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Matrix product study of spin fractionalization in the one-dimensional Kondo insulator
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The Kondo lattice is one of the classic examples of strongly correlated electronic systems. We conduct
a controlled study of the Kondo lattice in one dimension, highlighting the role of excitations created by
the composite fermion operator. Using time-dependent matrix product state methods, we compute various
correlation functions and contrast them with both large-N mean-field theory and the strong-coupling expansion.
We show that the composite fermion operator creates long-lived, charge-e and spin-1/2 excitations, which cover
the low-lying single-particle excitation spectrum of the system. Furthermore, spin excitations can be thought to
be composed of such fractionalized quasiparticles with a residual interaction which tend to disappear at weak
Kondo coupling.
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I. INTRODUCTION

Kondo insulators are an important class of quantum mate-
rial, which historically, foreshadowed the discovery of heavy
fermion metals and superconductors [1]. These materials con-
tain localized d or f electrons, forming a lattice of local
moments immersed in the sea of conduction electrons [2–5].
Remarkably, even though the high temperature physics is
that of a metallic half-filled band, at low temperatures these
materials transition from local moment metals to paramag-
netic insulators. In the 1970s, theorists came to appreciate
that the origin of this behavior derives from the formation of
local singlets through the action of an antiferromagnetic ex-
change interaction between electrons and magnetic moments
[2,3,6,7], a model known as the Kondo lattice Hamiltonian.

The Kondo lattice model

H = −tc
∑
〈i, j〉σ

(c†
i,σ c j,σ + H.c.) + J

∑
j

(c†
j �σ c j ) · �S j, (1)

contains a tight-binding model of mobile electrons coupled
antiferromagnetically to a lattice of local moments via a
Kondo coupling constant J . The deceptive simplicity of this
model hides many challenges. Perturbative expansion in J ,
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reveals that the Kondo coupling is marginally relevant, scal-
ing to strong coupling at an energy scale of the order of
Kondo temperature TK ∼ We−1/Jρ . Moreover, the localized
moments, with a two-dimensional Hilbert space, do not allow
a traditional Wick expansion of the Hamiltonian, impeding
the application of a conventional field-theoretic methods.
The strong-coupling limit of this Hamiltonian, in which J
is much larger than the bandwidth, J/tc � 1 provides a use-
ful caricature of the Kondo insulator as an insulating lattice
of local singlets. In the 1980s [8–11], new insight into the
Kondo lattice was obtained from the large-N expansion. Here,
extending the spin symmetry from the SU(2) group, with
twofold spin degeneracy, to a family of models with N- fold
spin-degeneracy allows for an expansion around the large-N
limit in powers of 1/N . The physical picture which emerges
from the large-N expansion accounts for the insulating behav-
ior in terms of a fractionalization of the local moments into
spin-1/2 excitations, �S j → f †

jα (�σ/2)αβ f jβ which hybridize
with conduction electrons [7,9–12] to form a narrow gap
insulator. However, the use of the large-N limit provides no
guarantee that the main conclusions apply to the most physi-
cally interesting case of N = 2.

In this paper we use matrix product state methods to exam-
ine the physics of the one-dimensional (1D) Kondo insulator.
Our work is motivated by a desire to explore and contrast the
predictions of the strong coupling and large-N descriptions
with a computational experiment, taking into account the fol-
lowing considerations:

(1) Traditionally, Kondo insulators are regarded as an
adiabatic evolution of a band-insulating ground state of a
half-filled Anderson lattice model. We seek to understand the
insulating behavior, which is akin to a “large Fermi surface”,
from a purely Kondo lattice perspective without any assump-
tions as to the electronic origin of the local moments.
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(2) What are the important differences between the excita-
tions of a half-filled Kondo insulator and a conventional band
insulator?

(3) Many aspects of the Kondo lattice suggested by the
large-N expansion, most notably the formation of composite
fermions and the associated fractionalization of the spins,
have not been extensively examined in computational work.
In this respect, our work complements the recent study of
Ref. [13], highlighting the mutual independence of the con-
duction electron and composite fermions through the matrix
structure of the electronic Green’s function. We extend this
picture even further by examining the dynamical spin sus-
ceptibility, providing evidence for fractionalization of the spin
into a continuum of quasiparticle excitations.

