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CESPED: A benchmark for supervised particle pose estimation in cryo-EM
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Cryo-EM is a powerful tool for understanding macromolecular structures, yet current methods for structure
reconstruction are slow and computationally demanding. To accelerate research on pose estimation, we present
CESPED, a data set specifically designed for supervised pose estimation in cryo-EM. Alongside CESPED, we
provide a PYTORCH package to simplify cryo-EM data handling and model evaluation. We evaluate the perfor-
mance of a baseline model, Image2Sphere, on CESPED, which shows promising results but also highlights the
need for further improvements. Additionally, we illustrate the potential of deep learning-based pose estimators
to generalize across different samples, suggesting a promising path toward more efficient processing strategies.
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I. INTRODUCTION

A. Cryo-EM single-particle analysis

Determining the structure of macromolecules is crucial
to deciphering the intricacies of biological processes and
the underlying mechanisms of diseases. With the advent
of the resolution revolution, cryogenic electron microscopy
(cryo-EM) has emerged as a leading technique for elucidat-
ing structures [1,2]. This revolution, driven by significant
advances in direct electron detectors and image-processing
algorithms, has made cryo-EM a routine, often unrivaled,
method for many complex samples [3]. Its advantages in-
clude, among others, the relative ease of sample preparation
compared to other techniques (e.g., x-ray crystallography), the
capability to analyze protein complexes previously considered
out of reach, and the ability to recover different conforma-
tions, offering a dynamic view of molecules in action [4]. The
pivotal role of cryo-EM in structural biology was globally rec-
ognized in 2017 when the technique was awarded the Nobel
Prize in chemistry.

The primary aim of cryo-EM single-particle analysis (SPA)
is to reconstruct the three-dimensional (3D) structure of a
given macromolecule at near-atomic resolution, ideally
better than 3 Å. This process uses electron beams to
capture thousands of two-dimensional (2D) images of
the macromolecules, which are flash frozen in vitreous ice
to preserve their native state without the distortions typical
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of crystalline ice or other fixation methods [5]. Each image,
called a micrograph, can display several hundred snapshots
of the macromolecule (referred to as particle images or just
particles) in unknown random orientations. If the orientations
of these images were known, the reconstruction task would
closely resemble the algorithms used in tomography, which
reconstruct 3D volumes from 2D projections taken at prede-
termined angles [6]. However, the unknown orientations of the
particles in SPA present a unique challenge not encountered in
tomography [7]. Compounding this challenge is the inherently
low contrast and extremely poor signal-to-noise ratio (SNR)
of the images, a consequence of the delicate biological nature
of the samples. Given these challenges, a highly sophisticated
image-processing pipeline is essential to accurately resolve
the 3D structure of the macromolecule [8,9].

The fundamental principle of image processing in SPA is
grounded in the intuitive strategy of employing averaging to
mitigate noise. Since images are characterized by a low SNR,
averaging multiple images of the same particle, assumed to be
identical, can significantly enhance the underlying signal [4].
However, before averaging can be effectively carried out, each
particle projection must be aligned to a common orientation.
This ensures that the differences observed across the images
are solely due to noise, allowing its effective cancellation
during the averaging process.

The standard cryo-EM image processing pipeline encom-
passes several key steps, beginning with various preprocessing
operations to correct errors, such as beam-induced movement
blur, followed by particle picking, which extracts the individ-
ual particle images from the micrographs [8,9]. Subsequent
stages include, among others, clustering (commonly referred
to as 2D classification in the context of cryo-EM) and particle
alignment against references, leading to a cleaner subset of the
data and an initial low-resolution 3D volume of the protein.
This preparatory work sets the stage for the refinement step, a
critical phase where the poses of the particles are precisely es-
timated, a requirement to achieve the high-resolution volumes
needed to reveal atomic-level details.
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Traditional refinement algorithms perform pose estimation
by exhaustive comparison of experimental particle images and
simulated projections of 3D volumes that are iteratively im-
proved [10–14]. When sample homogeneity can be assumed,
the simplest approach to the pose estimation problem is the
projection-matching algorithm [15], which consists of T it-
erations of two steps: alignment and reconstruction. First, in
the alignment phase, the pose (R, s)i ∈ SO(3) × R2 of each
experimental particle image xi is set to be the same as the one
of the most similar 2D projection of the reference volume V t

at iteration t ,

(R, s)i = arg min
(R,s)∈SO(3)×R2

‖xi − fi ∗ P(R,s)V
t‖2, (1)

where P(R,s) is the projector operator, fi is the point spread
function of the microscope for the ith particle, and ∗ the
convolution operator. Then, in the reconstruction phase, a new
volume (in reciprocal space) is computed from the estimated
poses as

V̂ (t+1) =
∑N

i=1 P−1
(R,s)i

f̂i x̂i∑N
i=1 P−1

(R,s)i
f̂ 2
i + Ci

, (2)

with V̂ being the Fourier transform of the volume V , Ci a
constant depending on the SNR, f̂i the Fourier transform of
the point spread function (CTF, contrast transfer function),
and N the number of particles. This iterative process con-
tinues until convergence. State-of-the-art methods build on
this approach, for example, RELION [13] employs a Bayesian
probabilistic model with a prior for the map, making it much
more robust. CRYOSPARC [12] accelerates Bayesian methods
through branch-and-bound search and gradient descent opti-
mization. See Ref. [7] for a review.

Despite the innovations aimed at enhancing efficiency,
the refinement process still poses significant computational
challenges. The primary factor contributing to these chal-
lenges is the large number of image comparisons required
for each experimental image. Furthermore, the iterative refine-
ment of the volumes, beginning with an initial low-resolution
model and progressively improving it, further increases the
computational cost, making the refinement stage the most
computationally intensive step in the cryo-EM workflow.

