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Recently, the thermodynamics of open quantum systems driven by light fields has been investigated in the
framework of quantum heat engines, whose output work can be measured as a spectroscopic signal. In this
work, we investigate a four-level quantum heat engine that generates cascaded entangled photon pairs, treating
the hot bath as an incoherent thermal pump and focusing on the correlation statistics of the output work and
photon indistinguishability. We show that the dissipative nonequilibrium dynamics of this thermodynamic open
quantum system can be reconstructed by correlation measurements under carefully mediated optical control.
Comparing our findings with the traditional coherently pumped model, we find that the thermal pumping has the
potential to generate nonclassical correlations resulting in photon indistinguishability, displaying an advantage in
probing the nonequilibrium effects induced by the baths at different temperatures. Our work also demonstrates
that incoherent pumping can optimize such correlations in output work beyond the classical limit. Lastly, we
show that nonclassical correlations and resonant power at steady state cannot be simultaneously maximized in
the weak coupling regime.
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I. INTRODUCTION

Numerous aspects of quantum science and technology
benefit from the properties of photons, e.g., quantum entan-
glement [1–5], photon antibunching [6–9], etc. In the field of
optical spectroscopy [10], entangled photon pairs demonstrate
the capacity to excite atomic and molecular systems with
higher signal at lower intensities yielding linear scaling for the
two-photon absorption [11,12], and to control exciton distri-
butions in complex systems [13]. The entangled photon pairs
can be further utilized to control the population of vibronic
excited states and to investigate internal conversion processes
[14]. The use of complex atoms and molecules in gener-
ating and mediating the quantum properties of light, such
as entanglement and antibunching, usually requires both the
consideration of optical control as the common framework in
description of quantum states of light and its interactions with
open quantum systems containing environmentally controlled
degrees of freedom [15]. This suggests a strong connection
between optical control methods and the framework of open
quantum systems.

A quantum heat engine (QHE) [16,17] is a thermodynamic
manifestation of open quantum systems [15,18,19]. It can be
regarded as a miniature version of the classical heat engine on
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the scale where quantum effects cannot be neglected [20]. In
the last few decades, research on QHEs attracted considerable
interest due to its connection to real physical systems, such as
lasers [21], solar cells [22–24], and biological systems [25].
Phenomena of profound quantum nature, such as quantum co-
herence [25–28] and entanglement [29–32], and their effects
on the performance of QHEs have been further investigated
in the steady state. Meanwhile, novel topics such as quan-
tum statistics of QHE [33] have recently attracted significant
attention. Recent experiments demonstrated that the physics
of QHEs [34,35] can be studied using optical pump-probe
setups [36] and the radiation resonantly driving the electronic
transitions in the material systems can be seen as a working
fluid. It has further been shown [37] that the dynamics of
open quantum systems driven by a coherent pump followed by
relaxation dynamics can be replaced by an effective thermal
bath. The spectroscopic setup can be therefore interpreted
as the QHE, which transfers energy from one thermal bath
(pump pulse) to another (probe pulse). Therefore, QHEs can
be studied under the framework of spectroscopy where the
work output is measured as a spectroscopic signal of the
probe, establishing a link between spectroscopy and quantum
thermodynamics in and out of equilibrium.

In this paper, we explore a four-level quantum heat en-
gine that generates a cascade of entangled photon pairs by
treating the hot bath as an incoherent thermal pump. Our
focus is on the correlation statistics of the output work and
the indistinguishability of the cascaded entangled photon
pairs commonly indicated by the Hong-Ou-Mandel (HOM)
dip [38] in the photon coincidence counting. Note that the
correlation statistics of the output work is equivalent to the
photon correlation statistics of the cascaded entangled photon
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FIG. 1. Four-level QHE with the transitions g-3 and g-0 driven by the two heat baths with the hot temperature Th and the cold temperature
Tc, respectively. The two-photon cascaded emission occurs between the energy levels 3 and 0 via the intermediate level 1. A beam splitter
and the two detectors are added to produce and examine the correlation and the distinguishability of two output photons using coincidence
measurements.

pairs, and both of them can be characterized by the photon
coincidence counting in the correlation measurements [39].
Two gated detectors are introduced to perform the optical sig-
nal detection in the quantum regime. We demonstrate that the
photon coincidence counting with carefully mediated central
times of the temporal gates, along with the gated detection,
can be used to reconstruct the dissipative nonequilibrium
dynamics of the thermodynamic open quantum system. Our
results provide a novel way to characterize nonequilibrium
dynamics through correlation measurements.

Further, we compare the findings with the coherently
pumped model commonly used in parametric down conver-
sion [40] by replacing the hot bath by a resonant interaction
with a coherent laser. Our comparison reveals that the ther-
mal pumping has the potential to generate nonclassical
correlations (nontrivial peaks) in the output, leading to pho-
ton indistinguishability. This highlights the thermodynamic
advantage of thermal pumping in showcasing the nonequilib-
rium effects induced by the baths at different temperatures,
which does not exist in the coherently pumped model. Our
research expands the investigation of two-photon process to
include both nonequilibrium and steady-state regimes, and
also demonstrates that a specific parameter regime for the
incoherent pumping has the potential to optimize the instanta-
neous correlations in the output work, surpassing the classical
boundaries in the time domain.

By examining the incoherently pumped QHE at steady
state, we finally show that resonant power output and nonclas-
sical correlations (nontrivial peaks) cannot be simultaneously
maximized.

The paper is organized as follows. In Sec. II, we introduce
the model of the two-photon cascade QHE pumped by the
incoherent thermal pump. We present the master equation,
calculate the photon coincidence signal, and discuss the ap-
proximations involved, as well as the methods to recover
the dissipative population dynamics from the signal. We also
discuss the power at the resonant frequency and its connection

with the nonclassical correlations (nontrivial peaks) in this
section. In Sec. III, we present and discuss the coherently
pumped two-photon cascade model. The comparison of the
two models and conclusions are given in Sec. IV.

II. INCOHERENTLY PUMPED QHE MODEL

A. QHE model and photon counting setup

We consider a four-energy-level system shown in Fig. 1,
the ground state g and the excited states 0, 1, 3 with ener-
gies ordered as e0 < e1 < e3. A hot bath with temperature
Th drives the g-3 transition incoherently. A cascade of two
photons is generated from the higher excited state 3 to the
lower state 0 via the intermediate state 1. The system then
undergoes the transition from 0 to g via the contact with the
heat bath with low temperature Tc. Following Ref. [37], we
treat the hot bath as an incoherent thermal pump field and the
two-photon cascade emission as the probe signal is equivalent
to the work of the QHE.

Following the Hong-Ou-Mandel (HOM) experiments [38],
we add the 50:50 beam splitter (BS) to separate the cas-
cading two photons that are subsequently registered by
time-frequency detectors 1 and 2. There are two types of
possible outcomes for the BS: two output photons are reg-
istered in a single detector (1 or 2) or the coincidence event
where one output photon is detected in each detector. The ratio
among these outcomes reflects the Bose-Einstein statistics and
the degree of the photon distinguishability. If the two output
photons incident on the beam splitter are indistinguishable,
the photon coincidence counting (PCC) signal [39] vanishes.
This is known as the HOM dip. Varying the position of the
beam splitter introduces a delay T between the two photons.

Temporally and spectrally resolved measurements have
proven to be valuable in extracting important information
about matter [41,42]. The independent control of time and
frequency gating parameters further enhances our ability to
manipulate output signals [43]. Specifically, the central time
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parameter corresponds to the resolution time of a temporal
gate, which can be used to capture the temporal features of
output signals. For instance, by adjusting the gating band-
widths and the central times of temporal gates, one can
effectively capture and study nonequilibrium and nonstation-
ary states of matter [43]. Moreover, the control of central
times and bandwidths of temporal gates allows us to investi-
gate photon correlation statistics and two-photon interference.
In Ref. [39], the photon correlation statistics and position of
the HOM dip can be characterized by the central times ts and
tr , which reveals the quantum interference effect in the time
domain.

In our research, we leverage the central times of the tem-
poral gates tc1 and tc2 to expand the study of the two-photon
physics to both nonequilibrium and steady-state regimes.
First, we employ the tc1 and tc2 to investigate the temporal
correlation statistics and determine the position of the HOM
dip, which reveals the quantum interference effect in the time
domain. Additionally, by manipulating the central times and
bandwidths, we can reconstruct the nonequilibrium dynamics
of the system under specific optical control. This approach en-
ables us to capture and characterize the nonequilibrium effects
associated with the two-photon generation process in the time
domain. It is important to note that the two-photon genera-
tion process is inherently nonequilibrium, and controlling the
central times is crucial for understanding and analyzing the
corresponding nonequilibrium effects.

