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Linear theory of the spatial signatures of critical slowing down
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Critical slowing down is considered one of the main signs that a dynamical system is close to a tipping
point. For this reason, early-warning indicators have been developed to identify it, mainly based on the temporal
evolution of the system under analysis. Yet, it has been shown that critical slowing down also displays spatial
signatures, such as an increase in the spatial correlation. However, these signatures are based only on heuristic
observations and the analysis of numerical simulations and do not have a sound theoretical foundation. In this
work I will derive analytical expressions for typical spatial early-warning indicators of critical transitions in
spatially extended systems, such as spatial correlation, spatial variance, and spatial permutation entropy, in the
linearized limit. As a result, I will show that the common belief that the spatial correlation increases when a
bifurcation is imminent is false. Other indicators, instead, might represent more robust alternatives, such as the
spatial permutation entropy or the spatial variance.
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I. INTRODUCTION

Tipping points are often modeled as bifurcations of some
dynamical systems [1]. Usually the bifurcation is of “catas-
trophic” type, in which a stable fix point disappears or loses
stability and the system experiences an abrupt excursion to-
wards a new stable state. Therefore, understanding whether
a system is close to tip is paramount in real-life applica-
tions [2–5] and is still an unresolved problem [6].

One of the main characteristics of a dynamical system
close to any local bifurcation is the so-called “critical slowing
down” (CSD) [7]. As a dynamical system approaches a critical
point, it starts showing changes in its response to perturba-
tions, typically manifesting as an increase in the time required
to return to equilibrium.

The CSD can be detected directly from time-series data,
and it usually manifests as an increase in the temporal autocor-
relation or in the time-series variance [7]. Several studies have
reported signatures of CSD in very diverse fields of applica-
tions, such as ecology [5,8], climate [9,10], sociology [11],
and finance [12], just to name a few.

The CSD, however, is not only a temporal feature but
also implies spatial effects [7,8,13], especially in spatially
extended systems such as ecosystems and climate sys-
tems [14–16]. Therefore, recognizing the spatial signatures
associated with CSD is crucial in managing critical transitions
in fields that strongly impact human activities such as deserti-
fication or forest loss.
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Popular spatial signatures of the CSD are spatial corre-
lation [13,17], spatial variance [17,18], and spatial skew-
ness [18]. These indicators are easy to compute and have been
shown to be effective in different kinds of bifurcations, such
as the Turing bifurcation [17]. Spatial indicators also have the
advantage that to be computed they require the measurement
of the system’s state at a given time, whereas temporal indica-
tors are based on the analysis of a time series, which might
be problematic for those systems where the characteristic
timescale is particularly long, such as vegetation dynamics.

These indicators have been tested mainly in models and
have been applied scarcely in real datasets [16,19]. Indeed,
recently the spatial correlation was shown to be relatively
poor when predicting tipping points in real-world tree-cover
data [20], underperforming with respect to a nonlinear indica-
tor such as the spatial permutation entropy.

All these indicators are mainly based on the heuristic idea
that at the bifurcation point, spatial interactions dominate the
dynamics, increasing the spatial coherence of the system.
However, there has been no attempt to rigorously justify this
intuition. In this work I want to draw closed-form formulas
for the spatial correlation, variance, and permutation entropy
for reaction-diffusion systems, often employed to model spa-
tially extended tipping systems, particularly in ecological
applications [13,14,18,21,22]. From these calculations I aim
to see how general the behavior of the indicators is close
to a local bifurcation and therefore how reliable they can
be as early-warning indicators of tipping points in reaction-
diffusion systems.

In particular, I will show that contrary to the common
belief [13,17], the spatial correlation can increase as well
as decrease when approaching a bifurcation point, whereas
the spatial permutation entropy seems to have a more robust
behavior, decreasing close to the critical point. However, de-
spite being general, depending on the system parameters this
tendency can be extremely weak and could be easily hidden
by noise in real-world applications.
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II. RESULTS

The main object of study will be reaction-diffusion systems
described by the following evolution equation:

u̇ = F(u) + μ�u + σ ξ. (1)

Here, u(t, r) represents a Rn+1 → Rm vector function, �

denotes the n-dimensional Laplacian operator, and μ stands
for the diffusion coefficient. The vector field F represents
the reaction component of the system, and it is a Rm → Rm

vector field. Assuming the existence of a stable fix point ū
such that F(ū) = 0, the deterministic part of Eq. (1) admits
a homogeneous stationary solution u(t, r) = ū. Finally, the
system is perturbed by a white-noise term of variance σ 2,
which is decorrelated both in time and space.

