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Decoherence rate in random Lindblad dynamics
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Open quantum systems undergo decoherence, which is responsible for the transition from quantum to classical
behavior. The time scale in which decoherence takes place can be analyzed using upper limits to its rate. We
examine the dynamics of open chaotic quantum systems governed by random Lindblad operators sourced from
Gaussian and Ginibre ensembles with Wigner-Dyson symmetry classes. In these systems, the ensemble-averaged
purity decays monotonically as a function of time. This decay is governed by the decoherence rate, which is
upper-bounded by the dimension of their Hilbert space and is independent of the ensemble symmetry. These
findings hold upon mixing different ensembles, indicating the universal character of the decoherence rate limit.
Moreover, our findings reveal that open chaotic quantum systems governed by random Lindbladians tend to
exhibit the most rapid decoherence, regardless of the initial state. This phenomenon is associated with the
concentration of the decoherence rate near its upper bound. Our work identifies primary features of decoherence
in dissipative quantum chaos, with applications ranging from quantum foundations to high-energy physics and
quantum technologies.
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I. INTRODUCTION

Any quantum system is embedded in a surrounding en-
vironment. The system-environment interaction results in
the buildup of quantum correlations and leads to quan-
tum decoherence, a process critical for comprehending the
quantum-to-classical transition [1–4]. While decoherence is
generally viewed as a fast process, the rate at which it occurs
remains a topic of debate [5]. A thorough understanding of de-
coherence rates is relevant to quantum foundations as well as
quantum technologies, including quantum metrology, control,
simulation, and computation, among others. Early theoretical
studies focused on quantum Brownian motion [6,7]. In the
high-temperature limit, when the dynamics is governed by
dephasing in real space, an elegant formula due to Zurek
estimates the decoherence rate D of a wave packet in terms
of its dispersion �x in the coordinate representation in units
of the de Broglie wavelength λdB, i.e., D ∝ (�X/λdB)2 [6,8].
This expression follows from the explicit time dependence of
the off-diagonal coherences of the density matrix describing
the quantum state of the open system [6].

An important step forward relied on a rigorous basis-
independent definition of the decoherence rate for Markovian
open quantum systems, in which the quantum state fulfills
a master equation of the Gorini-Kossakowski-Sudarshan-
Lindblad (GKSL) form [9,10]. The short-time behavior of
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the purity, the linear entropy, and the fidelity identify the
decoherence rate in terms of the covariance of the Lindblad
operators [7,11–18]. Zurek’s formula for quantum Brownian
motion is obtained as a special case [7,14]. The availability
of a universal expression for Markovian open systems has
made possible the study of scenarios characterized by extreme
decoherence [15] and the exploration of the fundamental lim-
its to the pace of decoherence, leading to the introduction of
decoherence rate limits [13–15].

Exploring open chaotic quantum systems offers insights
into decoherence [15,19,20]. According to the Bohigas-
Giannoni-Schmit conjecture, any Hamiltonian quantum sys-
tem that displays chaotic behavior in its classical limit is
expected to have spectral statistics described by random
matrix theory [21]. In physics, random matrix theory was
introduced by Wigner to characterize the spectral density
of heavy nuclear atoms [22,23]. Ensuing work by Dyson
developed a symmetry classification distinguishing complex
Hermitian, or real symmetric, and quaternion self-dual ran-
dom matrices [24–27]. This classification, known as the
threefold way, led to the identification of orthogonal (O),
unitary (U), and symplectic (S) ensembles. When they are
associated with a Hamiltonian probability density func-
tion of the form P(H ) ∝ exp(−trH2/2), they are known as
Gaussian ensembles and labeled as GXE (X = O, U, S) ac-
cording to the threefold way. More elaborate classification
schemes have been put forward [28]. To date, random ma-
trix theory has found extensive applications across various
domains of physics, and notably, in chaotic quantum systems
[29–31]. Random matrix Hamiltonians constitute a paradig-
matic framework for the description of complex isolated
systems.
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Embracing a similar approach for the description of com-
plex open quantum systems has led to the study of random
Lindbladians [15,16,32–47]. The Lindbladian is the generator
of evolution in a Markovian quantum system [10]. Ensembles
of random Lindbladians fall into different classes distin-
guished by their symmetries [42,43,48]. We focused on the
decoherence dynamics associated with random Lindbladians.
In this context, fluctuating chaotic quantum systems, charac-
terized by random Lindblad operators described by random
matrices sampled from GUE, exhibit the fastest decoherence
rates reported to date [15]. This rate of decoherence scales
exponentially with the number of particles, i.e., it is lin-
ear in the dimension of the Hilbert space. This is in stark
contrast with the dependence found in systems with fluctu-
ating k-body interactions, that is polynomial in the system
size [13,49].

The use of GUE ensembles in random Lindbladians is
associated with Hermitian Lindblad operators, without time-
reversal symmetry, when the dissipative dynamics reduces
to dephasing. What decoherence rates govern open systems
with Lindblad operators with other symmetries, as in the
GOE and GSE, which are distinguished by the presence
and absence of spin-rotation invariance? What is the char-
acteristic decoherence dynamics under Lindbladians sampled
from the Ginibre ensembles of non-Hermitian matrices [50]?
Is it possible for the decoherence rates to surpass those
known in GUE? What is the dependence on the initial
state?

