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Coupled cluster method tailored with quantum computing
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Introducing an active space approximation is inevitable for the quantum computations of chemical systems.
However, this approximation ignores the electron correlations related to nonactive orbitals. Here, we propose a
computational method for correcting quantum computing results using a well-established classical theory called
coupled cluster theory. Our approach efficiently extracts the quantum state from a quantum device by computa-
tional basis tomography. The extracted expansion coefficients of the quantum state are embedded into the coupled
cluster ansatz within the framework of the tailored coupled cluster method. We demonstrate the performance of
our method by verifying the potential energy curves of LiH, H2O, and N2 with a correlation-energy correction
scheme. Our method demonstrates reasonable potential energy curves even when the standard coupled cluster
fails. The sufficient numbers of measurements for tomography were also investigated. Furthermore, this method
successfully estimated the activation energy of the Cope rearrangement reaction of 1,5-hexadiene together with
perturbative triples correction. These demonstrations suggest that our approach has the potential for practical
quantum chemical calculations using quantum computers.
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I. INTRODUCTION

Quantum chemistry is expected to be an application of
quantum computing where it could be possible to outperform
its classical counterpart [1]. Quantum computers can hold
and manipulate a superposition of an exponential number of
electronic configurations using a polynomial number of quan-
tum bits (qubits). They are, therefore, considered particularly
suitable for simulations of strongly correlated systems, where
the nature of quantum superpositions, often difficult to handle
using current classical computers, is of essential importance.

Nevertheless, for the foreseeable future, quantum comput-
ers will be limited in the number of qubits they have. In
most cases, they cannot handle all the electronic degrees of
freedom (orbitals and electrons) of a targeted molecule on a
quantum computer. Furthermore, even if the number of qubits
in a quantum computer increases sufficiently in the future, it
is known that there will still be practical limits on the number
of electrons and orbitals that a quantum computer can handle
because of the slow clock speed of fault-tolerant quantum
computers [2,3]. Given these limitations, it is expected that
quantum computers can only be applied to what is known
as the “active space,” which is a user-defined, chemically
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important space around the Fermi level of a molecular elec-
tronic structure.

Active spaces are designed to consider only the most im-
portant orbitals for treating the strong correlation of electrons
(i.e., static correlation). The active spaces, however, naturally
ignore the remaining weak correlation (i.e., dynamical cor-
relation) resulting from the nonactive orbitals. Moreover, as
the selection of an active space is more or less based on
the chemical intuition of the user, there is often a degree
of arbitrariness. This user dependency can have a significant
impact on the accuracy of the methods using an active space.
Recently automated active space selection procedures have
been proposed to reduce user bias and improve the reliability
of results [4–11]. The active space approximation has been
extensively discussed and addressed in traditional quantum
chemistry [12–18].

In quantum computing, various approaches have been pro-
posed to incorporate ignored electron correlation [19–41].
These approaches fall into two broad categories. The first
involves constructing models incorporating weak electron
correlation during the development of effective Hamiltoni-
ans, which are then solved using quantum computers. This
method is often called the “perturb-then-diagonalize” ap-
proach. The second category improves the results based on
an active space Hamiltonian solution obtained by quantum
computers, and it is known as the “diagonalize-then-perturb”
approach. The former requires an up-front estimation of the
electron correlation outside the active space, which introduces
some arbitrariness. The latter commonly uses the internally
contracted multireference perturbation theory or multirefer-
ence configuration interaction, and there have already been
proposals for implementation using quantum computing re-
sults. However, these classical computing methods require
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higher-order reduced density matrices (RDMs), leading to
prohibitive measurement costs on quantum computers, thus
they seem impractical [30,42–44]. Consequently, there is an
increasing demand for methods considering weak electron
correlation without relying on higher-order RDMs.

One of the practical and easy-to-use approaches to account
for dynamical correlation from outside the active space with-
out using higher-order RDMs is the tailored coupled cluster
(TCC) [45–50]. In TCC, after finding the ground state of
an active space Hamiltonian by the complete active space
configuration interaction (CASCI) method, the lost dynami-
cal correlation in the CASCI calculation is described in an
additional CCSD optimization of the whole space while keep-
ing the static correction of the CASCI solution. TCC can
be worked with not only CASCI but also other quantum
chemical theories such as the density matrix renormaliza-
tion group (DMRG) [51], the full configuration interaction
quantum Monte Carlo method (FCIQMC) [52,53], and pair
coupled cluster doubles [54–57]. It should be noted that there
is another method, known as the externally corrected coupled
cluster method, which is similar to TCC in its conceptual
framework [58–65].

