
PHYSICAL REVIEW RESEARCH 6, 023231 (2024)

High-efficiency realization of the super-robust Rydberg Deutsch gate
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Quantum logic gates are the essential components of quantum computation and have broad practical applica-
tions, especially for the multiple-qubit logic gates. Compared with appliying a series of single- and two-qubit
gates, constrcuting quantum computation with multiple-qubit logic gates can be more efficient and high-fidelity.
As a three-qubit logic gate, Deutsch gate enables the realization of any feasible quantum computations. Based
on neutral atoms, we present a scheme of super-robust Deutsch gate via optimal control technique. Utilizing the
Rydberg blockade effect of neutral atoms, we design an implementable D(β ) based on the three-step program.
One of the notable advantages of this function is that β can be achieved arbitrarily between 0 and π with the
operation of target atom. In addition, we give an analytical solution agreed very well with numerical simulations
for the residual blocking effect between next-neighbor atoms that affects the performance quality of Deutsch
gate. The fidelity of our proposed scheme is demonstrated by numerical simulation of the master equation based
on the full Hamiltonian, and the robustness of our scheme with control errors is also illustrated. Our proposal
offers an alternative promising scheme for fault-tolerant quantum computation.
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I. INTRODUCTION

Quantum computing has the potential superiority than clas-
sical computing in carrying out some certain computational
tasks, such as the factorization of a large number via Shor’s
algorithm [1] and the search of an item in an unsorted database
containing N elements [2]. To successfully execute quan-
tum computation, an essential requirement is to construct a
universal set of single- and two-qubit gates which own the
high fidelity and strong robustness. However, a step-by-step
combination scheme of single- and two-qubit gates [3–8]
increases the complexity and the execution time of quantum
computation, also wasting the quantum resources, since the
number of operations grows polynomially with the increase
of qubits. For example, if the Toffoli gate is implemented
in this way, six CNOT and nine single-qubit quantum gates
need to be combined [9,10]. To overcome these defects, the
directly construct of multi-qubit logic gates in an efficient way
has attracted extensive attention and has been achieved in a
myriad of systems [11–15].

As one of the significant multiple-qubit gates, the Deutsch
gate [16] makes the reliable large-scale quantum computing
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possible. Thus, it is significant to directly realize Deutsch gate.
Directly realize the Deutsch gate via the dynamical protocol in
neutral atoms system have been proposed [17]. However, the
presence of the noise and operational errors during quantum
system operations will inevitably limit the execute efficiency
of the Deutsch gate [18]. Thus, how to construct the error-
robust and high-fidelity Deutsch gate is a matter of concern.

Rydberg atoms, by exciting the neutral atoms to a large
principal quantum number, have been applied in a variety
of applications, because of their various excellent properties,
e.g., strong and long-range interaction, long lifetime, and
giant polarizability [19–21]. When excited to the Rydberg
state, the Rydberg blockade effect [22–24] prevents the atoms
from simultaneously transiting to the Rydberg state. More-
over, in light of the advancements made in trapping [25,26]
and cooling [26,27] technologies, arrays of trapped neutral
atoms interacting via the Rydberg blockade mechanism [28],
have emerged as a potential scalable platform for quantum
computing [28–35].

Quantum logic gates constructed by geometric phases
[36–39] posses the intrinsic fault-tolerance feature, since the
geometric phase only depends on the global geometric prop-
erties of the evolution path, instead of the specific evolution
details. Nevertheless, the primitive geometric quantum com-
puting scheme need to meet the adiabatic condition, which
will reduce the gate speed, and thus amplify errors caused
by environment-induced decoherence. To overcome this diffi-
culty, nonadiabatic geometric quantum computation (NGQC)
[40–46] and nonadiabatic holonomic quantum computation
(NHQC) [47–59] based on the nonadiabatic Abelian and
non-Abelian geometric phase [38,60] respectively have been
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proposed. Hereafter, there have been multifarious protocols
proposed to further optimize the performance of the gate,
such as the composite NHQC (CNHQC) scheme [61,62], the
dynamical decoupling strategy [63,64], the deliberately opti-
mal pulse-control technique [47,65–68], and path-shortening
NHQC [69–73]. These schemes have been experimentally
verified in a variety of physical platforms, such as super-
conducting circuits [74–77], nitrogen-vacancy (NV) center in
diamond [78–80], and nuclear magnetic resonance (NMR)
[81,82]. However, when considering the existence of system
errors, these schemes do not meet our expectations, and their
performance is not much improved compared to the dynami-
cal schemes [42,57–59]. Here, we introduce a general NHQC
proposal integrated with the dynamical-correction technique
[83–85], termed as DCNHQC [68], which not only simplifies
the gate operator but also meets the super-robust condition
[86], i.e., the gate robustness against the control error can be
improved from the second order to the fourth order.

In this manuscript, we propose a scheme to straightfor-
wardly construct the Deutsch gate based on the Rydberg
blockade mechanism, and combine the optimized pulses to
further enhance the robustness against systematic errors. In
order to have a better experimental choice, we consider to use
the optimized pulses only on the target qubit or use optimized
pulses on all three qubits to implement the Deutsch gate, and
also compare them with the dynamical scheme [17]. As a
result, our scheme constructs a Deutsch gate with high fidelity
and strong fault tolerance for control errors involving geo-
metric phases. Therefore our protocol provides a promising
strategy for large-scale fault-tolerant quantum computation.

