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Modern micromanipulation techniques typically involve trapping using electromagnetic, acoustic, or flow
fields that produce stresses on the trapped particles thereby precluding stress-free manipulations. Here, we
show that by employing polyhedral symmetries in a multichannel microfluidic design, we can separate the
tasks of displacing and trapping a particle into two distinct sets of flow operations, each characterized and
protected by their unique groups of symmetries. By combining only the displacing uniform flow modes to
entrain and move targeted particles in arbitrary directions, we were able to realize symmetry-protected, stress-
free micromanipulation in 3D. Furthermore, we engineered complex, microscale paths by programming and
controlling the flow within each channel in real time, resulting in multiple particles simultaneously following
desired paths in the absence of any supervision or feedback. Our work therefore provides a general symmetry-
group-based framework for understanding and engineering microfluidics and a novel platform for 3D stress-free
manipulations.

DOI: 10.1103/PhysRevResearch.6.023234

I. INTRODUCTION

Microfluidics enables the study of the behavior, control,
and manipulation of microscale flows typically using de-
vice architectures comprising channels and junctions as their
building blocks [1–4]. Desired flow structures and microflu-
idic functions such as transporting and mixing chemicals
[5], shaping flow profiles [6,7], encapsulating multiphase
fluids [8,9], and trapping microparticles [10,11] are incorpo-
rated through the geometry of these building blocks and the
topology of their assemblies [12–15]. Despite this increased
complexity, our understanding of these microfluidic functions
is mostly achieved in a case-by-case fashion relying on ac-
tual experimental measurements or on computational fluid
dynamics (CFD) studies using detailed experimental geome-
tries. A unified framework that allows us to understand how
these complex flow structures emerge from simpler, more
fundamental flows would prove extremely useful for the fast,
modular development of rationally designed flow structures
and associated microfluidic functions.

Symmetry is a concept that has been used to understand
phenomena and structures in disciplines ranging from fun-
damental physics to viral structure [16–18]. In the realm
of microscale flows, symmetries are essential features of
representative flow structures, such as the helical symme-
try in swimming microorganisms [19,20] and the reflection
symmetry applicable in many hydrodynamic interactions
[21,22]. These symmetries have profound implications with
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helical symmetry giving rise to swimming motility in bacterial
species due to the breaking of kinematic reversibility while
the reflection symmetries possessed by a pair of microswim-
mers constrain their synchronization and thus their collective
motion. Such considerations applied to microfluidic systems
could allow us to uncover very general results independent
of system details. Recent work on multi-channel microflu-
idic junctions and open-space microfluidics have shown that
their main flow structures can be obtained from the potential
flows around charges representing the channels’ ports, without
consideration of detailed channel geometries [11,23]. This
simplification has revealed intriguing flow structures that en-
able rich microfluidic applications, such as flow-driven traps
for particle manipulation and dynamic confinements of fluid
into multipolelike networks. Additionally, certain combina-
tions of rotation and reflection symmetries have been applied
both analytically and numerically to a multi-port microfluidic
junction to eliminate strain components at the junction center,
giving rise to potentially perturbation-free micromanipula-
tions [24]. All the above implications of symmetries suggest
the feasibility of using a more generalized symmetry-based
approach, i.e., the symmetry group, for a more fundamental
understanding of the origins of these symmetries and ways to
manipulate them for specific functions.

One of the most desirable of these microfluidic functions
is manipulating flow structures that allow the displacement
of individual microscale objects along arbitrary paths [25].
Typically, micromanipulation techniques involve trapping
particles using electromagnetic, acoustic, or flow fields that
produce restoring forces in the vicinity of the trap [26–29]. For
example, in cases where hydrodynamic flow alone is used for
trapping, previous studies have shown that a Stokes trap can
be achieved by managing the locations of hyperbolic points
through multiple channels that intersect at a middle junction
[11]. The location of such a trap can be dynamically adjusted
to realize the direct manipulation of trapped particles, which
has also been extended to 3D flows very recently [30].
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FIG. 1. Trap-associated vs trap-free manipulations of microscale particle through surrounding flows. (a) In trap-associated manipulations,
a manipulated particle is led by a fluid “trap” or guided by the local flow director [zoomed-in 2D views (i) and (ii) in the inset, respectively]
along the desired pathway (shown in the thick curve), surrounded by overall divergent flows (with speeds of fluid tracers shown in colors)
due to its trapping nature. The stress distribution around the particle (with dashed circles showing target positions) is intrinsic to the far-field
flow topology (inset), with compression (in red) and extension (in blue) along orthogonal axes, independent of its relative position to the trap.
(b) An ideal perturbation-free manipulation is achieved by entraining the particle in a uniform flow field. All surrounding fluid flows in parallel
paths at identical velocities and leaves the entrained particle stress-free (in blank color).