B. Deep learning for pose estimation in real-world objects

Similar to refinement algorithms in cryo-EM, traditional
pose estimation techniques for real-world images primarily
focus on matching 2D images with 3D objects. The signifi-
cantly higher SNRs characteristic of real-world images enable
the use of more sophisticated and efficient methods beyond
simple template matching. Among these, landmark-based reg-
istration methods are particularly prevalent. Such methods
involve extracting distinctive landmarks through various fea-
ture extraction techniques [16,17], followed by a registration
process to identify the relative orientation of the landmarks in
the image with respect to the reference landmarks [18].

POSENET [19] was a groundbreaking development in
this field, leveraging a convolutional neural network (CNN)
to directly regress the absolute pose of an object using
quaternions and xyz shifts. This direct approach contrasts with
earlier techniques that relied heavily on feature extraction and

landmark identification, allowing for end-to-end pose esti-
mation. Subsequent innovations have built on the foundation
laid by POSENET. Improvements in network architectures
[20], the introduction of more sophisticated loss functions
[21], and the incorporation of multitask learning [22] have
contributed to significant improvements in pose estimation
performance.

Addressing the inherent challenges of symmetry and oc-
clusion in pose estimation has also seen considerable progress
through deep learning. Strategies have evolved from breaking
symmetry during the data labeling process [23] to imple-
menting loss functions specifically designed to accommodate
known symmetries [22]. Probabilistic models offer alterna-
tive approaches that either classify poses within a discretized
space or explicitly learn the parameters of probability distribu-
tions [24–28]. Due to their probabilistic nature, these models
are better suited for challenging data sets with high levels of
ambiguity or noise.

C. Deep-learning methods for cryo-EM structure
determination or pose estimation

While traditional cryo-EM refinement algorithms tend to
be relatively robust and accurate, they are computationally in-
tensive and slow. In an attempt to overcome this, deep learning
(DL) alternatives have begun to emerge.

Unsupervised DL methods aim to determine the 3D struc-
ture of macromolecules from experimental images alone.
Some of them tackle the problem using a distance learning
approach in which the angular distance between pairs of
images is estimated as a preprocessing step to retrieve their
relative poses [29]. Other unsupervised DL methods mirror
traditional techniques by maintaining a 3D volume represen-
tation to compute 2D projections in a differentiable manner
[30]. Unlike traditional refinement methods, which compare
each experimental particle against all images in an SO(3) pro-
jection gallery with up to millions of members, these methods
try to limit the number of comparisons between experimental
images and projections. For instance, in CRYOGAN, a 3D
volume, randomly initialized, serves as the generator in the
generative adversarial network (GAN) framework [31]. This
generator produces a set of projections from random orien-
tations that are then fed to a discriminator network along
with real experimental images. The objective of the train-
ing process is to refine the generator until the discriminator
can no longer distinguish between the generated projections
and the actual experimental images, effectively capturing the
underlying 3D structure present in the experimental data. In
some other approaches [32,33], particle images are first pro-
cessed by an encoder designed to predict particle orientations.
Following this prediction, a projection of the representation
of the volume corresponding to the inferred orientation is
rendered. This projection is then directly compared to the
original experimental particle image. A loss function is uti-
lized to concurrently refine both the encoder’s parameters and
the representation of the volume, improving the accuracy of
orientation predictions and the fidelity of the reconstructed
volume.

Supervised DL models, on the other hand, are trained us-
ing experimental images and some form of (possibly noisy)
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labels, such as the poses of prealigned sets of particles. The
simplest alternative consists of only an encoder module that
predicts the orientation of the particle directly from its image
[34,35]. Although supervised approaches offer remarkable ef-
ficiency and speed, they require labeled data for training, thus
limiting their applicability in de novo situations. However,
there are use cases where supervised DL methods could offer
an advantage. For instance, it should be possible to apply them
to on-the-fly pipelines in which a first batch of particles is
prealigned before the end of the data stream. This initial align-
ment could be used to train a supervised model to be applied
to subsequent batches of data, inferring their poses in real
time. Even more interestingly, a pretrained supervised model
could be used to infer poses in different projects, providing the
new samples are similar to the training data. This second use
case relies on the fact that pose estimation in classical meth-
ods is mainly driven by low- to mid-resolution frequencies
[36]. As similar proteins have similar low- to mid-resolution
frequencies, trained models are expected to generalize to
these new samples. In addition, because ligand binding
does not generally modify the overall shape of proteins,
supervised approaches can be especially valuable in drug
discovery, where prealigned data for target proteins is often
available.

In the context of cryo-EM, only two supervised methods
have been proposed to perform direct pose estimation given
prealigned particles. DeepAlign [34], a set of CNNs that per-
form binary classification over a discretization of S2, and the
approach of Lian et al. [35], who implemented a CNN to
perform direct regression of quaternions. However, due to its
limitations, especially for symmetric data, Lian et al. finally
adopted a hybrid model with a projector as in some cryo-EM
unsupervised estimators. Neither of the two methods has been
used in practical scenarios.

Much slower, classical refinement methods still outperform
DL pose estimation models in terms of performance and
reliability. This gap can be partly attributed to the unique
characteristics of cryo-EM data, which differ from the natural
images DL architectures were designed for and, importantly,
to the lack of a standardized benchmark that would allow for
a direct comparison of methods to stimulate progress, much
as IMAGENET [37] did for image classification. In this paper,
we introduce CESPED (Cryo-EM Supervised Pose Estima-
tion Dataset), a benchmark specifically designed to evaluate
supervised pose estimation methods. As the first benchmark
dedicated to pose estimation in cryo-EM, CESPED addresses
a crucial gap in the array of available data sets, which have,
until now, primarily focused on other cryo-EM challenges,
such as model building [38] and particle picking [39,40]. CE-
SPED aims to foster advancements in DL methods for particle
processing by promoting improvements in supervised pose
estimation models, which, due to shared architectural building
blocks and data challenges, are likely to benefit methods for
related tasks as well.

D. Main contributions

In this paper, we provide an accessible entry point for a
wider scientific audience to engage with the challenges of SPA
in cryo-EM. Toward this goal:

(1) We compile CESPED, an easy-to-use benchmark
specifically designed for supervised pose estimation in
cryo-EM.

