected in-
stead, then the correction operator X3X4 transforms X1X2|T〉
into S5S6|T〉 = |T〉.

Multipartite entanglement of |T〉 can be detected by mea-
suring the entanglement witness [59,60]

W = α|T〉1 − |T〉〈T|, (22)

where here α|T〉 is the largest Schmidt coefficient across bi-
partitions of |T〉. This construction is designed to have a
non-negative expectation value 〈W〉 � 0 for all biseparable
states. A negative expectation value therefore signals detec-
tion of genuine multipartite entanglement.

For states (like |T〉) having a description in terms of a set
of CSS stabilizer generators, it is known that the maximal
Schmidt coefficient across bipartitions is α|T〉 = 1/2 and that
the witness W can be expressed in terms of the CSS stabilizer
generators [61]:

W = 3

2
1 −

3∏
i=1

1 + Si

2
−

6∏
i=4

1 + Si

2
. (23)

The expectation value 〈W〉 can be estimated using two mea-
surement settings only: one where all qubits are measured

FIG. 6. Preparation fidelity F = 〈T|ρ|T〉 accounting for mea-
surement errors and errors due to photon loss.

in the Z basis and one where all qubits are measured in
the X basis. The fidelity F = 〈T|ρ|T〉 = 1/2 − 〈W〉 of some
noisy state ρ relative to |T〉 can therefore be estimated using
single-qubit measurements, independent of the parity checks
that were used to create the state. This provides an avenue
for benchmarking the quality of the weight-3 flying-cat parity
checks used to prepare |T〉 (Fig. 6).

When a complete set of parity checks is performed starting
from some initial state, a set of six eigenvalues {σi} is found.
In the absence of measurement errors or errors due to photon
loss, the operation required to transform the initial state into
|T〉 can be correctly identified based on these eigenvalues. A
measurement error, however, will lead to the wrong operation
being applied, resulting in the creation of a state orthogonal
to |T〉. Errors on physical qubits can also be introduced by
photon loss during a parity check. This loss-induced backac-
tion takes the form of stochastic Z errors (X errors) during
measurement of Z-basis (X -basis) parity checks. Such errors
could be corrected in subsequent error-correction cycles using
the decoding procedure explained above. However, any errors
introduced by the last set of parity checks (prior to any mea-
surements occurring at nodes A–C) remain uncorrected. If, for
instance, this last round of checks consists of Z-basis parity
checks, then |T〉 may be affected by uncorrected Z errors,
which also produce states orthogonal to |T〉. To leading order
in p1,2, and neglecting corrections O(p1,2 pM), we then have

〈W〉 � − 1
2 + [1 − (1 − pM)6] + 3(p1 + p2). (24)

Here, the term [1 − (1 − pM)6] gives the probability of mak-
ing at least one measurement error across the six stabilizer
measurements, while the term 3(p1 + p2) gives the proba-
bility of photon loss introducing an error during the last set
of parity checks (consisting of either three X -basis or three
Z-basis checks). Notably, in the limit α → 0, we have 〈W〉 =
1/2 − 1/26, giving F = 1/26. This is the fidelity expected
from randomly guessing the six stabilizer outcomes and ap-
plying a correction based on these guesses.

1. Controlled quantum teleportation

The tetrahedron state can be used as a resource state
for three-party controlled quantum teleportation. Controlled
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TABLE III. Correction operators for a two-qubit controlled
quantum teleportation scheme using |T〉 as the entangled resource
state.

Alice1 Bob Alice2 Bob Charlie Bob

|�+〉 |�+〉 |0〉|+〉
|�+〉 X3 |�+〉 X4 |0〉|−〉 Z3Z4

|�−〉 Z3 |�−〉 Z4 |1〉|+〉 X3X4

|�−〉 Z3X3 |�−〉 Z4X4 |1〉|−〉 Z3Z4X3X4

quantum teleportation of a single-qubit state using a three-
qubit GHZ state was introduced in Ref. [62] and since then
many protocols extending the scheme to multiqubit states
using various resource states have been proposed [63–68]. The
premise underlying this protocol is that Alice and Bob should
be able to teleport quantum states with unit fidelity only with
Charlie’s cooperation. Here, the fidelity of a teleportation pro-
tocol is given by the fidelity of the state reconstructed by Bob
relative to Alice’s original state. In Ref. [69], Li and Ghose
introduced the notion of control power to quantify Charlie’s
influence over the fidelity of the teleportation protocol. The
control power is equal to 1 − F̄ for an average teleportation
fidelity F̄ . For teleportation of a two-qubit state, Charlie’s
control power must be 1 − F̄ � 3/5 in order to prevent Alice
and Bob from benefiting from their shared entanglement [70].
Not all entangled states meet this criterion, but we now show
that the state |T〉 does.