II. INTRODUCTION OF THE DEUTSCH GATE

A comprehensive description of this gate can be found in
reference [17], hence we will provide a concise overview of
the Deutsch gate. The Deutsch gate performs the following
operation on the input state |ψin〉 = |a〉|b〉|c〉,

|ψout〉 =
{

i cos β|a〉|b〉|c〉 + sin β|a〉|b〉|1 − c〉, a = b = 1
|a〉|b〉|c〉, otherwise .

The parameter β can be varied within the interval [0, π ],
representing a set of gates with different angles that enable
the execution of various operations.

The angle-dependent nature makes it challenging to realize
the Deutsch gate, there is a dynamical scheme proposed by
Shi to achieve Deutsch’s gate [17]. However, the experimental
imperfect control will greatly affect the implementation per-
formance of the gate. As proven in Sec. IV, this scheme can
only suppress the driving field error to the second order, which
is not experiment-friendly. In addition, it has been proven [87]
that the realization of the Deutsch gate requires at least five
two-qubit gates. However, the straightforward construction of
a multiple-qubit logic gate greatly reduces the difficulty of
gate operation and shortens the operation time. Therefore our
focus is to propose a highly robust, straightforwardly imple-
mentable, and controllable β Deutsch gate scheme.

FIG. 1. The energy-level scheme to implement the super-robust
Deutsch gate. The two outermost atoms are the control atoms C1 and
C2 at the left and right, respectively, and the target atom in the middle
is separated by a distance L, where an Rydberg interaction V arises
when the target qubit and one of the two control qubits are in Rydberg
state. The blue arrows, green arrows, and orange arrows represent the
first to third steps in the implementation of a three-qubit super-robust
Deutsch gate. For the control atoms, ground state |0〉 is resonantly
coupled to Rydberg state |r〉 with the Rabi frequency �ceiφc . For tar-
get atom,ground states |0〉 and |1〉 are resonantly coupled to Rydberg
state |r〉 with the Rabi frequency �0eiφ0 and �1eiφ1 .

III. REALIZATION OF SUPER-ROBUST DEUTSCH GATE

A. A three-qubit Rydberg system

We consider a system composed of three Rydberg atoms,
and the relevant configuration of the atomic level is illustrated
in Fig. 1. The three Rydberg atoms are arranged in rows
where the distance between two adjacent atoms is L. The two
outermost atoms serve as control qubits, where target qubit is
between them. The |0〉, |1〉 are the ground state and the |r〉 is
the Rydberg state.

As shown in Fig. 1, the resonant laser with Rabi frequency
�ceiφc is implemented to couple the ground state |0〉 and
Rydberg state |r〉 for control qubits, and the resonant laser
with the Rabi frequency �0eiφ0 (�1eiφ1 ) is used to couple
ground state |0〉 (|1〉) and Rydberg state |r〉 of target qubit. As
both control qubits are in Rydberg state, there is a small inter-
action V/26 is induced. As one of the control qubits is excited
in the state |r〉, the target qubit could not be excited to Ryd-
berg state |r〉 due to the Rydberg-Rydberg interaction (RRI)
with the strength V = C6/L6, where C6 is the van der Waals
interaction(vdWI) coefficient [88]. This blockade mechanism
is the key to implement our protocols, which is modeled by
the Hamiltonian ĤV = ∑2

k=1 V|rr〉ck,T〈rr| + V/64|rr〉c1,c2〈rr|,
where the symbol ’ck’ denotes the kth control atom, T denotes
the target atom.

B. Super-robust Deutsch gate scheme

The super-robust Deutsch gate can be realized by following
three steps.

Step (i). The resonant pulses are simultaneously applied on
control atoms to make the transition from the ground-state |0〉
to Rydberg state |r〉 that is, |0〉 �→ i|r〉, as shown in Fig. 2. As
one of the control qubits in state |0〉 is excited to the Rydberg
state |r〉 from the ground state, the Rydberg blockade
effect makes target qubit stay in ground state. Considering
different initial states, the following changes are observed:
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FIG. 2. Flow chart of constructing Deutsch gate,where C and T
represent the control qubits (blue font) and target qubits (black font),
respectively. The blue icon i, the green icon ii, and the orange icon
iii, represent the pulse sequences (i.e., steps) of the whole process.

{|000〉, |001〉, |010〉, |011〉, |100〉, |101〉, |110〉, |111〉} �→
−{|rr0〉, |rr1〉, i|r10〉, i|r11〉, i|1r0〉, i|1r1〉,−|110〉,−|111〉}.
In the rotating framework with respect to the driving
frequency, assuming that the reduced Planck’s constant
h̄ = 1, the Hamiltonian of control atoms is

Ĥ1
C(t ) = 1

2
�c(t )eiφc

2∑
k=1

|0〉ck〈r| + H.c., (1)

where
∫ t1

0 �c(t )dt = π . When the control qubit is initialized
in |0〉, the target qubit cannot be operated due to the RRI. Only
both control qubits are in the |1〉 state, the target qubit can be
implemented with desired operation.