Computation-assisted feedback-control has also enabled
manipulations of particles along local flow fields without the
explicit employment of a hyperbolic point [25,31]. The dis-
placements of particles can be adjusted by aligning the local
flow field with the moving directions of particles. However,
even without the presence of a local hyperbolic point, trap-
ping and displacement are inextricably coupled. As illustrated
in Fig. 1(a), flow fields far from these locally hyperbolic-
point-free flows can be divergent, leading to inevitable stress
perturbations on any manipulated objects. It is worth not-
ing that the stress distribution on the particle is intrinsic to
the far-field hyperbolic topology [32]. Even for a flow field
that appears uniform, e.g., within a locally trap-free zone in
Fig. 1(a) inset, the stress distribution on the entrained particle
is identical to that within the trap, regardless of their relative
displacement. These stressful perturbations thus restrict such
approaches to studying stress-insensitive phenomena. Scaling
such approaches with traps or local flow vector fields to si-
multaneously manipulate large numbers of particles is also
a challenge. Here, we explore the use of symmetry groups
to guide the design of microfluidics that enable multiplexed
and stress-free manipulation, which is characterized by a
truly uniform flow field around the manipulated particle(s)
[Fig. 1(b)]. Distinct from the above locally uniform flows (as
exemplified in Ref. [31]), the instantaneous flow field here is
strictly parallel and straight, avoiding any hyperbolic point in
the far field or even outside the microfluidic boundaries (as
depicted through symmetries, shown below). Specifically, we
identify and characterize microfluidic flow structures based on
symmetry groups, which allow us to distinguish and robustly
realize fundamentally different microfluidic functions.

II. SYMMETRIES IN MICROFLUIDIC SYSTEMS

A. 2D Microfluidic symmetries

We start with a cross-channel junction for its well-
understood microfluidic functions and relatively simple sym-
metries. Here, the four ports of identical channels (with flow
rates fi, i = 1, 2, 3, 4) form a square [Fig. 2(a)], and there-
fore its flow structures in the plane are restricted by the
symmetry of a square. An arbitrary flow pattern generated
by a combination of { fi} at this junction corresponds to a
set of identical flow manipulations through certain rotations
or reflections (Appendix B). All such possible rotations or
reflections (including the trivial identity operation) form a
dihedral-4 (D4) symmetry group [16], which restricts the pos-
sible flow patterns. This D4 group thus represents the flow
manipulation functions in a cross-channel junction. How do
the D4 group elements map to the actual flow functions? Anal-
ogous to the subgroups contained in one symmetry group,
these flow manipulation functions are reducible into smaller
classes with unique features. We note first that there are only
three independent flow modes, resulting from the number of
controls (four channels) minus the number of constraints (one
associated with the conservation of volume, i.e.,

∑4
i=1 fi =

0). Through inspection, one can readily identify these three
modes, forming two classes of flow functions. First, fluxes
with opposite signs through a pair of opposing channels give
rise to displacement flows along two orthogonal directions (x
and y), corresponding to two fundamental modes [Fig. 2(b)].
Second, fluxes with same sign through both pairs of opposing
channels provide one more fundamental elongation flow mode
[Fig. 2(c)]. Any flow profile produced in this junction [with
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FIG. 2. Functional classification of a cross-channel microfluidic junction. (a) A 2D CFD simulation of the flow pattern (with streamlines
in solid curves and speed |u| in colors) from an arbitrary flux setting ( f1 - f4 at four ports) can be decomposed into three linearly independent
flow modes: (b) two orthogonal displacement flow modes, and (c) one elongation flow mode. (d) The flow pattern in (a) is reproduced by a
flow potential φ associated with fluid sources (or sinks) at the four corners of a square (q1 - q4). The square symmetry gives rise to (e) two
degenerate dipole modes equivalent to two displacement modes in orthogonal directions, and (f) one quadrupole mode equivalent to elongation
flow.

an example shown in Fig. 2(a)] must be a combination of
these three flow modes. However, none of these fundamental
modes can be generated by combining any of the rest, a con-
sequence of their linear independence. Importantly, the two
displacement modes have a reflection symmetry (along 45◦
from the x axis), forming a reflection group D1 or a cyclic
group C2, which is known to be a subgroup of the D4 group
[33]. The single elongation flow mode also represents a trivial
subgroup of D4 that contains only the identity operation. In
addition to forming different subgroups, these two classes of
flows also have distinct characteristic functions, here displace-
ment versus elongation. To abstract these functions from the
detailed flow geometries, we map the cross-channel junction
to a square, where the flux at each channel is mapped to an
effective charge at each lattice site (q1, q2, q3, q4), represent-
ing a pointlike fluid source (positive) or sink (negative). The
flow field is thus well-defined as a potential flow, with the
flow velocity u given by the gradient of the potential φ, i.e.,
u = ∇φ. Since the classes of flow functions are independent
of the choice of coordinates, the candidate quantities for such
purposes are the strain rate invariants [34] that do not change
under any rotation of the microfluidic device. The first-order
invariant I1, which is the trace of the rate of strain tensor γ̇ ,
is trivial and vanishes for incompressible fluids. We therefore
consider the first nontrivial invariant I2 = − 1