(2) We implement a PYTORCH-based [41] package to han-
dle cryo-EM particle data and to easily compute cryo-EM
quality metrics.

(3) We train and evaluate the Image2Sphere model [42],
originally developed for real-world pose estimation, on our
benchmark, illustrating the utility of our benchmark and shed-
ding light on the transferability of real-world pose estimation
models to the cryo-EM domain.

(4) We present a use case demonstrating that deep
learning-based supervised pose estimators have the potential
to generalize across related but different samples.

II. METHODS

A. Benchmark compilation and preprocessing

In our effort to build a comprehensive benchmark, our
primary goal was to identify a diverse set of EMPIAR en-
tries containing at least 200 000 particles, a number deemed
sufficient for effective model training. Due to the limitations
of EMPIAR’s search functionality and the inconsistencies
in data-set annotations, we conducted a manual search for
entries exceeding this particle count and containing stan-
dard RELION files (.star and .mrcs). Subsequently, we verified
the consistency and accuracy of the metadata by running
relion_reconstruct [13] and visually assessing the re-
sulting volumes. This step was crucial for eliminating a
significant number of entries due to metadata issues that ei-
ther crashed the reconstruction process or led to incorrect
volumes. To ensure consistent estimation of particle poses,
the data was reprocessed using the RELION version 4 au-
torefine program [13,43] (see Appendix A for details). Only
entries for which the reconstructed volume exhibited reso-
lution values close to those reported in the literature were
selected for inclusion in the benchmark. Finally, for consis-
tency, all images were downsampled to 1.5 Å/pixel, with
different image dimensions in each entry, as macromolecules
vary in size. See Appendix A for a list of the entries and their
properties.

The images fed to the deep-learning model were prepro-
cessed on the fly. We performed per-image normalization
following the standard cryo-EM procedure, which involves
rescaling the intensity so the background (noise) has a mean
of 0 and a standard deviation of 1. We also corrected the con-
trast inversion caused by the defocus via phase flipping [44].
Finally, since the macromolecule typically represents only
between 25% to 50% of the whole particle image, the images
were cropped so neighboring particles are not included. It is
important to note that our benchmark package allows users
the flexibility to choose whether or not to apply any of these
normalization steps.

The data labels are represented as rotation matrices and
then converted into grid indices by finding the closest ro-
tation matrix in the SO(3)grid. For the cases in which the
macromolecule exhibits point symmetry, the labels are ex-
panded as Li = {g jRi|g j ∈ G}, where G is the set of rotation
matrices given a point symmetry group (e.g., C1), and Ri
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the ground-truth rotation matrix. As a result, the labels con-
sist of vectors with |G| nonzero values and |SO(3)grid| − |G|
zeros.

B. Baseline model

We adapted the state-of-the-art Image2Sphere model [42].
Image2Sphere is a hybrid architecture that uses a ResNet to
produce a 2D feature map of the input image, which is then or-
thographically projected onto a 3D hemisphere and expanded
in spherical harmonics. Then, equivariant group convolutions
are applied, first with global support on the S2 sphere, and
finally as a refinement step, on SO(3). The output of the model
is a probability distribution over a discretized grid of rotation
matrices. Other supervised cryo-EM methods for pose esti-
mation were not considered for this paper due to the lack of
publicly available code [35] or their GUI requirements [34].

C. Evaluation metrics

The most widely used metric in pose estimation is the mean
angular error (MAnE), averaged across all poses:

MAnE = 1

N

N∑
i=1

angErrori. (3)

The angular error (angError) measures the geodesic dis-
tance between the predicted and ground truth poses, typically
expressed in degrees or radians. This distance can be directly
calculated from the rotation matrix of the ground-truth pose
trueRi and the predicted rotation matrix predRi as

angErrori = arccos

(
trace

(
trueRi · predRT

i

) − 1

2

)
. (4)

When evaluating predicted orientations of macromolecules
exhibiting point symmetry, it is necessary to adjust the angular
error, as several rotation matrices become equivalent. In this
context, the angular error is defined as the minimum geodesic
distance between the predicted orientation and any orientation
equivalent to the ground truth under the molecule’s symmetry
group,

angErrori = min
g j∈G

arccos

(
trace

(
g j · trueRi · predRT

i

) − 1

2

)
,

(5)

with G being the set of rotation matrices given a point sym-
metry group.

However, due to the uncertainty in the estimated poses
[34], we propose additional metrics. The first one is the
confidence-weighted mean-angular-error,

wMAnE =
∑N

i=1 conf i · angErrori∑N
i=1 conf i

, (6)

which weights the angErrori by confi, the confidence in the
ground-truth pose, measured as RELION’s rlnMaxValueProb-
Distribution. This confidence estimation is a number between
0 and 1 that measures the probability of the particle having
the reported ground-truth orientation according to the RELION

model. While wMAnE is still sensitive to ground truth and

confidence estimation errors, due to its simplicity, we used it
as the criterion for hyperparameter tuning.

The quality of volumes reconstructed from the predicted
poses is assessed by comparing them with the ground-truth
volumes generated from the original poses (see Appendix
H). For this comparison, we employ the real space Pearson’s
correlation coefficient (PCC) and the Fouriershell correlation
(FSC) Resolution as metrics.

The Pearson’s correlation coefficient is a value between −1
and 1, where values closer to 1 indicate a higher similarity. It
measures the linear correlation between the pixels of the two
volumes as follows:

PCC(X,Y ) =
∑n

i=1(Xi − X̄ )(Yi − Ȳ )√∑n
i=1(Xi − X̄ )2

√∑n
i=1(Yi − Ȳ )2

, (7)

with Xi and Yi being the pixel i of the two volumes, n the
number of voxels, and X̄ and Ȳ the average value of the
volumes.