We imagine that Alice, Bob, and Charlie share one copy
of |T〉, with each party holding two qubits according to
the partitioning shown in Fig. 5(b). Alice has two addi-
tional qubits A1, A2 in state |ϕ〉 = a|�+〉 + b|�+〉 + c|�−〉 +
d|�−〉, which she wants to teleport to Bob. She performs Bell
measurements on pairs of qubits (A1, 1) and (A2, 2) and trans-
mits the results to Bob, who applies the correction operators
given in Table III. Once these correction operators have been
applied, Bob and Charlie share one of four possible states:

a|�+,�+〉 + b|�+, �+〉 + c|�−, �−〉 + d|�−,�−〉,
a|�+, �+〉 + b|�+,�+〉 + c|�−,�−〉 + d|�−, �−〉,
a|�+, �−〉 + b|�+,�−〉 + c|�−,�+〉 + d|�−, �+〉,
a|�+,�−〉 + b|�+, �−〉 + c|�−, �+〉 + d|�−,�+〉. (25)

If Charlie wished to complete the teleportation, he would
measure one of his qubits in the Z basis and the other in the
X basis. He would then send the measurement outcomes to
Bob, who would conditionally apply further corrections to
his qubits according to Table III. When Bob is given both
Alice’s and Charlie’s measurement outcomes, the fidelity of
the teleportation protocol is unity. With only Alice’s informa-
tion, however, Bob’s qubits are in a mixed state ρB obtained
by tracing over Charlie’s qubits. The fidelity 〈ϕ|ρB|ϕ〉 of the
teleportation protocol for state |ϕ〉 can then be averaged over
the Haar measure dϕ to obtain the average fidelity

F̄ =
∫

dϕ 〈ϕ|ρB|ϕ〉 = 2

5
, (26)

corresponding to a control power of 1 − F̄ = 3/5. The aver-
age teleportation fidelity that Alice and Bob achieve without

Charlie’s help is therefore only equal to the fidelity of the best
classical strategy [71], in which Alice performs an optimal
measurement of her two-qubit state and sends the result to
Bob, who then attempts to reconstruct Alice’s state on the
basis of this classical information. The maximal fidelity for
this classical strategy is given by the optimal fidelity for esti-
mation of a quantum state, equal to 2/5 for a two-qubit system
[72–74]. Charlie therefore has the power to prevent Alice and
Bob from deriving any advantage (over classical strategies)
from their shared entanglement.

We note that the notion of control power given above
only has meaning when the three parties share a pure state.
Noise can, however, be incorporated under appropriate condi-
tions [75]. Whether the noisy tetrahedron state resulting from
a sequence of flying-cat parity checks with finite measure-
ment errors and finite photon loss provides sufficient control
power is a question for future study, beyond the scope of the
present work.

V. FEASIBILITY

In this section, we consider the feasibility of implementing
flying-cat parity checks in a state-of-the-art circuit QED archi-
tecture [76], using currently realized experimental parameters.
The basic elements of the parity check consist of (i) an entan-
gling operation realizing the qubit-state-dependent phase shift
of Eq. (1) and (ii) propagation of the microwave-frequency
light pulse through superconducting transmission lines and
circulators [Fig. 5(b)]. We begin by discussing error sources
related to (i), namely internal cavity losses and errors due to a
finite pulse duration, and then errors due to qubit decoherence.

A. Entangling operation

To assess the quality of the entangling operation, here we
focus on a circuit-QED setup consisting of a single-sided
microwave cavity with a mode at frequency ωc, coupled to a
transmission line with coupling rate κ0. In addition, the cavity
is coupled via a transverse (Rabi) coupling g to a two-level
system encoding a qubit with level splitting ωq. As in Fig. 1,
we consider a regime where an incident microwave pulse pre-
pared in a coherent state |α〉 acquires a qubit-state-dependent
phase shift upon reflection [α → (−1)sα for s = 0, 1]. How-
ever, in contrast to the setup in Fig. 1, which relies on strong,
resonant coupling and the existence of a third level, here we
focus on an alternative approach due to its compatibility with
qubits having no nearby third level, e.g., electron-spin qubits
[77,78]. A similar analysis could also be carried out for the
setup in Fig. 1, leading to slightly different conditions.

