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A nanophotonic waveguide coupled with an atomic array forms one of the strongly coupled quantum interfaces
to showcase many fascinating collective features of quantum dynamics. In particular, for a dissimilar array of two
different interparticle spacings with competing photon-mediated dipole-dipole interactions and directionality
of couplings, we study the steady-state phases of atomic excitations under a weakly driven condition of laser
field. We identify a partial set of steady-state phases of the driven system composed of combinations of
steady-state solutions in a homogeneous array. We also reveal the intricate role of the atom at the interface
of the dissimilar array in determining the steady-state phases and find an alteration in the dichotomy of the
phases strongly associated with steady-state distributions with crystalline orders. We further investigate in detail
the interaction-induced depletion in half of the dissimilar array, where the blockaded region results from two
contrasting interparticle spacings near the reciprocal coupling regime. This can be further evidenced from the
analytical solutions under the reciprocal coupling. Our results can provide insights in the driven-dissipative
quantum phases of atomic excitations with nonreciprocal couplings and pave the avenues toward quantum
simulations of exotic many-body states essential for quantum information applications.
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I. INTRODUCTION

A driven-dissipative quantum system [1–7] provides un-
precedented opportunities to explore nonequilibrium phase
transitions [6] and to create strongly correlated steady states
useful for quantum information processing [3]. This relies on
an interplay or a competition between dissipations and inter-
action strengths, from which novel quantum many-body states
and associated rich dynamical phenomena can emerge. Re-
cently, an intriguing atom-waveguide QED platform [8–15],
a distinct class of open quantum systems [16–24], showcased
nontrivial collective radiations [25–34], long-range quantum
correlations [35–39] owing to the strong couplings between
atoms and the guided modes [40,41], and the tailored nonre-
ciprocity [8,42–44] in the bidirectional couplings controlled
via external magnetic fields.
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This controlled and effective nonreciprocal coupling be-
tween atoms has been implemented in artificial quantum
emitters [45–50], atom-nanofiber systems [19,41,42,51], and
diamond nanophotonics platforms [52,53]. Within these
strongly coupled systems, it is the photon-mediated and long-
range dipole-dipole interaction [41] that leads to significant
quantum correlations and allows many intriguing applica-
tions in routing or interfering photons, useful for integrated
quantum network and scalable quantum computation [48].
An extra degree of freedom in manipulating the directional-
ity of couplings [42] thus offers angles in studying quantum
dynamics in these quantum interfaces and provides novel ap-
plications in quantum simulations or quantum computation in
the next-generation nanophotonic devices.

Recent efforts focused on integrating dissimilar arrays with
clean and disordered zones [54] or with disparate interparticle
spacings [55,56]. The first intends to reveal the mechanism
of many-body delocalization in the Bose-Hubbard model,
while the second investigates the Anderson-like localization
to delocalization transition and atomic excitation trapping ef-
fect. This dissimilar array is less explored especially under
the driven-dissipative condition, where distinct steady-state
phases can emerge with an interplay between the direc-
tionality of couplings and the strength of photon-mediated
dipole-dipole interaction. Here we study the steady-state
phases in a driven-dissipative dissimilar atomic array with
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FIG. 1. Schematic illustration of weakly driven dissimilar chi-
rally coupled atomic array. The system comprises two-level quantum
emitters with effective nonreciprocal decay rates, γL �= γR, which
can be facilitated by the guided modes on a waveguide with external
magnetic fields and is driven weakly by a uniform laser field with a
Rabi frequency � and a detuning δ from a side excitation. There are
two zones divided by dissimilar interatomic spacings d1(2), which,
respectively, can be classified as two homogeneous atomic chains.
An atom located at the interface of the dissimilar array is denoted
as the interface atom with two disparate nearest-neighbor spacings.
The inset plot shows the two-level quantum emitter with |g〉 and |e〉
indicating the ground and excited states, respectively.

chiral couplings, where a plethora of steady-state phases are
uncovered with features resembling some of the steady-state
phases in a homogeneous array. A competition between in-
terparticle spacings and directionality of couplings further
results in an interaction-induced depletion of atomic exci-
tations, in huge contrast to the homogeneous array under
a uniform and weak laser excitation. We investigate this
unique steady-state phase with exploration of various pa-
rameters and locate the parameter region that supports the
interaction-induced depletion feature, along with explanations
from analytical calculations in the reciprocal coupling regime.
Our findings can offer valuable insights into the driven-
dissipative and interaction-induced quantum phases of atomic
excitations with nonreciprocal couplings and open avenues
for simulations of exotic quantum states useful for quantum
information applications.

The paper is organized as follows. In Sec. II, we introduce
the theoretical model of driven-dissipative dissimilar atomic
array with two disparate interparticle spacings and nonrecip-
rocal couplings. In Sec. III, we present the steady-state phases
of atomic excitations. We further investigate the interaction-
induced depletion in the dissimilar array in Sec. IV, where we
identify the parameter regions that manifest the significant ex-
citation depletion. Finally, we discuss and conclude in Sec. V.