Along with the central times of the temporal gates tc1 and
tc2, we obtain the set of control parameters that allows us to
display the HOM dip in the time domain. We next introduce
the relative PCC signal [39,44], whose normalized value at the
dip is related to the visibility of the measurement. The relative
PCC rate varies between 1 for completely distinguishable
photons and 0 when they are totally indistinguishable. For
classical fields and 50:50 beam splitters, the relative PCC rate
cannot be less than 1/2. We therefore denote the photons to
be indistinguishable (distinguishable) if the relative PCC rate
is smaller (larger) than 1/2.

Note that in certain cases, the asymptotic value (tc1, tc2 →
∞ corresponding to the steady-state regime) that is conven-
tionally used to normalize the relative PCC does not represent
the actual maximum value of the PCC due to nonequilibrium
dynamics, which may change the shape of the PCC dip. In
this case the visibility and the dip normalization have to be
redefined to account for the nonequilibrium dynamics and
quantify the indistinguishability of the two detected photons.

The light-matter dynamics in the interaction picture can be
described by the master equation (see Appendix A):

∂ρ

∂t
= −i

h̄
[Hint(t ) + Hs, ρ] + Lc[ρ] + Lh[ρ]. (1)

The joint density matrix of the interacting system plus
the probe fields is represented by ρ(0) = ρs(0) ⊗ ρ f 1(0) ⊗
ρ f 2(0) at the initial moment, and the system is in the ground
state. The two multimode probe fields are in the vacuum state
initially. Here, Hs represents the system Hamiltonian, and
Hint denotes the weak probe fields-system interaction. Lc[ρ]
and Lh[ρ] represent the Liouville operators describing the
dissipative dynamics due to the contact with the cold
and the hot temperature baths in the framework of the

Weiskopf-Wigner theory [26,45], respectively. The PCC sig-
nal characterizes the correlation statistics of the output, and is
defined as a normally ordered four-point correlation function
of the time-and-frequency gated electromagnetic field opera-
tors Ê3 and Ê4 incident on the detector:

R34(α3, α4) =
∫ ∞

−∞
dts

∫ ∞

−∞
dtr〈Ê†

3t f (tr )Ê†
4t f (ts)

× Ê4t f (ts)Ê3t f (tr )〉, (2)

where 〈. . .〉 = tr(. . . ρ) is the trace with respect to the total
density operator, α3 and α4 represent the detectors’ param-
eters. The output (Ê3, Ê4) and the input (Ê1, Ê2) fields are
related by:

Ê3(t ) = Ê1(t ) − iÊ2(t + T )√
2

, Ê4(t ) = Ê2(t ) − iÊ1(t − T )√
2

,

(3)

where c is the speed of light and cT is a small difference in
the path length of the two arms. Here we note the delay time
T can be both positive or negative. The time-and-frequency
gated field operators are defined as [43]:

Ê3,tc1,ω1 (t ′′) =
∫ ∞

−∞
dt ′Ff 1(t ′′ − t ′, ω1)Ft1(t ′, tc1)Ê3(t ′),

Ê4,tc2,ω2 (t ′′) =
∫ ∞

−∞
dt ′Ff 2(t ′′ − t ′, ω2)Ft2(t ′, tc2)Ê4(t ′). (4)

Here, tci, ωi, Ff i, Fti (i = 1, 2) represent the central time and
frequency of the detectors, the frequency and time gating
functions, respectively.

By solving the master equation for the density matrix ele-
ments, one can thus calculate the time-and-frequency gated
PCC signal. For simplification, here we give the compact
result when T < 0:

R34(tc1, tc2) = U1(tc1, tc2) + U2(tc1, tc2),

U1(tc1, tc2) = M1 + (M2 + M3)θ (tc2 − tc1)

8[1 + 2nh + nc(2 + 3nh)]σT 2
,

U2(tc1, tc2) = M4 − r4M5 − r3M6 + r4M7 + r3M8 − M9

8[1 + 2nh + nc(2 + 3nh)]
.

(5)

Note that nh and nc are the average photon occupa-
tion numbers for the hot bath and the cold bath, re-
spectively, given by: nh = {exp[h̄ω3g/(kBTh)] − 1}−1, nc =
{exp[h̄ω0g/(kBTc)] − 1}−1. The remaining parameters and the
detailed result are given in Appendix B and C.

B. Relative PCC for the incoherently pumped QHE

We first note that the signal R34(tc2) for a fixed tc1 depends
on the sign of T as shown in Figs. 2(a), 2(b). Here, σT 1 and
σT 2 are the corresponding bandwidth of the temporal gates
(see Appendix B). One can find that the ratio between the dip
value and the maximum value for T < 0 is apparently smaller
than if T > 0.

The reason can be similarly explained using the argument
presented in Ref. [46]. The degree of the entanglement be-
tween the two cascaded photons is closely related to the
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FIG. 2. The simplified detected PCC signal R34 in Eq. (2). The parameters used in the simulations are scaled with �c such that: �h = 2�c,
σT 1 = σT 2 = �c, nc = 4, nh = 6, tc1 = 6/�c, |T | = 1/�c, (a) T < 0, (b) T > 0.

causality of time-ordered emission in the time domain, i.e.,
the photon 2 is followed by the photon 1 in the time domain
due to the constraint of energy level transition 3-1-0. The
time-domain detection of photon 2 follows the detection of
photon 1 when the two photons obey the temporal causality,
resulting in the entanglement erosion [15]. However, when the
emission times for the two photons are nearly indistinguish-
able, which means the temporal causality is nearly eroded,
the corresponding entanglement is largely enhanced. Briefly,
breaking the causality of time-ordered emission in the time
domain can strengthen the entanglement between the two
cascaded photons.

For the fixed time of the given output in Eq. (3) at T < 0,
the collected photon 1 corresponding to the electric field E1

is generated later than the collected photon 2 induced by the
field E2, which means the two photons break the causality of
time-ordered emission in the time domain and thus have high
degree of entanglement. Obviously, the break of the temporal
causality is due to the existence of delay time T < 0. In the
opposite case where T > 0, one can clearly see the temporal
causality is strengthened, which reduces the entanglement of
the two photons. Thus, we can find that ratio between the
dip value and the maximum value for T < 0 is apparently
smaller than that if T > 0 in Fig. 2, which means the non-
classical features of the two-photon state at T < 0 are much
more pronounced compared to T > 0. According to the above
discussion and also for simplicity, we will only consider the
case where T < 0 in the subsequent analysis.

By setting tc1, tc2 to infinity, one can obtain the steady-
state value for the detected signal. Note that the steady-state
value for the PCC signal when T < 0 is proportional to the
steady-state value of ρ33(∞), which justifies the steady-state
parameter regime for the detection signal. The relative PCC
signal can be introduced in the further analysis and defined as:

G(2)(tc1, tc2) = R34(tc1, tc2)

R34(∞,∞)
,

R34(∞,∞) = (1 + nc)nh

4[1 + 2nh + nc(2 + 3nh)]σT 1σT 2
. (6)

Figure 3(a) shows that at fixed tc1 the relative PCC has a
dip as a function of tc2 reaching the value of 0.82, which cor-
responds to the regime of distinguishable photons. For smaller
temporal gate bandwidth, detectors can accumulate more pho-
tons arriving at different times, which can be distinguished
due to higher probability of antibunching. With the increase
of the detector bandwidth, less photons are accumulated and
the bunching properties become important. Thus, the dip min-
imum is reduced to 0.68 in Fig. 3(b), and further down to 0.43
in Fig. 3(c), which emerges as the regime for indistinguishable
photons with value 0 for the HOM dip reached in the limit of
infinitely large gating bandwidth.

C. Set of approximations to determine
the dip position and its value

In order to determine the precise position of the HOM dip,
we need to establish a set of approximations for the steady-
state detection when T < 0:

(i) We assume both detectors have the same bandwidth
σT 1 = σT 2, and set |T | < �c

−1 in the further analysis of the
incoherently pumped model.

(ii) We vary tc2 while the tc1 remains fixed by setting its
value tc1 	 max { 1

l2
, 1

l3
}, which also reduces the nonequilib-

rium effect of the system related to tc1. The dynamic factors
l2, l3 are defined in Appendix C, characterizing the combined
driving nonequilibrium dynamical effects caused by both the
hot and the cold baths in the time domain.