A. Past studies

Our work builds on an extensive body of earlier studies of
the 1D Kondo lattice that we now briefly review. An early
semiclassical field theory of the 1D Kondo insulator was
carried out by Tsvelik [14], who identified the low energy
physics as a gapped fluid of S = 1/2 spin polarons coexisting
with a fluid of gapped spin excitations described by an O(3)
sigma model. The ground-state phase diagram of this model
was first established by Tsunetsugu, Sigrist, and Ueda [15],
who established the stability of the insulating phase for all
ratios of J/tc, while also demonstrating that upon doping,
the 1D Kondo insulator becomes a ferromagnet. More re-
cently, the 1D Kondo lattice (KL) has been studied using
Monte Carlo [16–18], density matrix renormalization group
(DMRG) [19–23], bosonization [24,25], strong-coupling ex-
pansion [15] and exact diagonalization [26]. Additionally,
renormalization and Monte Carlo methods have also been
used to examine the p-wave version of the 1D Kondo lattice,
which exhibits topological end-states [27–29].

The Kondo insulator can be driven metallic by doping,
which leads to a closing of charge and spin gaps, forming
a Luttinger liquid with parameters that evolve with doping
and J/tc [22,26]. Both the insulating phase at half-filling and
the doped metallic regime are non-trivial, as the kF , extracted
from spin and charge correlation functions corresponds to a
large Fermi surface, which counts both the electrons and spins
vFS/π = ne + 1. The weak-coupling J/tc � 1 regime at finite
doping continues to be paramagnetic, but the strongly coupled
J/tc � 1 regime becomes a metallic ferromagnetic state for
infinitesimal doping. In this regime, the spin-velocity goes to
zero, characteristic of a ferromagnetic state [30], as inferred
from spin susceptibility.

An early study of the excitation spectrum of a 1D Kondo
insulator by Tsvelik [14], examined a spin S Kondo lattice,
screened by M spin-1/2 conduction channels, showing that
in the semiclassical limit, the spin physics is described by an
O(3) sigma model with a topological term which vanishes in
the case of case of perfect screening 2S = M, giving rise to
gapped spin excitations which coexist with a band of charged
spin polarons. Later work on the original S = 1/2 model by
Trebst et al. [31] employed a strong coupling expansion in
J/tc to examine the one and two-particle spectrum. Their
studies found that beyond tc/J > 0.4, the minimum in the
quasihole spectrum shifts from k = π to k < π . Furthermore,

they extracted the quasiparticle weights showing that Z → 0
right at tc/J = 0.4 when the dispersion is flat around k ∼ π .
Smerat et al. [32] used DMRG to compute the quasiparticle
energy and lifetime to verify these results and extend them
to partial filling. They pointed out that the exchange of spin
between conduction electrons and localized moments leads to
formation of “spin-polarons” as envisaged in the early work
by Tsvelik [14], here referred to as “composite fermions”.

B. Motivation and summary of results

The appearance of an insulator in a half-filled band goes
beyond conventional band-theory and requires a new concep-
tual framework. A large body of work, dating back to the
1960s recognized that there are two ways to add an electron
into a system containing localized moments [33–36], either
by direct “tunneling” an electron into the system, formally
by acting on the state with the conduction electron creation
operator c†

σ , or by “cotunneling” via the simultaneous addition
of an electron and a flip of the local moment at the same site
F †

σ ∼ c†
σ̄ Sσ σ̄ = c†

σ̄ |σ 〉〈σ̄ |. Both processes change the charge
by e and the spin by one half. The object created by F †

has also alternately referred to as a “composite fermion” or
a “spin-polaron” [14,32]. Here we will employ the former
terminology, introducing