We address the posed questions by examining random
Lindblad operators using Hermitian matrices from GXEs and
non-Hermitian matrices from Ginibre ensembles (GinXEs)
(X = O, U, S). Employing Haar averaging in conjunction
with the spectral density function and the two-point correla-
tion spectral function, we analytically obtain the decoherence
rate averaged over these ensembles. This decoherence rate
governs the ensemble-averaged purity decay as a function of
time. Our analytical and numerical results demonstrate that
the decoherence rate across all the examined scenarios is up-
per bounded by the dimension of the system’s Hilbert space,
establishing a universal limit.

Our study further reveals that when the initial state is
uniformly sampled—from a pure state to a maximally mixed
state—across a one-parameter family, the decoherence rate
predominantly clusters around the maximal rate. We term
this phenomenon concentration of the decoherence rate. This
suggests that quantum chaotic open systems predominantly
follow the fastest decoherence pathway, irrespective of the
initial state configuration.

The structure of the remainder of this paper is organized as
follows: In Sec. II, we introduce the definition of the decoher-
ence rate in the context of the short-time behavior of purity.
Sections III and IV (and Appendixes A–D) detail the analyt-
ical calculation of the decoherence rate, averaged over GXEs
and GinXEs, complemented by numerical simulations. The
concentration of the decoherence rate is analyzed in Sec. V.
The symmetry crossover between the GXE and GYE holds
significance in the context of symmetry breaking in quantum
chromodynamics [51,52]. We provide a brief discussion of the
decoherence rate over this symmetry crossover and conclude
in Sec. VI.

II. THE DECOHERENCE RATE AND THE RANDOM
LINDBLAD OPERATOR

The master equation encodes the time evolution of the
quantum state of an open system as a first-order differential
equation in which the Lindbladian L acts as the generator
of the evolution, i.e., ρ̇t = L(ρt ). In the Markovian regime,
the generator of the dynamical semigroup admits the Gorini-
Kossakowski-Sudarshan-Lindblad (GKSL) form [9,10]

ρ̇t = L(ρt ) = − i

h̄
[H, ρt ] + LD(ρt ), (1)

LD(ρt ) =
∑

α

γα

(
Lαρt L

†
α − 1

2 {L†
αLα, ρt }

)
. (2)

Here, the dissipator LD is composed of the Lindblad operators
Lα and the damping rates γα � 0, and it involves the anti-
commutator {·}. The set of Lindblad operators characterizes
the system’s dissipative dynamics, encapsulating the environ-
mental influence on the system. The formulation of these
Lindblad operators can be either Hermitian or non-Hermitian,
depending on the type of decoherence [53,54].

The purity, denoted as Pt = tr(ρ2
t ), can be used to quan-

tify decoherence and diminishes as the quantum state ρt is
increasingly mixed [55,56]. When ρt is a pure state, Pt = 1.
Conversely, in a maximally mixed state, the purity is the
inverse of the Hilbert space dimension N . The timescale gov-
erning the nonunitary nature of the evolution can be inferred
from the short-time behavior of the purity, given by Pt/P0 =
1 − Dt + O(t2) [11,12,14–16], where

D = 2
∑

α γα

[
tr

(
ρ2

0 L†
αLα

) − tr(ρ0L†
αρ0Lα )

]
P0

, (3)

is called the decoherence rate. It is exclusively governed by
LD and independent of the system Hamiltonian [14,15]. As
already indicated, modeling complex open quantum systems
is efficient in terms of random Lindbladians when Lind-
blad operators are chosen as random matrices subject to
given symmetries [15,16,32–38,40–43,45,46]. In this paper,
we consider Lα as a random matrix with elements drawn
from Gaussian distributions, encompassing both Hermitian
and non-Hermitian scenarios. In particular, we consider the
Gaussian and Ginibre ensembles. Additionally, we focus on
the most widely used Wigner-Dyson symmetry classes: the
orthogonal, unitary, and symplectic symmetries [29]. The de-
coherence rate, when averaged across the ensemble, results in
(see details in Appendix A)

〈D〉 = 2�
NP0 − 1

(N2 − 1)P0

[
〈tr(L†L)〉 − 1

N
〈(tr L†)(tr L)〉

]
, (4)

where � = ∑
α γα . It is important to note that while the sub-

script α of Lα can be reinstated in Eq. (4), this is not necessary,
as the ensemble averages across different Lα variants are
identical. Furthermore, for the sake of simplicity, the Lindblad
operator L will be directly sampled from GXE or GinXE. The
choice of a traceless Lindblad operator L̃ is ensured by a shift
L̃ = L − 1

N tr L, thereby guaranteeing its equivalence to L (see
proof in Appendix B). Obviously, Eq. (4) is upper bounded by
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〈D〉 � 〈DL〉, with

〈DL〉 = 2�

N + 1

[
〈tr(L†L)〉 − 1

N
〈(tr L†)(tr L)〉

]
. (5)

The equality in 〈D〉 � 〈DL〉 is achieved when the initial state
is pure. In subsequent sections, we will detail the computation
of the upper bound of decoherence rate in Eq. (5) for both
GXE and GinXE, respectively.

III. THE DECOHERENCE RATE WITH GXE

Consider a Hilbert space of dimension N . We define a
random matrix (amn)N×N as belonging to the Gaussian en-
sembles if it is a real symmetric matrix with diagonal entries
amm ∈ N (0, σ 2), where σ represents the standard deviation.
The off-diagonal entries, i.e., the elements with m �= n, are
given by amn = e0

mn for GOE, bmn = e0
mn + ie1

mn for GUE, and
emn = e0

mn + ie1
mn + je2

mn + ke3
mn for GSE, respectively. Here,

el
mn ∈ N (0, σ 2/2) (l = 0, 1, 2, 3), and i, j, k are the basis ele-

ments for a quaternion. In this section, we consider L directly
sampled from GXE, thus L† = L.