II. THEORETICAL MODEL

We consider a weakly driven chirally-coupled atomic ar-
ray consisting of atoms that are uniformly spaced at d1 and
d2 in the left and right segments, respectively, as illustrated
in Fig. 1. The atom located at the intersection of the two
segments is termed the “interface atom,” which bridges two
segments with two different spacings d1 �= d2. The motivation
of considering a dissimilar array is to introduce an interplay of
two distinct mechanisms of photon-mediated dipole-dipole in-
teractions owing to two different interparticle distances, from

which we can reveal intriguing features of the steady states un-
der weakly driven conditions. A straightforward experimental
consideration is to use optical tweezer arrays to trap dissimilar
atomic arrays, in such a way to realize our system setup with
individual controls [10,20,22]. This dissimilar array can also
be potentially realized in superconducting qubits systems or
quantum dots in the waveguide platforms [8,15], where these
quantum emitters can be placed in well-controlled positions
by fabrication process.

The effective model of an atom-waveguide system can be
obtained by treating the guided modes on a waveguide as
a one-dimensional reservoir [35,44]. Within the interaction
picture and under the Born-Markov approximation [57], the
dynamical evolution of the system’s density matrix ρ can be
governed by

dρ

dt
= − i

h̄
[HS + HL + HR, ρ] + LL[ρ] + LR[ρ], (1)

with Hamiltonians HS the light-matter interaction from a laser
excitation, HL(R) the chiral couplings, and Lindblad forms of
LL(R)[ρ] indicating the chiral dissipations to the left (L) or the
right (R) side of the waveguide. The Hamiltonian HS is

HS = h̄
N∑

μ=1

[�eikxμ cos θ (σμ + σ †
μ) − δμσ †

μσμ], (2)

which drives a collection of N two-level quantum emitters
(characterized by the ground state |g〉 and the excited state |e〉)
with a Rabi frequency � and spatially dependent detunings δ j .
The dipole raising and lowering operators are defined as σ †

μ ≡
|e〉μ 〈g| and σμ = (σ †

μ)†, respectively. k = 2π/λ is the wave
number with the transition wavelength λ, while the uniform
excitation angle denoted as θ characterizes the propagation
phases of the driving field from a lateral excitation away but
close to the x̂-ẑ plane. The HL(R) are

HL(R) = −ih̄
γL(R)

2

N∑
μ<(>)ν

(eik|xμ−xν |σ †
μσν − H.c.), (3)

which denote the collective energy shifts arising from the
infinite-range photon-mediated dipole-dipole interaction [41].
The remaining dissipative parts in Lindblad forms are

LL(R)[ρ] = γL(R)

N∑
μ,ν=1

e∓ik(xμ−xν )

[
σνρσ †

μ − 1

2
{σ †

μσν, ρ}
]
, (4)

which describe the collective and nonreciprocal decay rates
with γL �= γR in general. The directionality factor of the cou-
plings can be quantified as D ≡ (γR − γL)/γ [42] with γ =
γR + γL ≡ 2|dq(ω)/dω|ω=ωegg

2
kL [35]. |dq(ω)/dω| indicates

the inverse of group velocity at a resonant wave vector q(ω),
with the atom-waveguide coupling strength gk and the quanti-
zation length L.

We note that the Lindblad forms presented above neglect
the nonguided decay γng or additional nonradiative losses
experienced by the atoms. This omission could potentially
affect the efficiency of light detection through fibers, as well as
the fidelity of the steady-state preparations. Typically, around
99% of light would be scattered in an atom-nanofiber system
owing to the free-space decay [15]. The free-space decay
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is intrinsic and is considered to be the same for all iden-
tical atoms. When the free-space decay dominates over the
spin-exchange interactions mediated among the atoms, a ho-
mogeneous atomic excitation distribution will be observed,
and the features of steady-state phases presented in this work
will be removed. This demands a strong coupling regime
which is more challenging for atom-nanofiber systems but
can be facilitated in quantum dots or superconducting qubits
systems. Later in Sec. III, we will discuss the steady-state
phases under finite free-space decays, where γng can be added
into Eq. (1) as an extra intrinsic dissipation from environment
or systematic uncertainties.

We can label the positions of atoms such that xμ > xν when
μ > ν for the array without loss of generality. To facilitate our
analysis, we initialize the system in the ground state |g〉⊗N and
consider the system dynamics under a weak-field excitation.
This results in a confined and self-consistent Hilbert subspace
for dynamical evolutions within the ground state and singly
excited states {|g〉⊗N , |ψμ〉 = |e〉μ |g〉⊗(N−1)} for μ ∈ [1, N].
This leads to the state representation

|(t )〉 = 1√
1 + ∑N

μ=1 |pμ(t )|2

⎛
⎝|g〉⊗N +

N∑
μ=1

pμ(t ) |ψμ〉
⎞
⎠,

(5)

where pμ(t ) represents the probability amplitude and∑N
μ=1 |pμ(t )|2 	 1 to satisfy the assumption of a weak-field

excitation.
Thus Eq. (1) can be reduced to a non-Hermitian

Schrödinger equation ih̄∂t |(t )〉 = Heff |(t )〉 with the ef-
fective Hamiltonian Heff, yielding the coupled equations for
pμ(t ) as

ṗμ = −i�eikxμ cos θ +
N∑

ν=1

Mμν pν, (6)

where the matrix elements Mμν of the coupling matrix M are

Mμν =

⎧⎪⎨
⎪⎩

−γLeik|xμ−xν |, μ < ν,

iδμ − γL+γR

2 , μ = ν,

−γReik|xμ−xν |, μ > ν.