The numerical integration of Eq. (2) often involves dis-
cretizing the position vector r on a regular lattice with step
size h. This discretization formally transforms the equa-
tion into a network of identical subsystems evolving according
to the reaction term and interacting linearly on a regular lattice
of N nodes:

u̇k = F(uk ) + ν
∑
j∈Nk

(u j − uk ) + σ ξk . (2)

Here, uk = u(t, rk ), Nk represents the lattice neighbors of
node k, and ν is a lattice diffusion coefficient, a parameter
of order μh−2. In this lattice representation the homogeneous
and stationary solution corresponds to uk = ū ∀k.

In the case of σ > 0, the stationarity and stability of the
homogenous solution should be treated in a statistical sense.
In particular, one can investigate the stationarity of the proba-
bility distribution of the values of uk .

A. Unidimensional systems

The case m = 1 is straightforward to treat by associating
to the Langevin equation (2) a corresponding Fokker-Plank
equation [23]:

∂ p(uk )

∂t
= −

N∑
i=1

∂

∂ui
(G(uk ) p(uk )) + σ 2

2

N∑
i=1

∂2 p(uk )

∂u2
i

, (3)

where G(uk ) = F (uk ) + ν
∑

j∈Nk
(u j − uk ).

It is well known that if the reaction term can be expressed
as the gradient of a potential function V (u), the stationary
solution of Eq. (3) can be found explicitly:

p(uk ) ∝ exp

{
− 2

σ 2
U (uk )

}
, (4)

where U = V + ν
2

∑
i ui

∑
j Li ju j . This result is valid if U

represents a potential well that approaches infinity quickly
enough.

The probability p(uk ) enables the calculation of the typ-
ical slowing-down signatures, such as the variance and the
spatial correlation, which is simply the covariance between
neighboring nodes normalized by the variance. However, for
a general U , analytical calculations of such indicators might
be unfeasible, and one has to rely on numerical calculations.

It is possible to overcome this difficulty, considering that if
the noise term is sufficiently small and the system is around
the potential minimum represented by the fix point ū, the

likelihood of the escape from the potential well will be small
and one can consider the system confined around the fix point
for every practical application. Without loss of generality, one
can choose ū = 0.

Linearizing the system transforms the probability dis-
tribution p to a multivariate Gaussian with the following
covariance matrix:

� = σ 2

2
(νL − J)−1. (5)

For m = 1, the Jacobian of the reaction part simplifies to
J = −λI with λ > 0 and I is the identity matrix. Therefore,
the covariance matrix can be explicitly expressed as

�i j =
N∑

k=1

ei
k

1

ν�k + λ
e j

k, (6)

where ek and �k are the eigenvectors and eigenvalues of the
Laplacian matrix, respectively. This result holds for a generic
Laplacian matrix; however, in the case of a circulant matrix,
such as a regular lattice, the calculation of the eigenvalues and
the eigenvectors can be done explicitly [24]. In particular, in
the case of a ring we will have

�i j = σ 2

2

1

Nν

N−1∑
k=0

cos
[
2π (i − j) k

N

]
2 − 2 cos

(
2π k

N

) + λ/ν
. (7)

The generalization of this formula to two- and three-
dimensional (2D, 3D) regular lattices is straightforward.

Considering that in applications N is usually a large num-
ber, the expression can be simplified by approximating the
series with the corresponding integral. In this case the spatial
correlation can be written as

SC = �10

�00
≈ 1 − 1

2

√
λ

ν

(√
λ

ν
+ 4 −

√
λ

ν

)
. (8)

From this simplified formula, it is clear that the spatial cor-
relation depends only on the ratio between λ and ν, and it
is bounded between 0 and 1, that is, it cannot take negative
values.

If the dynamical system represented by F undergoes a
bifurcation, the constant −λ, which is the eigenvalue of the
Jacobian matrix of multiplicity N , will go to zero. Then the
spatial correlation will increase from values close to 0 for
λ � ν, approaching 1 in the limit λ → 0.