This study proposes combining TCC and quantum comput-
ing to recover dynamical correlation from excluded orbitals
outside the active space. Our practical method is a two-step
approach using a quantum computer to solve the static cor-
relation and add the remaining dynamical correlation using
classical computers. This method requires only a limited num-
ber of qubits to mainly solve the static correlation, while the
relatively computationally cheap consideration of weak corre-
lation can be performed on classical hardware. To extract the
solved quantum state from a quantum computer, we use a to-
mographic method, namely computational basis tomography
(CBT) [66]. CBT is based on computational basis sampling
[66] and it is an effective strategy when only a small number
of Slater determinants are non-negligible, as is often the case
in quantum chemistry. Additionally, a method is proposed in
which we utilize the direct access to the energy of the active
space and add our newly determined electron correlation out-
side the active space. The accuracy of the proposed method is
further enhanced using this approach.

We demonstrate that our approach can produce accurate
potential energy curves (PECs) for LiH, H2O, and N2. As CBT
is naturally a statistical process that uses measurements to
determine a quantum state, we investigate the number of mea-
surement dependencies in CBT on LiH, H2O, and N2. Finally,
to demonstrate the analysis of a realistic chemical reaction,
we estimate the activation energy of the Cope rearrangement
of 1,5-hexadiene.

The remainder of this paper is organized as follows: We
discuss the relevant theories of TCC, CBT, and our QC-CBT-
TCC approach in Sec. II. The numerical results for the PECs
of LiH, H2O, and N2 are shown in Sec. III, as well as the
influence that different numbers of measurements in CBT
have on the confidence in our approaches. Additionally, we
determined the activation energy of the Cope rearrangement
using our method and present the results in Sec. III. In Sec. IV,
we summarize our work.

II. THEORY

A. Tailored coupled cluster

The TCC proposed by Kinoshita et al. [45] is a two-step
theory designed to incorporate strong correlation into the stan-
dard coupled cluster theory, particularly the coupled cluster
singles and doubles (CCSD) model. CCSD often breaks down
when strong electron correlation exists. The main idea behind
TCC is to split the coupled cluster (CC) parameters into those
for strongly correlated electrons in the active space and those
for weakly correlated electrons. They can then be determined
individually. This gives rise to a formulation, as shown in the
following equation:

|ψTCC〉 = eT̂ rest (θ rest )eT̂ active(θ active ) |ψ0〉 . (1)

The operators eT̂ active
act exclusively on the active space. The

other operators eT̂ rest
also act on the rest of the space. For

CCSD, those operators are written as
T̂ active(θ ) =

∑
i,a

T̂ a
i

(
θa

i

) +
∑

i, j,a,b

T̂ a,b
i, j

(
θa,b

i, j

)

i, j, a, b ∈ active space,

(2)

T̂ rest(θ ) =
∑
i,a

T̂ a
i

(
θa

i

) +
∑
i, j,ab

T̂ a,b
i, j

(
θa,b

i, j

)

{i, j, a, b} �⊂ active space,

(3)

where T̂ a
i and T̂ a,b

i, j are the single and double excitation CC

operators. For example, T̂ a,b
i, j excites electrons from the occu-

pied orbitals i and j to the unoccupied orbitals a, b. The curly
brackets in Eq. (3) indicate that at least one of the i, j, a, b
orbitals is not present in the active space.

In the first step of TCC, the molecule is described using
a variational method using an active space approximation,
such as the CASCI approach. This step aims to incorporate
strong correlation by assuming that all the strongly correlated
degrees of freedom are involved in the active space. The
electron configurations’ coefficients of the variational wave
function |ψactive

variational〉 can be mapped directly to coupled cluster
amplitudes through the known relationship between their cor-
responding coupled cluster and configuration interaction (CI)
operators:

T̂ active
1 = Ĉ1, (4)

T̂ active
2 = Ĉ2 − 1

2
Ĉ2

1 , (5)

where Ĉ1 and Ĉ2 are the CI operators to create single and
double excitations, respectively. This procedure allows us
to approximately reconstruct the variational wave function
|ψactive

variational〉 in the CCSD ansatz.
The second step is the optimization of the remaining op-

erators eT̂ rest (θ rest ), while the active space operators are kept
fixed during the optimization. This preserved the description
of static correlation. The optimized operator eT̂ rest (θ rest ) incor-
porates the previously missing dynamic correlation into the
solution.

Additionally, given that TCC is a method rooted in CCSD,
after optimizing the CCSD operator eT̂ rest (θ rest ), one can further
improve accuracy by perturbatively incorporating the effects
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of the three-body excitation operator in the same way as in
CCSD(T). So, we denote TCC with the (T) correction as
TCC(T) in this study. For TCC(T), all active single and dou-
ble amplitudes must be set to zero during the (T) correction
calculation to prevent double-counting [47,67].

B. Computational basis tomography

CBT is an estimation method to determine a quantum state
prepared on a quantum computer using the computational
basis sampling method proposed by Kohda et al. [66]. In this
section, we briefly review how CBT estimates a quantum state
|�〉 on a quantum computer.

