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Simplifying the simulation of local Hamiltonian dynamics
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Local Hamiltonians Hk describe nontrivial k-body interactions in quantum many-body systems. Here, we
address the dynamical simulatability of a k-local Hamiltonian by a simpler one Hk′ with k′ < k, under the realistic
constraint that both Hamiltonians act on the same Hilbert space. When it comes to exact simulation, we build
upon known methods to derive examples of Hk and Hk′ that simulate the same physics. We also address the
most realistic case of approximate simulation. There, we upper-bound the error up to which a Hamiltonian can
simulate another one, regardless of their internal structure, and show an example suggesting that the accuracy
of a (k′ = 2)-local Hamiltonian to simulate Hk with k > 2 increases with k. Finally, we propose a method to
search for the k′-local Hamiltonian that simulates, with the highest possible precision, the short time dynamics
of a given Hk Hamiltonian.
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I. INTRODUCTION

A quantum simulator (QS) aims at replicating the physics
of another quantum system, the properties of which are ex-
tremely difficult to obtain [1]. Currently, most of the existing
QS are analog, i.e., naturally realize the physics of the tar-
get system and mimic its properties. Moreover, they are
highly specialized experimental platforms acting as single-
purpose simulators, and all of them, independently of the
physical architecture on which they are implemented, face
some problems regarding applicability, scalability, complex-
ity, state preparation, control, and measurement (see e.g., [2]
and references therein). It is desirable and expected that in
the forthcoming years, some analog QSs will evolve into
highly flexible devices, and also digital QSs, i.e., circuit-
based quantum computers, will be further developed. Both
classes of QS will be capable of simulating different quan-
tum systems, preparing specific quantum states on demand,
or analyzing their dynamics. This also includes the current
NISQ (Noise Intermediate Scalable Quantum) platforms such
as superconducting qubits, cold atoms and ions, Rydberg
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atoms, etc. Such versatility demands the development of the-
oretical frameworks capable of assessing the possibilities and
applications of QS in areas as diverse as condensed-matter,
high-energy physics, quantum chemistry, quantum gravity,
out-of-equilibrium quantum physics or others [2–6].

As reflected in the literature [4,7–10], there are different
approaches to defining the general conditions that a QS should
fulfill. Those are obviously linked to the particular require-
ments needed to achieve a given goal, which in turn can also
depend on the specific platform on which the QS will be
implemented.

On the one hand, there is the strongest notion of a “univer-
sal” QS: a quantum many-body system simulates another one
if it is able to reproduce its entire physics, i.e., it replicates
its eigenstates, full energy spectrum, time evolution, any local
noise process, correlation functions, observables, and thermal
properties. This is the path developed in a series of very
remarkable papers [9,11–13] based on a perturbative approach
(perturbative gadgets) proposed initially in [14]. Within this
approach the authors proved that the physics of any quantum
many-body system can be replicated by certain 2-local spin-
lattice models. The latter should be embedded in a Hilbert
space significantly larger than that of the system to be repli-
cated. Even a simple translationally invariant spin chain in
1D turns out to be a universal simulator in the above sense
[11]. Nevertheless, such an approach is not constructive and
comes with the additional challenge of requiring a scale-up
of the simulation platforms, either by increasing the local
dimension of the many-body system acting as a simulator
and/or demanding an exquisite control over the interactions,
which cannot be implemented in current and/or near future
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experiments. On the other hand, there are less demanding
definitions of quantum simulation where the spell is put on
simulating either the ground-state or the low-energy physics
of a complex quantum many-body system or some restricted
dynamics. Simulating the dynamics of many-body quantum
systems is, in general, a very difficult task for a classical or
even for a NISQ device. Some advances have been recently
proposed in this direction. For example, the purpose of [8,15]
is to find a QS, whose time evolution in a restricted subspace
is identical to that of the target system. In [8], the goal is to
increase the locality of the QS, and this is achieved by re-
quiring an additional qubit on each k-body interaction. On the
contrary, in [15], the dimension of the QS does not increase,
but the locality of both Hamiltonians remains the same.

Our paper is aligned with the latter ones in that our in-
terest is placed on simulating dynamics of a target k-local
Hamiltonian using a k′-local Hamiltonian for k′ < k, i.e., the
simulator is more local than the target. We do not attempt to
embed the QS in a Hilbert space larger than the one associ-
ated to the target Hamiltonian, given that adding qudits to an
experimental platform remains a challenging task. Also, for
simplicity, we restrict our Hamiltonians to be 1D. Our purpose
is to investigate the simulation of quantum many-body dy-
namics with the following two aims: simplifying complexity
while maintaining the local dimension of the parties and the
total dimension of the Hamiltonian.

Our paper is organized as follows. After presenting some
preliminary concepts, in Sec. III we focus on exact dynamics
and show, by means of an example, how some dynamics
of a target Hamiltonian HT can be replicated exactly by a
simulator HQS with simplified interactions in the same Hilbert
space. In this example both Hamiltonians commute, which is
a quite exceptional condition. Nevertheless, when considering
noncommuting Hamiltonians, i.e., [HT , HQS] �= 0, it is still
possible to reproduce some dynamical behavior on a certain
energy subspace, providing that both Hamiltonians have some
eigenstates in common. It is hard to search for such shared
subspaces by diagonalizing large Hamiltonians, and thus we
present a generic upper bound to the dimension of such sub-
spaces. In Sec. IV, we consider the most realistic case of
nonexact simulation. There, we provide an upper bound to
the error up to which any Hamiltonian is able to simulate
another one, irrespectively of their structure. In an attempt
to understand how such upper bound depends on locality,
we present an interesting case suggesting that the precision
with which a certain 2-local QS simulates a broad family of
target Hamiltonians increase while the locality of the target
Hamiltonian decreases. This suggests that, at least in certain
cases and in reduced dimensionalities, a k-local HT could be
simulated better by a 2-local HQS as k increases, or in other
words, the less local HT is. Finally, after showing that the
worst-case error of simulation decreases when considering
short times as expected, we develop a simple algorithm to find
the k′-local Hamiltonian that best simulates a given k-local
Hamiltonian in the short-time regime.