(7)

Consequently, the probability amplitudes in the steady states
( ṗμ = 0) are given by

p̃μ ≡ pμ(t → ∞) = i�
N∑

ν=1

(M−1)μνeikxν cos θ . (8)

For convenience, we define the interatomic distances as

k(xμ − xμ−1) =
{

kd1 ≡ ξ1, 1 < μ � m,

kd2 ≡ ξ2, m < μ � N,
(9)

where m denotes the index of the interface atom. From
Eqs. (6) and (7), we are able to identify the interaction-driven
quantum phases of atomic excitations, which are predomi-
nantly determined by the directionality of couplings D and
photon-mediated dipole-dipole interactions. The interactions
are decisively influenced by the interatomic separations. In the
following section we proceed to characterize the composite

quantum phases that emerge from a homogeneous atomic
array and discuss the interaction-induced depletion that is
unique and only exists in certain parameter regimes.

We note that an alternative way to implement an effective
dissimilar array is by illuminating two segments with two
different excitation angles. This provides a straightforward
setting to differentiate two segments by excitations, but this
approach with two different Bragg angles would then focus
on an interplay of the disparate imprinted traveling phases on
the homogeneous atomic chain. This contrasts with our mo-
tivation of unveiling the effect of disparate photon-mediated
dipole-dipole interactions and their interplay of interaction
mechanisms in determining the steady-state phases. Some
attempts of using Bragg configurations in an atom-waveguide
systems have focused on the light scattering and light trans-
mission through a waveguide [58] and the strongly-driven
quantum dynamics of atoms [59]. We believe that significant
interference effect resulting from two excitation angles with
different imprinted traveling phases would be responsible for
many other intriguing steady-state phases. This warrants fur-
ther and future study along the direction of manipulating two
excitation angles and on the many other distinct steady-state
phases allowed in this setting.

III. STEADY-STATE PHASES

Here we obtain the steady-state phases in a weakly
driven chirally-coupled dissimilar atomic array. Through-
out the study, we locate the interface atom at the site of
m = �N/2 with a ceiling function. Since D quantifies the
degree of directional couplings and dissipations, we denote
D = 0 as bidirectional and ±1 as unidirectional coupling,
respectively. We assume a perpendicular laser excitation at
θ = π/2 and uniform laser detunings δμ = 0. Under these
conditions, we numerically calculate the normalized steady-
state population distributions P̃j which are defined as

P̃j = | p̃ j |2∑N
j=1 | p̃ j |2

. (10)

For the case of a homogeneous atomic array, we identified
the steady-state phase diagram under the parameters of D and
interparticle distance ξ [12]. In this weakly driven atomic
array, the steady states can be characterized as the extended
distributions (ETD) when ξ ≈ 0, the phase with finite crys-
talline (CO) orders mostly for a finite D, the biedge excitations
(BE) or the bihole excitations (BH) mostly for low D, and
the chiral-flow dichotomy (CFD) when ξ = π . The ETD, CO,
and BH phases present the delocalized characteristics, while
the BE phase manifests localization properties, which can
be distinguished by the participation ratio [60]. Meanwhile,
the CO phase possesses an extra finite structure factor, while
the BH phase shows hole excitations at the edges, which
further differentiates the delocalized phases apart. The CFD
phase resides at a very specific parameter of ξ = π and shows
two different population distributions depending on an odd
or even N . This presents an interesting steady-state phase of
the excited-state populations, where an extra number of atom
gives rise to contrasted phases, and it resonates with the notion
of “More is different” owing to the complexity and hierarchi-
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FIG. 2. The population distributions P̃j of the dissimilar ar-
ray for N = 100 atoms. We illustrate P̃j with a dependence of
ξ2 at some chosen ξ1 and D. In the panels (a)–(d), we set ξ1 =
0.02π in (a) and (b), and ξ1 = π in (c) and (d), while we choose
D = 0.2 in (a) and (c), and D = 0.8 in (b) and (d), as comparisons.
Some combinations of steady-state phases are demonstrated: (e)
and (f) at D = 0.5 display CO-CO phase (ξ1 = 0.15π, ξ2 = 0.9π )
and CO-CFD phase (ξ1 = 0.15π, ξ2 = π ), respectively. Panel (g)
depicts CO-BE phase (D = 0.3, ξ1 = 0.01π, ξ2 = 0.3π ). Panel (h)
illustrates CO-BH phase (D = 0.5, ξ1 = 0.1π, ξ2 = 0.6π ). Panels
(i), (j) at D = 0.4 feature BE-HE phase (ξ1 = 0.2π, ξ2 = 0.3π ) and
BH-BH phase (ξ1 = 0.6π, ξ2 = 0.7π ), respectively. Panel (k) shows
ETD-CO phase (D = 0.6, ξ1 = 2π, ξ2 = 0.1π ). Finally, (l) presents
CFD-ETD phase (D = 0.2, ξ1 = π, ξ2 = 2π ).

cal structure in interacting quantum systems [61]. Two other
critical parameter regimes of D = 0 and ξ = {0, π} can also
be identified and excluded from the steady-state phases owing
to the constructive interference in state populations, a feature
of decoherence-free space being populated predominantly and
therefore leading to a breakdown under the weak-excitation
assumption.