2 Tr(γ̇ 2). For a 2D
potential flow with a total number of N = 4 sources and sinks
(with magnitudes {qi}, located at {ri}), the scalar potential
can be expressed as φ(r) = ∑4

i=1 qi ln(|r − ri|). Since the rate
of strain is linearly related to the magnitudes of sources (or
sinks), we can show (Appendix C) that the invariant I2 at
the center of the junction has a quadratic form with respect

to qi, i.e., I2 = ∑4
i, j=1 Li jqiq j , where Li j is the element of a

coupling tensor, depending on the distance between the pair
of qi and q j . On a square, there are only two possible types
of pairs: pairs along the lateral sides or along the diagonals.
With these considerations, we can show (Appendix C) that
the L tensor has the form

L =

⎡
⎢⎢⎣

0 a b a
a 0 a b
b a 0 a
a b a 0

⎤
⎥⎥⎦. (1)

Elements “a” and “b” are symbolic representations of the
above lateral and diagonal couplings, respectively, forming a
symmetric circulant matrix for L. A circulant matrix has all
the same rows with each row being rotated one element to the
right relative to the row above. One mutual eigenvector for
any circulant matrix corresponds to the trivial mode where all
four charges are identical, i.e., (q1, q2, q3, q4) = (1, 1, 1, 1).
This mode cannot be accessed by a fluid system due to the in-
validation of the continuity condition. This leaves N − 1 = 3
nontrivial eigenmodes (all satisfying

∑4
i=1 qi = 0), in agree-

ment with the degrees-of-freedom argument. Every nontrivial
mode exhibits a one-to-one map to the fluidic manipulation
function as previously classified through subgroups of the
D4 group [Fig. 2(d)]. It is worth noting that a hyperbolic
point outside the original fluid boundary [indicated by dashed
lines in Fig. 2(d)] becomes visible through this symmetry
representation of the flow, identifying any potential “trapping”
component of a flow pattern. More specifically, the degen-
eracy of two orthogonal dipoles corresponds to a common
displacement function of the flow along orthogonal directions
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FIG. 3. Microfluidic devices with 3D symmetries. (a) Fluid
sources (or sinks) following a tetrahedral symmetry (q1 - q4) can be
classified into three degenerate functions, (b) a mix of dipole p and
quadrupole Q in each of the three orthogonal directions, representing
simultaneous displacement and elongation of the fluid. (c) Fluid
sources (or sinks) following an octahedral symmetry (q1 - q6) can
be classified into two subgroups: (d) three dipoles along orthogonal
directions (x, y and z) and (e) two quadrupoles in orthogonal planes
(e.g., x-y and x-z), contributing to separate displacement and elonga-
tion functions.

[Fig. 2(e)]. The remaining quadrupole-like mode is nondegen-
erate and maps to the elongation function [Fig. 2(f)].

B. 3D Microfluidic symmetries

As demonstrated above, the eigenvalue analysis of the
stress invariant (I2) provides an automatic strategy of clas-
sifying microfluidic functions, which we now extend to 3D
structures to incorporate more sophisticated symmetries. The
potential flow now adopts its 3D form with N sources, φ(r) =∑N

i=1 − qi

|r−ri| . For relatively more practical applications in mi-
crofluidics, we consider here the 3D symmetries contained in
structures with fewer vertices, namely the tetrahedron (N = 4)
and the octahedron (N = 6).

A tetrahedron has a permutation S4 symmetry [33], corre-
sponding to an unaltered structure (identical through rotation
and reflection) by permuting all four vertices [Fig. 3(a)].
The eigenvalue analysis shows that all three eigenmodes for
this tetrahedron are degenerate [Fig. 3(b)], due to equivalent
neighbors for every vertex. These three modes together rep-
resent a threefold rotation symmetry group (C3) (achieved
by 120◦ rotation about any of the face norms), which is a
subgroup of S4. Notably, the potential flow of such a mode
exhibits a mixture of dipole and quadrupole moments [upper
Fig. 3(b)], leading to a microfluidic function corresponding
to simultaneously displacing and elongating (transverse to the
displacement axis) the fluid within the junction. To obtain a
purely displacing flow in 3D, we therefore look to the next
available polyhedral symmetry, i.e., the octahedral symmetry.