For GUE, orthogonal polynomials are widely employed to
evaluate the spectral density function and two-point correla-
tion function, i.e., 	GUE(x) = ∑N−1

l=0 φl (x)2 and 	GUE(x, y) =
	GUE(x)	GUE(y) − ∑N−1

m,n=0 φm(x)φn(x)φm(y)φn(y), where
φl (x) are orthogonal polynomials [15,29]. However, when
considering GOE, the orthogonal polynomials transform
into skew-orthogonal polynomials, posing challenges for
exact calculations at finite N . For simplicity, we employ
an approximate method using formulas suitable for large
dimensions. For example, in the limit of large dimensions, the
spectral density function of the Gaussian ensemble follows
Wigner’s semicircle distribution [29]

	GOE(x) =
√

N

σπ

√
1 −

(
x

2σ
√

N

)2

. (6)

Consequently, the first term on the right-hand side of Eq. (5)
is expressed as

〈tr(L2)〉GOE =
∫ 2σ

√
N

−2σ
√

N
x2	GOE(x)dx = σ 2N2. (7)

To calculate the second term on the right-hand side of Eq. (5),
we divide it into two parts,

〈tr(L)2〉GOE =
∫

x2	GOE(x)dx +
∫

xy	GOE(x, y)dxdy, (8)

where 	GOE(x, y) = 	GOE(x)	GOE(y) + 	c
GOE(x, y). Because

of the symmetry of the spectral density function,∫
x	GOE(x)dx = 0, we just need to consider 	c

GOE(x, y),
which is expressed as follows [29]:

	c
GOE(x, y) = − 1

2σ 2

[
s(r)2 − G(r)I (r) + 1

2
G(r)

]
, (9)

where r = x − y, s(r) = sin(
√

N r
σ

)

r/
√

2σ 2
, I (r) = − Si(

√
N r

σ
)

π
, G(r) =

2σ 2

π
d
dr [

sin(
√

N r
σ

)
r ], and Si(t ) is the sine integral function. We set

w = x + y, and change the integral variable dxdy to 1
2 dwdr,

obtaining ∫
xy	c

GOE(x, y)dxdy � −σ 2π2N2

12
. (10)

Finally, we have

〈DL〉GOE � 2�σ 2

(
N − 2 + π2

12

)
� 2�σ 2N. (11)

Thus, the decoherence rate limit averaged over GOE is pro-
portional to the Hilbert space dimension N , a feature termed
extreme decoherence [15].

The GUE and GSE have the same spectral density function
as the GOE, given in Eq. (6), with the only difference
being the two-point correlation function [29]. In the large
dimension approximation, they are given by 	GUE(x, y) =
	GUE(x)	GUE(y) − 1

σ 2 [ sin(
√

Nrσ−1 )
πrσ−1 ]2 and 	GSE(x, y) =

	GSE(x)	GSE(y) − s2(2
√

2r)
2σ 2 + G(2

√
2r)[I (2

√
2r)−1/2]

2σ 2 , respectively.
Employing analogous methods, we find that the averaged
decoherence rate limits for both the GUE and GSE are
identical,

〈DL〉GUE = 〈DL〉GSE = 〈DL〉GOE, (12)

as shown in Appendix C. Crucially, the decoherence rate limit
in all the GXE scales with the Hilbert space dimension N .
This observation generalizes the finding for random dephasing
dynamics in the GUE case [15]. The decoherence rate and its
limit are thus independent of the underlying symmetry class
and governed by the second moment of the ensemble from
which Lindblad operators are sampled. In this sense, the de-
coherence rate of random Lindbladians exhibits universality.
The GXEs are constructed to have a common second moment;
thus, Eq. (12) holds. Deviations from this identity are to be
expected in non-Gaussian ensembles in which the probability
density for sampling a given matrix L is governed by other
potentials. In addition, the scaling of the decoherence rate
with the Hilbert space dimension N holds, provided that the
variance of the ensemble and � are independent of N . Natu-
rally, this dependence can be suppressed if these parameters
are accordingly rescaled with N .

To illustrate our findings, we present numerical simula-
tions in Fig. 1. We randomly generated five initial states
for each N and ensemble type. The decoherence rate was
subsequently averaged across GXEs, with 10 000 realizations
for each N . Our analysis demonstrates that the decoherence
rate for pure initial states is proportional to the dimension
of the Hilbert space N , thereby establishing a theoretical up-
per bound, i.e., a decoherence rate limit. The decoherence
rate remains below this theoretical limit for all other initial
states. We note that Hermitian Lindblad operators arise in
a variety of contexts, e.g., from random phase changes on
a short timescale [57], stochastic fluctuations in the Hamil-
tonian [13,15], the quantum evolution involving realistic
clocks of finite precision [58,59], randomized measurement
schemes [60], non-Hermitian Hamiltonian deformations [41],
and spectral filtering in quantum chaotic systems [45]. As a re-
sult, it follows from Eq. (12) that the decoherence rate remains
unaffected by the system’s symmetries in these scenarios.
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FIG. 1. Decoherence rate 〈D〉GXE as a function of the dimension
of the Hilbert space N ∈ [3, 55], for three Gaussian ensembles: GOE,
GUE, and GSE. For each dimension N , five initial states are chosen
at random. Lindblad operators are sampled from GOE, GUE, and
GSE, using 10 000 realizations with �σ 2 = 1. The analytical predic-
tion (solid line) provides an upper bound for the numerical results,
indicating a proportionality between the decoherence rate and the
dimension of Hilbert space for random initial pure states.