II. PRELIMINARY CONCEPTS

Most of quantum many-body systems are described by
local Hamiltonians, and a vast majority of them only involve

2-body interactions. However, there are well-known examples
of relevant many-body Hamiltonians (lattice gauge theories,
Kitaev topological models, etc.) where interactions are not 2-
body and whose properties are very difficult to analyze. To fix
concepts, we denote by HN an N-dimensional Hilbert space
and by B(HN ) the set of its bounded operators. An n-qudit
k-local Hamiltonian H ∈ B(Hdn ) is of the form H = ∑M

i=1 hi,
where hi is a Hamiltonian acting nontrivially on at most k
parties, and M is some positive integer. An n-qudit k-local
Hamiltonian with k = n is dubbed nonlocal. Furthermore, a
k-local Hamiltonian is said to be more local than a k′-local
Hamiltonian if k < k′. Note that k locality does not necessar-
ily imply interaction among k next-neighboring objects, and
that there is no restriction on spatial locality.

We denote by HT ∈ B(HNT ) the Hamiltonian describing
the target quantum system, the time evolution of which is to
be replicated. The system achieving such quantum simulation
will, in turn, be described by a Hamiltonian HQS ∈ B(HNQS ).
As discussed previously, here we impose that N := NT =
NQS . We hereby introduce our precise definition of simulation
(h̄ = 1 is set throughout the whole paper):

Definition 1. A Hamiltonian HQS ε-simulates a target
Hamiltonian HT at state |ψ〉 and time t if

|〈ψ |eitHQS e−itHT |ψ〉| � 1 − ε, (1)

with ε ∈ (0, 1].
Notice that ε = 0 implies that the fidelity is 1, meaning

that HQS simulates HT exactly in a subspace S ⊂ HN , where
|ψ〉 belongs. Maximizing ε over initial states and times in-
forms us about the minimal performance of a given HQS at
simulating a certain HT . The following definition can be put
forward.

Definition 2. The worst-case fidelity of simulation for
given Hamiltonians HQS and HT is defined as

min
ψ,t

|〈ψ |eitHQS e−itHT |ψ〉|. (2)

III. EXACT SIMULATION

In this section we address the scenario of error-free sim-
ulation, i.e., when ε = 0. We illustrate this scenario by
showing examples of both commuting and noncommuting
Hamiltonians, which generate the same dynamics despite their
different locality.

A. Commuting Hamiltonians

Using the Baker-Campbell-Hausdorff (BCH) formula, one
can write condition (1) as

|〈ψ |eiH̃ (t )|ψ〉| = 1, (3)

with H̃ (t ) := t (HQS − HT ) + it2

2 [HQS,−HT ] + · · · , where the
remaining terms involve higher-order commutators of HQS

and HT . In order for the BCH series to converge ab-
solutely in this case, note that HQS and HT must fulfill
‖HQS‖ + ‖HT ‖ < π/t , for a given submultiplicative norm ‖·‖
[16,17]. Given a target Hamiltonian HT , one can now ask
for which HQS , initial states |ψ〉 and times t , condition (3)
is fulfilled. An answer was provided in [15], which we briefly
sketch in what follows: consider HQS such that [HQS, HT ] = 0,
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and define the connector h := HQS − HT . Now write
the initial state in the basis {|φ j〉}N

j which diagonalizes

h: |ψ〉 = ∑N
j=1 a j |φ j〉, where a j = 〈φ j |ψ〉. Then condition

(3) becomes |∑N
j=1 |a j |2eiλ j t | = 1, with λ j the jth eigenvalue

of h. If a j �= 0 for each j ∈ [1, N], the previous condition
holds if h is fully degenerate, implying that HQS is simply
HT plus some multiple of the identity. In order to avoid this
trivial scenario, we naturally require that |ψ〉 is only spanned
by the degenerate eigenvectors of h, i.e., aj �= 0 for all j such
that |φ j〉 is degenerate and a j = 0 otherwise. All in all, any
Hamiltonian HQS that commutes with a target Hamiltonian
HT is able to simulate HT exactly at any time t and at any
initial state spanned by the degenerate eigenvectors of the
corresponding connector. Note that eith converges absolutely,
as does the exponential of any square matrix.

As an example of this approach, in [15] it was shown that
an infinite-range-interaction (2-body all with all interactions)
Hamiltonian can be simulated using a nearest-neighbor-
interaction model with a staggered field. Notice that, in
this case, both HT and HQS are 2-local Hamiltonians. Here,
we demonstrate, by means of a toy model, that the same
approach can be employed to find instances of Hamilto-
nians with different localities that also lead to the same
dynamics.