An octahedron [Fig. 3(c)] can be formed by the middle
points of the six edges of a tetrahedron [Fig. 3(a)]. Its sym-
metry group is isomorphic to S4 × C2, with the additional
symmetry arising from an extra twofold rotation symmetry
that is absent for a tetrahedron [Fig. 3(a)] [33]. A similar
eigenvalue analysis leads to two groups of degenerate modes,
corresponding respectively to dipoles and quadrupoles. The
three degenerate dipole modes (px, py, pz) are orthogonal in
direction, corresponding to a C3 group (through 120◦ rotation
about any of the face norms), one subgroup of the octahedral
symmetry group [33]. In such dipole modes, a pair of effec-
tive charges along the diagonal (e.g., q1 and q2 for px) have
opposite signs (with the rest of the charges being neutral),
corresponding to the activation of a pair of a source and a
sink. The two degenerate quadrupoles are distributed in two
perpendicular planes (here, x-y and x-z planes), forming a D1
subgroup (switchable by a reflection along the middle plane
between x-y and x-z planes). In such quadrupole modes, a
pair of sources and a pair of sinks along two diagonals are
activated. It should be noted that an equivalent quadrupole in
the y-z plane can be achieved by superimposing the above
two quadrupoles, and is thus not one of the eigenmodes.
Analogous to the square symmetry in the 2D case, the octahe-
dral symmetry gives rise to completely separate displacement
and elongation flow functions [Figs. 3(d) and 3(e)], classified
by distinct symmetries. The pure-dipole-like potential in the
displacements also ensures that the rate-of-strain invariant I2

is zero in the middle of the junction. Thus, a superposition of
these three displacement flow modes generates 3D omnidirec-
tional flows while preserving the stress-free condition (at least
in the middle of the junction).

III. REALIZING 3D STRESS-FREE MICROFLUIDIC
MANIPULATIONS

A. Omnidirectional stress-free flows

To realize such a stress-free microfluidic junction while
enabling microscope observation, we rotate the octahedron so
that one of its faces [e.g., (1,1,1) axis] is aligned along the
visualization axis (z′). This rotated geometry fits well into a
double-layer microfluidic design [24]: six channels (0.5 mm
wide and 0.3 mm deep in cross-sections) at two elevations
intersecting a middle cylindrical chamber (with radius R =
1.0 mm and height H = 1.6 mm) along the radial directions,
with the locations of intersections matching that of the octa-
hedral vertices [Fig. 4(a)]. This rotation is also determined by
the coordinates of the laboratory frame of reference (x′, y′, z′),
with a radial channel (here, f1) aligned along the x′ axis.
We fabricated the microfluidic channel part of this device by
fusing multiple sheets of laser-etched glass (Citrogene, Inc.,
see Appendix A), which was then mounted on a customized
adapter for flow control and microscopy.

To ensure that a displacement flow can be robustly created
in all possible directions, we first considered flows along the
three orthogonal axes (x′, y′, z′) of the laboratory coordi-
nates forming the basis of the velocity space. The potential
representations (isosurfaces) of these orthogonal flows (along
x′, y′, and z′) are shown in Fig. 4(b), which are linear combi-
nations of the above three degenerate dipole modes with their
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FIG. 4. Realization of the octahedral symmetry in 3D microfluidics. (a) An octahedron viewed along its original (1,1,1) axis (inset) is
converted into a microfluidic junction with all sources (or sinks) distributed at two planes perpendicular to the imaging axis z′. (b) The dipole
flows in microscope coordinates (x′, y′, z′) are obtained by linear combination of the three orthogonal dipole modes [Fig. 3(d)], with their
experimental realizations shown in (c), (d), and (e), respectively. The axial z′ positions of the seeding particles are obtained by correlating their
phase-contrast images (projected in the bottoms of volumes) with a calibrated library of diffraction patterns.

coefficients (c1, c2, c3) being 1√
6
(2,−1,−1), 1√

2
(0, 1,−1),

and 1√
3
(1, 1, 1), respectively. In experiments, these effective

charges are realized by independently offsetting the fluid
pressure on the corresponding channel using two 4-channel
piezoelectric regulators (Elveflow OB1 MK3+), with a pos-
itive offset for a positive charge (or source) and a negative
offset for a negative one (or sink). Custom software was
programed to convert the above flow coefficients into actual
pressure settings for flow generation (Appendix A). The three
orthogonal flows (x′, y′, z′) were successfully generated in our
microfluidic device, within the same volume near the center
[Figs. 4(c)–4(e)], as demonstrated by the 3D traces of the
seeding particles (Appendix A). Despite their different ge-
ometries in flow dipoles [Fig. 4(b)], these flows are all uniform
over almost the entire 3D volume (≈200 µm × 200 µm ×
150 µm) captured by the microscope, demonstrating the ex-
perimental realization of a robust “stressless” condition that is
guaranteed by symmetry.