Let us call the estimated state the CBT state |�CBT〉. Its
definition is given as

|�CBT〉 = 1

N

R∑
i=1

〈ki|�〉|ki〉, (6)

where 1/N is the normalization constant and |ki〉 is a
computational basis (i.e., Slater determinants or electron con-
figuration) listed in the order of the absolute values of the
coefficients 〈ki|�〉. The coefficients 〈ki|�〉 are equivalent to
the CI coefficients. The parameter R is introduced to truncate
the trivial computational basis; therefore, R needs to be chosen
large enough in order to adequately approximate the original
quantum state |�〉. We tentatively consider the upper limit
of R to be around 1000–10 000. By keeping the number of
extracted coefficients R constant, the method sacrifices some
accuracy but enables scalability to large systems.

CBT aims to estimate the quantum state via measurements
rather than the expectation value of an observable. The coeffi-
cients are expressed as follows:

〈ki|�〉 = |〈ki|�〉|eiφi . (7)

To get the coefficients, we must determine their absolute val-
ues and the phases φi. The absolute value |〈ki|�〉| can be
readily obtained using projective measurements; we show it
in a later stage. However, a more detailed method is required
to determine the phase. Instead of determining the phase
directly, Kohda’s computational basis sampling approach en-
ables the efficient determination of CI coefficients through the
observation of phase differences. We can use the following
relationship to determine the phase difference between two
computational bases |ki〉 and |k j〉:

ei(φi−φ j ) = 〈ki|�〉〈�|k j〉
|〈ki|�〉||〈�|k j〉| . (8)

As the global phase of a state can be neglected, we can freely
set the phase for one coefficient to zero and determine the
relative phase differences for the remaining basis states using
Eq. (8). As described later, the absolute value of the coefficient
|〈ki|�〉| and what we call the interference factor 〈ki|�〉〈�|k j〉
can be determined relatively easily by projective measure-
ments, thus allowing the estimation of phase differences.

When a sufficient number of samplings Nsample are per-
formed, the squared weight of 〈ki|�〉 is estimated as

|〈ki|�〉|2 � Ni

Nsample
, (9)

where Ni is the number of times the outcome ki is obtained.
This directly gives us an approximation for the absolute values
of the coefficients.

To determine the phase factor, we need to measure the
interference factors 〈ki|�〉〈�|k j〉. In the case ki = k j this is
equivalent to determining |〈ki|�〉|2. When ki �= k j , we can
rewrite the interference factor as

〈ki|�〉〈�|k j〉 = |〈0|Uki,k j |�〉|2 + i|〈0|Vki,k j |�〉|2

− 1 + i

2
(|〈ki|�〉|2 + |〈k j |�〉|2),

(10)

where Uki,k j and Vki,k j are unitary operators acting in the fol-
lowing way:

Uki,k j

( |ki〉 + |k j〉√
2

)
= |0〉 ,Vki,k j

( |ki〉 − |k j〉√
2

)
= |0〉 . (11)

How to construct the circuits Uki,k j and Vki,k j was discussed
in Refs. [66,68]. Using the relation

〈ki|�〉〈�|k j〉 = (〈k1|�〉〈�|ki〉)∗〈k1|�〉〈�|k j〉
|〈k1|�〉|2 , (12)

we note that we only need to measure the case for ki = k1 and
k j �= k1 and can recover the remaining interference factors.
We explicitly write the cases ki = k1 and k j �= k1 as

〈k1|�〉〈�|k j〉 = |〈0|Uk1,k j |�〉|2 + i|〈0|Vk1,k j |�〉|2

− 1 + i

2
(|〈k1|�〉|2 + |〈k j |�〉|2).

(13)

The first term in Eq. (13) is estimated as

|〈0|Uk1,k j |�〉|2 � N0

NU
, (14)

where N0 is the count for which we obtain the outcome zero,
and NU is the total amount of samplings, and similarly when
NV is the number of measurements used to determine the
second term in Eq. (13). The second term is estimated as

|〈0|Vk1,k j |�〉|2 � N ′
0

NV
, (15)

where N ′
0 is the count of the times we obtained the outcome

zero. The remaining terms of Eq. (13) can be determined
similarly, as in Eq. (9).

In summary, the truncation number R and the numbers of
the three types of measurements Nsample, NU , and NV play vital
roles in CBT.