As an ideal terrain to understand such dynamics, let us
consider a simple case in which only 4-qubits are involved.
Let the 3-local Hamiltonian

HT =
4∑

j=1

(
J3σ

j
z σ j+1

z σ j+2
z + hxσ

j
x

)
, (4)

describing a one-dimensional system, be our target
Hamiltonian. By engineering the (2-local) Heisenberg XYZ
model

HQS =
4∑

j=1

(
Jxσ

j
x σ j+1

x + Jyσ
j

y σ j+1
y + Jzσ

j
z σ j+1

z

)
(5)

we are able to obtain a QS Hamiltonian, which com-
mutes with HT and such that the corresponding connector
has some degeneracy. Notice that ‖[HT , HQS]‖2

HS = |J3(Jx −
Jy)|2/2 + 8|hx(Jy − Jz )|2, where ‖X‖HS = (

∑m
i, j=1 |Xi j |2)1/2

is the Hilbert-Schmidt (HS) norm of an m-dimensional matrix
X . Therefore, choosing J := Jx = Jy = Jz (i.e., the Heisen-
berg XXX model), commutativity between HT and HQS is
granted. By tuning J (see that J3 and hx are fixed) and compar-
ing the eigenvalues of the resulting HQS with those of HT , it is
possible to create degeneracy in the connector. The evolution
under HT of any initial state belonging to the subspace where
the connector is degenerate can thus be exactly reproduced
by the engineered HQS . A particular example is displayed in
Appendix A 1. Clearly, the same approach can also be taken
for higher spatial dimensional systems, where spins have a
larger number of next neighbors and thus exhibit a greater
richness of interactions. However, since this approach requires
diagonalization, implementing it in large systems is not vi-
able. As a more systematic way, we introduce a method to
search for the best simulator Hamiltonian in any dimension
and with fixed locality in Proposition 2 by allowing for an

error ε in the fidelity of simulation, and by restricting to the
short-time regime.

B. Noncommuting Hamiltonians

Even if [HQS, HT ] �= 0, simulation is feasible in some
cases. If both Hamiltonians share part of their eigenstates,
it naturally follows from the previous approach that simula-
tion can still be performed on the energy subspace spanned
by those eigenstates. Let the set of shared eigenstates be
� = {|ϕ j〉}N�

j=1 (note that N� depends on the basis on which
each Hamiltonian is expressed) and let the projected connec-
tor be h(�) := ∑N�

i, j=1 |ϕi〉〈ϕi|h|ϕ j〉〈ϕ j |. Then the simulatable
states |ψ〉 will be those living in the subspace where h(�) is
degenerate.

We illustrate with an example how two noncommuting
Hamiltonians with different localities may generate the same
dynamics in Appendix A 2. There again, we consider the HT

of the previous section as our 3-local target Hamiltonian. Our
QS is now a (2-local) Heisenberg XXX model with 1-body
terms,

H̃QS = J
4∑

j=1

(
σ j

x σ j+1
x + σ j

y σ j+1
y + σ j

z σ j+1
z

)

+ bx

4∑
j=1

σ j
x + by

4∑
j=1

σ j
y + bz

4∑
j=1

σ j
z , (6)

where these 1-body terms prevent H̃QS from commuting with
HT .

Yet, a far more complex question is whether two given
noncommuting high-dimensional Hamiltonians give rise to
the same dynamics. The answer is generally negative, since
the subset of Hamiltonians with only one common eigenstate
is already of measure zero [18]. Moreover, computing the
shared eigenstates entails diagonalizing such large Hamiltoni-
ans, which costs computational resources. Below, we derive
an upper bound to the maximum number of such shared
eigenstates, the calculation of which does not require diag-
onalization or computationally demanding techniques:

Lemma 1. The maximum number r of shared eigenstates
of two N-dimensional noncommuting Hamiltonians HT and
HQS is bounded as

r � N −
(‖[HT , HQS]‖HS

‖[HT , HQS]‖2

)2

, (7)

where ‖X‖2 = max‖v‖=1(‖Xv‖) is the spectral norm of an
n-dimensional matrix X , with v an n-dimensional vector and
‖v‖ = (

∑n
i=1 |vi|2)1/2.

Proof. Consider two arbitrary N-dimensional square ma-
trices AX and BX , where X is the basis in which they are
expressed. Their commutator can be written as [AX , BX ] =
0⊕rX ⊕ CX , with rX ∈ N, 0⊕p := 0 ⊕ ... ⊕ 0︸ ︷︷ ︸

p

, and CX some

traceless (N − rX )-dimensional matrix (without loss of gen-
erality, we have assumed that AX and BX share the
first rX eigenvectors). It then holds that ‖[AX , BX ]‖∗ =
‖CX ‖∗, for any chosen matrix norm ∗. Let us consider the
Hilbert-Schmidt norm, ‖·‖HS, and the spectral norm, ‖·‖2.
Now, recall that ‖X‖HS � √

m‖X‖2, with m = dim X [19].
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If matrix X is a finite-dimensional commutator (thus trace-
less), then the inequality can get saturated for even m if X
is proportional to a diagonal matrix with half of their en-
tries being 1, and half of them being −1. For n qubits (thus
m = 2n), the inequality is saturated when choosing AX =
...1 ⊗ σx ⊗ 1... and BX = ...1 ⊗ σy ⊗ 1.... It then follows
that 0 � ‖[AX , BX ]‖HS � √

N − rX ‖[AX , BX ]‖2. Now, the
maximum number of shared eigenvectors between AX and BX
is given by

r := max
X

rX � N −
(‖[AX , BX ]‖HS

‖[AX , BX ]‖2

)2

, (8)

since the considered norms are unitarily invariant. This com-
pletes the proof. �

Note that the calculation of the spectral norm is efficient
as it is expressible by a semidefinite program [20]. This upper
bound, which is tight for even dimension N , informs about the
maximal size that the shared subspace could have, helping to
decide whether it is still worth trying to search for the shared
eigenstates even by using diagonalization. Moreover, comput-
ing the upper bound to r can aid in the processes of figuring
out the parameters of the corresponding HQS . Suppose one can
only prepare initial states |ψ〉 ∈ S ⊆ HN , where dim S � N .
Recall that exact simulation is granted in a subspace of at least
dimension dim S (�), where S (�) is the subspace in which h(�)

is degenerate. Hence, dim S (�) � r � N − ( ‖[HT ,HQS]‖HS

‖[HT ,HQS]‖2

)2
. In

order for the dynamics to be simulatable in this case, it is
required that dim S � dim S (�). If the current choice of the
parameters of HQS leads to N − ( ‖[HT ,HQS]‖HS

‖[HT ,HQS]‖2

)2
< dim S , it

holds that dim S > dim S (�) and therefore one must search
for a different set of parameters.

In addition, we prove a necessary condition for a state to
be an eigenstate of two Hamiltonians with different localities
and leave its derivation in Appendix D.

IV. APPROXIMATE SIMULATION

We now focus on the realistic scenario of approximate
quantum simulation, i.e., the case when HQS simulates HT up
to some tolerable error ε �= 0. Contrary to the setting with ε =
0, looking at condition (1) does not reveal in a straightforward
way how both Hamiltonians should be related in order for one
to ε-simulate the other. Nonetheless, we are able to provide an
upper bound to the error up to which such a simulation can be
performed:

Theorem 1. [21] Every Hamiltonian HQS ε∗-simulates
any target Hamiltonian HT at any state |ψ〉 and time t ,
with

ε∗ = min

[
1,

t
h

2

]
. (9)

Here, 
h is the spectral diameter of the connector, h :=
HQS − HT , i.e., 
h = maxi j |λi − λ j |, where {λi}N

i=1 are the
eigenvalues of h.

Proof. First note that |〈ψ |eitHQS e−itHT |ψ〉| =
|〈ψ |eitH̃QS e−itHT |ψ〉|, with H̃QS = HQS + c1, c ∈ R. Now,

it is well established that

1 − |〈ψ |eitH̃QS e−itHT |ψ〉| (10)

� |1 − 〈ψ |eitH̃QS e−itHT |ψ〉|

=
∣∣∣∣〈ψ |

∫ 0

t
ds

(
d

ds
eisH̃QS e−isHT

)
|ψ〉

∣∣∣∣
�

∣∣∣∣
∫ 0

t
ds

∥∥H̃QS − HT

∥∥
2

∣∣∣∣ = t
∥∥H̃QS − HT

∥∥
2 = t‖h + c1‖2.

(11)

Therefore,

|〈ψ |eitHQS e−itHT |ψ〉| � 1 − t min
c

‖h + c1‖2 = 1 − t

h

2
,

(12)

and the proof is finished. �
From here we see that the worst-case fidelity of simulation

is never smaller than 1 − ε∗. We emphasize that the calcu-
lation of the error ε∗ does not require diagonalization. The
spectral diameter 
h is the difference between the largest and
the smallest eigenvalue of h and can be obtained by means
of a semidefinite program, as discussed later. As shown in
Appendix E, other valid bounds can be derived for the worst-
case fidelity of simulation, but they are smaller than the proved
1 − ε∗.

Notice that 1 − ε∗ is greater than zero if and only if
t
h < 2. In this regime, for fixed time t , we see that the
smaller 
h, the higher 1 − ε∗. Now note that since HQS is a
k′-local Hamiltonian and HT is a k-local Hamiltonian (with
k′ < k), h is a proper k-local Hamiltonian. One could ask at
this point how the spectral diameter of a k-local Hamiltonian
depends on k. To answer this open question, research in the
direction of [22] would be required. They study the extremal
eigenvalues of k-local Hamiltonians [with k = O(1)] acting
on n qubits, such that each qubit participates in at most l terms.
Instead of showing, as they do, how such extremal eigenvalues
change with the interaction l , one would need to examine
how these vary with the locality k. A numerical route can be
taken to explore such behaviors for particular cases. Here we
ask what kind of HQS yields the smallest spectral diameter

h, when HT is a Hamiltonian with k-body nearest-neighbor
interactions in the z direction describing a one-dimensional
array of qubits. For instance, for k = 3 we force the target to
be HT = C3

∑
j σ

z
j σ

z
j+1σ

z
j+2, where C3 is just a normalization

constant. As shown below, this problem can be cast as a
semidefinite program:

Proposition 1. The following semidefinite program min-
imizes 
h when HQS is k′-local and HT is a k-local
Hamiltonian with nearest neighbor interactions in the z
direction describing a one-dimensional array of n qubits:

min λ1 − λ0 s.t. λ0 � HQS − HT � λ1

tr
[
HQS�

( j)
i

] = 0 ∀i and ∀ j > k′

tr
[
HQS�

(k′ )
i

]
� β ∀i HT = Ck

n∑
l=1

σ z
l . . . σ z

l+k−1, (13)
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FIG. 1. Spectral diameter 
h minimised by the SDP (13) as a
function of the locality of HT .

where Ck is a normalization constant, �
( j)
i are the generators

of all possible j-body interactions, and β �= 0 is the strength
of the k′-body interactions of HQS .