The FSC quantifies the correlation between two signals at
different spatial frequencies. For each frequency k, a value
between −1 and 1 (with higher values indicating greater sim-
ilarity) is computed by comparing the concentric shells in the
Fourier transforms of the two volumes corresponding to k:

FSCk (X,Y ) =
∑

r∈shell(k) X̂ (r) · Ŷ ∗(r)√(∑
r∈shell(k) |X̂ (r)|2)·(∑r∈shell(k) F |Ŷ (r)|2) ,

(8)

where X̂ (r) and Ŷ (r) represent the Fourier transforms of the
two volumes at frequency r, shell(k) is the shell of frequency
k, and Ŷ ∗(r) is the complex conjugate of Ŷ (r).

To summarize the FSC curves into a single number, the
FSC resolution is computed by selecting a threshold t and
identifying the highest frequency k such that FSCk (X,Y ) < t .
As thresholds, we employ the commonly used values of 0.5
(FSCR0.5) and 0.143 (FSCR0.143), which correspond to the
highest frequency at which the two maps agree with an SNR
of 1 and 0.5, respectively [45].

To decouple the different quality levels of the different
benchmark entries, we report the differences of the metrics
with respect to the ground-truth levels, estimated from the half
maps of the ground truth,

�PCC = PCC(GT0, GT1) − PCC(GT,V ) (9)

and

�FSC = FSC(GT0, GT1) − FSC(GT,V ), (10)

where GT is the ground-truth map, GTi is the ground truth
map reconstructed with the ith half of the data, and V is the
3D volume reconstructed with the predicted poses (see Fig. 1).

D. Training

Each benchmark entry was trained independently with the
same hyperparameters (see Appendix B). Due to the uncer-
tainty in the estimated orientations, we employed a weighted
cross-entropy loss using the pose reliability estimate of each
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FIG. 1. Evaluation protocol inspired by the cryo-EM gold stan-
dard. For each entry, the data set is randomly split into two subsets
(half-data 0 and half-data 1) that are processed independently. Then,
each half of the data is used to train a different model that will be
used to infer the poses of the other half of the data. From the inferred
poses, two reconstructed volumes can be obtained, one for each half
of the data. The two reconstructed volumes can be combined and
compared to the ground-truth volume, which is obtained from the
ground-truth poses. The grey box represents the automatic evaluation
tool that takes as input the predictions for both data half sets and
internally computes the required reconstructed volumes to perform
the comparisons.

particle as the per-image weight

L = 1

N

N∑
i=1

C∑
c=1

−conf i · P(Rc,i ) ln(Q(Rc,i )), (11)

where Q(Rc,i ) is the predicted probability for the rotation
matrix with grid index c and P(Rc,i ) is 1/|G| when any of
the ground truth matrices is c and zero otherwise.

E. Evaluation protocol

Due to the uncertainty in the ground-truth labels and the
fact that what matters to cryo-EM practitioners is the quality
of the reconstructed volume, we devised an evaluation proto-
col inspired by the cryo-EM gold standard [46], which is a
per-entry twofold cross-validation strategy in which the poses
of each half of the data are independently estimated and used
to reconstruct two volumes (half-maps). For benchmarking
supervised methods, it involves training an independent model
for each half of the data set to infer the poses of the other half
of the data set. After that, the final 3D volume is computed
by reconstructing the two half maps and averaging them. The
final averaged map can then be compared with the ground-
truth map obtained from the original poses (see Fig. 1). It

is important to note that the FSC resolution values derived
from this comparison are analogous to map-to-model FSC
resolution estimations and not equivalent to the gold standard
half-to-half resolution.

Since Image2Sphere predicts only rotation matrices but not
image shifts, when reconstructing the volumes, we employed
the ground-truth translations. This could result in an overop-
timistic estimation of performance, however, since the effect
of the translations is tightly coupled with the accuracy of the
angular estimation, this overestimation should be small. We
leave for future work the full inference of both the rotations
and translations. Finally, to avoid overfitting to the validation
set, we performed hyperparameter tuning on only one half of
the data using wMAnE as a metric.

III. RESULTS AND DISCUSSION

A. Benchmark, ParticlesDataset class, and evaluation tool

Our benchmark consists of a diverse set of eight macro-
molecules, with an average number of 300 000 particles
including soluble and membrane macromolecules, symmetric
and asymmetric complexes, and resolutions ranging from 5 Å
to 3.2 Å (see AppendixA). For each particle in the data set,
we provide its image and estimated pose together with an
estimate of the reliability of the poses. The benchmark can be
automatically downloaded from Zenodo [47] using our CESPD

Python package.
The package includes a ParticlesDataset class, which

implements the PyTorch Dataset API for seamless integra-
tion. It also offers optional yet recommended preprocessing
steps commonly adopted in cryo-EM (e.g., image normal-
ization, phase flipping), and specialized data augmentation
techniques, like affine transformations that adjust both the
image and its corresponding pose (see Appendix B). While
the CESPD package was designed with PyTorch in mind, the
benchmark is accessible to a broader audience, as the data is
stored in standard formats and accompanied by utility pro-
grams to assist users of other frameworks in adopting the
CESPED benchmark.

Additionally, the package offers an automatic evaluation
pipeline that only requires as inputs the predicted poses (grey
box in Fig. 1). For ease of use, a Singularity [48] image
definition file is included, eliminating the need to install
cryo-EM-specific software like RELION. This design enables
those without cryo-EM experience to utilize the CESPD bench-
mark and package as effortlessly as they would with standard
data sets such as MNIST. Usage examples can be found in
Appendix C.

B. Performance of the baseline model on the benchmark

Table I summarizes the results of the Image2Sphere [42]
model on our benchmark, with per-entry results in Appendix
D. While the wMAnE is ∼24◦, for the best cases, the error is
as small as 9◦. The �PCC for the worse cases is >0.1, high-
lighting that, for some entries, the reconstructed volumes are
far from the ground-truth solution. For a few cases, the results
are much better, with �PCC < 0.03. In terms of prediction vs
ground truth FSCR0.5, most maps are in the 8–6 Å range, with
�FSCR0.5 of 3.6 Å. However, the FSCR0.143 values between
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TABLE I. Image2Sphere results on CESPED. MAnE and wMAnE measure angular errors in predicted poses. �PCC and �FSCR measure
the reduction in quality of the predicted volumes compared to the ground truth. The mean and standard deviation (std) of the metrics are
computed over the seven benchmark entries.