In Fig. 2, we present the excited-state population distribu-
tions in terms of parameter spaces ξ1, ξ2, and D. Based on
the results of steady-state phases in a homogeneous array, in
the setup of a dissimilar array we have 17 possible phases by
accounting for the reflection symmetry in the system, which
we discuss in detail in Appendix A. Interestingly, among these
17 steady states, we identify two extra configurations termed

edge-hole (EH) or hole-edge (HE) excitations, which results
from the influence of the interface atom and distinguishes
from the previous BE or BH excitation phases in a homo-
geneous array. Figures 2(a) to 2(d) show some examples of
cross sections in the three-dimensional parameters of ξ1, ξ2,
and D. At a smaller ξ1 in Figs. 2(a) and 2(b), the left segment
hosts the CO phase, while in the right segment of the array,
the steady-state phases transition from the ETD phase, the
CO phase, to the BE excitation, the BH excitation phases,
then the CO phase with interference patterns, and end up
with the CFD phase as ξ2 increases from 0 toward π . These
six steady-state phases resemble parts of the features in a
homogeneous array, and they can be seen clearly in either the
left or the right segments of the array in Figs. 2(e) to 2(l). In
Figs. 2(a) and 2(b), the dark-blue area in the right segment
represents a low excited-state population in the bulk with the
biedge excitations, while the light-blue area indicates a finite
and flat distribution in the bulk, signifying the hole excitations
at both the edges of the right segment.

Similarly in Figs. 2(c) and 2(d), the left segment of the
array hosts the CFD phase with corresponding phase tran-
sitions in the right segment as ξ2 increases as in Figs. 2(a)
and 2(b). As D increases, we find the phase regions that
host BE and BH excitations (dark and light blue regions in
the right segment) are shrinking, which is expected and also
appears in the case of homogeneous array [12], along with
expanded phase areas of the CO phases (interference patterns)
in Figs. 2(b) and 2(d). We note that the population distri-
bution can exhibit significant differences in the respective
total populations of the two segments, as demonstrated in
Figs. 2(a) to 2(d), with this disparity becoming particularly
pronounced when ξ1 = π in Figs. 2(c) and 2(d). This is why
we see a seemingly flat distribution with low populations in
the CO phase of the left segment in Fig. 2(b) (upper-left phase
region). This manifests an intriguing steady-state phase with
extremely low populations but still with the characteristics or
the features of structure factors required in the CO phase. This
low population can also be observed in the dark-blue areas in
the right segment of Figs. 2(b) and 2(d), which we will study
more in the next section. These extremely low-population
phase areas showcase a surprisingly and notably blockaded
region of atomic excitations. A thorough investigation of the
mechanisms driving this phenomenon and its impact on the
population distribution will be investigated in the next section.

In Figs. 2(e) to 2(l), we show the excited-state populations
for some combinations of the steady-state phases. For exam-
ple in Fig. 2(e), two CO phases can be identified with finite
and peak values of the structure factors at two different peri-
ods of excitation oscillations. Specifically, regarding Fig. 2(i),
the expectation from the insights of a homogeneous array
suggests a BE-BE phase under the corresponding parameters.
However, the numerical simulations reveal that it appears as
the BE-HE phase instead, regardless of whether the interface
atom is associated to the left or the right segment of the array.
Similarly, when the number of atoms is odd (for example, of
N = 101 with the interface atom at the site of m = 51) and
under the same parameters in Fig. 2(i), BE-HE phase is also
identified.

The CFD phase displayed in the left segment of Fig. 2(l)
varies depending on the parity of the atom number in the
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FIG. 3. Odd-numbered and even-numbered CFD phases in
atomic chains with both odd and even total number of atoms. Pan-
els (a) and (b) depict scenarios with a total even N = 100 atoms,
where under the parameters of D = 0.5, ξ1 = 0.1π , ξ2 = π , and
D = 0.5, ξ1 = 0.15π , ξ2 = π , respectively, odd-numbered and even-
numbered CFD phases are observed in the right segment. Similarly,
(c), (d) represent the cases for a total odd N = 101 atoms under the
same parameter settings and demonstrate odd-numbered and even-
numbered CFD phases in the right segment, respectively, as well.

left. When its atom number is even, the state in the CFD
phase presents a linearly-increasing shape, as evidenced as
well in Figs. 2(c) and 2(d) with a phase region when ξ2 is
around π/2. Conversely, with an odd number of atoms in the
left under the same parameters, it would exhibit an upwardly
concave curve instead as in the right segment in Fig. 2(f).
This phenomenon is linked to the classification of the interface
atom in which side of the atomic array. Intriguingly, even in
cases with an even total number of atoms, an odd-numbered
CFD can manifest and vice versa. Therefore, when ξi = π for
one segment in the CFD phase and ξ j �=i on the other segment is
chosen in the CO phase regime or near the boundary between
the CO and the BE phases, this parameter regime triggers a
sensitive alternation between even- and odd-numbered CFD
phases as shown in Fig. 3. This can be seen in the distributions
of the CFD phase in the left segment with striped patterns
in Figs. 2(c) and 2(d), which are strongly associated with
the CO phases in the right. This presents an intricate steady-
state behaviors of the system owing to the interplay between
the number of atoms in each segments and the photon-
mediated spin-exchange couplings determined by interparticle
spacings.