Under the above approximations, one can use Eq. (6) to
find the precise position of the dip determined by:

tc1 − tc2 = −T . (7)

Note that Eq. (7) is independent of the open quantum sys-
tem’s parameters, which characterizes the steady-state. Using
Eqs. (6) and (7), one can find the value of relative PCC signal
at the dip in the steady-state regime for tc1 	 max { 1

l2
, 1

l3
}

given by:

Dss
inc ≡ minG(2)(tc1, tc2) = G(2)(tc1 − tc2 = −T ) = eT σT 2 .

(8)
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FIG. 3. The relative PCC signal in Eq. (6) vs tc2 at fixed tc1 for the different time detector bandwidth scaled with �c. (a) σT 1 = σT 2 =
10�c, (b) σT 1 = σT 2 = 20�c, (c) σT 1 = σT 2 = 40�c. The fixed parameters for the simulations are �h = 2�c, nc = 4, nh = 6, tc1 = 1/�c,
T = −0.02/�c.

The relative PCC signal G(2)at fixed tc1 with large detector
bandwidth and small |T | is shown in Fig. 3(c). The position
and the value of the dip, which constitute the first-order effect,
depend on the details of the detection setup such as tc1, tc2,
T , and the detector bandwidth, but not on the details of the
thermodynamic open quantum system and its dynamics. As
has been previously shown, the details of the system enter into
the spectral linewidth of the resonance peaks [39]. The precise
determination of the width is more subtle and constitutes the
second-order effect, which is out of the scope of the present
work. At the same time, a first-order effect still exists that
allows monitoring of the system dynamics, which will be
discussed below.

D. Reconstructing the system dynamics using the probe signal

In Fig. 3, we note the following detail: in addition to
the single dip structure, which emerges from the steady-state
level, the G(2) signal also contains a nontrivial peak at short
tc2 reaching the value of 1.12. This peak value is much larger
than the steady-state value. As we will discuss later, this can
be shown as a dynamical signature of open quantum system
features, and therefore, the detailed analysis of the peak can
recover the dynamical properties of the system and its inter-
action with the joint heat temperature baths.

In order to quantify the possible peak position and its mag-
nitude, we first note that the peak will occur at short time tc2

long before the dip in the time domain. Thus in the following
discussion related to the peak, we will focus on the temporal
properties of the PCC signal before the dip happens. Since we
only want to see the nonequilibrium effect introduced by the
system dynamics and exclude the time-delay effect brought by
the beam splitter, we can set T {l2, l3} ≈ 0. Assuming tc1 	 tc2

and taking σT 2 	 max{l2, l3} that corresponds to the time-
domain resolution regime for capturing system dynamics with
precision, one can obtain:

G′(2)(tc2) = 1 − r4e−l2tc2

2nh(1 + nc)
− r3e−l3tc2

2nh(1 + nc)
. (9)

On the other hand, we can further solve the density matrix
equation in Eq. (1) perturbatively to obtain the dissipative

nonequilibrium dynamics of ρ33(t ) (see Appendix C), and
then we can define:

ρ inc(t ) ≡ ρ33(t )

ρ33(∞)
= 1 − 1

2nh(1 + nc)
(r3e−l3t + r4e−l2t ),

ρ33(∞) = nh(1 + nc)

1 + 2nc + 2nh + 3ncnh
, (10)

which establishes the relationship between the PCC signal and
system dynamics as:

G′(2)(t ) = ρ inc(t ). (11)

Thus, the system dynamics via ρ33(t ) can be explicitly de-
tected by the PCC signal. After defining the relative peak
value as the maximum value of the population ρ33(t ) rel-
ative to its steady-state value: Q ≡ maxt ρ33(t )

ρ33(∞) = maxtρ
inc(t ),

we also define the maximum PCC value relative to its
steady-state value: Qpcc ≡ maxt G′(2)(t ). One can clearly note
Qpcc

max � Qmax and the bound of Qpcc
max can be achieved when

σT 2 	 max{l2, l3}, corresponding to Eq. (9) and the time-
domain resolution regime for accurately capturing system
dynamics.

If nc �= 0, we only consider the high-temperature regime
corresponding to the case nh > nc 	 1. Thus, a relative peak

value exists in Eq. (10) and is reached at time: t ′ = ln( −l2r4
l3r3

)

l2−l3
with the corresponding value as the Q value:

Q = 1 − r4
(−l2r4

l3r3

)− l2
l2−l3 + r3

(−l2r4
l3r3

)− l3
l2−l3

2nh + 2ncnh
. (12)

Considering further a strong pump and high-temperature limit
regime as: nh�h 	 nc�c 	 �h > �c, nh 	 nc 	 1, the spon-
taneous emission can be neglected and the coefficients are
reduced to: r4 ≈ −ncnh, r3 ≈ 3ncnh, l2 ≈ 3�cnc, l3 ≈ 4�hnh.
Therefore, Eq. (12) is reduced to:

Q ≈ 1 + 2−1− 3�cnc
2�hnh

(
�cnc

�hnh

) 3�cnc
4�hnh − 3�cnc

8�hnh
. (13)

By setting x = �cnc
�hnh

as a variable, we plot Q(x) in Fig. 4.
Thus, the relative peak value Q is maximized at x = 0
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FIG. 4. Relative peak value Q(x) for x = �cnc/(�hnh ) when we
consider a strong pump and high temperature limit regime as nh�h 	
nc�c 	 �h > �c, nh 	 nc 	 1.

corresponding to Qmax = 1.5, which is a dynamical effect
caused by the competition between the two baths. The
nonequilibrium dynamics induced by the two baths can be
understood as the dynamical process of the system where each
bath tries to draw the system state closer to its respective
thermal state [18]. In other words, each bath tries to drive
the system according to its own temperature, but, unless all
temperatures are equal the system can no longer be described
by a canonical ensemble with respect to a single temperature.
The system thus attempts to find a compromise between the
different temperatures involved, which leads to the steady
state with different temperatures. A typical example is the
steady-state value of ρ33(∞) in Eq. (10).

Due to the significant difference in driving effect between
the two heat baths at short times, the system is mainly affected
by the hot bath and the effect of the cold bath is relatively
unimportant under our high-temperature limit condition re-
sulting in ρ33(t ) → 0.5. This also means the local steady
state at the strong pump is rapidly reached only at the g-3
transition. But after a period of time, the existence of the cold
bath plays an important role since the system is jointly driven
by the two baths, which leads to ρ33(t ) → 1/3 in the steady
state and the existence of the relative nontrivial peak. In the
high-temperature limit, we can clearly see maxtρ33(t ) = 0.5
and Q ≡ maxt ρ33(t )

ρ33(∞) = 1.5, which corresponds to our above an-
alytical analysis.

Following the above discussions, the range of the peak in
detected relative PCC signal is 1 � Qpcc � 1.5 for the inco-
herently pumped QHE. We should emphasize the maximum
value of the peak can be detected under the high-temperature
limit assumption and the time-domain resolution regime:
σT 2 	 max{l2, l3}. In the limit regime of photon distinguisha-
bility (small σT ), the value of the peak signal will be reduced
to the steady-state background.

If nc = 0, Eq. (10) can be simplified as ρ inc(t ) = 1 −
e−t (1+2nh )2�h . This is an increasing function and the maxi-
mum value can be found when t → ∞, corresponding to the

steady-state value. This means Q = maxtρ
inc(t ) = 1, which

also leads to Qpcc = 1. The population of level 3 approaches
a value dictated only by the hot bath, which is why there
are absent of the nonclassical correlations (nontrivial peaks),
since the cold bath, at zero temperature, is not competing for
level 3.

In addition to the HOM dip and the peak due to the
nonequilibrium system dynamics and in order to characterize
the visibility for fixed tc1, we introduce the dynamical visibil-
ity parameter Vinc defined by:

Vinc ≡ dip

maxR34(tc2)
= dip

R34(∞,∞)

R34(∞,∞)

maxR34(tc2)
= Dss

inc

Qpcc
.

(14)

If nc �= 0, we follow our detection protocol and only con-
sider the high-temperature limit condition nh 	 nc 	 1 and
T < 0, which results in Vinc = eT σT 2

Qpcc . Since 1 � Qpcc � 1.5,

it is clear that eT σT 2 � Vinc � 2eT σT 2

3 with the lowest bound
achieved in the high-temperature limit and the time-domain
resolution regime: σT 2 	 max{l2, l3}. In the opposite limit
when nc = 0, the steady-state background fully defines the
visibility and Vinc = Dss

inc = eT σT 2 .
The above results suggest that the strong high-temperature

thermal pumping has the potential to lead to higher degree
of nonclassical correlations (nontrivial peaks) in the output,
thereby enhancing the photon indistinguishability, while si-
multaneously highlighting the nonequilibrium effects of the
dynamics induced by the two heat temperature baths in the
incoherently pumped QHE system. This dynamics can be in-
terpreted as a competition between the two temperature baths
interacting with the system. Equation (11) suggests that the
correlation measurement method provides a potential tool to
give insight into the dynamic characteristics of the system.
Additionally, the above discussions also demonstrate that the
carefully tailored incoherent pumping has the potential to
optimize the instantaneous correlations in the output work
beyond the classical limit.