Step (ii). The Hamiltonian of target atom can be expressed
as

ĤT(t ) = 1
2 [�0(t )eiφ0(t )|0〉 + �1(t )eiφ1(t )|1〉]〈r| + H.c., (2)

where {|0〉, |1〉} is computation basis, and |r〉 is the auxil-
iary state. Setting tan(θ/2) = |�0(t )|/|�1(t )|, we can get a
set of time-independent orthogonal states |b〉 = sin( θ

2 )|0〉 −
cos( θ

2 )eiφ |1〉, and a dark state of |d〉 = − cos θ
2 e−iφ |0〉 −

sin θ
2 |1〉, which is decoupled from the other eigenstates during

the quantum dynamical process. The Hamiltonian of the target
atom can then be rewritten as

ĤT(t ) = 1
2 [�(t )eiφ0(t )|b〉〈r|] + H.c., (3)

where φ0 = φ − φ1, �(t ) =
√

�0(t )2 + �1(t )2. For a
complete set of basis {|ψk (t )〉}3

k=1 spanning a three-
dimensional subspace, the time-dependent Schrodinger
equation i d

dt |ψk (t )〉 = Ĥ (t )|ψk (t )〉 and the time evolution

operator is Û (t, 0) = T̂ e−i
∫ t

0 Ĥ (t ′ )dt ′ = ∑3
k=1 |ψk (t )〉〈ψk (0)|,

where T̂ denotes the time ordering operator. We require that
the condition meets −i〈ψk (t )|ĤT(t )|ψl (t )〉 = 0, that is, there
is no accumulation of dynamical phase. After a complete
cycle of evolution, the |b〉 state acquires a pure geometric
phase γg, while state |d〉 stays unchanged. With the system
errors to be considered, there may be undesired coupling
between calculation subspaces and noncalculation subspaces,
leading to a reduction fidelity of the solution. A solution is to
impose the condition [86]

Dkm(t ) =
∫ τ

0
〈ψk (t )|Ĥ (t )|ψm(t )〉dt = 0, (4)

where k = 1, 2, 3 and m = 1, 2. To fulfill the condition, the
evolution time τ2 is partitioned into six segments. Specifically,
the parameters must adhere to the following constrain:

∫ τ2
8

0
�(t )dt = π

2
, φ0 = 0, t ∈

[
0,

τ2

8

]
,

∫ 3τ2
8

τ2
8

�(t )dt = π, φ0 = −π

2
, t ∈

[
τ2

8
,

3τ2

8

]
,

∫ τ2
2

3τ2
8

�(t )dt = π

2
, φ0 = 0, t ∈

[
3τ2

8
,
τ2

2

]
,

∫ 5τ2
8

τ2
2

�(t )dt = π

2
, φ0 = γg + π, t ∈

[
τ2

2
,

5τ2

8

]
,

∫ 7τ2
8

5τ2
8

�(t )dt = π, φ0 = γg + π

2
, t ∈

[
5τ2

8
,

7τ2

8

]
,

∫ τ2

7τ2
8

�(t )dt = π

2
, φ0 = γg + π, t ∈

[
7τ2

8
, τ2

]
. (5)

At the end of the evolution, the evolution opera-
tor in the computational subspace can be obtained
as Û (θ, φ, γg) = ei

γg
2 e−i

γg
2 �n·�σ with the vector �n =

(sin θ cos φ, sin θ sin φ, cos θ ) and Bloch vector �σ =
(σx, σy, σz ).

Step (iii). The orange arrows in Fig. 1 illustrate the de-
excitation of two control qubits. A π pulse with a Rabi
frequency �c is applied to the two |r〉 states of the two control
qubits, respectively. This pulse drives the control qubits from
the Rydberg state|r〉 to the ground state |0〉. This process is
governed by the Hamiltonian.

Ĥ2
C(t ) = −1

2
�c(t )

2∑
k=1

|0〉ck〈r| + H.c. (6)
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Then, by adjusting the values of parameters as φ = 0, θ =
π/2, γg = 2β, one acquires the operation

D(β ) =
(

I6 0
0 D0(β )

)
, (7)

where the core of the gate is defined by the matrix

D0(β ) =
(

i cos β sin β

sin β i cos β

)
, (8)

where β is tunable in [0, π ]. We can select different values of
β to realize various gate operations. Currently, an optimized
Deutsch gate operation has been successfully implemented.
The total time to implement the enhanced-robustness Deutsch
gate D(β ) is T1 = 2π/�c + 4π/�.

Subsequently, we endeavor to apply optimized pulses on
the control qubits. Analogous to the operations performed on
the target qubit, the control parameters must adhere to the
following constraint:∫ 3τ1

0

β̇

2
exp

(
−i

∫ t

0

φ̇c

cos β
dt ′

)
dt = 0. (9)

In order to meet this constraint, the parameters of the laser
amplitude and phase satisfy the following relationships:∫ τ1

0
�c(t )dt = π, φc = π/3, t ∈ [0, τ1],

∫ 2τ1

τ1

�c(t )dt = π, φc = −π/3, t ∈ [τ1, 2τ1],

∫ τ

2τ1

�c(t )dt = π, φc = π/3, t ∈ [2τ1, 3τ1], (10)

where τ1 = π/�c. we have successfully achieved a highly
robust population transition between the ground state |0〉 and
the Rydberg state |r〉 of the control atoms. The total duration
required to apply the optimized pulse on all three qubits
is denoted as T2 = 6π/�c + 4π/�. Subsequently, we will
demonstrate the performance of the Deutsch gate within our
experimental framework.