As for the effect of finite nonguided modes from free-space
decay γng, we compare the complete 17 phases between the
cases of γng = 0 and γng/γ = 0.01 in Appendix A. We find
that for a finite γng that corresponds to almost 99% of the
coupling into the waveguide, some features of the steady-
state phases, for example, of ETD, CO, and CFD phases,
are already influenced, and their overall profiles are either
decreased or modified asymmetrically. Meanwhile, the BH
and BE phases are kept intact and are robust to the free-space
decay because they are originated from and strongly preserved
in the reciprocal coupling regime of D = 0. Their features can
be sustained down to around 50% of the light coupling. Never-
theless, an enhancement in the atom-waveguide coupling can

FIG. 4. The interaction-induced half-depletion (HF) phases for
N = 100. (a) The BH-HD phase with mostly depleted BE in the right
segment under the parameters D = 0, ξ1 = 0.8π , and ξ2 = 0.02π ,
with BD ≈ 0.0013. (b) The ETD-HD phase (depleted BE distribu-
tion in the right) for D = 0.1, ξ1 = 2π , and ξ2 = 0.3π , with BD ≈
0.0065. (c) The HD-CFD phase (depleted hole-edge distributions in
the left) for D = 0.2, ξ1 = 0.5π , and ξ2 = π , with BD ≈ 0.0011.
(d) The HD-CO phase (depleted BE distribution in the left) for
D = 0.4, ξ1 = 0.2π , and ξ2 = 0.9π , with BD ≈ 0.0018. Panels (e),
(f) represent the half-depletion regimes under BD � 1/N , with fixed
parameters of ξ1 = 0.02π and ξ1 = π .

be achieved by introducing cavities into the atom-waveguide
platforms for stronger confinement of light-matter couplings,
where BE and BH phases can be much easier to be observed
experimentally.

IV. INTERACTION-INDUCED DEPLETION

As shown in Figs. 2(c) and 2(d), we observe a signifi-
cant decline of the excitation population in one segment. We
term this unexpected phenomenon as the depletion phase.
The occurrence of the phase depletion can be attributed to
the complex spin-exchange interactions among the atomic
array, arising from variations in interparticle spacings of the
dissimilar array. In Figs. 4(a) to 4(d), we illustrate varied
half-depletion patterns in the system. These diverse depletion
phenomena in half of the atomic array underline an intricate
interplay with competing parameters of long-range dipole-
dipole interactions and directionality of couplings.

To systematically identify the parameter regimes that sup-
port this depletion phenomenon, we define a quantity of
biased population (BD) as a measure of the contrasted steady-
state distributions between each segments of the dissimilar
array

BD ≡ 1 −
∣∣∣∣∣
∑m−1

μ=1 P̃μ − ∑N
μ=m+1 P̃μ∑N

μ=1 P̃μ − P̃m

∣∣∣∣∣, (11)

where we exclude the contribution from the interface atom at
the mth site. As our discussion primarily focuses on the extent
of overall population bias towards one side of the atomic
array, this exclusion does not modify the conclusion from the
analysis. From Eq. (11), BD approaches one when a uniform
distribution in the whole array is reached, while BD becomes
vanishing as a depleted region emerges. We then characterize
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FIG. 5. Region of the half-depletion regime defined by BD�1/N
varies with different ξ1. (a)–(f) illustrate the range of the half-
depletion phases at ξ1 = 0.02π, 0.1π, 0.2π, 0.5π, 0.8π, and π ,
respectively. As ξ1 gradually increases from small values close to
10−2π to approximately π/2, the main concentration of the half-
depletion region is observed on the right side of the diagram (i.e.,
in the interval where ξ2 � 0.5π ), transitioning from a wide and flat
shape to a narrow and elongated form. Beyond π/2, the primary
distribution of the half-depletion region begins to emerge on the
left side (i.e., ξ2 ∼ 0), gradually expanding towards larger ξ2 values,
ultimately forming an arch-shaped structure as ξ1 reaches π .

the half-depletion (HD) phase in a dissimilar array if and only
if BD � 1/N . That is to say, the total population of the de-
pleted side must be lower than a single-particle population on
average, which sets a qualitative boundary for the HD phase.

In Figs. 4(e) and 4(f), we show the HD phase regime with
two different ξ1 for various ξ2 and D under this criteria. A
dominant parameter regime for the HD phase appears at a
lower D for a small ξ1 as shown in Fig. 4(e). As ξ1 increases
toward π/2 demonstrated in detail in Fig. 5, these parameter
regions begin compressing towards a larger ξ2 and extend
along a higher D, which disappear as ξ1 further increases but
with new small regions of parameters emerging on the other
side at small ξ2. When ξ1 reaches π , the HD phase boundary
emerges with a parabola as seen in Fig. 4(f) covering most
of the depletion phase area with almost all ξ2 for a low D.
This suggests that the depletion regime requires contrasted ξ1

and ξ2. Furthermore, in Fig. 6 we present the influence of the
parity of the atomic number on HD phases. As in Fig. 3, the
emergence of HD phases or not relies on the intricate inter-
play between the number of atoms and the photon-mediated
dipole-dipole interactions. Other than the parameters chosen
in Fig. 6, the HD phase regions are the same for even or odd
N as ξ1 and ξ2 are away from 2π .

The depletion phase transition can be evidenced in the
bidirectional case with D = 0 as shown in Figs. 7(a) and 7(b)
with ξ1 = 0.02π and 0.2π , respectively. The measure BD first
rises as ξ2 increases from 0 to approximately ξ1, reaching
near unity when ξ1 = ξ2, the case of a homogeneous array.
As ξ2 exceeds ξ1 and increases further, BD rapidly decreases
and becomes vanishing toward ξ2 = π . Additionally, as il-
lustrated in Fig. 7(a), BD decreases faster with increasing N ,
especially in the case of a small ξ1. This leads to a diminishing

FIG. 6. The parity of the total number of atoms affects the
half-depletion (HD) regime. Panels (a), (b) demonstrate the popu-
lation distribution (P̃j) for N = 100 and N = 101 under the same
conditions D = 0.1, ξ1 = 2π , and ξ2 = 0.3π , revealing the subtle
influence of the total atom number on the HD phase. Furthermore,
(c), (d) illustrate the half-depletion parameter regimes for N = 100
and N = 101 at ξ1 = 2π , where a finite range of HD phases exists at
low D for even-numbered atomic systems.