E. QHE power at the resonant frequency
in the weak coupling regime

Traditionally, the QHE physics focuses on the maximiza-
tion of the power or efficiency at maximum power [22,26],
rather than looking at the correlations in the output work. In
this section, we shift our focus from the correlation statistics
of the output work to the steady-state power in the inco-
herently pumped QHE. Especially, we examine the ability
of the QHE to produce steady-state power at the resonant
frequency in the weak coupling regime [29]. Note that the
correlation statistics is actually obtained in the same weak
coupling regime as in the previous discussions.

A scheme depicting the production of output power is
shown in Fig. 5(a), where two weak quantum single-mode
probe fields Ea, Eb drive the respective transitions 3 → 1
and 1 → 0 resonantly. Corresponding to the previous discus-
sions, the two probe fields are assumed to be in the vacuum
state initially. Under these conditions, the fields and the
system-fields interaction Hamiltonians are given by: Hf1 =
h̄ωaâ†â; Hf2 = h̄ωbb̂†b̂; Hint = Ê†

aVa + ÊaV †
a + Ê†

bVb + ÊbV
†

b ,
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FIG. 5. (a) The schematic of producing power in the incoherently pumped QHE model. Ea and Eb represent two weak single-mode fields
driving the respective transitions 3 → 1 and 1 → 0 resonantly. (b) Two diagrams represent a total of two conjugate pathways contributing to
the power Pa in the incoherently pumped model.

where: Va = μa|1〉〈3|,Vb = μb|0〉〈1| are the dipole operators
and the coefficients μi(i = a, b) are the coupling factors be-
tween the system and the light fields. In the interaction picture,
the two weak fields with simplified amplitudes εa, εb are taken
as: Êa(t ) = εaâe−iωat , Êb(t ) = εbb̂e−iωbt .

The QHE power can be defined as a rate of change of the
averaged probe photon number N multiplied by the corre-
sponding single-photon energy [22,29]. In our analysis, N̂ is
the photon number operator and the total power for the system
at the resonant frequency is:

Ptot = Pa + Pb = h̄ωa
d

dt
〈N̂a〉 + h̄ωb

d

dt
〈N̂b〉. (15)

Note that the first term Pa mainly depends on the second-
order perturbation with respect to light-matter interaction,
which corresponds to the system transition 3 → 1, while the
term Pb mainly depends on the fourth-order perturbation cor-
responding to the system transition 3 → 1 → 0. Thus, the
contribution of Pb can be neglected in the weak coupling
regime. Then we can obtain: Ptot ≈ Pa.

In what follows, only the resonant case is considered ωa =
ω31. Two diagrams in Fig. 5(b) show a total of two conjugate
pathways contributing to the generated power. Using the di-
agrammatic method outlined in Appendix E and the similar
method in Ref. [29], one can easily obtain the steady-state
output power in the weak coupling regime as:

Ptot = 2ω31

h̄
ε2

aμ
2
a

nh(1 + nc)

�h(1 + nh)(1 + 2nc + 2nh + 3ncnh)
.

(16)

Here we note the factor nh (1+nc )
1+2nc+2nh+3ncnh

is the steady-state
value of ρ33(t ) in this weak coupling regime and this can
be found in Eq. (10). The factor �h(1 + nh) comes from the
coherent transition 3 → 1 with dissipation, which inhibits the
power generation. In the following discussion, we only focus
on two typical cases.

In the first case we set nh 	 nc 	 1, which corresponds to
the high-temperature limit and exhibits high nonclassical cor-
relations (nontrivial peaks) in the output. The corresponding
QHE power in this regime yields:

Ptot1 ≈ 2ω31

h̄
ε2

aμ
2
a

1

3�hnh
. (17)

In the second case we set nc = 0, which does not show
nonclassical correlations (nontrivial peaks) in the output. The
corresponding QHE power reads:

Ptot2 = 2ω31

h̄
ε2

aμ
2
a

nh

�h(1 + nh)(1 + 2nh)

� 2ω31

h̄
ε2

aμ
2
a

1

�h(3 + 2
√

2)
. (18)

Note that the upper bound of the power in Eq. (18) can be
achieved when nh = 1/

√
2, and the corresponding maximum

steady-state power is significantly larger than Ptot1.
Accordingly, in the high-temperature limit nh 	 nc 	 1,

one can obtain the highest nonclassical correlations in the
output with pronounced photon indistinguishability. On the
other hand, this regime is accompanied by the extremely low
steady-state power at the resonant frequency since the dissipa-
tion at the coherent transition 3 → 1 largely inhibits the power
generation in the high-temperature limit case. In case nc = 0,
the nonclassical correlations (nontrivial peaks) are absent in
the output. However, one can achieve higher steady-state QHE
power.

The above discussions confirm the fundamental feature of
the incoherently pumped QHE that the steady-state resonant
power and the nonclassical correlations cannot be maximized
simultaneously in the weak coupling regime. In this regime,
the advanced ability to produce the nonclassical correlations
(nontrivial peaks) is accompanied by the diminished ability to
achieve the maximum steady-state resonant power.
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FIG. 6. The schematic of coherently pumped QHE, where the coherent source resonantly drives transition g-3, while the rest of the scheme
is identical to the one shown in Fig. 1.

III. COHERENTLY PUMPED QHE MODEL

A. Basic model and PCC signal

So far we have discussed the QHE incoherently pumped
by the incoherent thermal field due to its contact with the
hot temperature bath. For comparison, we present below the
conventional scheme of generating a cascade of correlated
photons, which utilizes the coherent source. Figure 6 shows
that a coherent pump with finite bandwidth resonantly drives
the g-3 transition.

The evolution of the system-matter dynamics in the inter-
action picture is governed by the density matrix equation:

∂ρ

∂t
= −i

h̄
[Hint(t ) + Hs, ρ] + Lc[ρ],

Hint(t ) = Hintqm(t ) + Hcl ,

Hintqm = Ê†
1V1 + Ê1V

†
1 + Ê†

2V2 + Ê2V
†

2 ,

Hcl = E∗
p (t )λ0|g〉

〈
3
∣∣+Ep(t )λ0

∣∣3〉〈g|,
ρ(0) = ρs(0) ⊗ ρ f 1(0) ⊗ ρ f 2(0). (19)

Compared to Eq. (1) in the incoherently pumped QHE
model, Eq. (19) has interaction with only one (cold) bath
governed by Lc[ρ]. Hcl represents the weak interaction with
the classical coherent pump field, and Hintqm represents the
weak interactions with the two quantum probe fields. The co-
efficient λ0 is the coupling factor between the system and the
classical coherent pump field. Here, we choose the resonant
coherent field Ep(t ) = θ (t )E0e−σ t−iωt , where σ denotes the
envelope of the coherent field mimicking the single thermal
bath dephasing rate for more precise comparison, θ (t ) is the
Heaviside step function, ω = ω3g, and E0 is the amplitude of
the classical pump field.

Following the previous discussions, we can proceed to
calculate the PCC by setting T < 0 and keep the treatment
related to PCC signal R34

c (tc1, tc2) in Appendix G. Taking
asymptotic value for the R34

c (tc1, tc2), we obtain the simplified

steady-state background signal as:

R34
c (∞,∞) = �c + �cnc + σ

4σ (�cnc + σ )(�c + 2�cnc + σ )σT 1σT 2
.

(20)

And the corresponding normalized (relative) PCC is given by:

G(2)
c (tc1, tc2) = R34

c (tc1, tc2)

R34
c (∞,∞)

. (21)

We adopt σT 1 = σT 2 in the further analysis and follow the
similar set of approximations as in Sec. II C above except that
we take tc1 	 max { 1

2σ
, 1

�cnc+σ
} to reduce the nonequilibrium

effect of the system related to tc1. Using Eq. (21) and taking
tc1 − tc2 = −T (T < 0), one can obtain the same result for the
relative value of the dip as in Eq. (8):

Dss
c ≡ minG(2)

c (tc1, tc2) = G(2)
c (tc1 − tc2 = −T ) = eT σT 2 .