Additionally, while the decoherence rate is identified from
the short-time behavior of purity, we next show that it effec-
tively governs the decay of the purity averaged over ensembles
at all times. This is in contrast with the expectation that
other time scales arise in the dynamics [11]. As illustrated
in Fig. 2, 〈Pt 〉GXE exhibit a monotonic decay, characteristic
of unital maps [61], eventually reaching a plateau with P∞ :=
〈Pt→∞〉GXE = 1/N , corresponding to the value of the purity in
the maximal mixed state. This motivates the following ansatz
for the purity as a function of time, using the decoherence rate
limit:

Pfit = (P0 − P∞) exp[−〈DL〉t] + P∞. (13)

Notably, in the GSE numerics depicted in Fig. 2, the matrix
dimension is maintained identical to that of GOE and GUE.
The accuracy of the fit Eq. (13) in reproducing the numerically
exact results for the purity decay at all times underscores the
importance of the decoherence rate and its limit, on which
we focus: it characterizes the dynamics of the purity in a
simple way when the Lindblad operator is a random Hermitian
matrix.

IV. THE DECOHERENCE RATE WITH GINXE

For random non-Hermitian Lindblad operators, we first
consider a square N × N matrix G with its matrix elements
specified as Gmn = e0

mn + ie1
mn, where these elements are inde-

pendent and identically distributed complex Gaussian random
variables. This ensemble is commonly referred to as the com-
plex Ginibre ensemble (GinUE) [50]. Utilizing the Schur
decomposition G = U (� + T )U −1 [62], with U as a unitary
matrix, � as a diagonal matrix containing its eigenvalues
along the diagonal, and T as a strictly upper triangular matrix,

FIG. 2. Logarithmic plot of purity as a function of time, em-
ploying random Lindblad operators averaged over GOE, GUE, and
GSE, with N = 8 and �σ 2 = 1. The study examines three initial state
conditions: P0 = 1, 1/2, and 1/N . Numerical evaluation: Each state
undergoes analysis through 500 ensemble realizations. The solid
curves correspond to the fitted function, i.e., Eq. (13), utilizing the
decoherence rate limit 〈DL〉.

Eq. (5) reduces to

〈DL〉GinUE = 2�

N + 1

[
〈tr(�†� + T †T )〉GinUE

− 〈tr(�†) tr(�)〉GinUE

N

]
. (14)

According to the circular law, the spectral density function
of GinUE follows a uniform distribution on a disk, i.e.,
	GinUE(z) = 1

σ 2π
, |z| � σ

√
N [29]. We can transform the in-

tegral variable z from rectangular to polar coordinates in
the complex plane for its analysis. Moreover, due to the bi-
unitary invariance of GinUE, the distribution of T remains
unchanged, resulting in the same probability distribution func-
tion as the Gaussian complex random matrix G. Thus, the first
term on the right-hand side of Eq. (14) reads (see details in
Appendix D)

〈tr(�†� + T †T )〉GinUE = σ 2N (2N − 1)

2
. (15)
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FIG. 3. Decoherence rate 〈D〉GinXE as a function of the Hilbert
space dimension, N ∈ [3, 55], for three Ginibre ensembles: GinOE,
GinUE, and GinSE. The analytical prediction for GinUE (solid line)
suggests an upper bound for the decoherence rate, highlighting a
direct proportionality with the Hilbert space dimension for random
initial pure states.

For addressing the second term in Eq. (14), it is necessary
to utilize the two-point correlation function 	GinUE(z1, z2) =
π−2σ−4[1 − exp(−| z1−z2

σ
|2)] [29]. To simplify the analysis,

we initially transform the integral variables from z1 and z2

to u = z1 − z2 and v = z1 + z2, and subsequently to polar
coordinates. This process ultimately yields

〈tr(�†) tr(�)〉GinUE � − N2σ 2

2
+ 2σ 2N. (16)

Finally, the decoherence rate limit averaged over GinUEs is
given by

〈DL〉GinUE � 2�σ 2 N2 − 2

N + 1
� 2�σ 2N. (17)

Analytical calculations for GinOE and GinSE are cumber-
some and pose significant challenges. Consequently, we turn
to numerical simulations to conduct our analysis. In Fig. 3,
we depict the decoherence rate averaged over GinXEs as a
function of N . Similar to the GXE cases, we average the
decoherence rate over 10 000 realizations for each N and each
GinXE type. As indicated by Eq. (17), our analytical result
establishes an upper bound for the decoherence rate averaged
over GinXEs. In addition, this result indicates that the deco-
herence rate, proportionate to the Hilbert space dimension,
matches the same value obtained in the three GXEs. This indi-
cates that the decoherence rate limit of random Lindbladians
is independent of the type of Lindblad operators, regardless of
whether they are Hermitian or non-Hermitian.

Similar to the analysis in Sec. III, Fig. 4 illustrates the
time-dependent purity for GinXEs, exemplified with N = 8.
The solid curves depict the fitted function of purity, as defined
by Eq. (13), which demonstrates a monotonically decreasing
function of time before stabilizing at a plateau of P∞ → 1/N .
Accordingly, the dynamical behavior of purity influenced
by non-Hermitian random Lindblad operators is also well

FIG. 4. Logarithmic plot of purity as a function of time, employ-
ing random Lindblad operators averaged over GinOE, GinUE, and
GinSE, with N = 8 and �σ 2 = 1. Other parameters employed are
consistent with those presented in Fig. 2.

described by an exponential decay governed by the decoher-
ence rate limit.