depletion region as N increases since the critical values of ξ2

at which BD = 1/N increase, indicating a shrinking phase area
for the HD phase. Below we further analyze the observation of
shrinking phase area by providing analytical solutions in the

FIG. 7. Impact of system size on the depletion regime in the bidi-
rectional (D = 0) case. The plots in (a) and (b) depict the dependence
of BD on ξ2 at ξ1 = 0.02π and ξ1 = 0.2π , respectively, for various
atomic sizes N = 100, 200, 500, 1000, and 2000. (c) illustrates a
curve generated through Eq. (13) when equality holds, pinpointing
the critical ξ2, as it enters the half-depletion regime for system sizes
ranging from N = 100 to N = 10 000. Both scenarios of ξ1 = 0.02π

(blue line) and ξ1 = 0.2π (orange dashed line) reveal that the deple-
tion phase is a consequence of finite-size effect, which do not survive
as N → ∞.
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FIG. 8. The (a) imaginary and (b) real parts of the probability
amplitudes p̃ j for N = 100, D = 0, ξ1 = 0.02π , and ξ2 = 0.8π . The
values are up to an overall constant of 2�. Panel (c) shows the
normalized excited-state population P̃j .

reciprocal coupling case of D = 0, which can give insights to
the mechanism of the HD phase, and the obtained critical ξ2 is
plotted in Fig. 7(c) confirming the observations in numerical
results in Figs. 7(a) and 7(b).

Under the bidirectional case of D = 0, that is γR = γL, we
obtain the steady-state populations p̃μ from Eq. (8) as

p̃μ = −� ×

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

i + tan(ξ1/2), μ = 1,

2 tan(ξ1/2), 1 < μ < m,

tan(ξ1/2) + tan(ξ2/2), μ = m,

2 tan(ξ2/2), m < μ < N,

i + tan(ξ2/2), μ = N,

(12)

where the derivation is shown in detail in the Appendix B. A
numerical calculation of p̃ j for the parameters of N = 100,
D = 0, ξ1 = 0.02π , and ξ2 = 0.8π is plotted in Figs. 8(a)
and 8(b), where the system hosts the HD phase as shown
in Fig. 8(c). These results are consistent with the theoretical
predictions in Eq. (12) in both real and imaginary parts.

From the measure BD, we can analytically determine at
which parameters the HD phase boundary locates. Consider-
ing an even N with the interface atom at the site m = N/2, as
in the numerical simulations shown in Figs. 7(a), 7(b), and for
a small ξ1 as in Fig. 4(e), we obtain the range of ξ2 when the
HD phase emerges from Eq. (B8)

tan2

(
ξ2

2

)
�

(
N2 − 2N + 7

4

)
tan2(ξ1/2) + N−1

2
N
2 − 3

4

. (13)

The phenomenon of depletion in the bi-directional cases
straightforwardly occurs when tan2(ξ2/2)/ tan2(ξ1/2) �
2N � 1 (depleted from left side) or 	 1 (depleted from right
side) when ξ1 ↔ ξ2 for a large N . This relation indicates a
drastic difference between ξ1 and ξ2, which allows the HD
phase under the criteria of BD � 1/N . This coincides with a
relatively large critical ξ2 at the HD phase boundary in Figs. 4
and 7, respectively, for a low D. The asymptotic function
of Eq. (13) at equality is plotted in Fig. 7(c), where the
numerically obtained critical ξ2 are on top with these curves.
This indicates the phase boundary ξ2 → π as N → ∞ and
manifests an ultimately vanishing depletion region. This also
suggests that the depletion phenomenon under our restricted

criteria results from the finite-size effect, except for the case
of ξ1 = π where all ξ2 with a finite region of D allow the
existence of HD phase as shown in Fig. 4(f). As the criteria
relaxes to the two-particle population on average, for example,
or more but finite, the phase areas of the HD phase would
expand and the fate of this phase in the thermodynamics limit
could survive.

V. DISCUSSION AND CONCLUSION

The study of atomic dissimilar array coupled to a nanopho-
tonic waveguide under a weakly-driven condition provides
one of the unique driven-dissipative quantum systems that can
host many fascinating nonequilibrium dynamics and steady-
state phases. This is due to an intricate interplay between
various competing parameters of long-range dipole-dipole
interactions and the directionality of couplings. Our investi-
gation of such system reveals the essential combinations of
steady-state phases from a homogeneous array, where new
state configurations like a hole with an edge excitation at the
interface and the edge, respectively, can emerge. In addition,
the interface atom that bridges two segments with different in-
terparticle spacings presents an intriguing role in deciding and
characterizing the steady-state phases. Another intriguing and
significant result is the apparent decline in state populations
in one of the two segments, indicating a blockaded region of
atomic excitations. This effect arises from the contrasted in-
terparticle spacings in the dissimilar array near the reciprocal
coupling regime, which we attribute as the interaction-induced
half-depletion phase. Our results can provide insights to quan-
tum engineering or quantum simulations of exotic many-body
states with high controllability.