(22)

By taking tc1 = �c
−1, considering the detectors with the large

temporal bandwidth and fixing the value of |T | to be small,
one can obtain simulation of G(2)

c (tc2) in Fig. 7. Figure 7
shows that the steady-state regime for the PCC corresponds
to the maximum PCC value and highest correlation, which is
drastically different from the incoherent pump case shown in
Fig. 3(c).

B. Reconstructing the system dynamics using the probe signal

To recover the system dynamics, we first calculate the
ρ33(t ) (detailed calculations are shown in Appendix G) and
only consider the following two cases. Under the condition of
nonzero temperature of cold bath with nc > 1 and the large
pump envelope σ 	 �c(1 + 2nc) corresponding to the strong
pump regime in the previous model, we can obtain: ρ33(t ) ≈
(E0λ0 )2

h̄2σ 2 (1 − e−tσ )2. In the zero-temperature limit such that

nc → 0, we can get: ρ33(t ) = (E0λ0 )2

h̄2σ 2 (1 − e−tσ )2, which is a
growing function of time.
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FIG. 7. Normalized (relative) PCC signal for the QHE pumped
by a coherent source. Simulations scaled with �c employ the
following parameters: σ = 20�c, σT 1 = σT 2 = 40�c, nc = 4, tc1 =
1/�c, T = −0.02/�c.

Both above two cases show the increasing function de-
pending on t , and the relative value ρc(t ) similarly defined
as Eq. (10) is

ρc(t ) ≡ (1 − e−tσ )2. (23)

After defining the relative peak value as the maximum value
of the population ρ33(t ) relative to its steady-state value: Qc ≡
maxt ρ33(t )

ρ33(∞) = maxtρ
c(t ), the corresponding value is given by:

Qc = 1.
Following the similar discussions and approaches as in

Sec. II D, one can find the similar relationship between the
normalized PCC signal and the population dynamics of level
3 as in Eq. (11):

G′(2)
c (t ) = ρc(t ). (24)

It is clear that the maximum value of the PCC gradually
reaches the steady-state value and there are no additional peak
features. After defining the maximum value relative to the
steady-state value of the system dynamics, we further define
the maximum PCC value relative to the steady-state value:
Qpcc

c ≡ maxt G′(2)
c (t ). Clearly, both maxima are the steady-

state value and identical: Qpcc
c = Qc = 1.

Then the dynamical visibility parameter Vc for fixed tc1 in
the coherently pumped model can be found as:

Vc ≡ dip

maxR34
c (tc2)

= dip

R34
c (∞,∞)

R34
c (∞,∞)

maxR34
c (tc2)

= Dss
c

Qpcc
c

.

(25)

We can obtain the result: Vc = Dss
c = eT σT2 (T < 0). This

suggests that the generation of two photons in the steady-
state regime yields the maximum correlation and leads to
the highest degree of photon indistinguishability, if T < 0
and the temporal bandwidth of the detectors is large. This
result also shows that the use of the steady-state value for
the PCC as the reference is sufficient to precisely reflect the

indistinguishable property of the generated entangled two
photons in both nonequilibrium and steady-state regimes. It is
important to note that the nonclassical correlations (nontrivial
peaks) are absent in the coherently pumped model, unlike the
case of the incoherently pumped model.

IV. DISCUSSION AND CONCLUSIONS

Given identical detectors and delay time T (T < 0) in
the steady-state regime, Dss

inc = Dss
c equality is valid. In the

nonequilibrium regime, if nc = 0, the visibility of both inco-
herently and coherently pumped QHEs are identical Vinc = Vc.
If nh 	 nc 	 1, we find that the visibilities are related as
Vinc � Vc and Vinc min = 2

3Vc. The smallest Vinc value can be
achieved when we consider the high-temperature limit con-
dition and assuming large temporal gate bandwidth σT 	
max{l2, l3} in the incoherently pumped QHE. These results
manifest the fact that the two-photon indistinguishability in
the nonequilibrium regime for the incoherently pumped QHE
can be more pronounced compared to the coherently pumped
QHE. These also suggest that the thermal pumping has the po-
tential to highlight the dynamic effects of the nonequilibrium
dynamics and generate higher nonclassical correlations in the
output work, resulting from the dynamical competition caused
by the hot and cold nonzero temperature baths interacting with
the system. It is important to note that this dynamical compe-
tition is specific to the incoherently pumped QHE model and
does not exist in the coherently pumped QHE model.

In summary, we study a four-level quantum heat engine,
which generates a cascade of entangled photon pairs, and the
correlation statistics of the output work via the two-photon
emission can be detected using the intensity-intensity corre-
lation measurement. We show that the photon coincidence
counting with carefully designed optical control along with
the gated detection can be used to reconstruct the dissipative
nonequilibrium dynamics of the incoherently pumped QHE
system. Comparing our findings with the coherently pumped
model, we find that the thermal pumping has the poten-
tial to generate nonclassical correlations (nontrivial peaks)
in the output, resulting in photon indistinguishability. This
also emphasizes the thermodynamic advantage of the thermal
pumping in highlighting the nonequilibrium effects induced
by the two nonzero temperature baths. Lastly, we examine
the ability of the incoherently pumped QHE to produce the
steady-state power at the resonant frequency. Our calcula-
tions reveal a fundamental characteristic of the incoherently
pumped QHE model: in the weak coupling regime, it is impos-
sible to maximize both the steady-state resonant power and the
nonclassical correlations (nontrivial peaks) simultaneously. In
this regime, the advanced ability to produce the nonclassical
correlations is closely connected with the diminished ability to
achieve the maximum steady-state resonant power. Our results
suggest that the correlation measurement method provides a
novel tool to give insight into the nonequilibrium features of
a thermodynamic open quantum system.
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APPENDIX A: BASIC TREATMENT OF LIGHT-MATTER
INTERACTIONS IN THE INCOHERENTLY

PUMPED QHE MODEL

Here we denote the noninteracting Hamiltonians of
the QHE system as the following: Hs = h̄

∑
i ωi|i〉〈i|(i =

g, 0, 1, 3); Hf1 = h̄
∑

i ωiâ
†
i âi; Hf2 = h̄

∑
j ω j b̂

†
j b̂ j . The Hs

represents the system Hamiltonian, and Hf 1, Hf 2 represent
the quantum field 1 and field 2 Hamiltonians, respectively.

We limit all of our discussions to the rotating wave approx-
imation in this work, and the two-photon probe fields-system
interaction Hamiltonian is: Hint = Ê†

1V1 + Ê1V
†

1 + Ê†
2V2 +

Ê2V
†

2 , where: V1 = λ1|1〉〈3|,V2 = λ2|0〉〈1| are the dipole op-
erators. The λ1, λ2 are the average effective dipole moments.
The multimode quantum field 1 and field 2 in quantized vol-
ume � are given by:

Ê1 =
∑

i

(
2π h̄ωi

�

)1/2

âie
ikir,

Ê2 =
∑

j

(
2π h̄ω j

�

)1/2

b̂ je
ik j r . (A1)

Here âi, b̂ j represent the Boson operators of quantum field
1, 2. For simplicity, we set r = 0, also the average effective
dipole moments λi(i = 1, 2) are assumed to be real.

We assume that the cold and hot baths are very large, and
the couplings between the system and the baths are very weak,
which means the Born approximation can be taken. Addition-
ally, we assume that the intrinsic time evolution scales of each
bath are much shorter than the evolution of the time scale
governing the system. In other words, we assume that bath
intrinsic correlations decay rapidly [18,19,47,48]. Under these
assumptions, the Markov approximation and the Weiskopf-
Wigner approximation can be properly used, and then we
separately obtain the two dissipative Liouville operators that
describe the effects induced by the cold and the hot baths in
many works related to the QHE physics [26,33,45]. Accord-
ingly, the cold bath and hot bath can be separately introduced
using the Liouville operators as [29]:

Lc[ρ] = �c(nc + 1)(2|g〉〈g|ρ00 − |0〉〈0|ρ − ρ|0〉〈0|)
+ �cnc(2|0〉〈0|ρgg − |g〉〈g|ρ − ρ|g〉〈g|),

Lh[ρ] = �h(nh + 1)(2|g〉〈g|ρ33 − |3〉〈3|ρ − ρ|3〉〈3|)
+ �hnh(2|3〉〈3|ρgg − |g〉〈g|ρ − ρ|g〉〈g|). (A2)

Here the �h, �c are the relaxation factors of the respective
two baths and assumed in the same order of magnitude. nh, nc

are the average photon occupation numbers of hot bath and
cold bath respectively given by: nh = {exp[h̄ω3g/(kBTh)] −
1}−1, nc = {exp[h̄ω0g/(kBTc)] − 1}−1.