MAnE (◦) wMAnE (◦) �PCC �FSCR0.5 (Å) �FSCR0.143 (Å)

Mean (std) 28.7 (12.7) 23.8 (12.2) 0.059 (0.033) 3.4 (0.6) 1.3 (0.7)

4–5 Å, indicate better correlation at lower signal levels. This
visually translates into a relatively well-resolved central part
of the map that becomes blurrier away from the center (see
Fig. 2 and Appendix E). For the top-performing cases, a
simple and fast local refinement of the predicted poses is suffi-
cient to obtain high-resolution reconstructions comparable to
ground-truth volumes, at a computational cost threefold less
than global refinement (Appendix F). Since the Image2Sphere
model inference takes only minutes, far less than the hours
needed for traditional refinement, further improvements could
reduce computing times by at least one order of magnitude
if local refinement is no longer needed (see Appendix G for
running times).

Given the inherent difficulties of cryo-EM data, the fact
that a generic pose estimation model can produce meaning-
ful results in some examples without major modifications
suggests that equivariant architectures can be useful for the
cryo-EM data domain.

C. Example of model generalizability across samples

One of the main potential applications of supervised pose
estimation models is to infer poses on similar, yet different
projects. In this section, we illustrate this use case by using
an Image2Sphere model trained on the EMPIAR-10280 data
set to predict poses of the same protein under different exper-
imental conditions (EMPIAR-10278 data set).

Figure 3 showcases three reconstructed volumes: (1)
EMPIAR-10278 using ground-truth poses (grey); (2)
EMPIAR-10278 with poses predicted by the model trained
on EMPIAR-10280 (yellow), illustrating the model’s
generalizability; and (3) EMPIAR-10280 using poses inferred
by the model trained on its own data set, serving as a control
for model performance. As expected, the EMPIAR-10278

FIG. 2. Ground-truth reconstruction for EMPIAR-10786 (grey)
and reconstruction using the angles predicted with the Image2Sphere
model (yellow).

map reconstructed with original poses shows superior quality
compared to the others. Similarly, the EMPIAR-10280
map generated from the model trained on EMPIAR-10280
exhibits better quality than the EMPIAR-10278 map inferred
using the EMPIAR-10280 model, reflecting the differences
between the two data sets despite containing the same
protein. Independently of these quality differences, the
model’s capacity for generalization across data sets is evident
through visual inspection of the EMPIAR-10278 inferred
map (yellow), as the overall shape of the protein and several
key secondary structure elements are clearly recognizable.
This suggests that further improvements in the model could
lead to the desired goal of training the model once and then
inferring the poses of similar data sets at much faster speeds.

D. Challenges and future directions

Cryo-EM particle images are fundamentally different from
the kinds of images encountered in other fields. One of the
most critical challenges is their poor SNR, which can be as
low as 0.01 [7]. While some methods have tried to mitigate
this issue by applying filtering techniques [33] or using CNNs
with larger kernel sizes [34,49,50], these solutions are not
entirely effective.

Symmetry presents another complex facet of cryo-EM
data. Exploiting symmetry can drastically reduce the com-
putational requirements for pose estimation, but it can also
prevent simple models from learning. The unique combination
of rotationally equivariant convolutions with the probabilis-
tic estimation of poses makes the Image2Sphere model an
ideal candidate to exploit this feature. However, the hybrid
S2/SO(3) formalism means that the separation of rotational
degrees of freedom from translational in-plane shifts is not
easily achieved within this framework. A significant area for
future work lies in leveraging rotational equivariance and
translational equivariance for the joint estimation of the rota-
tional and translational components of the poses [e.g., SE(3)
equivariance].

In this paper, we have considered only the case of ho-
mogeneous refinement, which assumes that all particles are
projections from a single macromolecule in a unique con-
formation. However, this is not always the case and our
benchmark could potentially be extended to deal with such
examples. Models would then need to perform conformation
classification alongside pose estimation.

IV. CONCLUSIONS

Pose estimation is one of the most critical steps of the
cryo-EM processing pipeline, and while current algorithms
are relatively robust and reliable, they are also computation-
ally slow. Deep learning holds the promise of overcoming
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FIG. 3. Generalizability use case. Left and center: Reconstructions for the EMPIAR-10278 data set from the ground truth poses (grey) and
the predicted poses (yellow) using a model trained on the EMPIAR-10280 data. Right: Reconstruction for the EMPIAR-10280 data set using
a model trained on the EMPIAR-10280 data used as control (cyan). The model used for the yellow and cyan volumes is the same, but the
particles fed to the model come from different data sets of the same protein in different conditions. Although of lower quality than the cyan
volume, the yellow volume demonstrates similarities to the ground truth map (grey).

these challenges, but achieving this potential hinges on im-
provements in accuracy and reliability, for which systematic
benchmarking is required. In this paper, we introduced a
benchmark specifically designed for supervised pose infer-
ence of cryo-EM particles, along with a suite of code utilities
to assist machine-learning practitioners unfamiliar with cryo-
EM. We also present a real-world image pose prediction
model applied to our benchmark, demonstrating promising
preliminary results on a subset of the data. This preliminary
success suggests that addressing cryo-EM-specific challenges,
such as high noise levels and label inaccuracies, could lead
to even better performance. The improvements in models for
this benchmark will not only pave the way for more effective
supervised pose prediction models but are also likely to give
rise to innovative approaches to closely related challenges
like unsupervised pose estimation and heterogeneity analysis.
Ultimately, those advancements could serve as a catalyst for

even further developments, leading to another paradigm in
cryo-EM image processing.