F †
β = 2

3

∑
α=↑,↓

c†
α �σαβ · �S, (2)

as the composite fermion creation operator: F †
β transforms as

a charge e and spin S = 1/2 fermion, and with the above nor-
malization the expectation value of its commutator with the
conduction electron operator vanishes 〈{cα, F †

β }〉 = 0, while

that of commutator with itself is unity 〈{Fα, F †
β }〉 = δαβ , in

the strong Kondo coupling limit.
Cotunneling lies at the heart of the Kondo problem, and

insight into its physics can be obtained by observing that in
the interaction, the object that couples to electron in the Kondo
interaction is a composite fermion, for

J (c†
j �σ c j ) · �S j ≡ 3J

4
[F †

jσ c jσ + c†
jσ Fjσ ]. (3)

In certain limits, such as the large- J limit and large-N limit, F
behaves as a physically independent operator, suggesting that
the Kondo effect involves a hybridization of the conduction
electrons with an emergent, fermionic field. The large-N limit
accounts for the emergence of the independent composite
fermions as a consequence of a fractionalization of the local
moments, and in this limit, both the composite fermion and the
local moments are described in terms of a single f -electron
field,

Fj ∼ f j,

�S j → f †
jα

( �σ
2

)
αβ

f jβ. (4)

Though the KL is a descendent of the Anderson lattice,
it exists in its own right. In particular, rather than the four-
dimensional Hilbert space of an electron at each site, the
spins have a two-dimensional Hilbert space. If there are “f”
electrons they are by definition, Z = 0 quasiparticles, as there
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is absolutely no localized electron Hilbert space. Field theory
and DMRG of single impurity provide a clue: the presence of
many body poles in the conduction self-energy can be inter-
preted in a dual picture as the hybridization of the conduction
electrons with fractionalized spins.

One of the key objectives of this work is to shed light
on the quantum mechanical interplay between the composite
fermion, the conduction electron and the possible fraction-
alization of local moments in a spin-1/2 1D Kondo lattice
(1DKL). This is achieved by carrying out a new set of calcu-
lations of the dynamical properties of the Kondo lattice while
also comparing the results with those of large- N mean-field
theory and strong coupling expansions about the large- J limit.
In each of these methods, we evaluate the joint matrix Green’s
function describing the time evolution of the conduction and
composite fermion fields following a tunneling or cotunneling
event.

Matrix-product states are ideally suited to 1D quantum
problems, permitting an economic description of the many-
body ground state with sufficient precision to explore the
correlation functions in the frequency and time domain. Here,
we take advantage of this method to compute Green’s function
matrix between conduction electrons and composite fermions
and to compare the spin correlation functions of the local
moments and composite fermions. For simplicity, we limit
ourselves to zero temperature T = 0. At the one-particle level
we find that by analyzing the Green’s function matrix between
c and F , we are able to show that these operators define a hy-
bridized two-band model, in agreement with the large-N limit.
The evolution of our computed one-particle spectrum with
tc/J is consistent with earlier strong-coupling expansions.
Remarkably, the shift in the minimum of the quasiparticle
dispersion seen in the strong-coupling expansion at tc/J = 0.4
[31] can be qualitatively accounted for in terms of the evo-
lution of the hybridization between conduction electrons and
composite fermions.

Moreover, by calculating the dynamical spin susceptibility
using matrix product state (MPS) methods, and comparing
the results with mean-field theory, we are able to identify a
continuum in the spin excitation spectrum that is consistent
with the fractionalization of the local moments into pairs of
S = 1/2 excitations. Our strong coupling expansion coincides
with the matrix product state calculation in the large J limit
and we also see signs of the formation of S = 1 paramagnon
bound-states below the continuum: a sign of quiescent mag-
netic fluctuations.