Note that the second constraint prevents HQS from hav-
ing local terms with localities larger than k′. Also, the third
constraint forces HQS to present nonvanishing k′-body interac-
tions. Figure 1 shows the minimal spectral diameter 
h when
HT is a Hamiltonian with k-body nearest-neighbor interac-
tions (k = 3, 4, 5) describing an array of five qubits, and HQS

has only 2-local interactions of strength larger than or equal to
β = 0.01. Periodic boundary conditions are enforced on HT .
The minimal value of 
h decreases when HT is less local,
suggesting that such kind of target Hamiltonians are simulated
to a better precision the less local they are.

Fixing now 
h in t
h < 2, simulators are expectedly more
precise when restricting to short times. Here, we provide a
program to find the k′-local Hamiltonian HQS that best sim-
ulates a target k-local Hamiltonian HT at a given state |ψ〉
for short times [in the precise sense that terms in O(t2) are
negligible]:

Proposition 2. The following program yields the minimum
HS norm between states |ψ (t )〉 = e−itHT |ψ0〉 and |φ(t )〉 =
e−itHQS |ψ0〉 for state |ψ0〉 and time t � 1, where HT is a given
k-local Hamiltonian and HQS—the optimization variable—is
k′-local:

min ‖(1 − itHT )|ψ0〉 − (1 − itHQS )|ψ0〉‖HS

s.t. Tr
(
HQS �

( j)
i

) = 0 ∀i, (14)

where �
( j)
i are the generators of all possible j-body interac-

tions, with j > k′.
Notice that the states (1 − itHX )|ψ0〉 are not normalized.

It is possible to find a solution for this conic program us-
ing state-of-the-art solvers like [23]. In Fig. 2 we show the
minimum HS norm between states |ψ (t )〉 = e−itHT |ψ0〉 and
|φ(t )〉 = e−itHQS |ψ0〉, for several paradigmatic initial states
|ψ0〉. Here, HT is a random 3-qubit 3-local Hamiltonian in 1D,
and HQS is a 3-qubit 2-local Hamiltonian in 1D. The evolution
of the W state can be reproduced exactly in this case. For the
rest of the initial states, the plotted distance scales linearly
with time in this short time regime.

FIG. 2. Minimum HS norm between states |ψ (t )〉 = e−itHT |ψ0〉
and |φ(t )〉 = e−itHQS |ψ0〉, where |ψ0〉 are different initial states (a
cosdit 1√

8

∑8
i=1 |i〉, the |0〉 state, the GHZ state and the W state), HT

is a random 3-qubit 3-local Hamiltonian in 1D, and HQS is a 3-qubit
2-local Hamiltonian in 1D.

V. DISCUSSION

We have explored the dynamic simulation of k-local
Hamiltonians using more local Hamiltonians acting on the
same Hilbert space, an approach that aligns effectively with
the present experimental limitations: as argued in the In-
troduction, scaling up simulation platforms to accommodate
remarkably larger simulator Hamiltonians is still a challeng-
ing task. In the exact simulation scenario, we have confirmed
that some Hamiltonians with different localities can produce
the same dynamics at certain subsets of states even if they
do not commute. Further, we have analyzed the more realistic
scenario where the dynamics is reproduced up to some error
and provided a lower bound to the worst-case fidelity with
which any Hamiltonian can simulate another one. Based on
this, we have numerically shown evidence that the spectral
diameter decreases as the locality increases, and this suggests
that the simulation can be performed more precisely. More-
over, we have presented a program to find the Hamiltonian that
best simulates a given k-local Hamiltonian in the short-time
regime and solved it for a particular physical scenario.

The relation between the worst-case fidelity of simulation
and the spectral diameter of the corresponding connector has
been unveiled. This has allowed us to study dynamic simu-
latability without requiring diagonalization, which becomes
computationally expensive when considering large systems.
In turn, the relation between locality and spectral diameter
needs to be further investigated in the line of [22], which
would help us understand how to better engineer quantum
simulation settings. Also, further research could be conducted
in the spirit of [18] to calculate the relative volume of the
simulatable sets of states, which would shed light on the
potential of simulatability of each particular scenario.
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APPENDIX A: ILLUSTRATION OF EXACT SIMULATION
WITH A HAMILTONIAN THAT IS DIFFERENT

FROM THE TARGET ONE

We aim at showing two examples of Hamiltonians with
different localities, which generate the same dynamics. We
consider Eq. (4) as the target Hamiltonian and two different
simulator Hamiltonians as discussed below.

1. Example 1: A simulator that commutes with HT

As a simulator, we have considered the XXX model,

HQS = J
4∑

j=1

(
σ j

x σ j+1
x + σ j

y σ j+1
y + σ j

z σ j+1
z

)
, (A1)

which commutes with HT for any J , J3, and hx, as mentioned
in the main text. We take J3 as the energy unit and here fix
hx/J3 = 1, although this ratio can take any real value. We tune
J/J3 such that h = HQS − HT has some degeneracy.

In terms of how to find the shared eigenvectors, we refer to
Appendix B. We define the eigenvalues and the eigenvectors
of HT as {λT

j } j and {φT
j } j , and the eigenvectors {φT

j } j are

tailored to diagonalize HQS as well. The eigenvalues {λQS
j } j

of HQS are linearly dependent on J , and, by denoting the

eigenvalues of HQS for J/J3 = 1 with {λ̃QS
j } j , we have

{λQS
j } j = J{λ̃QS

j } j . By comparing {λQS
j } j and {λT

j } j and chang-
ing J , one can create some degeneracy in h.