The multivariate Gaussian distribution allows the explicit
calculation of additional quantities, such as the spatial permu-
tation entropy [25]. For ordinal patterns of three nodes on the
ring, the entropy is given by

H = −2P log(P) − (1 − 2P) log

(
1 − 2P

4

)
, (9)

where

P = 1

4
+ 1

2π
arcsin

(
�01 − 1

2 (�00 + �02)

�00 − �01

)
(10)

is computed from the orthant probabilities of a multivari-
ate normal. Hence, it is clear that the covariance matrix
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(a)

(b)

FIG. 1. Spatial correlation (a) and normalized spatial permuta-
tion entropy (b) of a unidimensional reaction-diffusion model whose
homogeneous state undergoes a transcritical bifurcation as a function
of the bifurcation parameter a (see text for details). For the sake of
clarity, the entropy is normalized between 0 and 1. The dots represent
the average obtained by analyzing 1000 time steps sampled every 100
integration steps. The results for the full nonlinear model are reported
in red; in gray are the results for the linearized model. The solid black
line represents the analytical results computed via Eqs. (8) and (9).

completely encodes the information about the entropy. De-
tails on the derivation of these formulas are provided in the
Appendixes.

In the same limit of Eq. (8), it can be seen that P is bounded
between 1

6 and 1
4 , which in turn bounds the entropy between

log(6) for λ � ν and 5
2 log(2) for λ → 0, a 3% difference.

Therefore eventual entropy variations due to the occurrence
of a bifurcation at λ → 0 will need a large number of spatial
samples to be robustly assessed. Finally, it can be seen that the
decrease towards λ = 0 is monotonous.

These analytical calculations can be validated through
simulations of Eq. (2). As an example I considered the fol-
lowing form for the reaction term F (u) = −u3 − au2 + u(1 +
a), which has three fix points, u = {0, 1,−1 − a}, and two
transcritical bifurcations for a = {−1,−2}, which acts as a
bifurcation parameter. The results are reported in Fig. 1 for a
decreasing down to −1 and the stable fix point ū = −1 − a

colliding with the unstable fix point at u = 0. A perfect
agreement between the analysis and the linearized model can
be observed. The nonlinear model, instead, follows the pre-
diction up to the last point tested, where the noise level kicks
the system out of the shrunk basin of attraction of ū.

B. Two-dimensional system and spatial correlation decrease

I now consider m = 2 and a linearized system for the
variable u = (u, v). Again, I consider the system dynamics
around a stable fix point, and without loss of generality, I take
it to be ū = 0. The Jacobian of the reaction term, in this case,
will be given by a 2N × 2N square matrix of the form

J =
(

aI bI
cI dI

)
, (11)

where a, b, c, and d are four constants.
In the most general case, there will be two different dif-

fusion coefficients for the two components of u, and the
2N × 2N evolution matrix will be a block-diagonal matrix of
the form

A =
(

aI − ν1L bI
cI dI − ν2L

)
. (12)

As for the one-dimensional (1D) case, one can exploit
the presence of identity matrices to work in the Laplacian
eigenvectors base. In this base it is easy to see that A is
stable if a + d − ν1�k − ν2�k < 0 and ad − cb + �k (ν2a +
ν1d ) + ν1ν2�

2
k > 0. For the zero eigenvalue of the Laplacian

matrix, �0 = 0, these conditions represent the instabilities
of the dynamical system F, while the instabilities related to
�k > 0 will be the Turing bifurcations of the spatial mode k
associated with the Laplacian eigenvector ek .

The Langevin equation generated by the matrix A can be
associated with a Fokker-Plank equation that admits a station-
ary solution [23]. If the fix-point ū is stable, A is contractive
and the stationary solution of the Fokker-Plank equation is an
attractor for the probability distributions of uk .

Moreover, the stationary solution will be a multivariate
Gaussian, whose covariance matrix can be obtained as the ma-
trix � solving the Lyapunov continuous-time equation A� +
�AT = −σ 2I, which gives the following expression for the
covariance in the u subspace:

�i j = − σ 2

2N

∑
k

ei
ke j

k

dk (ak + dk ) + b(b + c)

(ak + dk )(akdk − bc)
, (13)

where ak = a − ν1�k and dk = d − ν2�k . The derivation of
this formula is provided in the Appendixes.