II. MODEL AND METHODS

The model we consider is deceptively simple. It is given by
the 1DKL Hamiltonian

H = −tc
∑

iσ

(c†
i,σ ci+1,σ + h.c.) + J

∑
i

(c†
i �σ ci ) · �Si, (5)

where c†
i,σ creates an electron of spin σ at site i and tc controls

the electron tunneling between sites. The operator �Si is an
immobile S = 1/2 spin located at site i and (c†

i �σ ci ) · �Si is a
Heisenberg coupling between the spin moment of an electron
at site i and the spin �Si. In the limit of large J/tc the half-filled
ground state is composed of a product of Kondo singlets

FIG. 1. Diagrammatic representation of calculating the Green
function by MPS methods. The MPS |0〉 (blue) is the ground state
found using DMRG. The small circles in (a) represent the single-site
operators |F †

x2
〉 (magenta circle) and cx1 (green circle). They can be

placed at any sites x1 and x2 (though requiring separate computa-
tions), giving access to the Green function in real space. The time
evolution operator (orange rectangle) is split into two halves, each
half approximated by a sequence of unitary gates (dark green rect-
angles) using a Trotter approximation. The Green functions is found
by computing the overlap of the two independent time-evolved wave
functions. In the bottom right region, we demonstrate the procedures
during every step in the time evolution (red shaded region). The gate
tensors are contracted with MPS tensors, followed by a singular value
decomposition (SVD) to reorganize the tensors back into MPS form
but with a increased bond dimension to maintain accuracy.

at every site, a state that is self-evidently an insulator. The
challenge then, is to understand how this state evolves at finite
J/tc.

A. Matrix product state methods

The primary tool we will use to study the properties of
the KL model will be MPS tensor networks. An MPS is a
highly compressed representation of a large quantum state
as a contraction of many smaller tensors and is the seminal
example of a tensor network. In contrast to other numerical
or analytical approaches, MPS methods work well for both
weakly and strongly correlated electronic systems and do not
suffer from a sign problem as in the case of quantum Monte
Carlo methods. The main limitation of MPS is that they are
only efficient for studying 1D or quasi-1D systems.

The two key MPS techniques we use in this work are
the DMRG algorithm for computing ground states in MPS
form [37], and the time-evolving block decimation (TEBD)
or Trotter gate method for evolving an MPS wave function
forward in time [38–40]. Our implementation is based on the
ITensor software [41].

Our computational approach is illustrated at a high
level in Fig. 1, using the example of computing G>

cF =
−i eiE0t 〈0|cx1 e−iHt F †

x2
|0〉. After computing an MPS represen-

tation of the ground state |0〉 using DMRG, we act with F †
x2
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FIG. 2. Strong coupling diagram. (a) Ground state is comprised
of local singlets between spins and conduction electrons. (b) The
hopping term in the Hamiltonian creates doublon-holon pairs whose
corresponding spins are together in a singlet states, i.e., charge-0,
spin-singlet admixture.

on one copy of |0〉 and with c†
x1

on another copy of |0〉. The
first copy is evolved forward in time by acting e−iHt/2 using
a Trotter decomposition of the time evolution operator, and
the second is evolved backward in time by acting with eiHt/2.
Finally, the Green function is computed from the overlap of
the resulting MPS. We give additional technical details of our
computational approach in Appendix H.

B. Strong coupling expansion

An insight into the nature of ground state and its elemen-
tary excitations can be obtained in the strong Kondo coupling
limit. At tc/JK = 0 the ground state is a product state of local
Kondo singlets

|φ〉0 =
∏

j

|Kj〉, |Kj〉 = 1√
2
|⇑ j↓ j − ⇓ j↑ j〉. (6)

Here, ⇑ and ⇓ refer to the spins (magnetic moments) and
↑ and ↓ refer to conduction electrons. The spin-1/2 excita-
tions correspond to addition/removal of electrons and spin-1
excitations of changing local singlets into triplets. At finite
tc/JK electrons hop to nearby sites, creating holon-doublon
virtual pairs [Fig. 2(b)]. Consequently, the vacuum contains
short-lived holon-doublon pairs, which lead to short-range
correlations.

III. COMPOSITE FERMIONS:
SINGLE-PARTICLE PROPERTIES

A. More details on the composite fermion operator

To characterize the single-particle excitations of the Kondo
lattice, observe that acting on the ground state by the opera-
tors c†

↑ and c†
↓S+ each create charge-1, spin-1/2 excitations.