C. QC-CBT-TCC

In this section, we discuss our quantum-classical hybrid
tailored coupled cluster theory with CBT method, which we
denoted as QC-CBT-TCC. This method aims to include dy-
namic correlations for quantum computing while using an
active space. QC-CBT-TCC uses a quantum computer to
consider the strong correlation and then describes the re-
maining dynamic correlation using a classical device. In our
framework, the CBT method is used to transfer the quantum
solution onto a classical device. We present a graphical rep-
resentation of our method in Fig. 1 and explain it in more
detail in the following. In the first step, we determine the
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FIG. 1. Schematic depiction of QC-CBT-TCC. In the first step, we determine the ground-state solution of the active space using a quantum
computer. As the state is classically inaccessible, we indicate this by not showing the concrete electronic structure of the active space. To
determine the relevant CI-coefficients of the state, we use a CBT method and tailor the corresponding CCSD coefficients. In the last step, we
optimize the remaining CCSD coefficients while keeping the active space coefficients constant.

active-space ground state |ψactive
QC 〉 using a quantum computer.

Different quantum (or quantum-classical hybrid) algorithms,
such as a variational quantum eigensolver (VQE) [69,70], a
quantum phase estimation (QPE) [71], and quantum imagi-
nary time evolution [72–76], can be used in this step.

In the second step, CBT is used to determine the most
significant CI coefficients of the produced ground state on
a quantum computer |ψactive

QC 〉. Using the obtained CI co-
efficients, the ground state of the active space |ψactive

QC 〉 is
approximately converted to a coupled cluster ansatz. Mapping
the CI operators to their coupled cluster counterparts follows
the same relationship as already described in Sec. II A in
Eq. (4) to (5). As the wave-function parameters θ active for
|ψactive

QC 〉 are practically approximated by CBT, we call them
θ active

CBT . The obtained approximate active-space ground-state
wave function in the coupled cluster is written as∣∣ψactive

CBT

〉 = eT̂ active(θ active
CBT ) |ψ0〉 . (16)

In the third step, the remaining θ rest coefficients are op-
timized by solving the standard projected coupled cluster
equations. During the optimization, the amplitudes of the ac-
tive space operators are held constant. This procedure allows
the addition of dynamical correlation descriptions while con-
serving that of static correlation. The final produced state of
QC-CBT-TCC |ψQC-CBT-TCC〉 can be written as

|ψQC-CBT-TCC〉 = eT̂ rest (θ rest )eT̂ active(θ active
CBT ) |ψ0〉

= eT̂ rest (θ rest )
∣∣ψactive

CBT

〉
.

(17)

The QC-CBT-TCC energy EQC-CBT-TCC is then given by the
following projected energy:

EQC-CBT-TCC = 〈ψ0| Ĥ |ψQC-CBT-TCC〉 . (18)

D. Enhanced QC-CBT-TCC

One of the issues associated with QC-CBT-TCC is the
lack of assurance that the energy obtained via QC-CBT-
TCC will outperform classical algorithms in accuracy. This
arises because of the approximate nature of both CBT and
TCC methodologies. The TCC approach employs the standard

CCSD ansatz to approximate the active space wave function,
which implies that it does not incorporate information about
higher-order excitations, such as triple and quadruple excita-
tions, obtained from a quantum computer. Furthermore, CBT
is a statistical method, and its inherent statistical nature intro-
duces additional errors. To address this problem, we introduce
a correction method as described below. The corrected energy
EQC−CBT−TCC(c) is defined as

EQC-CBT-TCC(c) = E active
QC + (

EQC-CBT-TCC − E active
QC-CBT-TCC

)
.

(19)

The first term E active
QC in Eq. (19) represents the expectation

value of the active space Hamiltonian via quantum computing
such as QPE. The difference in the second term corresponds
to the additional correlation added to the active space solu-
tion using the QC-CBT-TCC technique. EQC-CBT-TCC is the
predicted energy using the QC-CBT-TCC method, whereas

E active
QC-CBT-TCC = 〈ψ0| ĤeT̂ active(θ active

CBT ) |ψ0〉 (20)

is the CCSD energy after dressing the CCSD amplitudes but
before the remaining CCSD optimization. In that case, the
remaining operators eT̂ rest

are equivalent to the identity. Since
the same error arises in EQC-CBT-TCC and E active

QC-CBT-TCC, taking
the difference between these terms removes the errors in the
active space electron correlation inherent to the QC-CBT-TCC
method.

Note that Izsák et al. have already employed a similar
extrapolative correction method in Ref. [77] in the context of
using quantum computers for quantum chemistry as well as
Kats and his co-workers for FCIQMC-TCC [52].

III. RESULTS AND DISCUSSION

This section describes our method, QC-CBT-TCC, and
the QC-CBT-TCC(c) approach’s performance. Section III A
presents the potential energy curves for three molecules, LiH,
H2O, and N2. In Sec. III B, we conducted multiple experi-
ments at different interatomic distances for each molecule to
discuss the reliability of CBT, as CBT is a statistical method
and QC-CBT-TCC is influenced by the statistical errors of

023230-4



COUPLED CLUSTER METHOD TAILORED WITH QUANTUM … PHYSICAL REVIEW RESEARCH 6, 023230 (2024)

FIG. 2. (a) Potential energy curves of LiH using the cc-pVDZ basis sets. The CCSD natural orbitals were employed for the VQE and
subsequent QC-CBT-TCC and QC-CBT-TCC(c) calculations. An active space consisting of two orbitals and two electrons [i.e., (2o,2e)] was
used. (b) Deviations from the FCI potential energy curve.