In the dispersive regime of cavity QED (|δ| � |g|, with
detuning δ = ωq − ωc), the cavity and qubit are described ap-
proximately by the effective Hamiltonian [79] (setting h̄ = 1
here and throughout):

H = ωca†a + 1
2 (ωq + χ )σz + χa†aσz. (27)

Here, χ = g2/δ is the dispersive shift, a annihilates a pho-
ton in the cavity, and σz = |0〉〈0| − |1〉〈1|. In the absence
of bit flips, the Pauli operator σz is preserved and can be
replaced by σz �→ (−1)s for qubit state s. Under the stan-
dard (Born-Markov) approximation for a wide-bandwidth
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transmission line, the cavity field evolves according to the
quantum Langevin equation

ȧ(t ) = i[H, a(t )] − 1
2 (κ0 + κint )a(t ) − √

κ0rin(t ), (28)

where rin(t ) characterizes the complex amplitude of the in-
coming microwave pulse and where κint gives the rate of
internal cavity losses. From Eq. (28) and the input-output
relation [80], rout (t ) = (2π )−1

∫
dω e−iωt rout (ω) = rin(t ) +√

κ0〈a(t )〉, we then find the qubit-state-dependent reflection
coefficient Rs(ω) = rout (ω)/rin(ω):

Rs(ω) = 2i[ω − ωc − (−1)sχ ] + κ0 − κint

2i[ω − ωc − (−1)sχ ] − κ0 − κint
. (29)

For an ideal narrow-bandwidth input pulse with ω � ωc, and
for negligible internal losses, κint � 0, a special choice of dis-
persive shift |χ | = κ0/2 leads to a phase shift α �→ Rs(ω)α �
(−1)siα [39,42]. The operation of Eq. (1) can then be recov-
ered with a change in phase reference, α �→ −iα. Deviations
from the idealized assumptions above (e.g., finite-bandwidth
pulses and finite internal losses κint �= 0) will generally lead to
an imperfect entangling operation.

As a measure of quality for the entangling operation, we
use the infidelity ε of the final joint state ρimperfect of the
qubit and microwave pulse obtained in the presence of im-
perfections, relative to the ideal final state |ψideal〉 = (|0, α〉 +
|1,−α〉)/

√
2 for a qubit initially prepared in |+〉:

ε = 1 − 〈ψideal|ρimperfect|ψideal〉 ≈ εqubit + εreflect. (30)

Here, we have divided ε into a contribution εqubit due to qubit
decoherence (neglecting other error sources) and a contribu-
tion εreflect due to the combined effects of internal cavity losses
and finite pulse bandwidth (neglecting decoherence).

To quantify the effects of both finite κint and finite band-
width ∼τ−1 (for a pulse with duration τ ), we assume that
the spatiotemporal mode supporting state |α〉 has waveform
u(t ), normalized according to

∫
dt |u(t )|2 = 1 [34]. Before the

reflection, frequency mode ω of the transmission line is in a
coherent state having amplitude αu(ω), where here u(ω) is the
Fourier transform of u(t ). For an ideal entangling operation,
the waveform would acquire a well-defined ±π/2 phase shift,
u(ω) �→ ±iu(ω), conditioned on the qubit state, in which case
we could simply write |α〉 �→ |±iα〉. However, in practice,
αu(ω) �→ αRs(ω)u(ω). Evaluating the overlap of the ideal
output state with the state resulting from a finite κint and finite
τ gives

εreflect = 1 − 1

2

∑
s=0,1

e−α2
∫

dω
2π

|u(ω)|2|(−1)si−Rs (ω)|2 . (31)

For a Gaussian waveform with width τ , corresponding in the
frequency domain to |u(ω)|2 = 2

√
πτ e−(ω−ωc )2τ 2

, the inte-
grand in Eq. (31) has finite weight only for |ω − ωc| � 1/τ .
Expanding Rs(ω) to leading nontrivial order in both κint/|χ |
and |ω − ωc|/|χ | � 1/(τ |χ |) then gives

|(−1)si − Rs(ω)|2 � 1

4

(
κint

χ

)2

+
(

ω − ωc

χ

)2

. (32)

Inserting this result into Eq. (31), performing the Gaussian
integral, then expanding to leading nontrivial order in κint/|χ |

and 1/(τ |χ |) gives

εreflect � α2

(
1

2τ 2|χ |2 + κ2
int

4|χ |2
)

. (33)

Taking a large dispersive shift therefore has two benefits:
first, reducing the effects of internal cavity loss ∼κint and,
second, allowing for a faster error-correction cycle ∼τ while
maintaining a small error, εreflect.