We here show a few cases where h has two degenerate
eigenstates. Figure 3 displays the parameter J/J3 and the
degenerate eigenstates of h of such cases. The same dynamics
is generated by HT and by HQS as long as the initial state is
spanned by such eigenstates.

2. Example 2: A simulator that does not commute with HT

Consider a simulator H̃QS that does not commute with HT ,
i.e., they may share only part of their eigenvectors. Our sim-
ulator is now a 2-local Heisenberg XXX model with 1-body
terms,

H̃QS = J
4∑

j=1

(
σ j

x σ j+1
x + σ j

y σ j+1
y + σ j

z σ j+1
z

)

+ bx

4∑
j=1

σ j
x + by

4∑
j=1

σ j
y + bz

4∑
j=1

σ j
z , (A2)

where these 1-body terms prevent H̃QS from commuting with
HT . Again, we take J3 as the energy unit.

First, we search for the shared subspace. We refer the
details to Appendix C, but note that the size of the shared
subspace corresponds to the nullity of the commutator, i.e.,
the number of vanishing eigenvalues of the commutator. We
choose the parameter set {bx, by, bz} such that the nullity is
large, while J is not involved in the eigenvalues of the com-
mutator due to the fact that [HQS, HT ] = 0. Thus, we take
{bx/J3, by/J3, bz/J3} = {−4, 0, 1} and in this case the number
of shared eigenstates is 12. The set of the shared eigenstates
is obtained by constructing a proper linear combination of the
eigenstates of the commutator (see Appendices B and C).

The only thing left is to create degeneracy in h̃ = HQS −
H̃T in the corresponding subspace as we do in Appendix A 1.
By tuning J , we have created some degeneracy in h̃. Figure 4
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FIG. 4. Coefficients of two eigenstates degenerate in h̃ and the
value of parameter J/J3. The x label denotes the spin basis, where
“0” means down spin and “1” means up spin.

displays the parameter J/J3 and the degenerate eigenstates of
h̃ of such cases.

APPENDIX B: SHARED EIGENSTATES OF TWO
COMMUTING HAMILTONIANS

Two commuting Hamiltonians share all of their eigen-
states. One can construct the shared eigenstates by using
diagonalization, but there is an extra step to take if these
Hamiltonians are both degenerate. Below, we explain how
the shared eigenvectors of two commuting Hamiltonians are
obtained. Our discussion is general but tailored for use in
Appendix A.

Suppose two commuting Hamiltonians HA and HB. We
consider two cases: (i) the case where the Hamiltonian HA

is not degenerate and (ii) the case where the Hamiltonian HA

has one set of degenerate eigenstates.
Let us start with case (i). We define |ψn〉 as the n-the

eigenstate of HA,

HA|ψn〉 = an|ψn〉. (B1)

We apply HAHB on the state |ψn〉 and use [HA, HB] = 0,

HAHB|ψn〉 = HBHA|ψn〉 = anHB|ψn〉. (B2)

This means that, if HB|ψn〉 �= 0, HB|ψn〉 is an eigenstate of
HA. Since HA is not degenerate, |ψn〉 is only one eigenstate
having an as its eigenvalue. Thus, this eigenstate HB|ψn〉 is
essentially the same state as |ψn〉, and they differ only by a
constant. We call this constant bn, and therefore,

HB|ψn〉 = bn|ψn〉. (B3)

If HB|ψn〉 = 0, we say that |ψn〉 is an eigenstate of HB with its
eigenvalue bn = 0.

Next, we consider case (ii) where HA has a set of de-
generate eigenstates. We cannot follow the same process as
in case (i) because, when we obtain Eq. (B3), we rely on
the fact that all the eigenvalues are different. Suppose that
the n-th eigenvalue an is g-fold degenerate. Let us define
|ψ r

n〉 for r = 1, 2, . . . , g as its g-fold degenerate eigenstates:
HA|ψ r

n〉 = an|ψ r
n〉. The set of {|ψ r

n〉}r is chosen such that they

are orthonormalized via the Gram-Schmidt process. The state
HB|ψ r

n〉 can be expanded in a set of the degenerate eigenstates
{|ψ r

n〉}r as

HB

∣∣ψ r
n

〉 =
g∑

s=1

cr,s

∣∣ψ s
n

〉
(B4)

with a set of coefficients cr,s, which is given by 〈ψ s
n|HB|ψ r

n〉
because 〈

ψ r′
n

∣∣HB

∣∣ψ r
n

〉 =
g∑

s=1

cr,s
〈
ψ r′

n

∣∣ψ s
n

〉
. = cr,r′ . (B5)

Consider superposition between the degenerate states,∑g
r=1 dr |ψ r

n〉 with dr coefficient. We apply HB to this state,

HB

g∑
r=1

dr

∣∣ψ r
n

〉 =
g∑

r=1

g∑
s=1

drcr,s

∣∣ψ s
n

〉 =
g∑

s=1

(
g∑

r=1

cr,sdr

)∣∣ψ s
n

〉
.