FIG. 3. Numerical calculation of Eq. (8) on 30-sites 1D chain for
JK/tc = 2, 0.9. Only the same-spin anticommutators Fσ , F †

σ are plot-
ted, while off-diagonal or mixed-spin anticommutators {F↑, F †

↓ } =
{F↓, F †

↑ } are zero.

However, instead of c†
↓S+, we will find that the composite

fermion operator

F †
β = 2

3

∑
α=↑,↓

c†
α �σαβ · �S (7)

is the more natural operator to consider. One motivation is that
F †

σ transforms under the S = 1/2 representation of SU (2). A
more intuitive motivation is that the spin-electron interaction
term in the Kondo lattice Hamiltonian Eq. (5) can be written
as (�S · c† �σc) ∝ (F †

σ cσ + h.c.), thus F †
σ is the operator which

couples to electronic excitations. The factor of 2/3 in Eq. (7)
has been chosen so that the anticommutator (see Appendix A
for the proof)

{Fα, F †
β } = δαβ − 4

9

[(�S · c† �σc + 3
2

)
δαβ + (n̂ − 1)�S · �σαβ

]
,

(8)

is unity in average in the strong coupling limit J/tc � 1.
The second line spoils the canonical anticommutation of F
operators, however, in the strong coupling limit J/tc � 1 the
expectation value of the second term is zero in the ground
state, indicating that 〈{Fα, F †

β }〉 = δαβ has canonical anticom-
mutation on average. Figure 3 shows the numerical calculation
of the expectation value 〈{Fnα, F †

nα}〉 with respect to the Kondo
lattice ground state. This is shown for α = ↑,↓ as a function
of site number n for two different values of J/tc. As expected
the anticommutator is closer to unity for JK/tc = 2 than for
JK/tc = 0.9. Furthermore, the anticommutator is closer to one
at the two ends, presumably due to the weakness of inter-
site correlations at the boundaries. This result substantiates
the emergence of the composite fermions in the 1D Kondo
insulator.

Within the triplet sector, the expectation value of the an-
ticommutator becomes δαβ/9 and within the holon/doublon
manifold, the expectation value of the anticommutator de-
pends on the state of the magnetic moment. The overlap
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between the original c and the composite F electrons is

{cα, F †
β } = 2

3
�S · �σαβ. (9)

The right-hand side has zero average (but finite fluctuations)
in the strong-coupling ground state, suggesting that c and F
create independent excitations in average. However, Fσ and cσ

overlap due to quantum fluctuations, motivating us to compute
the full Green’s function matrix involving both operators to
study their associated excitations in a controlled way.

This approximately particlelike behavior of the composite-
fermion Fσ has a strong resemblance to the two-band model of
heavy fermions obtained in the large-N mean-field theory. In
such a model the spin is represented using Abrikosov fermions
�S = 1

2 f † �σ f and the constraint f † f = 1 is applied on average
using a Lagrange multiplier. Within mean-field theory, the
Kondo interaction leads to a dynamic hybridization between
f electrons and c electrons [c.f. Eq. (3)]

3
4 JF †

σ cσ = V f †
σ cσ . (10)

The similarity of the two results suggests Fσ ∼ fσ , implying
the fact that the spin is fractionalized into spinons. In fact we
can define

�SF = 1
2 F † �σF. (11)

In the rest of this section we will confirm the picture out-
lined above by computing the full Green function using two
approaches. We first use time-dependent matrix product state
techniques on finite systems, then carry out a strong-coupling
analysis to shed further light on the results.

B. Matrix spectral function

To examine the independence of the c and F fields, it is
useful to combine them into a spinor

ψσ (x) =
(

cxσ

Fxσ

)
, (12)

allowing us to define a retarded matrix Green’s function

[GR(x1, x2, t )]αβ = −iθ (t )〈{ψασ (x1, t ), ψ†
βσ (x2, 0)}〉

≡
(

Gcc GcF

GFc GFF

)
, (13)

where θ (t ) is the step function. G defines a matrix of ampli-
tudes for the c and F fields. The GcF component

GR
cF (x1, x2, t ) = −i θ (t )〈{cx1 (t ), F †

x2
(0)}〉, (14)

determines the amplitude for a composite F to convert to a
conduction electron.