The setup described above has been realized experimen-
tally in, e.g., Ref. [42] for a transmon qubit coupled to
a microwave cavity. For the values realized in Ref. [42]
(κint/2π = 0.22 MHz, χ/2π = −1.05 MHz, and τ = 500 ns)
and assuming α = 1, Eq. (33) gives a contribution to the infi-
delity �0.046 from the term ∝1/τ 2 and a contribution �0.004
arising from internal losses. The estimate above therefore sug-
gests εreflect ≈ 0.05, dominated by the finite-bandwidth pulses,
although it should be noted that the pulse used in Ref. [42]
was square, rather than Gaussian. Doubling the value of the
dispersive shift (so that χ/2π = −2.10 MHz) would reduce
the error ∝τ−2 to 0.01 for the same value of τ = 500 ns,
comparable to the O(1%) threshold of the subsystem surface
code [43,50]. A much smaller value of κint/2π ∼ 100 Hz also
remains well within the state of the art [81]. Therefore, we do
not expect εreflect to be a limiting error source for near-term
implementations.

The expression for the reflection coefficient Rs(ω)
[Eq. (29)] neglects the effects of qubit decoherence, which
will also degrade the quality of the entangling operation.
To guarantee a low probability of qubit decoherence on the
timescale τ of the pulse, we require that min{T1, T ∗

2 } � τ ,
where here T1 is the timescale for energy relaxation and T ∗

2
is the inhomogeneous dephasing time due to random fluctu-
ations in the qubit splitting from shot to shot. For dephasing
caused by a Markovian (short-correlation-time) environment,
the homogeneous dephasing time T2 is equal to T ∗

2 and the
decay of coherences is exponential with timescale T2 = T ∗

2 .
In Ref. [42], decoherence was limited by pure dephasing on a
timescale T2 = T ∗

2 = 6 µs, while the pulse had a duration of
τ = 500 ns. To leading order in τ/T ∗

2 , a quick estimate for the
infidelity due to decoherence is then given by

εqubit � τ/T ∗
2 . (34)

Inserting the values for τ and T ∗
2 from Ref. [42] then gives

εqubit � 0.08, comparable to the infidelity of 0.11 attributed to
the effects of decoherence, based on a more sophisticated error
model [42]. Reducing the pulse duration therefore provides
a clear avenue towards reducing errors due to decoherence.
However, to maintain the same small value of εreflect, a reduc-
tion in τ must be accompanied by a proportional increase in
|χ |, as discussed above.

B. Transmission losses

For the setup illustrated in Fig. 5(b), sources of photon loss
will likely include losses ηtrans incurred in transit, together
with losses ηcirc due to chiral elements like circulators, giving

η = ηtrans + ηcirc. (35)

Many superconducting interconnects are made of NbTi, for
which typical attenuation rates are 5 dB/km, corresponding

023247-10



FLYING-CAT PARITY CHECKS FOR QUANTUM ERROR … PHYSICAL REVIEW RESEARCH 6, 023247 (2024)

to losses of 68%/km [82]. The architecture of Ref. [82]
instead uses pure Al to achieve losses of 0.15 dB/km
(3.4%/km), comparable to the values reached for fiber-optic
cables carrying telecom-frequency light. Hence, for a meter-
scale experiment, ηtrans can likely be made negligible relative
to other sources of loss.

In microwave platforms, chiral elements like circulators
often lead to higher losses than those incurred during free
propagation, due in part to the challenges of on-chip inte-
gration. In Ref. [6], for instance, circulators led to insertion
losses estimated at ηcirc = 0.13. If the dominant source of
error is circulator loss, a factor-of-2 improvement would be
sufficient to demonstrate multipartite entanglement in a tetra-
hedron state using the layout of Fig. 5(b), since 〈W〉 < 0 can
be achieved for the entanglement witness W [Eq. (23)] pro-
vided η � 0.05 (cf. Fig. 6). Significant effort has gone towards
the development of microwave circulators compatible with
on-chip integration [83,84], as this technology has already
been identified as a key ingredient for scaling up supercon-
ducting processors. As a final comment, the circulators shown
in Fig. 5(b) are not strictly necessary. They could be replaced
by fast dynamical switches that control the path taken by the
pulse.