B. Dynamic stress-free micromanipulations

To further investigate the experimental capacity of such
stress-free microfluidics, we incorporated temporal depen-
dence in the flow by dynamically varying the pressures on
all channels. To facilitate this time-dependent control, we
represented each possible configuration of the displacement
flow by its coefficients (c1, c2, c3) when expressed in terms
of three degenerate dipole modes, which essentially form a
3D phase space [Fig. 5(a)]. Any time-dependent flow manip-
ulation can thus be generated by a series of points in this

phase space (Appendix D). Noting that an axial (z′) flow is
represented by a vector along the 1√

3
(1, 1, 1) direction in the

phase space, all orthogonal flows must satisfy c1 + c2 + c3 =
0, which restricts all horizontal (or in-plane) displacement
flows to a plane in the phase space. Hopping in this plane
with equal angular separations and distances with respect to
the origin (0,0,0) gives rise to polygon-shaped flow patterns,
for instance, a triangle, a square and a circle in the continuum
limit [Figs. 5(b)–5(d), movies S1–S3 [35]]. Such patterns are
almost identical for all seeding particles, with the fluid in the
bulk translating like a piece of solid.

By incorporating phase spaces out of the c1 + c2 + c3 = 0
plane, we also generated time-dependent flows in 3D. For
instance, imposing an oscillatory z′ motion (with doubled
frequency) to the above circular mode gives rise to a 3D flow
that represents a Lissajous curve [Fig. 6(a), movie S4 [35]].
Invariably, individual seeding particles within the volume of
observation trace out the same pattern as desired. demonstrat-
ing the robustness of the stressless condition even under 3D
dynamic control.

To assess the flow uniformity, we center the trajectory
of every seeding particle within the entire volume and
show them side by side. It is clear that these trajectories
overlap with each other very well over a full period.
In perfectly stress-free flows, all trajectories must be
identical, leaving no deviation from the mean path. We
thus defined a characteristic strain based on the deviation
from the mean trajectory, i.e., ε(t ) = deformation/size =
�r̃(t )/�r(t ), where �r ≡ √〈(r − 〈r〉) · (r − 〈r〉)〉 and
�r̃(t ) ≡ √〈(r̃ − 〈r̃〉) · (r̃ − 〈r̃〉)〉 are the fluctuations of
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FIG. 5. Dynamic stress-free displacement flows in 2D. (a) Stress-free displacement flows were controlled in a phase space (c1, c2, c3), as
the components of three orthogonal dipole modes. Traces in the c1 + c2 + c3 = 0 plane of this phase space correspond to in-plane flows (in the
x′-y′ plane) in the real space. The dashed lines correspond to instantaneous transitions between discrete states (dots) of the flow with the arrow
showing the transition directions, forming a triangle, a square, and a circle in the continuous limit. The corresponding motions of the flow are
shown in (b), (c), and (d), respectively, with individual seeding particles shown in different colors. The periods of these patterns are 3 s, 4 s,
and 4 s, respectively.

displacements of all particles (r) before [Fig. 6(a)] and
that (r̃) after [Fig. 6(b)] centering, with operators 〈·〉
corresponding to spatial averages. As shown in Fig. 6(c),
such characteristic strains are of the order of ε ∼ 10−2 for
typical 3D manipulations, illustrating the nearly stress-free
condition.

FIG. 6. 3D stress-free and multiplexed manipulation. (a) A de-
sign of the 3D Lissajous pattern (inset, with 3D positions in color
and 2D projections in gray) was realized in the flow by incorporating
additional axial motion into the circular pattern [Fig. 5(d)], with all
seeding particles in the view tracing out the desired 3D pattern (in
8 s). (b) Visualized trajectories (gray curves) of seeding particles (11
particles shown) within the 3D view (200 µm × 200 µm × 150 µm
in x′ × y′ × z′) were overlaid and exhibited a fair degree of unifor-
mity. (c) A characteristic strain ε computed along the manipulation
path further confirms the uniformity (with ε bounded by 2%) of the
manipulation flows.

The agile flow responses to the controlling pattern in the
phase space indicate a direct map of the phase space to
the real velocity space. The previously mentioned control in
phase space can thus be generalized to arbitrary flow motions
to realize more sophisticated manipulation capabilities. To
demonstrate this concept, we combine both continuous mo-
tions and discrete hops in the phase space (or the velocities)
to manipulate, in a stress-free manner, individual particles
for “printing” discrete letters (here, “UCM”) onto the focal
plane. Each letter was traced out by combining motions (along
smooth curves) and hops (at the corners of the letter) in the
phase space. The discrete gaps between adjacent letters were
achieved by abruptly offsetting the fluid in the axial direction
so that the previously focused particles were moved away
from the focal plane before their reappearance for “printing”
the next letter. As shown in Fig. 7, this “printing” task can
indeed be achieved in our stress-free microfluidic channel,
which further demonstrates its versatile manipulation capabil-
ities (movie S5 [35]).