IV. PERFORMANCE OF THE DEUTSCH GATE

We select |r〉 = |84p3/2, mj = 3/2〉 for 133Cs as the
Rydberg state, the blockade mechanism has been experi-
mentally demonstrated in [89], and the vdWI coefficient is
obtained as C6/2π = −633 GHz µm6 [17,90–92]. The life-
time of the Rydberg state |r〉 is τ = 1.59 ms under the
temperature of 4.2 K [93], and the correspond decay rate is
� = 1/τ = 0.6289 KHz. Two ground states can be selected as
|0〉 = |6s1/2, F = 3, mF = 0〉 and |1〉 = |6s1/2, F = 4, mF =
0〉 for the control and target qubits. The distance between
these two identical Rydberg atoms is L = 6 µm, and the Ryd-
berg interaction intensity is V/2π = 13.57 MHz.

To achieve perfect blocking, it is necessary to satisfy the
conditions |V |/64 	 �c and � 	 |V |, we select �c/2π =
10 MHz. In Fig. 3, examining the average fidelity varia-
tion of the optimized pulse applied solely to the target qubit
against the optimized pulse applied to all three qubits, with
the fluctuation of �, it is observed that the average fidelity
of the super-robust Deutsch gate for both schemes exceeds

FIG. 3. The fidelities of different schemes to achieve the Deutsch
gate under different laser Rabi frequency �, where the black dot-
dashed curve, blue solid curve, and orange dash curve represent the
results of dynamical scheme, the schemes of using the optimization
pulses only on the target qubit, and on all three qubits, respectively.
The fluctuation in fidelity of the super-robust scheme arises from the
blocking leakage in the Rydberg system.

0.99 when �/2π ranges from 0.1216 to 0.6204 MHz. This
phenomenon arises from the fact that if the Rabi frequency
� is too small, the resulting longer evolution time increases
susceptibility to decay errors, leading to a reduction in fi-
delity. On the contrary, if the Rabi frequency � is excessively
large, the blocking conditions may not be effectively fulfilled.
However, with respect to the next nearest neighbor atom, the
blocking interaction V/64 impedes the transition between the
control atoms and induces the phase accumulation, Conse-
quently, this leads to an imperfect gate operation. (Further
elaboration on this matter will be provided at the conclusion of
this section). As depicted in Fig. 3, at a temperature of 4.2 K,
the optimum fidelity achieved by applying the optimized pulse
only on the target qubit is 0.99558. Meanwhile the optimum
fidelity attained by applying the optimized pulse on all three
qubits is 0.99552 ]corresponding to �/2π = 0.4246 MHz, as
utilized for numerical calculations in subsequent discussions.

Taking into account the impact of the decoherence, we
conduct a numerical assessment of the gate performance using
the Lindblad master equation

˙̂ρ = i[ρ̂, Ĥ (t )] + 1

2

3∑
j=1

2∑
i=0

(2L̂i j ρ̂L̂†
i j − L̂†

i j L̂i j ρ̂ − ρ̂L̂†
i j L̂i j ),

where Ĥ (t ) = Ĥ1
C(t ) + Ĥ2

C(t ) + ĤT(t ) + ĤV is the full Hamil-
tonian of the three-atom system, and ρ̂ is the density operator.
The atomic decay operator is defined by L̂i j = √

γi|i〉 j〈r| with
γi being the decay rates, and j labeling the jth atom. Fur-
thermore, we introduce states |2〉 and |2′〉, with corresponding
decay rates γ2 and γ2′ , representing additional Zeeman sub-
levels apart from the quantum qubit states |0〉 and |1〉. For
convenience, we assume that the decay rates from the Ry-
dberg state |r〉 to the two ground states |0〉 and |1〉 are
equal. As illustrated in Fig. 4(a), the leakage into the non-
computational subspace is represented by the state |2〉. By
scanning γ2 from 0.1γ0 to 10γ0, where γ2

γ0
∈ [0.1, 10], we have
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FIG. 4. The average fidelity variation of the Deutsch gates with the Rydberg states under different proportions leaking into computational
and non computational subspaces (a).The parameter γ2 is scanned from 0.1γ0 to 10γ0 to examine its influence on gate performance, (b). By
scanning γ2′ = γ2 from 0.1γ0 to 10γ0.

γ0 = γ1 ∈ [ �
12 , 10�

21 ] and γ2 ∈ [ �
21 , 5�

6 ]. It is observed that the
fidelity remains approximately 0.9952. As depicted in Fig-
ure 4(b), the leakage into the noncomputational subspace is
represented by the states |2〉 and |2′〉. Consequently, the decay
rates have been reassigned such that γ0 = γ1 ∈ [ �

22 , 5�
11 ] and

γ2′ = γ2 ∈ [ �
22 , 5�

11 ], in contrast to the scenario where γ2′ =
γ2 = 0. Despite this adjustment, the fidelity exhibits only a
slight change, from 0.9955 to 0.9952. To comprehensively
assess the accuracy of the Deutsch gate, we employ the trace-
preserving quantum-operator-based (TPQO) average fidelity
comprehensively assess [94,95]

F (Ût , ξ̂ ) =
∑

j t r(ÛtÛ
†
j Û †

t ξ̂ (Ûj )) + d2

d2(d + 1)
, (11)

where Ûj is the tensor of Pauli matrices, corresponding to Î Î Î ,
Î Î σ̂x, . . . , σ̂zσ̂zσ̂y, σ̂zσ̂zσ̂z. Ût is the ideal three-qubit Deustch
gate, d = 2n with n denoting the numbers of qubit, and ξ̂ is
the trace preserving quantum operation.