Equation (13) can be used to compute the spatial correla-
tion and the spatial permutation entropy using Eqs. (8) and (9).
The case of the spatial correlation is particularly interesting
and is reported in Fig. 2(a), as a function of the parameters
a and ν1. As it can be seen, the spatial correlation displays
a quadrupolar structure. In particular, it increases towards
the a = −d and a = bc/d instability boundaries, while it de-
creases when approaching a great part of the boundary that
marks the Turing instability. From Fig. 2 it is clear that this
decrease corresponds to the highest modes giving rise to the
instability, that is, modes at high wave number. Intuitively,
we might interpret this feature by thinking that just before
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(a) (b) (c)

FIG. 2. (a) Spatial correlation for the reaction-diffusion system of Eq. (C3) as a function of a and ν1. In this example, the rest of the
parameters are b = −c = −4, d = 3

2 , ν2 = 1
5 . The solid black line separates the stable and unstable regions of the parameter space. (b) Order

of the most unstable mode of A. Higher orders are associated to high spatial wave number. Zero-mode instabilities correspond to instability of
the Jacobian matrix J. (c) As in (a), but for the normalized spatial permutation entropy of ordinal patterns of three consecutive nodes.

the bifurcation the most unstable mode will start emerging,
stimulated by the noise, being the one that relaxes the slowest
back to equilibrium. The high wave number means fast spatial
oscillations entailing low, even negative correlation between
neighbors.

The entropy is reported in Fig. 2(c). As the spatial corre-
lation, it displays a quadrupolar structure, with the notable
difference that it always decreases close to the bifurcation
boundary. Nevertheless, for the medium to high Turing wave
numbers, the decrease in entropy close to the instability is
minimal and confined to a very narrow range of parameter
values. Therefore, in this condition it might be challenging to
observe experimentally.

In Fig. 3 results from simulations of Eq. (2) confirm the
predicted drop in spatial correlation, providing additional val-
idation for the analytical calculations. It is also possible to
appreciate the small flexion in the normalized spatial per-
mutation entropy; however, the variation is well below the
temporal variance of the measure. Moreover, being so close
to 1, the normalized entropy is significantly affected by the
negative bias of the estimator. Such a bias can be reduced
by considering all the time steps to compute the symbols’
probability, instead of computing the entropy at each time step
and then averaging. Such a procedure is commonly known as
“pooling” [26].

III. DISCUSSION

The increase of spatial correlation is considered to be one
of the main spatial signatures of critical slowing down, and
therefore of a forthcoming tipping point [13]. I proved this to
be true when analyzing reaction-diffusion models of a single
scalar field. In this case, according to Eq. (8), the spatial cor-
relation steadily increases towards the bifurcation as a power
law of the ratio between the reaction and diffusion timescales.
The formula is computed using a 1D lattice, but the extension
to 2D and 3D lattices is straightforward.

I have also shown that the rise in spatial correlation is
linked to a decrease in entropy, as the latter is determined by
the coefficients of the covariance matrix. Passing from scalar
to vectorial fields drastically changes the results, at least for
the spatial correlation. In particular, from the calculation it is
evident that the assumption holding so far that an increase in
the spatial correlation would be a robust indicator of critical
slowing down is no longer correct.

In previous studies [14] it was shown that the spatial corre-
lation increases not only on bifurcations that are proper of the
dynamical system F, in which the diffusion plays a secondary
role, but also on the Turing bifurcations, which are made
possible by the presence of diffusion. Here, I have shown that
this is not generally true. When the system undergoes a Turing
bifurcation at mid to high spatial wave number, the spatial
correlation decreases up to the point where it reaches negative
values.

On the contrary, the entropy decreases towards each bifur-
cation point. In the zero-mode bifurcations, the mechanisms
are the same as for the scalar field, so we expect and indeed
find the same behavior. For the Turing bifurcation, instead, the
entropy is able to capture the seeds of the spatial structures
that would fully emerge from the background noise once the
bifurcation point is reached.