(B6)

The state
∑g

r=1 dr |ψ r
n〉 is an eigenstate of HB with its eigen-

value bn if
g∑

r=1

cr,sdr = bnds. (B7)

Considering all the elements, this can be represented in matrix
form,

c �d = bn �d. (B8)

The set of bn and {dr}r that satisfy the above equation is given
by the eigenvalues and the eigenvectors of matrix c, respec-
tively. We define the eigenvalues as b(k)

n and the eigenvectors
as {d (k)

r }r for k = 1, 2, . . . , g. Therefore, the eigenvector of HB

with eigenvalue b(k)
n is given by

∑g
r=1 d (k)

r |ψ r
n〉. Of course, the

eigenvalue of HA with eigenvector
∑g

r=1 d (k)
r |ψ r

n〉 is an.
The point here is that any linear combination of |ψ r

n〉 for
all r can diagonlize HA but may not diagonlize HB. Therefore,
it is necessary to find a linear combination of |ψ r

n〉 that is an
eigenstate of HB. If HA has multiple sets of degenerate states,
we take this procedure for each set.

Note that the degeneracy of HB does not matter in this
process. Thus, if it is known that HA is degenerate but HB is
not, it is efficient to use the eigenvectors of HB as the shared
eigenvectors instead.

APPENDIX C: SHARED SUBSPACE OF TWO
NONCOMMUTING HAMILTONIANS

Even two noncommuting Hamiltonians may share some
of their eigenstates. We explain how to find such shared
eigenvectors below, and our discussion is general but tailored
for use in Appendix A 2. First, consider two noncommuting
Hamiltonians ĤA, ĤB and calculate the commutator,

[ĤA, ĤB] = C, (C1)

where C is a traceless matrix. Denoting a set of eigenvectors
of the commutator with {|φ j〉} j , we can have

N∑
j=1

|φ j〉〈φ j |[ĤA, ĤB]|φ j〉〈φ j | = 0⊕r ⊕ C̃ (C2)
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with N the system size, r � 0 some integer and C̃ a diagonal
and traceless matrix. The subspace spanned by the first r
eigenvectors {|φ j〉} j=1,...,r is the shared subspace, where the
commutator is zero.

The first r eigenvectors {|φ j〉} j=1,...,r may not diagonal-
ize ĤA and ĤB in the subspace. It is the same reason why
the eigenvectors of commuting degenerate Hamiltonians may
not diagonalize one of the Hamiltonians as mentioned in
Appendix B, and essentially these eigenvectors {|φ j〉} j=1,...,r

are degenerate in the commutator. One can find a linear
combination of {|φ j〉} j=1,...,r that diagonalizes ĤA and ĤB

in the subspace by following the procedure introduced in
Appendix B.

APPENDIX D: NECESSARY CONDITION FOR A STATE
TO BE AN EIGENSTATE OF BOTH A k-LOCAL

AND A k′-LOCAL HAMILTONIAN

Consider the set of k-local Hamiltonians, with basis {�i}
and �i ∈ Herm(H). For a given state |ψ〉, the corresponding
correlation matrix is defined as

M (k,ψ )
i j = 1

2
〈ψ |{�i,� j}|ψ〉 − 〈ψ |�i|ψ〉〈ψ |� j |ψ〉. (D1)

If the kernel of M (k,ψ ) is not empty, then there exists at least
one k-local Hamiltonian that is parent to |ψ〉 [24]. Since
M (k,ψ ) is Hermitian, it will have a nonempty kernel if and only
if det M (k,ψ ) = 0.

Now, recall that the set {�i} contains the generators of
every possible j-body interaction, with j � k. Therefore, it
contains the generators of all k-body interactions and the gen-
erators of all k′-body interactions, with k′ < k. This implies
that M (k,ψ ) is a block matrix of the form

M (k,ψ ) =
(
Mkk Mkk′

Mk′k Mk′k′

)
, (D2)

where Mkk′ encompasses the correlations between the gener-
ators of the k-body and the k′-body interactions. The following
lemma holds:

Lemma 2. If a state |ψ〉 is an eigenstate of both a k-local
(with nonvanishing k′-local terms) and a k′-local Hamiltonian

(k′ < k), then

N−1∑
r=1

∑
α,β

(−1)s(α)+s(β ) det A[α|β] det B(α|β ) = − det B, (D3)

where A = Mk′k′ , B = −Mk′kM−1
kk Mkk′ , and N = dim A =

dim B. For a particular r, the inner sum is taken over all strictly
increasing integer sequences α and β of length r, from 1 to
N . A[α|β] is the r-square submatrix of A lying in rows α and
columns β, B(α|β ) is the (N − r)-square submatrix of B lying
in rows complementary to α and columns complementary to
β, and s(α) is the sum of the integers in α.

Proof. Since we do not want |ψ〉 to be an eigenstate only
of a k-local Hamiltonian with vanishing k′-local terms, it is
sound to assume that det Mkk �= 0. Under this condition,

det M (k,ψ ) = det Mkk det
(
Mk′k′ − Mk′kM−1

kk Mkk′
)
, (D4)

which is zero when

det
(
Mk′k′ − Mk′kM−1

kk Mkk′
) = 0. (D5)

Now recall that, for N-square matrices A and B [25],

det(A + B) = det A + det B +
N−1∑
r=1

(−1)s(α)+s(β ) det A[α|β]

× det B(α|β ).