CESPED repository is available at [51]. The repository
contains the code and the documentation, as well as the down-
loading scripts to automatically download the data used in this
work. Relion singularity image [48] is also accessible at the
repository. The masks used in this work are available at [52].
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APPENDIX A: BENCHMARK COMPOSITION

Table II shows the composition of the CESPED benchmark. Particle poses were estimated using the RELION version 4 auto-
refine program [13,43]. As a starting model, we used the map obtained with

relion_reconstruct --pad 2.0 --ctf --i original_poses.star
--sym $SYMMETRY --o reconstructd_map.mrc.
The mask was created using
relion_mask_create --i reconstructed_map.mrc --o mask.mrc --lowpass 15.0
-extend_inimask 3 --width_soft_edge 6 --ini_threshold $THRESHOLD,
with $THRESHOLD manually selected for each entry.
The autorefine command used was
mpirun -np 5 relion_refine_mpi --i original_poses.star --particle_diameter
$DIAMETER --ctf --zero_mask --firstiter_cc --ini_high 40.0
--sym $SYMMETRY --ref reconstructd_map.mrc --norm --scale
--solvent_mask mask.mrc --o outputdir/run --oversampling 1 --flatten_solvent
--solvent_correct_fsc --pad 2 --auto_local_healpix_order 4 --healpix_order 2
--offset_range 5.0 --offset_step 2.0 --auto_refine --split_random_halves
--low_resol_join_halves 40 --dont_combine_weights_via_disc.

The simulated data set was generated with the following command:
relion_project --i original_poses.star --ang original_poses.star
--ang_simulate original_poses.star --o simulated_dir/simulated
--simulate --adjust_simulation_SNR 2.0 --ctf.

The consensus data set was generated using the compare angles protocol from Scipion Xmipp [34,53], incorporating both
our original RELION refinement output and a refinement performed with cisTEM [11]. An angular distance threshold of 5◦ was
employed.
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TABLE II. CESPED benchmark entries.

EMPIAR ID Composition Symmetry Image pixels FSCR0.143 (Å) MaskedFSCR0.143(Å) Number of particles

10166 Human 26S proteasome bound
to the chemotherapeutic

Oprozomib

C1 284 5.0 3.9 238 631

10786 Substance P-neurokinin receptor
G protein complexes

(SP-NK1R-miniGs399)

C1 184 3.3 3.0a 288 659

10280 Calcium-bound TMEM16F in
nanodisc with supplement of

PIP2

C2 182 3.6 3.0a 459 504

11120 M22 bound TSHR Gs 7TM G
protein

C1 232 3.4 3.0a 244 973

10409 Replicating SARS-CoV-2
polymerase (map 1)

C1 240 3.3 3.0a 406 001

10374 Human ABCG2 transporter with
inhibitor MZ29 and 5D3-Fab

C2 216 3.7 3.0 323 681

10399 Arabinofuranosyltransferase
AftD from mycobacteria

C1 184 3.2 3.1 490 616

10648 PKM2 in complex with
compound 5

D2 222 3.7 3.3 234 956

Simulated 10648 Same PKM2 data set as in
10648, but with simulated

images

D2 222 3.5 3.4 234 956

Consensus 10648 Same PKM2 data set as in
10648, but with consensus angles

D2 222 3.8 3.4 138 848

aNyquist Frequency at 1.5 Å/pixel; resolution is estimated at the usual threshold 0.143. Reported FSCR0.143 values were obtained directly from
the relion_refine logs while Masked FSCR0.143 values were collected from the relion_postprocess logs.

APPENDIX B: IMAGE2SPHERE AND TRAINING
HYPERPARAMETERS

Our Image2Sphere model follows the implementation of
Klee et al. [42] with the following configuration:

(1) Feature extractor: ResNet152 [54] with default param-
eters as implemented in torchvision using imageNet weights.
The input images are resized to 256 pixels before being fed,
giving a feature map of shape 2048 x 8 x 8. Since the input
images only contain one channel, but the ResNet expects three
channels, two additional channels were added by applying a
Gaussian filter with sigma 1 and 2 to the input image.

(2) Image projector to S2: Default orthographic projector
with HEALPix [55] grid order 3 (∼7.5◦), where only 50% of
the grid points are sampled. The feature map is projected from
2048 channels to 512 using a 1 x 1 Conv2d and then converted
to spherical harmonics with lmax = 8.

(3) S2 convolution: 512 filters with global support on a
HEALPix grid of order 3.

(4) SO(3) convolution: 16 filters with local support
(max_beta= π/8, max_gamma=2π , n_alpha=8, n_beta=3).

(5) Probability distribution discretization: HEALPix grid
of order 4 (∼3.7◦).

Training was conducted using RAdam [56] as the opti-
mizer with an initial learning rate of 10−3. A weight decay of
10−5 was employed. The learning rate was halved each time
the validation loss stagnated during 10 epochs. The training

was stopped when the number of epochs reached 400 or the
validation loss did not improve for 12 epochs.

Data augmentation was conducted with the following com-
posed transformations:

(1) Random shift from −5% to 5% with probability 0.5.
(2) Random rotation from −20◦ to 20◦ with probability

0.5.
(3) Random 90◦ rotation with probability 1.
(4) Uniform noise addition with a random scale from 0 to

2 with probability 0.2.
(5) Gaussian noise addition with a random standard devi-

ation from 0 to 0.5 with probability 0.2.
(6) Random zoom-in of size 0% to 5% with probability

0.2.
(7) Random erasing of patches of size 0% to 2% with

probability 0.1.
Notice that rotation transformations require adjustments in

the ground-truth labels.

APPENDIX C: CESPED PACKAGE USAGE EXAMPLE

Data-set instantiation only requires providing the name of
the target (a string like 10280) and the half-set number (0 or
1) (Listing 1). ParticlesDatasets can be directly used as
data sets in PyTorch DataLoader(s).
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Listing 1: Example of how to load and use a CESPED benchmark entry in a training loop.
ParticlesDataset objects can also be used to update the metadata with the predicted poses and to save the results in

RELION star format, commonly used in cryo-EM software (Listing 2).

Listing 2: Example of how to save predictions for usage in CRYO-EM packages and evaluation.
Once the predictions are computed for the two halves of the benchmark entry, evaluation can be automatically computed

by providing the starfiles of both predictions via a command line tool (Listing 3) or a function. While you can use your local
installation of RELION, we also provide a singularity definition file so you do not need to manually install it. See instructions at
[57],
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Listing 3: Evaluation script execution.