However, the entropy decrease happens at different rates
and by different amounts, up to the point in which it might
become difficult to detect experimentally. In these cases the
observed behavior might be a rise of the entropy, followed by
a relatively stable plateau, and the bifurcation would happen in
a state very close to the maximum possible entropy. Therefore,
the absolute value of the entropy cannot be used as an early-
warning indicator of a forthcoming transition, and the trend
can be tricky to interpret, as it might be too weak to be robustly
detected.

The spatial variance, �00, could represent a more robust
indicator. This quantity diverges approaching the bifurcation,
both in the m = 1 case and in the m = 2 case. In the latter the
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(b)

(a)

FIG. 3. Spatial correlation (a) and spatial permutation entropy
(b) for the reaction-diffusion model of Fig. 2 for ν1 = 4. For clarity
the entropy is normalized between 0 and 1. The red dots represent
the average obtained by analyzing 1000 time steps sampled every 100
integration steps of a ring of 100 nodes. The gray dots in (b) represent
the spatial permutation entropy computed using all the time steps to
compute the symbols statistics, rather than computing the entropy
at each time step and averaging afterward, a technique known as
“pooling.”

increase is generalized, as it is related to the fact that if mode
k loses stability, then ak + dk changes sign, being 0 at the
bifurcation. Hence, Eq. (13) would have a diverging element
in the sum. Moreover, the spatial variance is a robust indicator
also in the case of a generic Laplacian connectivity, i.e., the
case in which the identical systems of the discretized equation,
Eq. (2), are interacting on a network (see the Appendixes).

These results suggest that the usage of only one indicator
to monitor the arrival of a bifurcation can be insufficient
in the case of spatial indicators, and a general approach in
which multiple indicators are tracked not only might be able
to foresee the arrival of a bifurcation, but also to draw some
information about the nature of the bifurcation itself. For
example, a combination of a decreasing spatial correlation,
increasing variance, and increasing entropy can indicate the
arrival of a bifurcation, but the fact that the entropy increases
is an indication that the bifurcation is not imminent, as it

would have to plateau first, or even decrease. The decreasing
spatial correlation, moreover, would indicate that a high-
wave-number spatial mode is the one that will likely be the
cause of the instability. Another possible spatial indicator,
which recently was proven to be an effective early-warning
indicator of catastrophic shifts of tree populations, is provided
by the diagonal elements of the precision matrix, that is, the
inverse of the covariance matrix [27]. In the case considered
here, for m = 2 it would be the square matrix given by the
four elements �00, �0N , �N0, and �NN . While �00 can be
obtained by Eq. (13), the other three elements can be derived
by extending the equation to the other subspaces, u-v and v.
Therefore, this indicator is linked to the fields’ variance, but
for the tree species tested by the authors, it provides a sharper
signal than the simple raise in the variance [27].

ACKNOWLEDGMENTS

The author would like to acknowledge the support of
Ministerio de Ciencia e Innovación, Spain, Project No.
PID2021-123994NB-C21.

APPENDIX A: SPATIAL PERMUTATION ENTROPY
CALCULATION FOR A MULTIVARIATE

GAUSSIAN VARIABLE

This section will provide more details on the calculation
of Eqs. (10) and (11) of the main manuscript. We start by
considering the vectorial variable u ∈ RN distributed as a
multivariate Gaussian of zero mean and covariance matrix �.
In the case of the main manuscript, each element of the vector
represents the value of the field u on a certain node.

To compute the permutation entropy of a sample of u
we have first to convert the vector into a series of ordinal
patterns [28]. To do so we divide the vector into segments
of length Q. Then each value within the segment is assigned
a symbol according to the ranking of the values inside each
segment. The ordinal patterns take into account the local vari-
ations of the field u rather than its amplitude.

For example, if Q = 3, as in the main manuscript, and
uk < uk+1 < uk+2, the uk value is replaced by the ordinal
pattern “012,” while if uk > uk+1 > uk+2, the uk the pattern
“210” is used instead, and so forth. Considering patterns of
length Q there are Q! different possible patterns. An example
is depicted in Fig. 4.

Once the values have been translated into a set of symbols,
the occurrence probabilities of these symbols, ps, give the
normalized permutation entropy of u as

H = − 1

log(Q!)