FIG. 7. More complex 3D flow manipulations were demon-
strated by rapidly imprinting the “UCM” (with its design shown
in the inset) onto the focal plane by seeding particles, which are
color-coded in time (over 23 s). Some of those particles initially out
of the focal plane imprint the connecting lines (blue segments in the
inset) between letters. The scale bar shows 20 µm.
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IV. DISCUSSION

Our results show a substantial role for symmetry groups
in classifying microfluidic functions. These symmetry-group-
protected functions are insensitive to detailed geometries,
which we exploited to realize 3D stress-free flows in a mi-
crofluidic device. Such flows are qualitatively different from
all available micromanipulation approaches, where physical
traps of certain forms must be present, resulting in stresses on
the manipulated objects. Both the stress-free modes and the
stressful modes can be characterized by distinct subgroups of
a group of polyhedral symmetry (possessed by the microflu-
idic device), suggesting independent transport and trapping in
microfluidic manipulations.

From our experimental observations, these stress-free
flows are demonstrated by extremely parallel trajectories of
the manipulated particles, regardless of the detailed curva-
tures of the trajectories. This enables us to achieve truly
multiplexed stress-free manipulations, a significant challenge
for trap-based approaches. It is worth noting that our tra-
jectories inevitably deviate from the ideal geometries due
to the absence of feedback controls. Meanwhile, any poten-
tial differences (e.g., different flow resistances) among the
six channels lead to channel-sensitive responses to applied
pressures, which ultimately modifies our time-dependent flow
patterns. Remarkably, these “defects” in manipulations do
not alter the uniformity in the flows (with all particle tra-
jectories remaining parallel), suggesting the robustness in the
symmetry-protected flows.

Our work therefore opens up new avenues of experiments
on microscopic phenomena that occur in truly stress-free
flows. Combinations of the above subgroups easily lead to
other subgroups with higher orders (e.g., the C4 subgroup of
the D4 group), associated with flow characteristics more than
the strain invariants at the center. Flow patterns belonging to
these subgroups maybe coordinated in time to form a mutual
impact on the manipulated flow, e.g., creating a “mean” vortex
that is absent from steady potential flows. These advanced
symmetry features and flow manipulation functions will be
explored in our future work.
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APPENDIX A: EXPERIMENTAL METHODS

1. Microfluidic fabrication and its assembly
for microscope observations

The microfluidic channel was fabricated as a stack of glass
sheets (0.13–1 mm thick), with each containing a special pat-
tern of channels. We made the design of these sheets through
a computer assisted design (CAD) software (Autodesk Fu-
sion 360), which were then sent to Citrogene for fabrications
of these customized sheets in borosilicate glass and their

integration into one single multilayer microfluidic chip (using
optically clear adhesives). The overall exterior dimension of
the microfluidic chip is compact, here, 62 mm × 22 mm ×
2.7 mm in x, y, and z, comparable to the footprint of a typical
glass slide. The chip was also designed to be self-enclosed,
leaving only 6 small pores (1 mm in diameter) open for ac-
cessing the microfluidic flows. A 0.13 mm thick glass sheet at
the bottom layer sealed the microfluidic channels and enabled
high optical quality for conventional microscope observations.
Before being connected to a multichannel pump, the glass
chip was mounted to a customized adapter for better sealing
results.

2. Multiple-channel flow controls

Flows within the multilayer microfluidic channel were
generated by two four-channel microfluidic flow controllers
(Elveflow OB1 MK3+) with each channel’s pressure regu-
lated independently between −0.9 and 1 bar relative to the
atmospheric pressure. A custom program (written in PYTHON)
was used to modulate the pressures on each channel and
record the microscope image in real time. To accommodate
the finite resolution of our pressure controllers, here 120 µbar,
we used a water-glycerol mixture to increase the viscosity of
the fluid in the microfluidic channel, which maintained the
flow speed within a reasonable range for microscope observa-
tions while using a decent fraction of the pressure range.

3. Microscope imaging and three-dimensional
flow reconstructions

The microfluidic flows were visualized by mixing the fluid
with polystyrene beads (2 µm in diameter) as seeding par-
ticles, imaged under an inverted microscope (Nikon Eclipse
Ti2) at a 60× magnification, operated in its phase-contrast
mode. These phase-contrast images were recorded by a USB
Scientific CMOS (sCMOS) video camera (Andor Zyla 4.2) in
full resolution (2048 × 2048 pixels) at 50 fps. The diffraction
pattern of each seeding particle was visible within a range of
160 µm along the optical axis, which were calibrated to restore
the axial positions of all seeding particles in the view [36],
forming a sizable (at least 200 µm × 200 µm × 100 µm)
visible zone of the 3D flow field.