Furthermore, the system will inevitably be affected by con-
trol errors. When considering the presence of these errors, the
Hamiltonian of the system in Eqs. (2), (4), and (6) will change
to

Ĥ1
C(t ) =

(
1 + ε1

2

)
�c(t )eiφc

2∑
k=1

|0〉ck〈r| + H.c.,

ĤT(t ) =
(

1 + ε2

2

)
�(t )eiφ0(t )|b〉〈r| + H.c.,

Ĥ2
C(t ) =

(
1 + ε1

2

)
�c(t )eiφc

2∑
k=1

|0〉ck〈r| + H.c. (12)

Here, we assume that the Rabi frequency fluctuation in the
control and target qubits follow the same distribution for
convenience, with both fluctuations ε1 and ε2 in the range of
−0.1 � ε � 0.1. As illustrated in Fig. 5(a), the super-robust
schemes are more robust against the decay effect comparing
with dynamical scheme due to their short evolution time.
Initially, we examine the scenario without decay, depicted
in Fig. 5(b), where we observe that when the error range is

confined within 10%, the robustness of the optimized pulse
is optimal across all three qubits. To further approximate
real-world conditions, we conduct numerical simulations in
the presence of decay, as illustrated in Fig. 5(c). In this
scenario, if the Rabi error outweighs the decay error, em-
ploying the optimized pulse on all three qubits emerges as
the optimal choice for implementing the super-robust Deutsch
gate experimentally. Conversely, if the decay error is more
significant, we recommend utilizing the optimization pulse

FIG. 5. The average fidelity of the three schemes fluctuates with
(a) different decay rates �′ (in unit of �), [(b) and (c)] the laser
Rabi frequency fluctuations εn = δ�/� ∈ [−0.1, 0.1], where (b) and
(c) are corresponding to the cases without and with decay errors. The
orange dashed curves, the solid blue curves and the black dot-dashed
curves, represent the results of the schemes of using the optimization
pulses on all three qubits and only on the target qubit, and dynamical
scheme, respectively.
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FIG. 6. Comparison of the fidelity of the Deutsch gate under the fluctuation of the Rabi frequency of the control and target qubits and
the angle β under the regulation of 0 to π . (a) the dynamic scheme, (b) use the optimization pulse only on the target qubit, among them, we
consider the control error fluctuation within 10%. (c) use the optimization pulse on all three qubits.

solely on the target qubit. For more quantitative compari-
son, we assume the fluctuation errors to obey the Gaussian
distribution, i.e., p(ε) = 1√

2πσ
exp(− ε2

2σ 2 ) with σ representing
the standard deviation of the exemplified errors. Based on
the results, we thus obtain the fidelity of three protocols as
0.9932, 0.99558, and 0.99552, respectively, for the standard
deviation σ = 3% of the Rabi frequency under the decoher-
ence, while they are 0.9965, 0.9984, and 0.9984, respectively,
without decoherence. Our scheme features an adjustable pa-
rameter β. Comparing the robustness against Rabi errors,
Fig. 6 demonstrates that whether employing the optimization
pulse solely on the target qubit or utilizing it on all three
qubits, we can achieve a super-robust Deutsch gate with the
β angle adjustable from 0 to π . In experiments, it is inevitable
that the operations on the three pulses will suffer from errors
originating from imprecise apparatus, imperfect control, so it
is essential to investigate the effect of errors in timing control
on the Deutsch gate performance. For the three-step pulse, we
account for timing control errors t f at two time points. t f 1 con-
siders the error at time t1, while t f 2 considers the error at time
t2 [96]. The scheme involves utilizing optimized pulses solely
on the target qubit, with t1 = π/�c and t2 = π/�c + τ2, and
employing optimized pulse schemes on all three qubits, with
the same time points t1 and t2. Here, t f 1,2 ∈ [−2.5, 2.5] ns. As
depicted in Fig. 7(a) illustrates the scheme utilizing optimized

FIG. 7. The average fidelity of implementing super robust
Deutsch gates under the errors in timing control, (a) the scheme of us-
ing optimized pulses only on the target qubit, at t1 = π/�c and t2 =
π/�c + τ2, (b) using optimized pulse schemes on all three qubits, at
t1 = π/�c and t2 = π/�c + τ2, where t f 1,2 ∈ [−2.5, 2.5] ns.

pulses solely on the target qubit, (b) represents the scheme
employing optimized pulses on all three qubits. Consideration
of t f = 1 ns serves as an example: when two timing control
points are either advanced or delayed by 1 ns simultaneously,
the fidelity achieved using optimized pulses only on the target
qubit is 0.9918, whereas the fidelity obtained using optimized
pulse schemes simultaneously on three qubits is 0.9917. Con-
sequently, it is observed that within the error range controlled
by t f ∈ [−1, 1] ns, the fidelity of the super-robust Deutsch
gate can still reach 0.99 or above. Conversely, when only two
error symbols are opposite, the fidelity can also reach 0.99 or
higher. Notably, if the excitation and de-excitation times of
the control qubits are symmetrical, the impact on the fidelity
of achieving the Deutsch gates can be disregarded.