The decrease in population distribution inside one of the
segments has significant implications for quantum informa-
tion processing. The depletion phase predicted in a specific
segment adds to the complexity of the quantum state by
introducing more degrees of freedom for encoding quantum
information. This can be done in designing distinct arrange-
ment of atoms, particularly when separated into two regions.
The disparity in the interparticle distances between atoms then
serves as a means to encode and manipulate quantum infor-
mation in these states. For example, a single photon can go
through a beam splitter and interact with two settings of dis-
similar atomic arrays with either the left or the right segment
hosts a depleted region. This leads to an entangled state of
|0L1R〉 + |1L0R〉 in terms of vanishing or occupied qubit states
by constructing the entangling degrees of freedom in seg-
mented spaces. The two settings of dissimilar atomic arrays
interacting with path-entangled single photon is no difference
from an entanglement generation from single photon going
through a beam splitter. This entanglement generation is asso-
ciated with the concept of single-particle entanglement [62],
where a genuine entanglement can be created from a single
photon going through a 50 : 50 beam splitter with an outcome
of two possible modes (transmitted as mode A or reflected
as mode B). This leads to an entangled state |0A1B〉 + |1A0B〉
which possesses a maximally bipartite entanglement entropy,
and this also provides the foundation for entanglement gen-
eration in the well-known DLCZ protocol under a weak-field
excitation with two atomic ensembles [63].
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The outlook for potential quantum information processing
using our proposed setup with interaction-induced depletion
phases is simply a transfer of path-entangled single-photon
state to spatially entangled atomic segments. Based on the
design of using two segmented qubits to generate a bipartite
entangled state, we can consider a unit of two segments con-
catenated by a series of separate and homogeneously arrayed
qubits to form a scalable W state. If we follow the convention
of denoting |0〉 as the depleted state, we can generate a W state
in a form of (|011 · · · 1〉 + |1011 · · · 1〉 + · · · + |1 · · · 101〉 +
|1 · · · 110〉), where an underlined unit denotes the two seg-
ments with depletion either in the left or the right of the
dissimilar arrays. This W state is equivalent to (|10 · · · 0〉 +
|010 · · · 0〉 + · · · + |0 · · · 01〉) up to single-qubit rotations on
each qubit spaces individually by mapping |0〉 ↔ |1〉. We
note that this maximally entangled state as a W type can be
generated when we multiplex a weak field source in a way
that all concatenated configurations with a unit of two seg-
ments are identically excited. This promises a high-capacity
entanglement generation and simulation of exotic quantum
many-body states in spatial degrees of freedom. The appli-
cation of manipulating dissimilar atomic array thus promises
many other opportunities in routing photons [56], allowing
parallel quantum operations [64], or creating multipartite en-
tangled states [65].

As a final remark, we note that a more viable platform
to carry out our proposal and results here would be using
photonic crystal waveguides instead of nanofibers. In atom-
nanofiber systems, the challenges to reach the strong coupling
regime comes from significant free-space scattering and ther-
mal vibrations of the fibers, which leads to an issue of trapping

atoms close to the fibers. Meanwhile, atom-nanophotonic
waveguides as shown in Fig. 1, superconducting transmon
qubits, silicon vacancies in diamonds, and quantum dots are
better candidates for experimental realizations in terms of
achieving strong coupling regime [15]. For atom-waveguide
systems in general, it is still challenging to overcome position
fluctuations of atoms [10], and this detrimental effect can
be lessened by Raman sideband cooling to reduce motional
fluctuations of atoms in optical tweezers [66] or applying
gray-molasses loading to optical tweezers [67].
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APPENDIX A: COMPLETE SET OF STEADY-STATE
PHASES IN A DISSIMILAR ARRAY

Here we show the probability distributions for the com-
plete 17 steady-state phases in a dissimilar array. As shown
in Fig. 9, we observe various combinations of steady-state
phases in a homogeneous array. Other than these combina-
tions, we have extra phases that a homogeneous array does
not host, which are EH and HE configurations. Furthermore,
we obtain the half-depletion phases that show extremely low
state populations as shown in Figs. 9(l), 9(m), 9(n), 9(p),
and 9(q).

FIG. 9. Excited-state distributions P̃j for 17 steady-state phases in a dissimilar array. These phases include (a) CO-ETD, (b) BE-ETD,
(c) BH-ETD, (d) ETD with even-numbered CFD, (e) ETD with odd-numbered CFD specifically at N = 101, (f) CO-CO, (g) CO-BE, (h)
CO-BH, (i) CO with even-numbered CFD, (j) CO with odd-numbered CFD, (k) EH-HE (overall BE), (l) BH-BE, (m) even-numbered CFD
with depleted BE (dBE), (n) dBE with odd-numbered CFD, (o) BH-BH, (p) even-numbered CFD with depleted EH (dEH), (q) depleted HE
(dHE) with odd-numbered CFD. All phases are presented at N = 100 except for (e) at N = 101. The parameters for each panel are detailed in
Table I.
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TABLE I. Parameter D, ξ1, and ξ2 for 17 phases.