V. CONCENTRATION OF DECOHERENCE RATE

In the preceding sections, we observed a tendency for the
decoherence rate to cluster near its upper limit; see Figs. 1 and
3. This section is dedicated to a more detailed analysis of the
underlying causes of this concentration.

Consider the system initially prepared in

ρ0 = 1 − p

N
1 + |
〉 〈
| p, (18)

where |
〉 is an arbitrary pure state and p =√
(NP0 − 1)/(N − 1). Based on the results presented in

Secs. III and IV, Eq. (4) simplifies to the following form:

〈D〉 = �σ 2A

(
N − 1

P0

)
, (19)

where A = 2 + (π2/6 − 2)/N for GXE and A =
2 − 2/(N2 − 1) for GinXE. In the large N limit, both
entities converge toward the same value A = 2. Let P0 be a
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FIG. 5. Logarithmic plot of the probability density function of
the decoherence rate, denoted as f (〈D〉). This distribution was ob-
tained through numerical simulations using the GOE as an example,
with parameters N = 30 and �σ 2 = 1. A total of 50 000 initial states
are prepared according to Eq. (19), with P0 uniformly distributed.
For each initial state, the decoherence rate was averaged over 10 000
realizations of GOEs. The numerical results show good agreement
with the analytical distribution, as described in Eq. (21). The red dot
represents the upper bound of the decoherence rate for N = 30. Inset:
f (〈D〉) vs 〈D〉 with N=3, 30, 300, and 3000, respectively. A more
pronounced concentration of decoherence rates is observed with the
increasing Hilbert space dimension N .

random variable uniformly distributed ranging from 1/N to
1. Then, the cumulative distribution function of the random
variable 〈D〉, denoted as F (〈D〉), is given by

F (〈D〉) = P0 − 1
N

1 − 1
N

= 〈D〉
(N − 1)(ÃN − 〈D〉)

, (20)

where Ã = �σ 2A for short. Thus, the corresponding probabil-
ity density function is expressed as

f (〈D〉) = ∂F (〈D〉)

∂〈D〉 = ÃN

N − 1

1

(ÃN − 〈D〉)2
. (21)

For illustration, Fig. 5 depicts the probability density func-
tion, evaluated both analytically and numerically (using the
GOE as an example). It has been rigorously established in
former sections that the maximum decoherence rate is attained
when the initial state is pure. Intriguingly, our findings here
indicate a tendency for the decoherence rate to concentrate
around its limit, a phenomenon that persists even when the
initial states are mixed.

We note that our analytical results hold asymptotically in
the limit of a large Hilbert space dimension. This explains
why, in numerical simulations with a finite moderate value of
the Hilbert space dimension, a small fraction of cases exceeds
the predicted decoherence rate limit, as shown in Fig. 5 when
N = 30.

The concentration of the ensemble-averaged decoherence
rate can be more comprehensively understood by analyzing
the moments and cumulants of the corresponding probability

density function in Eq. (21). The kth moment of the distribu-
tion can be directly derived from the characteristic function

f (ω) =
∫ Ã(N−1)

0
f (〈D〉)eiω〈D〉d〈D〉 (22)

by differentiating k times with respect to ω and then evaluat-
ing the result at ω = 0. After some algebra, the kth moment
function E [〈D〉k] is given by

E [〈D〉k] = Ã(N − 1)k

[
1 − 2F1

(
1, 1 + k; 2 + k; N−1

N

)
k

N (1 + k)

]
,

(23)
where 2F1(a, b; c; z) = ∑∞

n=0
(a)n(b)n

(c)n

zn

n! is the hypergeometric
function. Similarly, the kth cumulant κk can be obtained
using the expansion of the cumulant generating function
log[ f (ω)] = ∑∞

k=1 κk (iω)k/k! or directly constructed using
Eq. (23). The first four cumulants are explicitly given by

κ1 = ÃN

(
1 − log N

N − 1

)
, (24)

κ2 = Ã2N

[
1 − N log2 N

(N − 1)2

]
, (25)

κ3 = − Ã3N

2

[
(N + 1) − 6N log N

N − 1
+ 4N2 log3 N

(N − 1)3

]
, (26)

and

κ4 = Ã4N

3

[
1 + N (N − 8) − 6N (N + 1) log N

N − 1

+ 36N2 log2 N

(N − 1)2
− 18N3 log4 N

(N − 1)4

]
. (27)

Using them, we are ready to characterize statistical measures
such as the mean (κ1), variance (κ2), skewness (κ3/κ

3/2
2 ), and

excess kurtosis (κ4/κ
2
2 ). In Fig. 6, we present these statisti-

cal measures as functions of the Hilbert space dimension N .
These figures provide a multifaceted view of the concentra-
tion effect, most notably in the skewness and excess kurtosis,
which exhibits a proportionality to the negative square root of
N and the square of N . Given that the mean is already pro-
portional to N , such a pattern in the excess kurtosis suggests
a tighter clustering of decoherence rates around the mean.
These observations collectively indicate that with increasing
N , the distribution increasingly concentrates at the upper
bound of the decoherence rate, highlighting a key feature of
the system’s decoherence behavior with a large Hilbert space
dimension.