Listing 4: Evaluation function example.

APPENDIX D: IMAGE2SPHERE PER-ENTRY RESULTS

This section contains per-entry statistics for the Im-
age2Sphere model predictions using the evaluation protocol
proposed in the main text (Table III). The last two rows
correspond to different versions of the 10648 entry and have
not been included in Table I. In addition to angular error
measurements, the other metrics compare the ground-truth
map (GT) against the map reconstructed from the pre-
dicted poses (V), namely, PCC(GT,V ) and FSCRt(GT,V ),
where t denotes the threshold 0.5 or 0.143, where re-
ported. GT is obtained by employing relion_reconstruct
on the ground truth poses (that were estimated with
relion_refine --auto_refine). The reconstructed map
V is generated with relion_reconstruct from the pre-
dicted poses.

In addition, we also report half-to-half map metrics, which
are commonly employed in traditional cryo-EM algorithms
and in unsupervised DL methods and can be used to com-
pare them to Supervised DL methods. In particular, we
compute PCC(GT0, GT1), PCC(V0,V1), FSCRt(GT0, GT1),
and FSCRt(V0,V1), where 0 and 1 denote the data-set half.
Thus, V0 is the map reconstructed from the predicted poses of
the half data-set 0 using a model trained on data-set 1. GT0 is
obtained as GT, but using only the ground truth poses of the
half data-set 0.

APPENDIX E: RECONSTRUCTED VOLUMES

This Appendix shows the volumes reconstructed for some
of the best performing examples of the Image2Sphere model
on our benchmark (Figs. 4 and 5). As is shown in all the cases,
the quality of the central region of the protein is quite close
to the one of the ground truth. However, the density for the
regions that are at the edges of the macromolecule is much
worse. This is in line to what could be expected if there were
some degree of inaccuracy in the angular estimation, as the
magnitude of the errors in the volume is proportional to both
the angular error and the radius of the macromolecule.

APPENDIX F: LOCALLY REFINED SOLUTION

In this Appendix, we illustrate the usefulness of our
approach by showing the effect of classical local refine-
ment on the Image2Sphere results for benchmark entry
10374. In this case, the Image2Sphere model predicted
poses with a wMAnE of 24.8◦ that lead to a reconstructed
map with FSCR0.143(V0,V1) of 3.7 Å. When the predicted
poses are used as priors for a local refinement in RE-
LION with --sigma_angle 2.0, the refined map achieved a
PCC(GT,V ) of 0.997 compared to the original 0.969, show-
ing that the refined map is much more similar to the ground

TABLE III. Per-entry CESPED benchmark results using an Image2Sphere model. MAnE: mean angular error; wMAnE: weighted mean
angular error; PCC(V0, V1): reconstructed half-to-half Pearsons’s correlation coefficient; PCC(GT,V ): reconstructed to ground truth Pearson’s
correlation Ccoefficient; FSCR0.143(V0, V1): reconstructed half-to-half FSC resolution at threshold 0.143 and FSCR0.5(V0, V1) at threshold 0.5;
FSCR0.143(GT, V): reconstructed to ground truth resolution at threshold 0.143, and FSCR0.5(GT,V ) at threshold 0.5; FSCR0.143(GT0, GT1):
ground-truth half-to-half FSC resolution at threshold 0.143 and FSCR0.5(GT0, GT1) at threshold 0.5. PCC(GT0, GT1): Ground-truth half-to-
half Pearsons’s correlation coefficient. All reported resolutions were obtained using manually computed masks that are available at Ref. [52].

EMPIAR MAnE wMAnE PCC PCC FSCR0.143 FSCR0.5 FSCR0.143 FSCR0.5 FSCR0.143 FSCR0.5 PCC

ID (◦) (◦) (V0, V1 ) (GT,V ) (V0, V1 ) (Å) (V0, V1 ) (Å) (GT, V) (Å) (GT,V ) (Å) (GT0, GT1 ) (Å) (GT0, GT1 ) (Å) (GT0, GT1 )

10166 15.7 9.1 0.986 0.974 5.1 6.8 6.2 8.1 4.4 4.8 0.992
10786 32.6 29.5 0.957 0.925 3.8 4.3 3.4 7.6 3.1 3.5 0.974
10280 17.8 14.9 0.981 0.957 3.9 4.4 4.3 7.0 3.4 3.8 0.991
11120 44.7 41.1 0.989 0.863 4.1 4.6 6.0 8.3 3.2 3.7 0.965
10409 45.3 39.2 0.960 0.884 3.5 4.0 4.0 8.3 3.0 3.3 0.988
10374 35.0 24.8 0.991 0.969 3.7 4.1 4.1 6.5 3.0 3.5 0.996
10399 25.5 21.6 0.992 0.917 3.7 4.1 4.0 6.1 3.1 3.4 0.996
10648 13.3 10.6 0.982 0.934 3.8 4.1 4.3 6.5 3.4 3.6 0.994
Simulated 10648 6.0 NA 0.996 0.935 4.5 4.6 4.6 4.8 3.5 4.6 0.998
Consensus 10648 8.3 8.1 0.971 0.893 3.8 4.1 4.2 6.8 3.4 3.6 0.986
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FIG. 4. Ground-truth reconstruction for EMPIAR-10280 (grey)
and reconstruction using the angles predicted with the Image2Sphere
model (yellow).

truth map. Indeed, as can be appreciated in Fig. 6, after the
local refinement, not only the quality of the core of the protein
is comparable to the quality of the ground truth, but also the
quality of the distant parts of the maps is much better, almost
as good as in the ground truth. Equally important, since we
are limiting the angular search to the neighborhood around
the predicted poses (± 6◦), the number of image comparisons
carried out by RELION is much smaller, resulting in a threefold
speedup in computational time, even when including the time
required for pose inference using the Image2Sphere model.