CBT. In Sec. III C, we apply our method to a prototype organic
reaction, the Cope rearrangement of 1,5-hexadiene.

The computational details are as follows. A CHEMQULACS

[78] library was used to simulate quantum circuits on clas-
sical hardware. We employed disentangled unitary coupled
cluster singles and doubles (UCCSD) as an ansatz for VQE
and BFGS as an optimizer. CCSD, CCSD(T), CASCI, and
FCI were calculated using PySCF [79]. The MR-CISD + Q
method was employed to obtain reference data for the PECs
of H2O and N2 because the FCI calculation was too compu-
tationally demanding for the hardware at hand. This method
was implemented in the ORCA quantum chemistry program
Version 5.0.3 [80]. All calculations for the PECs in this study
were performed using the cc-pVDZ basis set. In Sec. III C, we
used the 6-31G∗ basis set to compute the activation energy for
the Cope rearrangement. We used the canonical orbitals for
all molecules except for LiH, which was calculated using the
natural orbitals provided by a CCSD calculation. This, how-
ever, is an approximation because the CCSD implementation
of PySCF used in this study assumes canonical orbitals, so
off-diagonal terms in the Fock matrix are ignored. The active
spaces were determined using the lowest energy level unoc-
cupied orbitals and the highest energy occupied orbitals from
the Hartree-Fock calculation. To transfer the CI coefficients
determined by CBT to the amplitudes for CCSD, only the real
parts were considered. This was necessary because usually
the CCSD for a nonrelativistic or nonperiodic Hamiltonian
expects real coefficients. The CI coefficients were normalized
to ensure the normalization. Unless otherwise indicated, we
applied the parameters R = 100, Nsample = 106, NU = 106,
and NV = 106 for all the CBT calculations.

A. Potential energy curves

First, we investigated the PEC of the LiH molecule. In
addition to the QC-CBT-TCC(c), we show the results for
QC-CBT-TCC, active space UCCSD, and FCI, as well as HF,
CCSD, and CCSD(T). The selected active spaces for these
calculations were two electrons and two spatial orbitals, the
highest occupied and the lowest unoccupied orbitals.

Figure 2(a) shows the PEC of the LiH molecule. All con-
sidered methods followed the qualitative features of the FCI
energy curve shape, except for HF. The active space UCCSD
increased the accuracy compared to that of the HF solution.
This behavior is most notable in the bond dissociation region.
At the equilibrium bond length, the active space UCCSD can
capture some dynamic correlation. The QC-CBT-TCC and its
enhanced version, the QC-CBT-TCC(c), further increased the
computed energy’s accuracy. This indicates that additional
dynamical correlations outside the active space are required
to reach good ground-state energy. CCSD and CCSD(T) both
gave energies very similar to FCI. In the high dissociation
regime, where static correlation dominates, all methods except
for HF gave similar results.

We focus on the energy errors of the coupled clus-
ter and present methods compared with the FCI energy
in Fig. 2(b). CCSD and CCSD(T) showed better accuracy
throughout the tested bond lengths than the QC-CBT-TCC and
QC-CBT-TCC(c). This can be attributed to the small static
correlation within the molecule. For such a system, CCSD
and CCSD(T) can capture electron correlation up to high ac-
curacy. The energy difference between the QC-CBT-TCC and
QC-CBT-TCC(c) was small. However, the QC-CBT-TCC(c)
appears to produce a smoother energy error. We assume that
some errors in the QC-CBT-TCC did cancel out when the
QC-CBT-TCC(c) was constructed. QC-CBT-TCC and QC-
CBT-TCC(c) produced energies that are lower than the FCI
energy. This is possible since QC-CBT-TCC tailors the clas-
sical coupled cluster equations, which are not variational.

Secondly, we observed the two-bond dissociation behavior
of H2O. We simultaneously increased the two H-O distances
while leaving the HOH angle constant at 104.52◦. Such a
treatment can be understood as an example of a double bond
dissociation [45]. We selected an active space of eight elec-
trons and six spacial orbitals of the four highest occupied and
two lowest unoccupied orbitals. The MR-CISD + Q calcula-
tion was based on preliminary state-specific CASSCF(6o,8e).