VI. DISCUSSION AND CONCLUSION

In the preceding sections, we have derived the limits
to the decoherence rates across typical random matrix en-
sembles with Wigner-Dyson symmetry classes, all of which
share a common upper bound and the concentration phe-
nomenon of the decoherence rate. This enables us to explore
the decoherence rate for Lindblad operators described by
mixing random matrices originating from identical or dis-
tinct ensembles, such as the combination of GXE and GYE,
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FIG. 6. Depiction of mean, variance, skewness, and excess kur-
tosis as functions of the Hilbert space dimension N for the probability
density function f (〈D〉) of the decoherence rate with �σ 2 = 1. This
graphical representation elucidates how these statistical parameters
evolve with varying N , providing insights into the concentration of
the decoherence rate.

or the direct product of GXE and GYE, where X, Y ∈
{O, U, S}. Such an analysis may hold significant implications
for the study of the low-energy limit of symmetry break-
ing in quantum chromodynamics with GXE-GYE crossover
[51,52]. For instance, consider a random Lindblad oper-
ator with the following forms: Lα = a1L1

α + a2L2
α , where

a1,2 are normalization constants, and L1
α and L2

α are arbi-
trary matrices belonging to the Gaussian ensembles. The
decoherence rate is given by D = ∑2

k,l=1 Dkl , where Dkl =
(2akal/P0)

∑
α γα[tr(ρ2

0 Lk†
α Ll

α ) − tr(ρ0Lk†
α ρ0Ll

α )]. For D12 and
D21, given the absence of correlations between two distinct
types of random matrices, it follows that 〈D12〉 = 〈D21〉 = 0.
Furthermore, D11 and D22 are exactly equal to the deco-
herence rates of Gaussian ensembles 〈D11〉 = a2

1〈D〉GXE and
〈D22〉 = a2

2〈D〉GYE. Since 〈D〉GXE = 〈D〉GYE and a2
1 + a2

2 = 1,
the decoherence rate limit of Lα is also proportional to the
dimension of the Hilbert space.

To conclude, we have established the universality of the
decoherence rate limit for open chaotic quantum systems,
employing Lindblad operators drawn from both typical Her-
mitian and non-Hermitian random matrices. The observed
uniformity in decoherence rates, which scale linearly with the
Hilbert space dimension, generalizes the scenario of extreme
decoherence reported in the GUE scenario [15]. Therefore,
the fastest decoherence rate under Markovian dynamics is
reached by random Lindblad dynamics, regardless of the spe-
cific symmetry considered. Furthermore, in an example of a
one-parameter family of initial quantum states, our research
illustrates that those open quantum chaotic systems, charac-
terized by random Lindbladians, invariably tend to exhibit,
in a statistical sense, the fastest decoherence, clustering near
the limit, for almost any initial state. Finally, our findings
demonstrate the stability of the decoherence rate even when
combining matrices from distinct ensembles.

These findings are of relevance to quantum foundations
and the understanding of decoherence in complex quantum
systems in relation to dissipative quantum chaos. Likewise,
they can be applied to various aspects of quantum technolo-
gies, quantum information, and conformal field theory in the
presence of environmental errors [15,38,63].
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APPENDIX A: ENSEMBLE AVERAGE OVER GAUSSIAN
RANDOM MATRICES

For simplicity, we temporarily omit the subscript α from Lα

in the subsequent discussion and initially focus on the unitary
ensembles. The calculation of the averaged decoherence rate,
with the Lindblad operator L ∈ GUE, involves the quantities
〈L†L〉 and 〈L†ρ0L〉. These can be expressed in terms of the
Haar average of the function of L [15], i.e.,

〈 f (L)〉 =
∫

〈 f (L)〉HaarDx, (A1)

where Dx = 	(x1, . . . , xN )
∏

l dxl denotes as the integration
measure, 	(x1, . . . , xN ) is the N-point joint probability density
function of the random matrix, and

〈 f (L)〉Haar =
∫

f (ULU −1)dμ(U ). (A2)

Here, dμ(U ) is the uniform probability (Haar) measure on
the unitary group. The integrations over the Haar measure in
the expressions for 〈L†L〉Haar and 〈L†ρ0L〉Haar in Eq. (A2) are
given by

〈L†L〉Haar =
∫

UL†LU −1dμ(U ) = tr(L†L)

N
1, (A3)

and

〈L†ρ0L〉Haar =
∫

UL†U −1ρ0ULU −1dμ(U ) = 1

N (N2 − 1)

× [
tr(L†L)(N1 − ρ0)

− tr(L†) tr(L)(1 − Nρ0)
]
, (A4)

where we have utilized the second- and fourth-moment func-
tions of the unitary group [64–67],∫

UMU −1dμ(U ) = tr(M )

N
1, (A5)

and∫
UMU −1XUQU −1dμ(U ) = 1

N (N2 − 1)
[tr(MQ)(N1 − X )

− tr(M ) tr(Q)(1 − NX )].
(A6)
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Substituting Eqs. (A3) and (A4) into Eq. (A1), we have

〈L†L〉 = 〈tr(L†L)〉
N

1, (A7)

and

〈L†ρ0L〉 = 1

N (N2 − 1)
[〈tr(L†L)〉(N1 − ρ0)

− 〈tr(L†) tr(L)〉(1 − Nρ0)]. (A8)

Then, the GUE averaged decoherence rate in Eq. (3) reads

〈D〉 = 2�
NP0 − 1

(N2 − 1)P0

[
〈tr(L†L)〉 − 1

N
〈(tr L†)(tr L)〉

]
. (A9)