We are primarily interested in the properties of a trans-
lationally invariant Kondo lattice, with momentum-space
Green’s function

G(k, t ) = −iθ (t )〈{ψkσ (t ), ψ†
kσ

(0)}〉

= 1

L

∑
i, j

eik(xi−x j )G(xi, x j ; t ). (15)

In our numerical calculations, we estimate this Green’s func-
tion using the expression for a translationally invariant system

simply applied to finite size Green’s function G(xi, x j ; t ). We
then perform a discrete Fourier transform on G to obtain

G(k, ω) =
∑

j=1,Nt

�t eiωt jG(k, t j ), (16)

where �t = T/Nt is the spacing of the Nt time slices over
the total duration T of the time evolution, t j = j�t and the
frequencies are sampled at the values ωn = 2πn/T .

Although we independently compute the four components
of G(k, ω), the kinematics of the Kondo lattice imply that they
are not independent, which provides us a means to test and
interpret our calculations. From the Heisenberg equations of
motion of the conduction electron operators in the translation-
ally invariant limit, i∂t ckα = [ckα, H],

i∂t ckα = εc(k)ckα + (3J/2)Fkα, (17)

where εc(k) = −2tc cos(k) is the dispersion of the conduction
electrons and Fkα = L−1/2 ∑

x e−ikxFxα is the Fourier trans-
form of the composite fermion. It follows that

[i∂t − εc(k)]Gcc(k, t ) = (3J/2)GFc(k, t ) + δ(t ),

[i∂t − εc(k)]GFc(k, t ) = (3J/2)GFF (k, t ). (18)

When we transform these equations into the frequency do-
main, replacing i∂t → z = ω + iη, we see that Gcc and GcF

are entirely determined in terms of GFF ,

Gcc = gc + gc(3J/2)GFF (3J/2)gc

GcF = GFc = gc(3J/2)GFF , (19)

where we have suppressed the (k, z) label on the propagators,
and gc = [z − εc(k)]−1 is the bare conduction electron propa-
gator. Although these equations closely resemble the Green’s
functions of a hybridized Anderson model, with hybridization
3J/2, we note that GFF represents a composite fermion.

From these results, it follows that without any approxima-
tion, the inverse matrix Green’s function can be written in the
form

G−1(k, z) =
(

z − εc(k) −3J/2
−3J/2 g−1

F (k, z)

)
, (20)

where gF (k, z) is the one-particle irreducible composite
Green’s function, determined by

gF (k, z) =
[

1

GFF (k, z)
+ (3J/2)2

z − εc(k)

]−1

. (21)

This quantity corresponds to the unhybridized composite
fermion propagator. By reinverting (20) we can express the
original Green’s functions in terms of gF (k, z) as follows:

Gcc(k, z) = 1

z − εc(k) − (3J/2)2gF (k, z)
,

GFF (k, z) = 1

g−1
F (k, z) − (3J/2)2

z−εc (k)

. (22)

These are exact results, which even hold for a ferromagnetic,
J < 0, KL. By calculating G and inverting it, we can thus
check the accuracy of our calculation, and we can extract the
irreducible F propagator gF (k, z).

From this discussion, we see that the GR matrix offers
information about both the individual excitations and their
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FIG. 4. Numerical results for the spectral function for J/tc = 2.
(a) The conduction electron component of spectral function (b) The
composite f fermion component of spectral function. (c) The line
plots of both c (blue) and f (red) fermion spectral functions. (d) and
(e) The real and imaginary part of gF (k, ω) defined in Eq. (25).

hybridization. If the Kondo effect takes place, i.e., if J > 0
is antiferromagnetic, then we expect the formation of an en-
larged Fermi surface, driven by the formation of sharp poles
in the composite fermion propagator gF . For example, in
the special case where the Green’s function gF develops a
sharp quasiparticle pole, then we expect gF (k, ω) ∼ Z f /[ω −
ε f (k)], allowing us to identify V = Z (3J/2) as an emergent
hybridization.