As shown in Fig. 3(a), QC-CBT-TCC and QC-
CBT-TCC(c) reproduce the quantitative features of the
MR-CISD + Q calculation and show good accuracy
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FIG. 3. (a) Potential energy curves of the double dissociation of the water molecule’s OH bonds using the cc-pVDZ basis sets. An active
space consisting of six orbitals and eight electrons [i.e., (6o,8e)] was used. (b) Deviations from the MR-CISD + Q potential energy curve of
the double dissociation of the water molecule’s OH bonds.

throughout the observed bond distances. The CCSD energy
curve, on the other hand, shows less accurate results but still
follows the MR-CISD + Q energy curve. This contrasts with
CCSD(T), which fails to compute the energy in the high
dissociation region. At the equilibrium point, the active space
UCCSD(6o,8e) and HF estimated similar energies. For long
bond distances, UCCSD gave more accurate energies than HF.
Treating the molecule within natural orbitals would probably
increase the accuracy of the UCCSD(6o,8e). Methods
that included out-of-active space correlation produced
significantly more accurate results than the UCCSD(6o,8e).
This shows that such correlation must be included to obtain
an accurate ground-state description.

In Fig. 3(b), we show the explicit error of the presented
methods compared to MR-CISD + Q. CCSD(T), and ar-
guably CCSD, also break in the highly entangled region.
QC-CBT-TCC and the QC-CBT-TCC(c) can give accurate
energies. However, in the high dissociation region, QC-CBT-
TCC’s error increases, whereas that of QC-CBT-TCC(c)

shows this effect is reduced, indicating that the QC-CBT-
TCC(c) method produces more stable energies.

Finally, we investigated the PEC of N2 as an example
of a triple-bonded molecule. We used the three highest oc-
cupied and three lowest unoccupied orbitals for the active
space to perform the active space UCCSD calculations. The
MR-CISD + Q calculations were performed following the
state-specific CASSCF(10o,10e).

Figure 4(a) shows that the QC-CBT-TCC(c) reproduces
the MR-CISD + Q PEC well. However, there is an almost
constant, small energy gap between the two PECs in the
region of approximately more than 4.0 Bohr. We expect
this gap to result from the different active spaces selected
for the QC-CBT-TCC(c) and MR-CISD + Q calculations.
CCSD and CCSD(T) failed to reproduce the triple-bond
breaking for extensive bond lengths, as is well known.
They exhibited unnatural behavior and overestimated the
correlation energy. The energy of active space UCCSD in-
creased the accuracy compared with the HF energy because

FIG. 4. (a) Potential energy curves of N2 using the cc-pVDZ basis sets. UCCSD calculations employed the active space consisting of six
orbitals and six electrons [i.e., (6o,6e)], while MR-CISD + Q calculations used CASSCF with the active space of 10 orbitals and 10 electrons
as a reference wave function. (b) Deviations from the MR-CISD + Q potential energy curve of N2.
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FIG. 5. Energy insecurity of QC-CBT-TCC(c) for H2O with a different number of measurements for CBT. Nsample, NU , and NV were all
measured in the specified quantities in the figure as the x-axis values. CBT was performed 1000 times for each setting to obtain an estimate for
the statistical errors. The box indicates the range from the first to the third quartile, called the interquartile range (IQR), with the median drawn
in the middle. The box contains 50% of the data. Whiskers are the lines extending 1.5 times the IQR from the first and third quantiles. Data
points that exceed the whiskers are considered outliers (fliers) and are represented as single dots. (a) Number of measurements dependency at
an equilibrium distance of 1.808 Bohr. (b) Number of measurements dependency at 3.617 Bohr, twice the equilibrium distance.

it could consider electron correlation inside the active space.
Like the previous results, the additional dynamical cor-
relation from nonactive space affected the QC-CBT-TCC
energy, and QC-CBT-TCC(c) further demonstrates significant
accuracy.

The error of the observed methods compared with that
of MR-CISD + Q is shown in Fig. 4(b). Only the QC-CBT-
TCC(c) provided a good solution for all observed distances.
As is well known, CCSD and CCSD(T) fail to predict ac-
curate energies for N2 for considerable bond lengths, but
also QC-CBT-TCC started to produce unfaithful results in
the high dissociation limit. This effect suggests that the QC-
CBT-TCC(c) can cancel out some errors resulting from the
transition from the quantum device to the CCSD ansatz and is
a genuine improvement of the method.

B. Number of shot dependency of QC-CBT-TCC

CBT used in our method adds a certain level of uncertainty
to our computed energies. Determining the CASCI coeffi-
cients using CBT is a statistical process. To investigate this
statistical behavior, we examined for the molecules LiH, H2O,
and N2 the impact of varying measurement repetitions in CBT
on the QC-CBT-TCC(c). We considered two constellations,
one for the molecules at the equilibrium bond length [45]
and one for a bond length of twice the equilibrium bond dis-
tance. Note that the geometries were not optimized. To ensure
statistical significance, we repeated each measurement setup
1000 times and showed its effect on the QC-CBT-TCC(c). The
parameter R, used to truncate the trivial computational basis
in CBT, is set as 100. The behavior of LiH was similar to that
of H2O and N2, and the results are shown in the Appendix.
We demonstrated the effect using a box blot to demonstrate
numerical data graphically.