For L belonging to GinUE, the Schur decomposition
L = U (� + T )U −1 can be utilized [62]. Here, U is a uni-
tary matrix, � is a diagonal matrix with eigenvalues along
its diagonal, and T is a strictly upper triangular matrix.
Equations (A1)–(A9) remain valid; the only modification re-
quired is the replacement of the integration measure with
Dx = 	(x1, . . . , xN )[

∏
m<n g(xmn)dxmn]

∏
l dxl . Here, g(·) is

the function with Gaussian distribution. The above analysis
is also extendable to other Gaussian and Ginibre ensembles
with Wigner-Dyson symmetry classes, based on the integra-
tion with respect to the Haar measure on compact Lie groups,
such as orthogonal and symplectic groups [64]. Given that our
calculations are only based on the second and fourth moments
of the corresponding group, identical to those in Eqs. (A5)
and (A6), the final outcome, i.e., Eq. (A9), remains applicable.
This will be further substantiated by exact numerical analysis
in Secs. III and IV.

APPENDIX B: REGARDING THE TRACELESSNESS
OF LINDBLAD OPERATORS

For simplicity, the main text employs the Lindblad operator
L directly sampled from GXE or GinXE, which deviates from
the definition of being traceless. Here, we prove that the re-
sults remain equivalent despite this deviation. To facilitate this
demonstration, we begin with the general Eq. (4) and define
the traceless Lindblad operator L̃ as

L̃ = L − 1

N
tr L, (B1)

with which we have

〈tr(L†L)〉 =
〈
tr

(
L̃† + 1

N
tr L†

)(
L̃ + 1

N
tr L

)〉
= 〈

tr
(
L̃†L̃

)〉
+ 1

N

〈
tr

(
L†〉 tr (L)

〉
. (B2)

Thus,

〈tr(L†L)〉 − 1

N
〈(tr L†)(tr L)〉 = 〈tr(L̃†L̃)〉, (B3)

which completes our proof.

APPENDIX C: DECOHERENCE RATES AVERAGED
OVER GXEs

Previous studies have employed varying standard devia-
tions, leading to differences in the probability density function

(pdf ) and two-point correlation function [16,29,31,68]. Let
the pdf and two-point correlation function in the case with
standard deviation 1 be denoted by 	(1)(x) and 	(1)(x, y), in
contrast with 	(σ )(x) and 	(σ )(x, y), for the case with stan-
dard deviation σ . Because of

∫
	(1)(x)dx = ∫

	(σ )(x)dx and∫
	(1)(x, y)dxdy = ∫

	(σ )(x, y)dxdy, we have the formula
	(σ )(x) = 1

σ
	(1)( x

σ
) and 	(σ )(x, y) = 1

σ 2 	
(1)( x

σ
,

y
σ

). Thus, the
first term and the second term on the right-hand side of Eq. (5)
averaged over GOE, i.e., 〈D〉GOE, are

〈tr(L2)〉GOE =
∫ 2σ

√
N

−2σ
√

N
x2	GOE(x)dx = σ 2N2 (C1)

and

〈tr(L)2〉GOE =
∫

x2	GOE(x)dx +
∫

xy	GOE(x, y)dxdy.

(C2)
The two-point correlation function of GOE has the following
form [29]:

	GOE(x, y) = 1

2σ 2
det

[
KN (x, x) KN (x, y)
KN (y, x) KN (y, y)

]
, (C3)

where KN (x, y) is a quaternion, and its matrix form is

KN (x, y) =
[

SN (x, y) GN (x, y)

IN (x, y) − 1
2 sign(x − y) SN (y, x)

]
. (C4)

Here, the sign function sign(t ) takes values 1, −1, and 0
when t > 0, t < 0, and t = 0, respectively. We divide the
two-point correlation function into two parts, 	GOE(x, y) =
	GOE(x)	GOE(y) + 	c

GOE(x, y). The first term here is equal to
zero after integration and

	c
GOE(x, y) = − 1

2σ 2
SN (x, y)SN (y, x)

+ 1

2σ 2

[
IN (x, y) − 1

2
sign(x − y)

]
GN (x, y).

(C5)

The approximations of SN (x, y) in the limit of large dimension
are

lim
N→∞

SN (x, y) = sin(
√

N r
σ

)

r/
√

2σ 2
= s(r), (C6)

lim
N→∞

sign(x − y)GN (x, y) = 2σ 2

π

d

dr

[
sin(

√
N r

σ
)

r

]
= G(r),

(C7)

lim
N→∞

sign(x − y)IN (x, y) = −Si(
√

N r
σ

)

π
= I (r), (C8)

where r = x − y and Si(t ) is sine integral function. Thus,

lim
N→∞

	c
GOE(x, y) = − 1

2σ 2

[
s(r)2 − G(r)I (r) + 1

2
G(r)

]
.

(C9)
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Changing the integral variable dxdy to 1
2 dwdr (w = x + y),

we get∫
xy	c

GOE(x, y)dxdy = −
∫ πσ

√
N

−πσ
√

N

∫ πσ
√

N−|r|

−πσ
√

N+|r|

− w2 − r2

8

[
s(r)2 − G(r)I (r)

+1

2
G(r)

]
drdw � −σ 2π2N2

12
,

(C10)

where we used limt→∞ Si(t ) = π
2 . Except for the first term,

we can ignore other terms with powers less than two. Finally,

〈DL〉GOE � �

(
2σ 2N2

N + 1
− 2σ 2N2

N (N + 1)
+ π2σ 2N2

6N (N + 1)

)

� 2�σ 2

(
N − 2 + π2

12

)
∝ 2�σ 2N. (C11)

For the GOE and GSE,

	c
GUE(x, y) = − 1

σ 2

[
sin(

√
Nrσ−1)

πrσ−1

]2

, (C12)

and

	c
GSE(x, y) = − s2(2

√
2r)

2σ 2
+ G(2

√
2r)[I (2

√
2r) − 1/2]

2σ 2
.