C. Spectral functions: Numerical results

The spectral function is associated with the Green’s
function by

Acc(q, ω) = − 1

π
Im

[
GR

cc(q, ω + iδ)
]
, (23)

AFF (q, ω) = − 1

π
Im

[
GR

FF (q, ω + iδ)
]
. (24)

The set of (q, ω) values for which the spectral function has a
maximum is the analog of a band structure for an interacting
system. We show the spectral functions computing using MPS
for the cases of J/tc = 2 and J/tc = 0.9 in Figs. 4 and 5,
respectively.

Figures 4(e) and 5(e) show the quantity

Im[gF (k, ω + iη)] = Im
1

[(GR)−1(ω + iη)]FF
, (25)

FIG. 5. Numerical results for the spectral function for J/tc = 0.9.
(a) The conduction electron component of spectral function. (b) The
composite f fermion component of spectral function. (c) The line
plots of both c (blue) and f (red) fermion spectra functions. (d) and
(e) The real and imaginary part of gF (k, ω) defined in Eq. (25).

where the denominator is (2, 2) entry of the 2 × 2 matrix
(GR)−1. This quantity can be interpreted as the Green’s func-
tion of the unhybridized F electrons.

The most striking feature of spectral functions in Figs. 4
and 5 is the sharp and narrow bands indicative of long-lived
and dispersing quasiparticles. For the larger Kondo coupling
of J/tc = 2, the spectra consist of two cosine dispersion
curves − cos(k) ± �E/2 shifted to positive and negative fre-
quencies. For the smaller Kondo coupling of J/ = 0.9, the
dispersion can be thought to arise as the hybridization of
a dispersing band (mostly c content) and a localized band
(mostly F content). It is apparent that in both cases, the
dispersion can be approximately reproduced using a two-
band fermionic model. Assuming that this is so, the quantity
Im[gF (k, ω − iη)] shown in Figs. 4(d) and 5(d) can be inter-
preted as the bare dispersion the putative F fermion would
need to have in order to reproduce the observed spectral
functions. In both cases, a nonzero dispersion is discernible
which is more significant in the J/tc = 0.9 case. Since in
the absence of Kondo interaction, composite fermions are
localized 〈FiF

†
j 〉 ∝ δi j , this bare dispersion is naturally associ-

ated with dynamically generated magnetic coupling between
the spins due to Rudermann-Kittel-Kasuya-Yosida interaction
which gives rise to dispersing spinons.

D. Comparison with strong coupling and mean-field

It is natural to expect some of the numerical results to
match those obtained in the strong Kondo coupling limit
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FIG. 6. A comparison of AFF (k, ω) with the dispersion from
mean-field theory (solid line) and strong-coupling expansion (dotted
line). Left and right panels are J/tc = 2 and J/tc = 0.9, respectively.
For J/tc = 0.9, there is a noticeable deviation of the perturbative or
mean-field results from the numerical results near k = 0 for the upper
band and near k = π for the lower band.

JK/tc � 1. When tc = 0 the decoupled sites each have the
spectrum

H =
⎧⎨
⎩

J/2, S = 1, n = 1,

0, S = 1/2, n = 0, 2,

−3J/2, S = 0, n = 1.

(26)

where the quantum numbers S and n are the total spin and
charge at that particular site. Creating or annihilating a particle
from the ground state has the energy cost of E1 = 3J/2. To
understand how the ground state and single-particle excited
states evolve for a finite t , we have carried out a perturbative
analysis for the full 2 × 2 Green’s function in the Appendix C
and found that to lowest orders in tc/J ,

G−1(k, z) = z1 − H, H =
(

εk V
V 0

)
, (27)

where V = E1. The eigenenergies are

E±(k) = 1
2

[
εk ±

√
ε2

k + V 2
]
, (28)

which confirms the picture of two hybridized bands. Here
z is the complex frequency and εk = −2tc cos k is the bare
dispersion of the conduction electrons. Note that to this order,
the dispersion of the bare F band is not captured in agreement
with previous results [31].