APPENDIX G: RUNNING TIMES

Table IV collects the running times of RELION autorefine
and the Image2Sphere inference using the same hardware
configuration (4 Nvidia A100 cards and 32 CPU cores).

APPENDIX H: IMPACT OF PARTICLE MISALIGNMENT
IN MAP QUALITY ESTIMATION

To study the sensitivity to angular inaccuracy of the map
quality estimations used in this paper, namely, the FSC resolu-
tion and PCC, we ran two experiments. In the first experiment,
we added uniform random noise within the ranges of ± 1◦,
3◦, and 5◦ to the Euler angles of each particle (Table V and
Figs. 7 and 8, right columns). In the second experiment, we

FIG. 5. Ground-truth reconstruction for EMPIAR-10374 (grey)
and reconstruction using the angles predicted with the Image2Sphere
model (yellow).

FIG. 6. Ground truth reconstruction for EMPIAR-10374 (grey)
and reconstruction using the angles predicted with the Image2Sphere
model and locally refined using RELION with priors (yellow).

randomized the Euler angles of 10%, 20%, and 30% of the
particles for each entry in the benchmark (Table VI and Figs. 7
and 8, left column). In the absence of symmetry, the expected
angular error (geodesic distance) for randomized angles is
approximately 126.9◦, whereas for the uniform random noise,
the expected angular error is of 1.0◦, 2.9◦, and 4.8◦, respec-
tively (as estimated through simulation).

Table V and the right column of Figs. 7 and 8 illustrate a
clear trend in which increasing angular errors lead to a reduc-
tion in the FSC resolution and PCC. Since in this experiment
we corrupted the alignment of all particles, this underscores
that map global quality measurements are effective proxies
for estimating overall mean angular accuracy.

Table VI and the left column of Figs. 7 and 8 show that as
the fraction of misaligned particles increases, both the resolu-
tion and the correlation of the maps decreases as well. While
it is true that the effect of this type of corruption is smaller
than when the angles of all particles are perturbed, it remains
noticeable. In most cases, the FSC resolution at threshold 0.5
is clearly different, even when as little as 10% of the particles
are perturbed. Given that the number of misaligned particles
in refined maps using methods such as RELION is quite large,
with some cases reporting up to 60% misalignment levels,2 the
sensitivity of the FSC resolution should be enough to compare
the accuracy of different methods. A similar trend is observed
in the PCC values, which steadily decline as the fraction of
misaligned particles increases.

These two experiments confirm that it is possible to distin-
guish between different levels of alignment corruption using
map quality measurements; hence, they serve as sensible
proxies for assessing angular alignment accuracy. However,

TABLE IV. Running time for RELION Autorefine and the Im-
age2Sphere model on CESPED benchmark entries.

EMPIAR ID RELION (min) Image2Sphere (min)

10166 521 22
10786 227 12
10280 192 8
11120 102 3
10648 91 5
10409 190 5
10374 133 4
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FIG. 7. Effect of particle misalignment in FSC resolution for entries 10166, 10280, 10374, and 10409. Left: FSC curves at different
amounts of incorrectly aligned particles: 0% (blue), 10% (orange), 20% (green), and 30% (red) of the particles were assigned random angles.
Right: FSC curves at different levels of induced angular inaccuracy. Each particle alignment was perturbed using uniform random noise of
±0◦ (blue), 1◦ (orange), 3◦ (green), and 5◦ (red).

these measurements are not directly comparable across differ-
ent samples; thus, comparisons are only valid when examining

different alignment results for the same sample, as we do in
this benchmark.
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FIG. 8. Effect of particle misalignment in FSC resolution for entries 10648, 10786, and 11120. Left: FSC curves at different amounts of
incorrectly aligned particles: 0% (blue), 10% (orange), 20% (green), and 30% (red) of the particles were assigned random angles. Right: FSC
curves at different levels of induced angular inaccuracy. Each particle alignment was perturbed using uniform random noise of ±0◦ (blue), 1◦

(orange), 3◦ (green), and 5◦ (red).
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TABLE V. Volume Pearson’s correlation coefficients (PCCs) at
different levels of induced angular inaccuracy. For each particle in
each entry, uniform random noise of ±0◦, 1◦, 3◦, and 5◦ is added
to all the components of the Euler angles. PCC values are reported
without using a mask, whereas Masked PCC values are computed
using the mask described in the text.

PCC Masked PCC

Entry 0◦ 1◦ 3◦ 5◦ 0◦ 1◦ 3◦ 5◦

10166 0.981 0.950 0.921 0.894 0.995 0.989 0.968 0.941
10280 0.978 0.946 0.911 0.887 0.995 0.991 0.972 0.949
10374 0.980 0.950 0.925 0.908 0.998 0.996 0.980 0.962
10409 0.960 0.914 0.833 0.781 0.976 0.951 0.886 0.835
10648 0.966 0.916 0.868 0.821 0.997 0.995 0.969 0.917
10786 0.931 0.840 0.749 0.700 0.938 0.858 0.772 0.722
11120 0.852 0.571 0.433 0.391 0.905 0.736 0.606 0.555

TABLE VI. Volume Pearson’s correlation coefficients (PCCs) at
different amounts of incorrectly aligned particles. For each entry, 0%,
10%, 20%, and 30% of the particles were assigned random angles.
PCC values are reported without using a mask, whereas masked PCC
values are computed using the mask described in the text.

PCC Masked PCC

Entry 0% 10% 20% 30% 0% 10% 20% 30%

10166 0.981 0.971 0.956 0.935 0.995 0.992 0.985 0.975
10280 0.978 0.964 0.946 0.926 0.995 0.988 0.975 0.958
10374 0.980 0.971 0.959 0.945 0.998 0.995 0.987 0.976
10409 0.960 0.944 0.924 0.899 0.976 0.965 0.949 0.928
10648 0.966 0.941 0.909 0.875 0.997 0.988 0.970 0.949
10786 0.931 0.904 0.874 0.838 0.938 0.914 0.886 0.853
11120 0.852 0.805 0.753 0.699 0.905 0.872 0.834 0.792
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