The inability to cool atoms to absolute zero temperature
within existing cooling mechanisms imposes limitations, as
even at low temperatures, atomic motion induces the Doppler
effect, causing motional dephasing during ground-Rydberg
transitions. Some works have been made to mitigate Doppler
dephasing errors in the implementation of Rydberg-mediated
quantum gates [97–99]. We further calculate the infidelity
resulting from the Doppler shift arising from thermal motion.
Consequently, the Rabi frequencies for the Rydberg excitation
are altered, �c(t ) �→ �c(t )eiδ1t �(t ) �→ �(t )eiδ2t . The detun-
ings δ1,2 of the excitation lasers experienced by the atoms
are modeled as two random variables following a Gaussian
probability distribution with a mean of δ0 = 0 and a standard
deviation of σδ = kwv. Here, kw = 1.9723 × 107m−1 denotes
the magnitude of the wave vector, and v = √

kBTa/m repre-
sents the one-dimensional root-mean-square velocity of the
atoms, where kB is the Boltzmann constant, Ta is the atomic
temperature, and m is the atomic mass. Observations indi-
cate that when the temperature reaches 10 µK, the fidelity of
the super-robust Deutsch gate decreases to 0.976 at �/2π =
5 MHz. However, this error can be mitigated by trapping and
cooling atoms at the onset of the gate sequence [97]. For
instance, cooling atoms to their vibrational ground state can
bring the quantum qubit closer to the trap center, thereby re-
ducing errors [100,101]. Despite several μK being considered
quite low, recent experimental advancements in Rydberg-gate
setups have demonstrated the attainment of such temperatures
[102,103]. In experimental contexts, Cs atomic systems have
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FIG. 8. The population dynamic of |000〉, |100〉, |110〉, |111〉 for
the inital state |ψ0〉 = (|000〉 + |010〉 + |110〉 + |100〉)/2. (a) and
(b) represent the use of the optimization pulse on all three qubits,
and only on the target qubit, respectively, where the extents of the
control pulse segment are enlarged in the two sides of each figure.
Set the β to arcsin 7

25 .

reached temperatures as low as 4.2 µK. Even when maintain-
ing a coupling strength of 3 MHz, the fidelity of the gate can
still be upheld at 0.99.

The time-dependence of state populations is depicted in
Fig. 8, initialized with the state |ψ0〉 = (|000〉 + |010〉 +
|110〉 + |100〉)/2. Figure 8(a) the scheme utilizing optimized
pulses solely on the target qubit and Fig. 8(b) showcases
the scheme employing optimized pulses on all three qubits.
The absence of population changes in states |110〉 and |111〉
is attributed to both control atoms remaining unexcited to
the Rydberg state by the control pulse. Additionally, during
step (ii), the |000〉 and |100〉 states exhibit no distribution,
stemming from the Rydberg blocking effect on the target atom
induced by the Rydberg state excited by the control atom in
step (i).

Finally, we consider the influence of next nearest neighbor
blocking interaction, i.e., the effect of V/64, which induces
a phase accumulation ϕ = −τ2V/64 with τ2 denoting the du-
ration of controlling the target qubit. In dynamical scheme,
τ2 = 6π/� [17] and τ2 = 4π/� in our scheme. When ϕ =
(2N + 1)π with N being an integer, the obtained state will
be orthogonal to the target state, resulting into zero fidelity.
In these three schemes, there are two input states, i.e., |000〉
and |001〉 to be affected by the next nearest neighbor blocking
interaction, thus, there will be 24 basis in the set constituted
by {|000〉〈000|, |000〉〈001|, . . . , |111〉〈111|}, will be affected,
which contains one of |000〉, |001〉, 〈000| and 〈001|. For the
Pauli matrices Ûj in Eq. (11), there will be 48 Pauli matrices
affected by this effect. At ϕ = (2N + 1)π , the affected Pauli
matrices gives no contribution to the average fidelity, resulting
at only 1/4 of Pauli matrices set contributing to the average
fidelity, which gives the average fidelity as

F = (d3/4 + d2)/d2(d + 1), (13)

resulting F = 1/3 for d = 8. Then, the average fidelity in our
scheme can be obtained as

F = A(1 + cos(−τV/64))/2 + 1/3, (14)

where the parameter A contains the error effects, such as
operational error and decoherence. In the ideal condition, A

FIG. 9. The fidelity for the dynamical scheme (a) and the scheme
using the optimization pulses only on the target qubit (b), where the
red dot results are obtained by considering the influence of next near-
est neighbor blocking interaction, i.e., V/64, the black solid curves
are obtained without considering next nearest neighbor blocking
interaction, and the blue dash curves denote the fitting curve obtained
by the analytic formula F = A[1 + cos(V τ2/64)]/2 + 1/3 with A
[=0.6598, 0.6619 for (a) and (b)] denoting the fitting coefficient.

equals to 2/3. These results can be demonstrated by Fig. 9,
the details are given in Appendix A. To remove this unwanted
phase accumulation, one method is to choose the parameters
to make ϕ = 2Nπ , since e2iNπ = 1. In the foregoing discus-
sion, we have use the relation � = −3V/64 and � = −V/32
to make ϕ = 2π . The other method [17] is to choose three
types of Rydberg states that are excited specifically from the
first control qubit, the second control qubit, and the target
qubit, respectively.