(C13)
As a result,∫

xy	GUE(x, y)dxdy � −σ 2

48
[8π Si(2πN )N2 + 4N − 4πN

+ 4 cos(2πN )N + O(N2)], (C14)

lim
N→∞

1

N (N + 1)
〈tr(L)2〉GUE =

(
1 − π2

12

)
σ 2, (C15)∫

xy	GSE(x, y)dxdy � −σ 2π2N2

12
, (C16)

and

lim
N→∞

1

N (N + 1)
〈tr(L)2〉GSE =

(
1 − π2

12

)
σ 2. (C17)

Finally, we obtain the decoherence rate limits of the GUE and
GSE,

〈DL〉GUE = 〈DL〉GSE � 2�σ 2

(
N − 2 + π2

12

)
. (C18)

In summary, the decoherence rates for both the GUE and the
GSE align with those of the GOE, with each being propor-
tional to the dimension of the system’s Hilbert space.

APPENDIX D: DECOHERENCE RATES AVERAGED
OVER GinUEs

The decoherence rate limit for GinUE is calculated as
follows. Using the circular law 	GinUE(z) = 1

σ 2π
, |z| � σ

√
N

[29] and the bi-unitary invariance of GinUE, the first term on

the right-hand side of Eq. (14) reads

〈tr(�†�)〉GinUE =
∫ 2π

0
dθ

∫ σ
√

N

0
R3 1

σ 2π
dR = σ 2N2

2
,

(D1)
where we have used the polar coordinates {θ, R} and

〈tr(T †T )〉GinUE =
∑
i< j

∫ exp

(
−

∣∣∣ Ti j

σ

∣∣∣2
)

σ 2π
|Ti j |2 1

2
dT ∗

i j dTi j

= N (N − 1)

2

∫ exp
(
−∣∣ τ+iδ

σ

∣∣2
)

σ 2π
|τ

+ iδ|2dτdδ

= N (N − 1)

2
×

∫ 2π

0

∫ ∞

0
R3 1

σ 2π
e− R2

σ2 dRdθ

= σ 2N (N − 1)

2
, (D2)

where Ti j = τ + iδ. Next, we calculate the second term on the
right-hand side of Eq. (14):

〈tr(�†) tr(�)〉GinUE =
∫

z1z∗
2ρGinUE(z1, z2)

1

4
dz1dz∗

1dz2dz∗
2

+
∫

zz∗ρGinUE(z)dzdz∗, (D3)

where, under the large-dimension approximation, the two-
point correlation function is given by ρGinUE(z1, z2) =
π−2σ−4[1 − exp(−| z1−z2

σ
|2)] [29]. Changing the integration

variables u = z1 − z2 and v = z1 + z2 yields∫
dz1dz∗

1dz2dz∗
2 = 1

2

∫
dudu∗dvdv∗. (D4)

Thus,∫
z1z∗

2ρGinUE(z1, z2)
1

4
dz1dz∗

1dz2dz∗
2

=
∫

z1z∗
2

4π2σ 4

[
1 − exp

(
−

∣∣∣∣ z1 − z2

σ

∣∣∣∣
2
)]

dz1dz∗
1dz2dz∗

2

=
∫ |v|2 − |u|2

32π2σ 4

[
1 − exp

(
−

∣∣∣ u

σ

∣∣∣2
)]

dudu∗dvdv∗,

(D5)

where we have employed the integral symmetry∫
z1z∗

2ρGinUE(z1, z2)dz1dz∗
1dz2dz∗

2

=
∫

z∗
1z2ρGinUE(z1, z2)dz1dz∗

1dz2dz∗
2

=
∫

z1z2ρGinUE(z1, z2)dz1dz∗
1dz2dz∗

2

=
∫

z∗
1z∗

2ρGinUE(z1, z2)dz1dz∗
1dz2dz∗

2, (D6)
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and z1z∗
2 = (|v|2 − |u|2)/4. In polar coordinates {θl , rl} (l = 1, 2), Eq. (D5) simplifies to∫

z1z∗
2ρGinUE(z1, z2)

1

4
dz1dz∗

1dz2dz∗
2 =

∫ 2π

0
dθ1

∫ 2π

0
dθ2

∫ 2σ
√

N

0

∫ √
4σ 2N−r2

2

0

r2
1 − r2

2

8σ 4π2
r1r2(1 − e(− r2

σ
)2

)dr1dr2

= σ 2e−4N

8
[3 + 4N + e4N (−8N2 + 8N − 3)]

� −σ 2N2 + 2σ 2N. (D7)

Since
∫

zz∗ρGinUE(z)dzdz∗ = N2σ 2/2, Eq. (D3) is given by

〈tr(�†) tr(�)〉GinUE � −σ 2N2 + N2σ 2

2
+ 2σ 2N = −N2σ 2

2
+ 2σ 2N. (D8)

Finally, we obtain the decoherence rate limit of GinUE in the main text [see Eq. (17)],

〈DL〉GinUE � 2�

[
σ 2N2

2(N + 1)
+ σ 2N (N − 1)

2(N + 1)
+ σ 2N − 4σ 2

2(N + 1)

]
� 2�σ 2 N2 − 2

N + 1
∝ 2�σ 2N. (D9)
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