In the interaction picture respect to the optical quantum
fields, we can find:

Ê1(t ) =
∑

i

(
2π h̄ωi

�

)1/2

âie
−iωit =

∑
i

Ê1i(t ),

Ê2(t ) =
∑

j

(
2π h̄ω j

�

)1/2

b̂ je
−iω j t =

∑
j

Ê2 j (t ). (A3)

Then, we can get: Hint(t ) = Ê†
1 (t )V1 + Ê1(t )V †

1 + Ê†
2 (t )V2 +

Ê2(t )V †
2 , and the dynamics of the density matrix is governed

by:

∂ρ

∂t
= −i

h̄
[Hint(t ) + Hs, ρ] + Lc[ρ] + Lh[ρ]. (A4)

Here, we set ρ(0) = ρs(0) ⊗ ρ f 1(0) ⊗ ρ f 2(0) at the initial
time, and the system is in the ground state. The part in the
commutator of the joint density matrix Liouville equation de-
scribes the weak quantum light-matter interactions, the other
parts represent the bath-induced interactions. The nonpertur-
bated dynamics of the system is governed by the hot and cold
baths and described as:

∂ρs

∂t
= − i

h̄
[Hs, ρs] + Lc[ρs] + Lh[ρs]. (A5)

Equation (A5) describes a nonequilibrium dynamical process
of the system, which is induced by two different temperature
baths [18].

APPENDIX B: TIME-FREQUENCY GATES AND THE PCC
SIGNAL RESULT OF THE INCOHERENTLY PUMPED QHE

In calculations, we adopt the exponential time gates and
θ (t ) is the Heaviside step function:

|Ft1(t ′
1, tc1)|2 = θ (t ′

1 − tc1)e−σT 1(t ′
1−tc1 ),

|Ft2(t ′
2, tc2)|2 = θ (t ′

2 − tc2)e−σT 2(t ′
2−tc2 ). (B1)

We omit the frequency gates:

Ff 1(ω′, ω1) = Ff 2(ω′′, ω2) = 1. (B2)

In this work, we only present the result when T < 0 and
also neglect some global constant factors irrelevant to the
detectors and baths’ degrees of freedom for simplicity (the
factors l2, l3, r3, r4 are defined in Appendix C):

R34(tc1, tc2) = U1(tc1, tc2) + U2(tc1, tc2), (B3)

where:

U1(tc1, tc2) = M1 + (M2 + M3)θ (tc2 − tc1)

8[1 + 2nh + nc(2 + 3nh)]σT 2
,

U2(tc1, tc2) = M4 − r4M5 − r3M6 + r4M7 + r3M8 − M9

8[1 + 2nh + nc(2 + 3nh)]
,

(B4)

M1 = 2e(−tc1+tc2 )σT 2 (1 + nc)nh

σT 1 + σT 2
− r4e−l2tc1+(−tc1+tc2 )σT 2

l2 + σT 1 + σT 2

− r3e−l3tc1+(−tc1+tc2 )σT 2

l3 + σT 1 + σT 2
,

023237-10



ENTANGLED TWO-PHOTON QUANTUM HEAT ENGINE: … PHYSICAL REVIEW RESEARCH 6, 023237 (2024)

M2 = − r4e−l2tc1

l2 + σT 1
− r3e−l3tc1

l3 + σT 1
+ r4e−l2tc1+(−tc1+tc2 )σT 2

l2 + σT 1 + σT 2

+ r4σT 2 e−l2tc2+(tc1−tc2 )σT 1

(l2 + σT 1)(l2 + σT 1 + σT 2)
+ r3e−l3tc1+(−tc1+tc2 )σT 2

l3 + σT 1 + σT 2
,

M3 = −2(1 + nc)nhe(−tc1+tc2 )σT 2

σT 1 + σT 2
− (−1 + e(tc1−tc2 )σT 1 )σT 2

σT 1(σT 1 + σT 2)

× 2(1 + nc)nh + r3σT 2 e−l3tc2+(tc1−tc2 )σT 1

(l3 + σT 1)(l3 + σT 1 + σT 2)

+ 2(1 + nc)nh

σT 1 + σT 2
,

M4 = 2nh(1 + nc)

σT 1σT 2
(e(2T +tc1−tc2 )σT 1 A1 + A2), (B5)

M5 = eB3 A1 + el2(T −tc2 )A2

σT 1(l2 + σT 2)
,

M6 = eB4 A1 + el3(T −tc2 )A2

σT 1(l3 + σT 2)
,

M7 = eB3 A1 + eB1 A2

(l2 + σT 2)(l2 + σT 2 + σT 1)
,

M8 = eB4 A1 + eB2 A2

(l3 + σT 2)(l3 + σT 2 + σT 1)
,

M9 = 2nh(1 + nc)(e(2T +tc1−tc2 )σT 1 A1 + e−(2T +tc1−tc2 )σT 2 A2)

(σT 1 + σT 2)σT 2
,

(B6)

A1 = 1 − θ (2T + tc1 − tc2), A2 = θ (2T + tc1 − tc2),

B1 = −l2T − l2tc1 − 2T σT 2 − (tc1 − tc2)σT 2,

B2 = −l3T − l3tc1 − 2T σT 2 − (tc1 − tc2)σT 2,

B3 = l2T − l2tc2 + 2T σT 1 + (tc1 − tc2)σT 1,

B4 = l3T − l3tc2 + 2T σT 1 + (tc1 − tc2)σT 1. (B7)

APPENDIX C: TRANSPORT GREEN’S FUNCTION

The nonequilibrium dynamics induced by the two temper-
ature baths in Eq. (A5) can be correctly described by the Pauli
master equations [49]:

ρ̇ii(t ) = −
∑

j j

kii, j jρ j j (t ). (C1)

Here, kii, j j is the population transport matrix element. For
i = j, the kii,ii is positive. Whereas i �= j, the kii, j j is negative.
The population transport matrix elements satisfy the popula-
tion conservation:

∑
i kii, j j = 0.

The evolution of the population terms is governed by the
population Green’s functions:

ρ j j (t ) =
∑

ii

G j j,ii(t )ρii(0), (C2)

where the Gj j,ii(t ) is given by:

Gj j,ii(t ) =
∑

n

ξ
(R)
jn D−1

nn exp (−λnt )ξ (L)
ni , (C3)

where λn is the nth eigenvalue of left and right eigenvector
(ξ (L)

n , ξ (R)
n ) and D = ξLξR is a diagonal matrix. Using (A2) and

(A5), one can obtain the transport Green’s functions used in
the incoherently pumped QHE model:

G33,gg(t ) = 2nh(1 + nc) − (r3e−l3t + r4e−l2t )

2(1 + 2nc + 2nh + 3ncnh)
. (C4)

Here,

r3 = nh[�h − �c(1 + nc)(1 + 2nc) + l5]√
l1

,

r4 = nh[�c(1 + nc)(1 + 2nc) − l6]√
l1

,

l5 = 2�hnh + �hnc(3 + 4nh) + (1 + nc)
√

l1,

l6 = �h[1 + 2nh + nc(3 + 4nh)]−(1 + nc)
√

l1,

l2 = �c + �h + 2�cnc + 2�hnh −
√

l1,

l3 = �c + �h + 2�cnc + 2�hnh +
√

l1,

l1 = (�c + 2�cnc)2 + (�h + 2�hnh)2 − l0,

l0 = 2�c�h[1 + 2nh + 2nc(1 + nh)].