Figures 5(a) and 5(b) discuss the influence of the number
of CBT measurements for QC-CBT-TCC(c) for H2O. The
two graphs show the differences in the bond lengths between

oxygen and hydrogen. The boxes become smaller in both
cases. Thus, the uncertainty decreases with an increased num-
ber of measurement repetitions. This effect is more prevalent
in Fig. 5(b), which was expected as the electronic structure
of the ground state in the dissociation region is more com-
plex and involves more relevant electron configurations than
those around the equilibrium point. The greater complexity in
the dissociation region requires more measurements to deter-
mine all relevant CI coefficients accurately. Statistical errors
are smaller at the equilibrium point because the Hartree-Fock
state, a single computational basis state, is already a good
approximation.

The results for N2 show a behavior similar to that of H2O
in that increasing the number of measurements reduces the
QC-CBT-TCC(c) energy distribution, as seen in Figs. 6(a) and
6(b). This behavior can be explained by the higher accuracy
and decreased uncertainty in determining the CBT state coef-
ficients. Consequently, the produced state is more consistent;
therefore, the energy expectancy can be determined with a
higher degree of confidence.

These observations show the importance of accounting for
the complexity of electronic structures when applying CBT.
This becomes increasingly important in the high dissociation
region when the states become more entangled. A large num-
ber of measurements are necessary to accurately determine all
the relevant coefficients.

To estimate the number of shots needed to reach sub-mH
standard deviation of the predicted energy, we performed fur-
ther calculations for the N2 at 5.355 Bohr. This system is the
most challenging for CBT in our study. The other molecules
need considerably fewer measurements. A standard derivation
of 0.61 mH using QC-CBT-TCC(c) can be reached using
3 × 107 (Nsample = 107, NU = 107, and NV = 107) shots. This
is in reach for today’s quantum hardware and similar to the
predicted shot counts reported by Scheurer et al. [81] using the
matchgate classical shadows to extract CI coefficients from a
quantum computer.
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FIG. 6. Energy insecurity of QC-CBT-TCC(c) for N2 with a different number of measurements for CBT. Nsample, NU , and NV were all
measured in the specified quantities in the figure as the x-axis values. CBT was performed 1000 times for each setting to obtain an estimate for
the statistical errors. The box indicates the range from the first to the third quartile, called the interquartile range (IQR), with the median drawn
in the middle. The box contains 50% of the data. Whiskers are the lines extending 1.5 times the IQR from the first and third quantiles. Data
points that exceed the whiskers are considered outliers (fliers) and are represented as single dots. (a) Number of measurements dependency at
an equilibrium distance of 2.060 Bohr. (b) Number of measurements dependency at 4.119 Bohr, twice the equilibrium distance.

C. Application to Cope rearrangement

Our dynamical correlation correction allows for the analy-
sis of realistic chemical processes using quantum computers.
We estimated the activation energy of the Cope rearrangement
using our method. Cope rearrangements are well-known or-
ganic chemical reactions. In this reaction, the carbon chain of
1,5-hexadiene is rearranged in a concerted way to convert into
itself via the transition state of the chair form.

We considered the energy difference between the 1,5-
hexadiene and its chair-form transition state, which is Ci

symmetry structures. Their geometric structures are shown
in Figs. 7(a) and 7(b). We performed QC-CBT-TCC(c) with
the perturbative tripled corrections, denoted as QC-CBT-
TCC(T)(c), to evaluate the activation energy.

For the chair and hexadiene (Ci symmetry) geometries,
we used the optimized structures from Ref. [82]; they used
the analytic MR-CISD and multireference averaged quadratic
coupled cluster (MR-AQCC) gradient methods [83] to opti-
mize the structures with a reference space of CAS(6o,6e) in a
6-31G∗ basis set.

The result is shown in Table I. Our newly proposed method
agrees well with the experimental value in Ref. [84] and
the value of MR-AQCC [82]. We observed that methods
that ignore outside-of-active space correlation, such as HF,

FIG. 7. (a) 1,5-hexadiene in the Ci symmetry structure. (b) Tran-
sition state of Cope rearrangement of 1,5-hexadiene in the
chair-form.

CASCI, and the active space UCCSD, failed to compute a
reasonable activation energy. Including the dynamical corre-
lation significantly improved the accuracy of these methods.
The QC-CBT-TCC(T)(c) produced comparable results to the
MR-AQCC method. This result demonstrates our method’s
potential for simulating complex chemical processes with
strong correlation.

IV. CONCLUSION

This study combines a tailored coupled cluster approach
with quantum computing. The tailored coupled cluster ap-
proach separates the active space from the remaining orbitals.
This allows for a more rigorous active space treatment while
maintaining the dynamic correlation from the out-of-active
space orbitals. Computing an eigenvalue of an active space
Hamiltonian using a quantum computer is desirable because
it is expected that they can simulate much larger quantum
systems. We tailor the CCSD approach using the quantum
state of the active space determined on a quantum computer.
We use this approach to describe dynamical correlation from
the out-of-active space orbitals on the quantum solution.