Fig. 9 Steady-state phases D ξ1/π ξ2/π

(a) CO-ETD 0.5 0.1 2
(b) BE-ETD 0.5 0.25 2
(c) BH-ETD 0.5 0.5 2
(d) ETD-eCFD 0.2 2 1
(e) ETD-oCFD 0.2 2 1
(f) CO-CO 0.5 0.15 0.9
(g) CO-BE 0.5 0.1 0.3
(h) CO-BH 0.5 0.1 0.6
(i) CO-eCFD 0.4 0.1 1
(j) CO-oCFD 0.5 0.1 1
(k) EH-BE 0.5 0.25 0.2
(l) BH-BE 0.5 0.6 0.25
(m) eCFD-dBE 0.5 1 0.25
(n) dBE-oCFD 0.5 0.25 1
(o) BH-BH 0.7 0.6 0.7
(p) eCFD-dEH 0.5 1 0.75
(q) dHE-oCFD 0.5 0.75 1

We note that there is no ETD-ETD phase since it becomes
the ETD phase exactly as in a homogeneous array. There
are also no allowed combinations with either even-numbered
CFD (eCFD) or odd-numbered CFD (oCFD) phases since
they hugely depend on the boundary effect from the parity
of the atom numbers. By contrast, the CO-CO or the BH-BH
phases can emerge owing to the disparity of respective state
populations of two segments, which distinguishes the case
in a homogeneous array. In Fig. 10, we add the nonguided
decay rate γng from free-space decay which scatters light
without coupling to the waveguide. As a comparison to Fig. 9,

the ETD, CO, and CFD phases in one of the two dissimilar
segments are mostly influenced by γng, whereas the BH and
BE phases are kept intact and relatively robust to a finite γng.

APPENDIX B: DERIVATION OF EXCITED-STATE
PROBABILITY AMPLITUDES

Here we provide some details of the derivation of the
excited-state probability amplitudes. We first consider the
homogeneous array with identical interparticle spacings. We
consider the laser incident angle θ = π/2 and detuning δμ=0,
and we obtain the coupling matrix as (normalized to γ ),

Mμν = −1

2
×

⎧⎪⎨
⎪⎩

(1 − D)eiξ |ν−μ|, μ < ν,

1, μ = ν,

(1 + D)eiξ |μ−ν|, μ > ν.

(B1)

The inverse of M in the bidirectional coupling case can then
be obtained as

(M−1)μν = −2

1 − e2iξ
×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, μ = ν = 1 or N,

1 + e2iξ , 1 < μ = ν < N,

−eiξ , |μ − ν| = 1,

0, otherwise,
(B2)

and from Eq. (6), we obtain the steady-state solutions of the
dissimilar array

p̃μ = −� ×
{

i + tan(ξ1/2), μ = 1 or N,

2 tan(ξ/2), 1 < μ < N.
(B3)

FIG. 10. Excited-state distributions P̃j for 17 steady-state phases in a dissimilar array at a finite free-space decay rate γng/γ = 0.01. The
rest of the parameters are the same as in Fig. 9.
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Similarly, for the case of a dissimilar array, the coupling matrix M when D = 0 can be given as

Mμν = −1

2
×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

eiξ1|ν−μ|, μ < ν � m,

eiξ1|m−μ|+iξ2|ν−m|, μ < m < ν,

eiξ2|ν−μ|, m � μ < ν,

1, μ = ν,

eiξ1|ν−μ|, m � μ > ν,

eiξ1|m−ν|+iξ2|μ−m|, μ > m > ν,

eiξ2|μ−ν|, μ > ν � m.

(B4)

The inverse matrix M−1 can therefore be written as

M−1 = −2 ×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1−e2iξ1

−eiξ1

1−e2iξ1
0 · · · · · · · · · · · · · · · 0

−eiξ1

1−e2iξ1

1+e2iξ1

1−e2iξ1

−eiξ1

1−e2iξ1
0 · · · · · · · · · · · · 0

0 −eiξ1

1−e2iξ1

. . .
. . . 0 · · · · · · · · · 0

... 0 . . . 1+e2iξ1

1−e2iξ1

−eiξ1

1−e2iξ1
0 · · · · · · 0

...
... 0 −eiξ1

1−e2iξ1

1−e2i(ξ1+ξ2 )

(1−e2iξ1 )(1−e2iξ2 )
−eiξ2

1−e2iξ2
0 · · · 0

...
...

... 0 −eiξ2

1−e2iξ2

1+e2iξ2

1−e2iξ2

−eiξ2

1−e2iξ2

. . .
...

...
...

...
... 0 −eiξ2

1−e2iξ2

. . .
. . . 0

...
...

...
...

...
. . .

. . . 1+e2iξ2

1−e2iξ2

−eiξ2

1−e2iξ2

0 0 0 0 0 0 0 −eiξ2

1−e2iξ2

1
1−e2iξ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B5)

By solving the inverse matrix of M, we have the probability amplitudes p̃μ,

p̃μ = −� ×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

i + tan(ξ1/2), μ = 1,

2 tan(ξ1/2), 1 < μ < m,

tan(ξ1/2) + tan(ξ2/2), μ = m,

2 tan(ξ2/2), m < μ < N,

i + tan(ξ2/2), μ = N,

(B6)

where the cases for ξ1,2 = 0 or π should be excluded for divergence and a breakdown under the weak-field excitation. Therefore,
we obtain the biased population BD as

1 −
∣∣∣∣∣

(
m − 7

4

)
tan2

(
ξ1

2

) − (
N − m − 3

4

)
tan2

(
ξ2

2

)
1
2 + (

m − 7
4

)
tan2

(
ξ1

2

) + (
N − m − 3

4

)
tan2

(
ξ2

2

)
∣∣∣∣∣. (B7)

With an even N and m = N/2, the BD becomes

BD = 1 −
∣∣∣∣∣

(
N
2 − 7

4

)
tan2

(
ξ1

2

) − (
N
2 − 3

4

)
tan2

(
ξ2

2

)
1
2 + (

N
2 − 7

4

)
tan2

(
ξ1

2

) + (
N
2 − 3

4

)
tan2

(
ξ2

2

)
∣∣∣∣∣. (B8)

The above result can then be used to identify the phase boundary to the half-depletion phase in the main paper.
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