V. EXPERIMENTAL CONSIDERATIONS

A. Realization of the pulse

In experiments, two identical control atoms, confined
within optical tweezers at a distance denoted by L, are sub-
jected to an amplitude-modulated field with a Rabi frequency
represented as � = �eiφ . This field is employed to induce
transitions from the ground states |0〉 or |b〉 to the Rydberg
state |r〉. The implementation of such amplitude modulation
is achieved through the combined utilization of an acousto-
optic modulator (AOM) and an arbitrary waveform generator,
while the modulation of laser phase is also achievable through
AOM modulation [104]. In addition, one of the primary chal-
lenges is to simultaneously use resonant light to excite two
control atoms. This can be achieved by employing two laser
beams with opposite kw vectors to simultaneously illuminate
the two atoms. To a certain extent, this approach can ensure
precise alignment of the two laser beams onto the two atoms
and maintain their relative phase stability. Since laser beams
with opposite kw vectors typically originate from opposite
directions along the same optical path, they possess spatial
symmetry, which helps mitigate alignment errors arising from
path differences. In Fig. 10, we depict the profiles of phase
and Rabi frequency, where (a) illustrates the scenario without
optimized pulses on control qubits, while (b) portrays the case
with optimized pulses on control qubits. It is evident that we
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FIG. 10. Pulse diagram of our scheme. (a) is the scheme that use
the optimized pulse only on the target qubit and (b) is the scheme
that use the optimized pulse on all three qubits. The parameters are
the same as those in Fig. 6.

exclusively modify the phase of the control pulse, leaving the
Rabi frequency unchanged. This approach facilitates experi-
mental manipulation.

B. Error analysis

A major contribution to the gate error is the decay of the
Rydberg state, which can be minimized by using the higher
Rydberg states and larger �c values that, respectively, give
lower decay rates and shorter gate times. The duration for
each of the four input states to stay in Rydberg state is listed
in Table I for the super-robust Deutsch gate protocol. The
decay-induced fidelity error of the Deutsch gate averaged over
the eight input states is Edecay = T̄R/τ , where the T̄R1 = Tx1 +
4π−1
16�

is the time of the scheme using the optimization pulses
only on the target qubit, T̄R2 = Tx2 + 4π−1

16�
is the scheme using

the optimization pulses on the all three qubits.
Another fidelity error is the blockade error. During step (i)

and step (iii), the input state |000〉 and |001〉 can not be fully
converted back and forth to the state |rr0〉 and |rr1〉 because
there is a residue blockade V/64 between the two control

TABLE I. Time for the atoms to be in Rydberg states for different
input states in the super-robust Deutsch gate protocol, where the
Tx1 = π/�c + 4π/�, Tx2 = 3π/�c + 4π/�, the details are given in
Appendix B.

Input state TR1 TR2

|000〉 2Tx1 2Tx2

|001〉 2Tx1 2Tx2

|010〉 Tx1 Tx2

|011〉 Tx1 Tx2

|100〉 Tx1 Tx2

|101〉 Tx1 Tx2

|110〉 (4π − 1)/(4�) (4π − 1)/(4�)
|111〉 (4π − 1)/(4�) (4π − 1)/(4�)

qubits when they are in Rydberg state. This contributes an
error of about Eb = 2(V/64)2/�2

c .

C. Possible experimental configurations

With the development of quantum technology of Rydberg
atoms trapped in optical lattices or tweezer arrays, a number of
practical configurations of atomic arrays can be used to realize
the proposed multiple-qubit gates if the Rydberg block-
ade condition is satisfied. Concretely, the one-dimensional
[21,105,106] and two-dimensional [25,107] atomic array
structures as well as the spherical structure can be considered
for the experimental realization of the desired gate.

VI. CONCLUSION

In our approach, we leverage the Rydberg blockade effect
alongside optimal control techniques and geometric quantum
operations to straightforwardly realize a Deutsch gate with
high fidelity and robustness. Furthermore, our protocol facili-
tates the implementation of Deutsch gates D(β ) with arbitrary
angles β, thus offering a comprehensive family of universal
gates crucial for quantum computing [108]. Moreover, we
carefully assessed the impact of control errors and decay er-
rors on achieving high fidelity and robustness in our Deutsch
gate implementation. When the decay error dominates over
the Rabi error, we advocate for utilizing optimization pulses
solely on the target qubit. Conversely, when the Rabi error
prevails, employing optimization pulses on all three qubits
is recommended. Comparative numerical simulations demon-
strate the superior robustness of our scheme against both Rabi
control errors and decay errors compared to previous propos-
als. Consequently, our proposal presents a promising avenue
for advancing fault-tolerant quantum computation.
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APPENDIX A: ANALYSIS FOR THE INFLUENCE OF THE
NEXT NEAREST NEIGHBOR BLOCKING INTERACTION

In order to try to give an analytical solution for
the subnearest neighbor interaction, we give the
following analysis. In the basis space constituted by
{|000〉〈000|, |000〉〈001|, · · · , |111〉〈111|}, we rewrite them
as σ̂n,l = |n〉〈l| with n, l = s1, s2, . . . , s8 where we in order
encode s1 = 000, s2 = 001, s3 = 010, 4 = 011, s5 =
100, s6 = 101, s7 = 110, and s8 = 111. Due to |000〉
and |001〉 affected by the next nearest neighbor blocking
interaction, an additional phase ϕ is produced in |s1〉 and |s2〉.
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FIG. 11. The values for the fidelity of σn,l (a) and Uj

(b) for the basis sets {|000〉〈000|, |000〉〈001|, . . . , |111〉〈111|} and
{Î Î Î, Î Î σ̂x, . . . , σ̂zσ̂zσ̂y, σ̂zσ̂zσ̂z}, respectively, for different additional
phase ϕ, under the scheme using the optimization pulses only on the
target qubit.