TABLE I. Activation energies in kcal/mol for 1,5-hexadiene
Cope rearrangement calculated in the 6-31G∗ basis set. The VQE
calculations used the disentangled UCCSD ansatz and an active
space consisting of six orbitals and six electrons [i.e., (6o,6e)]. The
experimental values were obtained from the computational study in
Ref. [84], which was based on the experimentally measured enthalpy
from Ref. [85].

Methods Activation energy

HF 66.0
CASCI(6o,6e) 59.0
UCCSD(6o,6e) 60.1
QC-CBT-TCC(T)(c) 38.7
MR-AQCC [82] 37.3
Experiment [84] 35.0
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We employ computational basis state tomography (CBT) to
determine the relevant CCSD amplitudes using a quantum
computer. This makes our method universally usable for all
quantum algorithms that produce an eigenstate of an active
space Hamiltonian.

The QC-CBT-TCC was applied to three small molecules:
LiH, H2O, and N2. In the LiH case, where static correction is
less important, our method may improve the accuracy com-
pared to the active space UCCSD, and we observe that our
method with a correction scheme, QC-CBT-TCC(c), works
well to cancel out the error of QC-CBT-TCC. In the H2O and
N2 cases, our method improved the accuracy and could pro-
vide suitable quantitative PECs, even when standard CCSD or
CCSD(T) fails. Hence, our method has the potential to prac-
tically include the lacking dynamical correlation into a static
correlated active space solution of quantum computation.

We investigated the influence of the different number of
measurements for the CBT on our method’s uncertainty. We
conclude that determining the correct coefficients becomes
more challenging in the high dissociation region with large
static correlation. A sufficient number of measurements must
be performed to determine the CCSD amplitudes with suf-
ficient accuracy. For the investigated molecules, a total of
R = 100, Nsample = 106, NU = 106, and NV = 106 measure-
ments were appropriate to predict energies with a high level
of confidence.

In addition, we applied our method with the perturbative
triples correction to Cope-rearrangement, a well-known or-
ganic reaction. We demonstrated that our method produced
activation energy comparable to MR-AQCC. This showed our
method’s potential for complex chemical reactions.

Nevertheless, for more complex systems or in the pres-
ence of real device errors such as depolarizing noise, further
verification is required to determine the extent to which QC-
CBT-TCC works well. Although in this study we utilized
the CBT method to approximate the wave function on the
quantum computer, it is possible to explore extensions that
combine TCC with methods that are more resilient to noise

and statistical errors, such as quantum selected configuration
interaction [86,87]. Another potential avenue for further de-
velopment of this method is to create a self-consistent version
[88,89] that iterates between the calculation of the active space
wave function and the optimization of the coupled cluster
amplitudes in the outside of the active space, although such
a self-consistent approach multiplies the computational cost
associated with the method.

Finally, the performance of a tomography method
depends heavily on the number of shots available.
Matchgate/fermionic shadows have good asymptotic scaling
and can be highly efficient if enough shots are available
[39,90]. On the other hand, these shadow tomography
methods may not always be the best approach given realistic
shot budgets [44]. We chose CBT for this study because it
requires shallower circuits and can be effective with small
shot budgets by adjusting the R parameter. Nevertheless, it is
an open question as to which method is better for extracting
CI coefficients with a limited number of shots.
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APPENDIX: NUMBER OF SHOT DEPENDENCY
OF QC-CBT-T FOR LiH

In Figs. 8(a) and 8(b), the results for LiH show a behavior
similar to that of H2O and N2 in that increasing the number

FIG. 8. Energy insecurity of QC-CBT-TCC(c) for LiH with a different number of measurements for CBT. Nsample, NU , and NV were all
measured in the specified quantities in the figure as the x-axis values. CBT was performed 1000 times for each setting to obtain an estimate for
the statistical errors. The box indicates the range from the first to the third quartile, called the interquartile range (IQR), with the median drawn
in the middle. The box contains 50% of the data. Whiskers are the lines extending 1.5 times the IQR from the first and third quantiles. Data
points that exceed the whiskers are considered outliers (fliers) and are represented as single dots. (a) Number of measurements dependency at
an equilibrium distance of 3.016 Bohr. (b) Number of measurements dependency at 6.032 Bohr, twice the equilibrium distance.
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of measurements reduces the corrected energy distribution.
This behavior can be explained by the higher accuracy and
decreased uncertainty in determining the coefficients of a state

on a quantum computer. Consequently, the obtained CBT state
is more consistent, and therefore the expected energy can be
determined with a higher degree of confidence.
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