(C5)

Similarly, one can get the population transport Green’s
function used in the second coherently pumped model as:

Ggg,gg(t ) = nc

1 + 2nc
(1 + e−t (1+2nc )2�c ) + 1

1 + 2nc
. (C6)

APPENDIX D: BARE SIGNALS AND
REPRESENTATIONS OF PCC SIGNAL

In the further discussion, we utilize the following Fourier
transformation definition:

F (ω) =
∫

f (t )eiωt dt,

f (t ) = 1

2π

∫
F (ω)e−iωt dω. (D1)

Using gating transformation Eq. (4), we can obtain:

R(34) =
∫

dt ′
1

∫
dτ1D(1)(tc1, ω̄1; t ′

1; τ1)

×
∫

dt ′
2

∫
dτ2D(2)(tc2, ω2; t ′

2; τ2)

×
∑
s,s′

∑
r,r′

〈Ê†
3r′ (t ′

1 + τ1)Ê†
4s′ (t ′

2 + τ2)Ê4s(t
′
2)Ê3r (t ′

1)〉,

(D2)

D(1)(tc1, ω1; t1
′, τ1) =

∫
dω′ 1

2π
e−iω′τ1 |Ff 1(ω′, ω1)|2

× F ∗
t1(t ′

1 + τ1, tc1)Ft1(t ′
1, tc1), (D3)

D(2)(tc2, ω2; t2
′, τ2) =

∫
dω′′ 1

2π
e−iω′′τ2 |Ff 2(ω′′, ω2)|2

× Ft2
∗(t2

′ + τ2, tc2)Ft2(t ′
2, tc2). (D4)

Using Eq. (3), the relation of the output (Ê3, Ê4) and input
(Ê1, Ê2), we can get total signal expression:

R(34) = R34
1 − R34

2 − R34
3 + R34

4 . (D5)
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Here, we note the corresponding components are

R34
1 = 1

4

(
1

2π

)2 ∫
dt ′

1

∫
dw′

1

∫
dt ′

2

∫
dw′

2W
1

D (tc1, ω1; t ′
1,w

′
1)W 2

D (tc2, ω2; t ′
2,w

′
2)

×
∫

dτ1

∫
dτ2e−iw′

1τ1 e−iw′
2τ2

∑
r,r′

∑
s,s′

〈Ê†
1r′ (t ′

1 + τ1)Ê†
2s′ (t ′

2 + τ2)Ê2s(t
′
2)Ê1r (t ′

1)〉, (D6)

R34
2 = 1

4

(
1

2π

)2 ∫
dt ′

1

∫
dw′

1

∫
dt ′

2

∫
dw′

2e−iw′
1T eiw′

2T W 1
D (tc1, ω1; t ′

1 − T,w′
1)W 2

D (tc2, ω̄2; t ′
2 + T,w′

2)

×
∫

dτ1

∫
dτ2e−iw′

1τ1 e−iw′
2τ2

∑
r,r′

∑
s,s′

〈Ê†
1r′ (t ′

1 + τ1)Ê†
2s′ (t ′

2 + τ2)Ê1s(t
′
2)Ê2r (t ′

1)〉, (D7)

R34
3 = 1

4

(
1

2π

)2 ∫
dt ′

1

∫
dw′

1

∫
dt ′

2

∫
dw′

2W
1

D (tc1, ω̄1; t ′
1,w

′
1)W 2

D (tc2, ω̄2; t ′
2,w

′
2)eiw′

1T e−iw′
2T

×
∫

dτ1

∫
dτ2e−iw′

1τ1 e−iw′
2τ2

∑
r,r′

∑
s,s′

〈Ê†
2r′ (t ′

1 + τ1)Ê†
1s′ (t ′

2 + τ2)Ê2s(t
′
2)Ê1r (t ′

1)〉, (D8)

R34
4 = 1

4

(
1

2π

)2 ∫
dt ′

1

∫
dw′

1

∫
dt ′

2

∫
dw′

2W
1

D (tc1, ω1; t ′
1 − T,w′

1)W 2
D (tc2, ω̄2; t ′

2 + T,w′
2)

×
∫

dτ1

∫
dτ2e−iw′

1τ1 e−iw′
2τ2

∑
r,r′

∑
s,s′

〈Ê†
2r′ (t ′

1 + τ1)Ê†
1s′ (t ′

2 + τ2)Ê1s(t
′
2)Ê2r (t ′

1)〉, (D9)

where:

W 1
D (tc1, ω̄1; t ′

1,w
′
1) =

∫
dτ1D(1)(tc1, ω̄1; t ′

1, τ1)eiw′
1τ1 , (D10)

W 2
D (tc2, ω̄2; t ′

2,w
′
2) =

∫
dτ2D(2)(tc2, ω̄2; t ′

2, τ2)eiw′
2τ2 . (D11)

Then the nongated bare signals can be found as:∑
r,r′

∑
s,s′

〈Ê†
1r′ (t ′

1 + τ1)Ê†
2s′ (t ′

2 + τ2)Ê2s(t
′
2)Ê1r (t ′

1)〉,
∑
r,r′

∑
s,s′

〈Ê†
1r′ (t ′

1 + τ1)Ê†
2s′ (t ′

2 + τ2)Ê1s(t
′
2)Ê2r (t ′

1)〉,
∑
r,r′

∑
s,s′

〈Ê†
2r′ (t ′

1 + τ1)Ê†
1s′ (t ′

2 + τ2)Ê2s(t
′
2)Ê1r (t ′

1)〉,
∑
r,r′

∑
s,s′

〈Ê†
2r′ (t ′

1 + τ1)Ê†
1s′ (t ′

2 + τ2)Ê1s(t
′
2)Ê2r (t ′

1)〉. (D12)

These nongated bare signals contain the pure dynamical evo-
lution information of light-matter interactions.

APPENDIX E: DIAGRAMMATIC METHOD RELATED TO
SIGNALS IN THE INCOHERENTLY PUMPED QHE MODEL

We calculate the bare signals in the Liouville space, and the
signals can be described as the time-ordered products of the
superoperators. For each operator B in the Hilbert space, we
associate left superoperator and right superoperator as [50]:
BLX ≡ BX BRX ≡ XB. We also define the commutator su-
peroperator in Liouville space as: B− ≡ BL − BR.

We first use the superoperators to represent the signals
in the Liouville space and after the time ordering taken into
consideration, we should switch back to the ordinary Hilbert
space operators to calculate the signals. According to the

above discussion, we can modify our bare signals in the
Liouville space:∑

r,r′,s,s′
〈Ê†

1r′R(t ′
1 + τ1)Ê†

2s′R(t ′
2 + τ2)Ê2sL(t ′

2)Ê1rL(t ′
1)〉, (E1)

∑
r,r′,s,s′

〈Ê†
1r′R(t ′

1 + τ1)Ê†
2s′R(t ′

2 + τ2)Ê1sL(t ′
2)Ê2rL(t ′

1)〉, (E2)

∑
r,r′,s,s′

〈Ê†
2r′R(t ′

1 + τ1)Ê†
1s′R(t ′

2 + τ2)Ê2sL(t ′
2)Ê1rL(t ′

1)〉, (E3)

∑
r,r′,s,s′

〈Ê†
2r′R(t ′

1 + τ1)Ê†
1s′R(t ′

2 + τ2)Ê1sL(t ′
2)Ê2rL(t ′

1)〉. (E4)

Here, we set the initial state of the system as the ground state
g. Using the perturbative diagrammatic method [43,50,51],
we can get the required dynamical diagrams of the system
dynamics, which meet the requirement of the lowest-order
light-matter interactions in the whole detection process. All
the required diagrams for the incoherently pumped QHE
model are showed in Fig. 8.

APPENDIX F: CALCULATING SIGNALS OF THE
INCOHERENTLY PUMPED QHE MODEL

Note that the total signal R34 comes from four components
as denoted in Eq. (D5). Here we give the derivation of R34

1 ,
and the other components can be calculated similarly. We
note Eq. (D6) gives R34

1 , and the corresponding bare signal in
Liouville space is given by Eq. (E1). The value of bare signal
reflects the light-matter interactions without gating. Feynman
diagrams (a)–(c), and their complex conjugate in Fig. 8 rep-
resent six kinds of quantum dynamical paths contributing to
the bare signal. We denote the bare signal resulting from the
diagram (a) in Fig. 8 as Y1, diagram (b) in Fig. 8 as Y2,
Feynman diagram (c) in Fig. 8 as Y3. Then the results of
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FIG. 8. The double-sided Feynman diagrams represent the pump-probe signal in the whole detection process at the lowest-order light-
matter interactions. There are a total of six pathways that contribute to the pump-probe signal of the incoherently pumped QHE model:
diagrams (a)–(c), and their complex conjugate.

the bare signal according to the diagrams can be found as the following:

Y 1 =
∑
s,s′

∑
r,r′

∫ t

−∞
dt4

∫ t4

−∞
dt3

∫ t3

−∞
dt2

∫ t2

−∞
dt1

1

h̄4 θ (t ′
2 + τ2 − t4)θ (t ′

1 − t1)θ ((t ′
1 + τ1) − t2)θ (t ′

2 − t3)

× 〈Ê1r′R(t2)Ê2s′R(t4)Ê†
1r′R(t ′

1 + τ1)Ê†
2s′R(t ′

2 + τ2)Ê2sL(t ′
2)Ê1rL(t ′

1)Ê†
1rL(t1)Ê†

2sL(t3)〉 × 〈V †
2RG01,01(t4 − t3)V2L

× G11,11(t3 − t2)V †
1RG13,13(t2 − t1)V1LG33,gg(t1)〉, (F1)