C. Summary: Parametric constraints

For the circuit QED architecture considered above, where
the entangling operation of Eq. (1) is realized in the dispersive
regime, increasing the strength of the dispersive coupling pro-
vides a straightforward avenue towards increasing the fidelity
of the entangling operation. Decoherence times are another
important consideration. For min{T1, T ∗

2 } = 10 µs, and for the
same value of κint/2π = 0.22 MHz realized in Ref. [42], a
possible combination of τ and χ giving ε ≈ εqubit + εreflect ≈
0.01 is τ = 100 ns and |χ |/2π = 10 MHz. Dispersive shifts
as large as 10 MHz have been realized experimentally for
transmon qubits [85].

Assuming the layout of Fig. 5(b), preparing a tetrahedron
state requires six stabilizer measurements, each involving
three entangling operations, for a total of eighteen entangling
operations. Accounting for errors in the entangling operations,
an estimate for the maximum achievable preparation fidelity
of the tetrahedron state is therefore F � Fmax � 1 − 18ε.
Since a fidelity F > 1/2 is required to demonstrate multipar-
tite entanglement (Fig. 6), an ideal scenario is one where all
error sources associated with the entangling operation (e.g.,
qubit dephasing, internal cavity losses, and finite-bandwidth
effects) can be controlled to the extent that 18ε � 1/2 (ε �
0.03). If this condition is met, then multipartite entanglement
can be demonstrated with a photon loss rate as high as η ≈
0.05 (Fig. 6). As discussed above, this would require only a
factor of ∼2 improvement in the circulator insertion losses
reported in Ref. [6].

VI. CONCLUSION

High-quality flying-cat parity checks could provide the
ability to perform error correction in distributed architectures,
where native qubit-qubit interactions are not typically avail-
able across nodes. However, operations involving propagating

quasimodes of the electromagnetic field will introduce photon
loss as a source of error on code qubits.

In this work, we have analyzed the trade-off between mea-
surement errors and errors due to photon loss in the context
of weight-3 flying-cat parity checks. We have shown how the
total impact of these error sources could be minimized as a
function of the coherent-state amplitude. In addition, we have
verified that the horizontal hook errors due to photon loss re-
main gauge equivalent to single-qubit errors for gauge opera-
tors of the form X ⊗3, Z⊗3, so that flying-cat parity checks pre-
serve this key advantage of the subsystem surface code. In the
context of entanglement distribution, we also described how
flying-cat parity checks can be used to generate three-qubit
GHZ states, as well as a six-qubit entangled “tetrahedron”
state that can be used for controlled quantum teleportation of
an arbitrary two-qubit state. Another result of this paper is the
conditional postmeasurement state ρx of the data qubits fol-
lowing a phase-sensitive measurement of the electromagnetic
field, incorporating both measurement errors and photon-loss-
induced errors. This object can be used to find the conditional
probabilities for error patterns on the code qubits, shot by shot
for each measured value of x. In a quantum error correcting
code, this probability could be passed to a decoding scheme
that takes full advantage of this soft information [86–88]. Fi-
nally, we have shown that high-quality flying-cat parity checks
are feasible with current or near-future technology.

Flying-cat parity checks rely on sources and detectors for
(classical) coherent states of light, rather than the single pho-
tons used to link nodes in several other quantum-network
implementations. These parity checks therefore do not require
single-photon sources or detectors, although they do require
a high-quality stable source of coherent light and low-noise
phase-sensitive measurements. We have only considered the
simplest encoding (a single-mode input coherent state). In
future work, it may be interesting to consider whether a more
elaborate encoding could be used to simultaneously detect
photon loss and parity using, e.g., a cat-code variant [89].
Additionally, rapid qubit gates and dynamical decoupling se-
quences performed to preserve code qubits coupled to cavities
will generically lead to bursts of light that can carry away
information [90]. Whether dynamical decoupling can be made
compatible with flying-cat parity checks is an open question.

The flexible qubit connectivity enabled by the use of
propagating light pulses could also provide an avenue to-
wards realizing the nonlocal interactions required by certain
quantum low-density parity-check (LDPC) codes [91–95].
Quantum LDPC codes have shown promise for reducing the
number of physical qubits required to encode a logical qubit
compared to leading candidates like the surface code.

Note added: We recently became aware of Refs. [96,97],
which show how the tetrahedron state presented here can be
used as a building block for a three-dimensional subsystem
toric code.
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