APPENDIX B: MICROFLUIDIC REPRESENTATIONS
OF SYMMETRY GROUPS

The possible ways of generating essentially equivalent fol-
low patterns (regarding their functions) define the symmetry
of a microfluidic device. For instance, a random flow (with
the same pattern) can be generated in a total of eight different
ways in a four-channel cross junction (Fig. 8). These eight
ways compose the symmetry group of a dihedral-4 (D4) sym-
metry [37]. A subset within this group can also be arranged
to form a smaller group of symmetry, a subgroup of the D4
group. For instance, either the upper or the lower row forms a
cyclic-4 (C4) symmetry, with each element accessible through
a fourfold rotation. A pair of adjacent elements along the
vertical or the horizontal direction forms a D1 subgroup (for
the reflection symmetry along the horizontal axis). A pair of
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FIG. 8. Symmetry in a four-channel microfluidic junction. A
total of eight equivalent flow patterns (regardless of rotation and
reflection) are accessible in the same microfluidic junction, repre-
senting a D4 symmetry.

the adjacent elements along the diagonals also forms a D1
subgroup, however, for a reflection along a certain 45◦ axis.

APPENDIX C: SYMMETRIES IN THE STRAIN-RATE
INVARIANT

We consider a junction in a microfluidic device actuated by
a set of infinitesimal sources or sinks and ignore the detailed
boundary condition. The flow can thus be characterized by a
potential flow set by fluid sources [38]. For a 2D junction,
the flow velocity u can be determined from a potential φ as
[11,23]

u(r) = ∇φ(r), (C1)

φ(r) =
N∑

i=1

qi ln(|r − ri|), (C2)

where qi and ri = (xi, yi ) are the magnitude and location of
each source, respectively. Consequently,

u(r) =
N∑

i=1

qi
r − ri

|r − ri|2
. (C3)

The rate of strain tensor of the flow is thus

γ̇ = 1

2
[∇u + (∇u)
], (C4)

γ̇ =
N∑

i=1

qi

|r − ri|2
[

I − 2
(r − ri )(r − ri )

|r − ri|2
]
. (C5)

Since a function of a microfluidic device should be inde-
pendent of the choice of coordinates, we consider the invariant
of the rate of strain tensor [34]. The first nontrivial invariant is
its second-order invariant

I2 = − 1
2 Tr(γ̇ 2). (C6)

From the scaling, it can be shown that the invariant I2 has a
quadratic form of qi, i.e.,

I2(r) = q
 · L(r) · q =
N∑

i, j=1

Li j (r − ri, r − r j )qiq j, (C7)

where Li j is a function of r − ri and r − r j , which can be
obtained explicitly by the above expressions.

Explicit construction of the second-order invariant is
straightforward. Squaring Eq. (C5), we find

γ̇ 2 =
∑
i, j

qiq j

|r − ri|2|r − r j |2
[

I − 2
(r − ri )(r − ri )

|r − ri|2 − 2
(r − r j )(r − r j )

|r − r j |2 + 4
(r − ri )(r − ri ) · (r − r j )(r − r j )

|r − ri|2|r − r j |2

]
. (C8)

Then, taking the trace we conclude

I2 = −1

2
tr(γ̇ 2) =

∑
i, j

− qiq j

2|r − ri|2|r − r j |2
[
−1 + 4

[
(r − ri ) · (r − r j )

]2

|r − ri|2|r − r j |2
]
. (C9)

Finding those independent flow modes (functions) thus
becomes an eigenvalue problem. The symmetries of a mi-
crofluidic junction are embedded in the L(r) matrix. We
consider here the invariant at the center of the junc-
tion, I2(0), where most symmetries in a device must
apply.

For fluid sources lying on the four corners of a square, the
matrix L(0) complies with the symmetries of a square, i.e., the
D4 group. The L(0) matrix that satisfies this symmetry group
can be represented by

L(0) =

⎡
⎢⎢⎣

0 a b a
a 0 a b
b a 0 a
a b a 0

⎤
⎥⎥⎦. (C10)

Such a matrix belongs to the category of circulant matrices
[39], and the eigenvectors are expressed in the following:

v1 = 1√
2
(1, 0,−1, 0),

v2 = 1√
2
(0, 1, 0,−1),

v3 = 1
2 (1,−1, 1,−1),

v4 = 1
2 (1, 1, 1, 1).

Here, the first two modes are degenerate, corresponding to
two dipole moments in orthogonal directions. The third mode
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FIG. 9. Pressure regulations for stress-free microfluidic flows. (a) Six smooth time-dependent pressure curves P1 - P6, normalized by
the maximal pressure Pmax = 11 mbar, were designed (as functions of time t) and applied to a six-channel microfluidic device (inset).
Here, the curves correspond to the ideal ones for generating a 3D Lissajous flow (with a period T = 8 s). (b) The actual pressures monitored
(by the pressure regulator) during the experiment show a consistent pattern.

corresponds to a quadrupole. The fourth mode is trivial and is
excluded due to its contradiction with the continuity condition
(for incompressible flows). It is worth noting that the diagonal
zeros in L(0) can be replaced by any values, which only offset
all eigenvalues by a constant.