Q!∑
s

ps log(ps), (A1)

which is a number normalized between 0 and 1. These occur-
rence probabilities can be computed explicitly in the case of
the main manuscript. First of all, given the homogeneity and
the isotropy of the systems studied in the main manuscript,
p012 = p210 and p120 = p021 = p201 = p102, which together
with (A1) gives Eq. (10) of the main manuscript.

Therefore, to determine H it is sufficient to compute
P = p012. To do so we leverage the fact that if the various
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FIG. 4. Example of ordinal pattern construction for node k using
Q = 3.

uk are Gaussian, zk = uk − uk+1 and zk+1 = uk+1 − uk+2 are
Gaussian too. Therefore, the probability of the symbol 012
is equivalent to the probability of having both zk and zk+1

negative. Noting that the joint probability of zk and zk + 1 is a
bivariate Gaussian, these probabilities can be computed as its
orthant probability:

P = 1

4
+ 1

2π
arcsin (ρ), (A2)

where ρ is the correlation between zk and zk+1, which can be
computed using the covariance between zk and zk+1 that is
inherited by the covariance between the uk:

ρ = Cov(zk, zk+1)

Var(zk )Var(zk+1)
= �01 − 1

2 (�00 + �02)

�00 − �01
. (A3)

Generalizing these formulas to ordinal patterns of higher order
is lengthy but straightforward.

We can compute an explicit form of ρ in function of the
system parameters for m = 1. We use Eq. (8) of the main
manuscript taking the limit N → ∞, which is converting the
sum into an integral. In this case,

ρ = 1

4

√
λ

ν

(√
λ

ν
+ 4 −

√
λ

ν

)
, (A4)

which is bounded between 1
2 and 0 for λ → ∞ and λ → 0,

respectively. Consequently, H is bounded between 5
2 log(2)

and 1, as stated in the main manuscript.

APPENDIX B: SOLUTION OF THE CONTINUOUS-TIME
LYAPUNOV EQUATION

This section provides more details on the calculation nec-
essary to arrive at Eq. (14) of the main manuscript, which is
to solve the equation A� + �AT = −σ 2I, where

A =
(

aI − ν1L bI
cI dI − ν2L

)
. (B1)

The Laplacian is a real symmetric matrix; therefore, we
can diagonalize it as PT LP = �, where P is the matrix of the

normalized eigenvectors of the Laplacian, that is, Pi j = ei
j√
N

and PT P = I.
In a base defined by the transformation P̂,

P̂ =
(

P 0
0 P

)
, (B2)

the matrix A becomes a block matrix of diagonal matrices:

Â =
(

aI − ν1� bI
cI dI − ν2�

)
. (B3)

With this choice of base, the Lyapunov equation becomes
equivalent to multiple algebraic systems (one for each eigen-
value of the Laplacian) and the solution is straightforward.
Rotating the solution back to the original frame of reference
gives Eq. (14) of the main manuscript.

APPENDIX C: NUMERICAL SIMULATIONS

This section provides details about the numerical simula-
tions in order to replicate the results of the manuscript.

1. Scalar field simulation

The partial differential equation (PDE)

∂u

∂t
= −u3 − a u2 + u (1 + a) + μ

∂2u

∂x2
+ σξ (C1)

was integrated for u = u(t, x), with ξ being a Gaus-
sian noise term decorrelated in time and space, that is,
〈ξ (t, x)ξ (t ′, x′)〉 = δ(x − x′)δ(t − t ′).

The integration was realized on a regular linear lattice of
1000 nodes for 100 000 time steps. A transient of 25 000 was
discarded, then the time series was downsampled, keeping one
time stamp every 100. The integration time, T , was related
to the characteristic time, τ = 1

λ
, as T = 30τ , where λ has

the same meaning as in the main manuscript. Finally, μ and
the mesh spacing were chosen to fix the discrete diffusion
coefficient to ν = 2.

The integration was performed using the Euler-Maruyama
method defining σ = 0.005.