Define A = Mk′k′ and B = −Mk′kM−1
kk Mkk′ . If we want |ψ〉

to also be an eigenstate of a k′-local Hamiltonian, we must
impose det A = 0. Together with Eq. (D5), this yields

N−1∑
r=1

∑
α,β

(−1)s(α)+s(β ) det A[α|β] det B(α|β ) = − det B,

and the proof is completed. �

APPENDIX E: A WEAKER VERSION OF THEOREM 8

The following theorem can be derived:
Theorem 2. [21,26] Every Hamiltonian HQS ε∗-simulates

any target Hamiltonian HT at any state |ψ〉 and time t , with

ε∗ = min
[
1, 1

2 (et
h − 1), t‖h‖HS

]
. (E1)

FIG. 5. (a) 3-qubit HT , (b) 3-qubit HQS and (c) behavior of the corresponding quantities b1(h, t ) and b2(h, t ). If the Hamiltonian is expressed
as H = ∑

l cl Pl , with Pl ∈ {1, σx, σy, σz}⊗3 a Pauli string, the x axis represents the Pauli strings i jk ≡ Pl , with 1 ≡ 1, 2 ≡ σx , 3 ≡ σy, and
4 ≡ σz. The corresponding coefficients, cl , are shown in the y axis.
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FIG. 6. (a) 5-qubit HT , (b) 5-qubit HQS and (c) behavior of the corresponding quantities b1(h, t ) and b2(h, t ). If the Hamiltonian is expressed
as H = ∑

l cl Pl , with Pl ∈ {1, σx, σy, σz}⊗5 a Pauli string, the x axis represents the Pauli strings i jk ≡ Pl , with 1 ≡ 1, 2 ≡ σx , 3 ≡ σy, and
4 ≡ σz. The corresponding coefficients, cl , are shown in the y axis.

Here, 
h is the spectral diameter of the connector, h :=
HQS − HT , i.e., 
h = maxi j |λi − λ j |, where {λi}N

i=1 are the
eigenvalues of h.

Proof. The bound ε∗ = min[1, 1
2 (et
h − 1)] is based on

a beautiful result derived in [26]. There, the authors show
that the trace distance between two states evolved under
different time-dependent Hamiltonians, �(t ) and �0(t ), ful-
fills D[ρ(t ), ρ0(t )] � min[1, 1

2 (et
λ(t ) − 1)], where ρ(t ) =
e−it[�(t ), · ]ρ(0), ρ0(t ) = e−it[�0(t ), · ]ρ(0), and 
λ(t ) is the
spectral diameter of �(t ) − �0(t ). The derivation is com-
pleted by applying that the fidelity between two pure states,
F (|ψ〉, |φ〉) = |〈ψ |φ〉|, is lower bounded as F (|ψ〉, |φ〉) �
1 − D(|ψ〉〈ψ |, |φ〉〈φ|), with D(σ, σ̃ ) = 1

2 tr|σ − σ̃ |.
We now proceed to derive ε∗ = min[1, t‖h‖HS] [21]. First,

we have that

D(e−itHT |ψ〉〈ψ |eitHT , e−itHQS |ψ〉〈ψ |eitHQS )
(a)
�

∥∥(e−itHT − e−itHQS )|ψ〉∥∥2

(b)
�

∥∥e−itHT − e−itHQS
∥∥

HS

(c)
� t‖h‖HS.

Let us give the details of each inequality. In (a) we
have used that, for pure states |ψ〉 and |φ〉, it holds that
D(|ψ〉〈ψ |, |φ〉〈φ|) � ‖|ψ〉 − |φ〉‖2, where ‖ · ‖2 is the Eu-
clidean norm of a vector. In (b) we have employed the
Cauchy-Schwarz inequality and the fact that |ψ〉 is normal-
ized. In (c) we have first applied the triangle inequality to a

telescoping sum. For A := −itHT and B := −itHQS we get

∥∥eA − eB
∥∥

HS =
∥∥∥∥∥

m∑
k=1

e(k−1)A/m(eA/m − eB/m)e(m−k)B/m

∥∥∥∥∥
HS

�
m∑

k=1

‖e(k−1)A/m(eA/m − eB/m)e(m−k)B/m‖HS

= m‖eA/m − eB/m‖HS, (E2)

for any m ∈ N. Note that the last equality holds since the
HS norm is unitarily invariant. Finally, expanding eA/m and
eB/m into power series and letting m → ∞ immediately
leads to ‖eA − eB‖HS � ‖A − B‖HS. Apply F (|ψ〉, |φ〉) �
1 − D(|ψ〉〈ψ |, |φ〉〈φ|) and the proof is finished. �

Notice that this theorem is weaker than Theorem 2, since
1
2 (et
h − 1) � t
h

2 , and ‖h‖HS � ‖h‖2.
What is more, neither of the bounds, b1(h, t ) := 1

2 (et
h −
1) nor b2(h, t ) := t‖h‖HS, can universally upper-bound the
other. We hereby present two examples of connectors leading
to different behaviors of b1(h, t ) with respect to b2(h, t ).

First, we consider the randomly generated 3-local target
Hamiltonian and the 2-local QS Hamiltonian of Fig. 5. As
shown in the figure, as long as b1(h, t ) and b2(h, t ) are smaller
than 1, b1(h, t ) is smaller than b2(h, t ) for times t < 0.6, and
greater than it otherwise.

Secondly, we take the 3-local target Hamiltonian of Propo-
sition 1 and a 2-local QS Hamiltonian (see Fig. 6). As shown
in the figure, as long as b1(h, t ) and b2(h, t ) are smaller than
1, b1(h, t ) is always smaller than b2(h, t ).
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