The matrix L(0) can be explicitly found. We take as a
choice of fluid locations a radial displacement l/

√
2 (for a

square with lateral length l)

r1 = l/
√

2x̂, (C11)

r2 = l/
√

2ŷ, (C12)

r3 = −l/
√

2x̂, (C13)

r4 = −l/
√

2ŷ. (C14)

From Eq. (C9), these locations yield

L(0) = − 2

l4

⎡
⎢⎢⎣

3 −1 3 −1
−1 3 −1 3
3 −1 3 −1

−1 3 −1 3

⎤
⎥⎥⎦ (C15)

= − 2

l4

⎛
⎜⎜⎝3I +

⎡
⎢⎢⎣

0 −1 3 −1
−1 0 −1 3
3 −1 0 −1

−1 3 −1 0

⎤
⎥⎥⎦

⎞
⎟⎟⎠, (C16)

thus matching the anticipated form of Eq. (C10) with an
additional constant multiple of the identity matrix.

APPENDIX D: DYNAMIC STRESS-FREE FLOW
GENERATIONS

To realize a dynamic stress-free flow pattern, we super-
impose the three orthogonal dipole-flow modes along the
principal axes of an octahedron [x, y, and z in Fig. 4(a)],
with their coefficients (c1, c2, c3) determined in the 3D
phase space. On octahedral vertices, the charge assign-
ments for these three orthogonal dipoles are respectively
(−1, 1, 0, 0, 0, 0), (0, 0,−1, 1, 0, 0), and (0, 0, 0, 0,−1, 1),
corresponding to the pressure setting on six microfluidic ports.
Since the axes of the microscope observation [x′, y′, and
z′ in Fig. 4(a)] are along the unit vectors 1√

6
(2,−1,−1),

1√
2
(0, 1,−1), and 1√

3
(1, 1, 1) respectively in the phase space,

the corresponding pressure settings (Px′, Py′ , Pz′ ) for three
orthogonal flow modes along these directions are given by

⎛
⎜⎝

Px′

Py′

Pz′

⎞
⎟⎠ =

⎛
⎜⎝

1√
6

0 0

0 1√
2

0

0 0 1√
3

⎞
⎟⎠ ·

⎛
⎜⎝

2 −1 −1
0 1 −1
1 1 1

⎞
⎟⎠ ·

⎛
⎜⎝

−1 1 0 0 0 0
0 0 −1 1 0 0
0 0 0 0 −1 1

⎞
⎟⎠

=

⎛
⎜⎝

1√
6

0 0

0 1√
2

0

0 0 1√
3

⎞
⎟⎠ ·

⎛
⎜⎝

−2 2 1 −1 1 −1
0 0 −1 1 1 −1

−1 1 −1 1 −1 1

⎞
⎟⎠. (D1)
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For a stress-free flow at given velocity v(t ) = (vx′ , vy′ , vz′ ),
the pressures on six ports P(t ) = (P1(t ), P2(t ), · · · , P6(t ))
can be expressed as

P(t ) = v(t )
 ·

⎛
⎜⎝σx′ 0 0

0 σy′ 0
0 0 σz′

⎞
⎟⎠ ·

⎛
⎜⎝

Px′

Py′

Pz′

⎞
⎟⎠, (D2)

where the middle diagonal matrix is the resistance matrix
of the channel at the center region. It can be easily shown
that these diagonal elements (σx′, σy′ , σz′ ) are identical for
perfect octahedral symmetries. In situ, these elements are
expected to be subjected to boundary geometries and de-
tailed fluid properties, which can be calibrated experimentally.
In our microfluidic system, these geometries (illustrated in
the inset of Fig. 9) are given by the radius (R = 1 mm)
and height (H = 1.6 mm) of the middle cylindrical cham-
ber and the cross section (w × d = 0.5 × 0.3 mm2) of
the channels. For the glycerol solution (99.6%) used in
this experiment, the corresponding resistance matrix ele-
ments are σx′ ≈ 0.22 mbar s/µm, σy′ ≈ 0.19 mbar s/µm, and

σz′ ≈ 0.68 mbar s/µm. We attribute this significantly higher
resistance along the axial (z′) direction to the higher con-
straints that were applied to the axial flows by the noslip top
and bottom surfaces of the cylindrical chamber.

To demonstrate the capability of such stress-free flows
for dynamic manipulations, we use the above algorithm to
determine the pressure setting P(t ) for a time-dependent
3D flow velocity v(t ). Using the 3D Lissajous flow as
an example, its velocity can be prescribed by v(t ) =
(a cos(ωt ), a sin(ωt ), b cos(2ωt )). Given the ratio b/a and the
angular frequency ω (here, b/a = 1.78 and ω = 0.79 rad/s),
the pressures on every port are readily computed by the
above equation [Eq. (D1)], which are shown in Fig. 9(a).
These computed pressure curves are fed into a USB-based
multi-channel pressure regulator in real time (controlled by
a computer) through custom software. The actual pressures
applied to the six ports of the microfluidic device are also mea-
sured by the regulator through the same software [Fig. 9(b)],
shown in great agreement with the previously computed val-
ues [Fig. 9(a)].
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