2. 2D system simulation

As in the previous section, the PDEs,

∂u

∂t
= au + bv + μ1

∂2u

∂x2
+ σξ1, (C2a)

∂v

∂t
= cu + dv + μ2

∂2v

∂x2
+ σξ2, (C2b)

were integrated solving for u = u(t, x) and v = v(t, x) on a
regular linear lattice of 1000 nodes for 100 000 time steps. A
transient of 25 000 was discarded and then the time series was
downsampled, keeping one time stamp every 100. The param-
eters μ1, μ2, and the lattice spacing were chosen such that the
discrete diffusion coefficients are ν1 = 4 and ν2 = 0.2. The
remaining parameters are b = −c = −4, and d = 3/2. The
total integration time was chosen depending on the Jacobian
matrix:

J =
(

a b
c d

)
. (C3)
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Defining λ̄ = max
i

{λJ
i }, where λJ

i is the spectrum of J,

the integration time was set as T = 30/λ̄. The integration
was performed using the Euler-Maruyama method setting
σ = 0.005.

APPENDIX D: GENERIC DIFFUSIVE CONNECTIVITY

In the case of reaction-diffusion equations, the Laplacian of
the discretized equations represents a regular lattice. Relaxing
this assumption to consider a general connectivity matrix,
the formalism can be extended to the study of networks of
identical interacting units. In this case the inhomogeneities
in the nodes’ connectivities give rise to inhomogeneities in
the covariance matrix, and the dynamic variables of the sin-
gle nodes do not have the same distributions across nodes
anymore.

In this case the spatial indicators based on neighbors be-
come very hard to quantify analytically and, in general, would
depend on the particular connectivity involved. Nevertheless,
this limitation does not hold for the spatial variance, which
can still be expressed in a closed form. Let us consider the
system of interacting nodes:

u̇i = aui + bvi − αu3
i + ν1

∑
j∈Ni

(u j − ui ) + σξ1, (D1a)

v̇i = cui + dvi − αv3
i + ν2

∑
j∈Ni

(v j − vi ) + σξ2, (D1b)

where i is the node’s index, and N〉 represents the neighbor-
hood of node i. The system has a fix point for ui = 0, vi = 0.
The steady-state solution in the linearized limit of the Fokker-
Plank equation will be a multivariate Gaussian of covariance
� obtained by the solution of the continuous-time Lyapunov
equation, as explained in the main text. The covariance matrix
can be written as

� =
(

�uu �uv

�vu �vv

)
. (D2)

The spatial variance of the field u at a certain time will be
given by

VAR[u] = 1

N

N∑
i

u2
i = 1

N
uT u, (D3)

which is a sum of squares of normal variables of zero mean
and covariance �uu. Its distribution can be determined writing
u = �1/2

uu z, where z is a vector of normal variables of 0 mean
and unitary variance. Therefore, VAR[u] = 1

N zT �uuz. Since

FIG. 5. Variance of the field u of Eq. (D1) for N = 50, ν1 = 4,
ν2 = 0.2, b = −c = −4, d = 3/2, σ = 0.005, and different values
of a. The connectivity between nodes is given by a random adjacency
matrix of link density ρ = 7.36%. Black: Analytical results, the filled
dots represent the expected value while the error bars represent the
standard deviation. Red: Simulations with α = 0. Blue: Simulations
with α = 1. The dots represent the mean of the spatial variance
computed across the simulation steps, while the error bars represent
the standard deviation. The simulations were carried out for 100 000
steps using the Leimkuhler–Matthews method. A transient of 25 000
steps was discarded.

�uu is symmetric and real, it can be diagonalized as �uu =
PDPT . Since P is an orthogonal matrix, also the variable w =
PTz is normal with unitary variance. Therefore,

VAR[u] = 1

N
wT Dw = 1

N

N∑
i

�iw
2
i , (D4)

where �i are the eigenvalues of �uu. Hence, the variable
NVAR[u] is a linear combination of N χ2 variables of one
degree of freedom. Such a variable is distributed according
to the generalized χ -squared distribution and will have an
expected value E [NVAR[u]] = ∑N

i �i = Tr(�uu) and vari-
ance VAR[NVAR[u]] = 2

∑N
i �2

i . We can finally note that the
expected spatial variance is equivalent to the average of the
temporal variance of the single ui variables. This result is
general and holds also in the case of a regular lattice. In Fig. 5
I report the result of the variable VAR[u] of the system given
by Eq. (D2). A good agreement between the theory and the
simulations can be observed.
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