Therefore, after an evolution superoperator ξ̂ (·) to produce a
logic gate, the basis is changed into

σ̂
g
n,l = eiϕξ̂ (σ̂n,l ), if n = s1, s2, l �= s1, s2;

σ̂
g
n,l = e−iϕξ̂ (σ̂n,l ), if n �= s1, s2, l = s1, s2;

σ̂
g
n,l = ξ̂ (σ̂n,l ), others. (A1)

Then, the fidelity for these basis under the idea evolution Uid

can be given as

Fn,l = eiϕTr[ξ̂ (σ̂n,l )Ûid σ̂n,lÛ
†
id ], if n = s1, s2, l �= s1, s2;

Fn,l = e−iϕTr[ξ̂ (σ̂n,l )Ûid σ̂n,lÛ
†
id ], if n �= s1, s2, l = s1, s2;

Fn,l = Tr[ξ̂ (σ̂n,l )Ûid σ̂n,lÛ
†
id ], others, (A2)

where the phase induced by the next nearest neighbor block-
ing interaction has been distilled from the super-operator ξ (·).
Thus the average fidelity of gate operator are given as

F =
s8∑

n,l=s1

Fn,l

64
= AI

[
3

8
(1 + cos ϕ) + 1

4

]
, (A3)

where we have assume a constant coefficient AI =
|AI (n, l )| = Tr[ξ̂ (σ̂n,l )Ûid σ̂n,lÛ

†
id ] for all n, l = s1, s2, . . . , s8.

Therefore there are only quarter of all the basis fully contribut-
ing to the average fidelity. As shown in Fig. 11(a), at the worst
scenario cos ϕ = (2N + 1)π , there are 24 basis vectors that
produce −1 effects and 40 that produce 1 effects, thus, the
average fidelity is only AI/4. If ξ̂ (σ̂n,l ) = Ûid σ̂n,lÛ

†
id , AI = 1,

we have

F = 3
8 (1 + cos ϕ) + 1

4 . (A4)

At the worst scenario cos ϕ = (2N + 1)π , the average fidelity
is only 0.25. These results are shown in Fig. 11(a), where
the parameter AI ≈ 0.99. According to the above reasoning,
changed into the basis set {Î Î Î, Î Î σ̂x, . . . , σ̂zσ̂zσ̂y, σ̂zσ̂zσ̂z}, the

average fidelity can be given phenomenology as

F =
∑

j Fj + d2

d2(d + 1)
= d2BI (3(1 + cos ϕ)/2 + 1)/4 + d2

d2(d + 1)
,

(A5)
where we assume the constant coefficient BI for the contri-
bution of Fj for j = 1, 2, . . . , 64 by excluding the additional
phasing. If ÛtÛ

†
j Û †

t = ξ̂ (Ûj ), BI = d , which can be seen in
Fig. 11(b) that BI = 7.95 for ϕ = 2π . Therefore we can obtain

F = 3d (1 + cos ϕ)

8(d + 1)
+ d + 4

4(d + 1)
. (A6)

Inserting d = 8, we can obtain

F = 1
3 (2 + cos ϕ). (A7)

If considering the dissipation and decoherence, a suitable fi-
delity formula can be written as F = A(1 + cos ϕ)/2 + 1/3
with A ≈ 2/3.

APPENDIX B: THE TIME FOR THE ATOM
TO BE IN RYDBERG STATE

We have a detailed description of the time for the atoms
to be in Rydberg states for different input states in the super-
robust Deutsch gate protocol.

We first analyze the scheme used the optimized pulse only
on the target qubit. For the case of no control atoms are excited
to the Rydberg state, that is, the initial state is |110〉 or |111〉,
where the target qubit is not blocked. Therefore we only need
to consider the time of the target qubit on the Rydberg state,

tr1 =
∫ π

2�

0

1

2
sin2 t�

2
dt = π − 2

8�
,

tr2 =
∫ 3π

2�

π
2�

1

4
dt = π

4�
,

tr3 =
∫ 2π

�

3π
2�

1

4
(1 + sin t�)dt = π − 2

8�
,

tr4 =
∫ 5π

2�

2π
�

1

4
(1 + cos t�)dt = π + 2

8�
,

tr5 =
∫ 7π

2�

5π
2�

1

4
dt = π

4�
,

tr6 =
∫ 4π

�

7π
2�

1

4
dt = π

8�
, (B1)

the integrated population of the target qubit in |r〉 is

TR1 = 2(π − 2)

8�
+ 2π

4�
+ π + 2

8�
+ π

8�
= 4π − 1

4�
. (B2)

For the case of only one control atom is excited to Rydberg
state, that is, the initial state is |010〉, |011〉, |100〉, or |101〉,
the time for the atoms to be in Rydberg states is

TR1 =
∫ π

�c

0
sin

t�c

2
dt + τ2 +

∫ 2π
�c

π
�c

cos
t�c

2
dt = Tx1. (B3)
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For both control atoms are excited to the Rydberg state,
that is, the initial state is |000〉 or |001〉

TR1 = 2Tx1. (B4)

Therefore the total decay error is

Edecay = T̄R1/τ, (B5)

where

T̄R1 = Tx1 + 8π − 2

32�
, (B6)

Similarly, the scheme used optimized pulses on all three
qubits is similar to the above calculation.
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