Y 2 =
∑
s,s′

∑
r,r′

∫ t

−∞
dt4

∫ t4

−∞
dt3

∫ t3

−∞
dt2

∫ t2

−∞
dt1

1

h̄4 θ (t ′
2 + τ2 − t4)θ (t ′

1 − t2)θ ((t ′
1 + τ1) − t1)θ (t ′

2 − t3)

× 〈Ê1r′R(t1)Ê2s′R(t4)Ê†
1r′R(t ′

1 + τ1)Ê†
2s′R(t ′

2 + τ2)Ê2sL (t ′
2)Ê1rL(t ′

1)Ê†
1rL(t2)Ê†

2sL(t3)〉 × 〈V †
2RG01,01(t4 − t3)V2L

× G11,11(t3 − t2)V1LG31,31(t2 − t1)V †
1RG33,gg(t1)〉, (F2)

Y 3 =
∑
s,s′

∑
r,r′

∫ t

−∞
dt4

∫ t4

−∞
dt3

∫ t3

−∞
dt2

∫ t2

−∞
dt1

1

h̄4 θ (t ′
2 + τ2 − t4)θ (t ′

1 − t1)θ ((t ′
1 + τ1) − t3)θ (t ′

2 − t2)

× 〈Ê1r′R(t3)Ê2s′R(t4)Ê†
1r′R(t ′

1 + τ1)Ê†
2s′R(t ′

2 + τ2)Ê2sL(t ′
2).Ê1rL(t ′

1)Ê†
1rL(t1)Ê†

2sL(t2)〉 × 〈V †
2RG01,01(t4 − t3)

× V †
1RG03,03(t3 − t2)V2LG13,13(t2 − t1)V1LG33,gg(t1)〉. (F3)

Here we take t → ∞ to get all the nonzero detected signals. If we look at the expression:
∑
s,s′

∑
r,r′

〈Ê1r′R(t2)Ê2s′R(t4)Ê†
1r′R(t ′

1 + τ1)Ê†
2s′R(t ′

2 + τ2)Ê2sL(t ′
2)Ê1rL(t ′

1)Ê†
1rL(t1)Ê†

2sL(t3)〉

=
∑

s,s′,r,r′

(
2π h̄ωr′

�

)(
2π h̄ωs′

�

)(
2π h̄ωr

�

)(
2π h̄ωs

�

)
e−iωr′ [t2−(t ′

1+τ1 )]e−iωs′ [t4−(t ′
2+τ2 )]e−iωs (t ′

2−t3 )e−iωr (t ′
1−t1 ). (F4)

Then we approximatively replace the sum with integral considering the multimode fields interaction: �k → ∫
�ω2

π2c3 dω =∫
D(ω)dω. Using the Weisskopf-Wigner approximation [39,43], we can obtain:

D(ωs)

(
2π h̄ωs

�

)
≈ D(ω10)

(
2π h̄ω10

�

)
,

D(ωr )

(
2π h̄ωr

�

)
≈ D(ω31)

(
2π h̄ω31

�

)
.

Then we can find Eq. (F4) becomes:

= (2π )4D(ω10)2D(ω31)2

(
2π h̄ω31

�

)2(2π h̄ω10

�

)2

δ(t2 − (t ′
1 + τ1))δ(t4 − (t2

′ + τ2))δ(t2
′ − t3)δ(t ′

1 − t1).
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Similarly, we can find:
∑
s,s′

∑
r,r′

〈Ê1r′R(t1)Ê2s′R(t4)Ê†
1r′R(t ′

1 + τ1)Ê†
2s′R(t ′

2 + τ2)Ê2sL(t ′
2)Ê1rL(t ′

1)Ê†
1rL(t2)Ê†

2sL(t3)〉

= (2π )4D(ω10)2D(ω31)2

(
2π h̄ω31

�

)2(2π h̄ω10

�

)2

δ(t1 − (t ′
1 + τ1))δ(t4 − (t ′

2 + τ2))δ(t ′
2 − t3)δ(t ′

1 − t2), (F5)
∑
s,s′

∑
r,r′

〈Ê1r′R(t3)Ê2s′R(t4)Ê†
1r′R(t ′

1 + τ1)Ê†
2s′R(t ′

2 + τ2)Ê2sL(t ′
2)Ê1rL(t ′

1)Ê†
1rL(t1)Ê†

2sL(t2)〉

= (2π )4D(ω10)2D(ω31)2

(
2π h̄ω31

�

)2(2π h̄ω10

�

)2

δ(t3 − (t ′
1 + τ1))δ(t4 − (t ′

2 + τ2))δ(t ′
2 − t2)δ(t ′

1 − t1). (F6)

Thus, the Y1, Y2, Y3 can be obtained as the following:

Y 1 = π4

h̄4 D(ω10)2D(ω31)2

(
2π h̄ω31

�

)2(2π h̄ω10

�

)2

〈V †
2RG01,01(τ2)V2LG11,11(t ′

2 − (t ′
1 + τ1))V †

1RG13,13(τ1)V1LG33,gg(t ′
1)〉,

Y 2 = π4

h̄4 D(ω10)2D(ω31)2

(
2π h̄ω31

�

)2(2π h̄ω10

�

)2

〈V †
2RG01,01(τ2)V2LG11,11(t ′

2 − t ′
1)V1LG31,31(−τ1)V †

1RG33,gg(t ′
1 + τ1)〉,

Y 3 = π4

h̄4 D(ω10)2D(ω31)2

(
2π h̄ω31

�

)2(2π h̄ω10

�

)2

〈V †
2RG01,01(t ′

2 + τ2 − (t ′
1 + τ1))V †

1RG03,03(t ′
1 + τ1 − t ′

2)

× V2LG13,13(t ′
2 − t ′

1)V1LG33,gg(t ′
1)〉. (F7)

We can finally get:

R34
1 = 1

4

(
1

2π

)2 ∫
dt ′

1

∫
dw′

1

∫
dt ′

2

∫
dw′

2W
1

D (tc1, ω̄1; t ′
1,w

′
1)W 2

D (tc2, ω̄2; t ′
2,w

′
2)

×
∫

dτ1

∫
dτ2e−iw′

1τ1 e−iw′
2τ2 (Y 1 + Y 2 + Y 3) + c.c. (F8)

Using Eqs. (B1), (B2), (D3), (D4), (D10), (D11), (F7), and
(F8), we can obtain the explicit expression of R34

1 . Similarly,
we can get R34

2 , R34
3 , R34

4 . Then the total signal expression
can be found according to Eq. (D5) and has been given in
Appendix B.

APPENDIX G: BASIC TREATMENT OF LIGHT-MATTER
INTERACTIONS IN THE COHERENTLY

PUMPED QHE MODEL

The main structure of the total Hamiltonians is the same
as the previous case. The modification is the interaction
Hamiltonian because we have both classical pump field and
quantum probe fields:

Hcl = E∗
p (t )λ0|g〉〈3| + Ep(t )λ0|3〉〈g|

= E∗
p (t )Vg + Ep(t )V †

g ,

Hintqm = Ê†
1V1 + Ê1V

†
1 + Ê†

2V2 + Ê2V
†

2 . (G1)

The cold bath interaction is introduced the same as in
Appendix A. We choose the resonant laser pump pulse with
envelope σ and amplitude E0 as:

Ep(t ) = θ (t )E0e−σ t−iwt ,

E∗
p (t ) = θ (t )E0e−σ t+iwt .

(G2)

In the interaction picture respect to the optical quantum fields,
we can obtain the total interaction Hamiltonian as:

Hint(t ) = Hintqm(t ) + Hcl . (G3)

Under the circumstance of the coherently pumped model,
we can find the corresponding dynamical diagrams contribut-
ing to ρ33(t ) are given in Fig. 9. Then we get the perturbative
ρ33(t ) to second order:

ρ33(t ) = 2

h̄2 Re
∫ t

−∞
dt2

∫ t2

−∞
dt1E∗

p (t1)Ep(t2)〈G33,33(t − t2)

× VgL
†Gg3,g3(t2 − t1)VgRGgg,gg(t1)〉. (G4)

Following the analysis in the incoherently pumped QHE
model, we can take the same methods and diagrammatic

FIG. 9. Two diagrams represent a total of two conjugate path-
ways contributing to ρ33 in the coherently pumped model.
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FIG. 10. There are a total of twenty pathways contributing to the pump-probe signal of the coherently pumped QHE model: diagrams
(a)–(j), and their complex conjugate.

representation to calculate the PCC signal. All the required
independent diagrams related to the coherently pumped case
are showed in Fig. 10. There are 20 pathways contributing to

the pump-probe signal of the coherently pumped QHE model.
Figure 10 shows ten independent diagrams and omits their
complex conjugate.
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