The quasiparticle spectrum (28) has the same form as in the
large-N mean-field theory, with the difference that the value of
V is determined from self-consistent mean-field equation [see
Appendix E]. We have plotted the exact AFF (k, ω) spectra in
Fig. 6 along with predictions from strong-coupling expansion
and mean-field theory. Overall, a good agreement is found
albeit deviations start to appear at lower Kondo coupling of
J/tc = 0.9.

One artifact of the mean-field theory is that the hybridiza-
tion V is systematically underestimated which can be traced
back to the relation between F and f in Eqs. (3) and (10).
For example, at the strong coupling limit, the mean-field
theory predicts V = J/2 (see Appendix E). In order to get
an agreement, we had to rescale V → 3V/2 when comparing
mean-field results to numerical results on the interacting sys-
tem. One can alternatively motivate this rescaling by viewing
the mean-field theory as an effective model, where the V
parameter in the mean-field is “renormalized” from the bare
hybridization.

E. Evolution of single particle states

A vivid demonstration of the particle nature of F excita-
tions can be seen by a calculating the motion of a composite
fermion wave packet. Here, it proves useful to take account
of the spatially dependent normalization of the compos-
ite fermions, defining a normalized composite fermion as
follows:

fxσ = 1√
Z (x)

Fxσ , (29)

where the normalization, is calculated from the measured
expectation value of the anticommutator

Z (x) = 〈GS|{Fxσ , F †
xσ }|GS〉 = 2〈GS|Fnσ F †

nσ |GS〉. (30)

Here the second expression follows from particle-hole sym-
metry. This normalization guarantees that the expectation
value of the anticommutator is normalized 〈{ fx1σ , f †

x2σ ′ }〉 =
δx1x2δσσ ′ . In the ground-state, Z (x) is a constant of mo-
tion, which with our definition of Fxσ (7), is unity in the
strong-coupling limit. However, at intermediate coupling,
Z (x) becomes spatially dependent near the edge of the chain.

Consider a wave packet

|w〉 =
∑

n

φ f (xn) f †
xnσ

|GS〉, (31)

where

φ f (xn) = 1√
N

eik0xn e− (xn−y)2

4σ2 (32)

is a normalized wave-packet centered at y with momentum k0.
The time evolution of this one-particle state will give rise to a
state of the form

|w(t )〉 = e−iHt |w〉
=

∑
n

[
φ f (xn, t ) f †

xnσ
+ φc(xn, t )c†

xnσ

]|GS〉,

+ · · · (33)

where the . . . denotes the many-particle states that lie out-
side the Hilbert space of one conduction and one composite
fermion. Taking the overlap with the states f †

xnσ
|GS〉 and

c†
xnσ

|GS〉, the coefficients of the wave packet can be directly
related to the Green’s functions as follows:

φ f (xn, t ) = 〈GS| fxnσ e−iHt f †
xn′σ |GS〉

= ie−iEgt
∑

n′
G>

f f (xn, xn′ ; t )φ f (xn′ ), (34)

and similarly

φc(xn, t ) = ie−iEgt
∑

n′
G>

c f (xn, xn′ ; t )φ f (xn′ ), (35)

where Eg is the ground-state energy and

G>
f f (xn, xn′ ; t ) = −i〈 fxσ (t ) f †

x′σ (0)〉,
G>

c f (xn, xn′ ; t ) = −i〈cxσ (t ) f †
x′σ (0)〉. (36)

Using the Green’s functions computed from the MPS time
evolution, we can thus evaluate the time-evolution of the wave
packet.
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FIG. 7. Evolution of a composite fermion wave-packet for
(a) J/tc = 2.0 and (b) J/tc = 0.9. The initial wavefunction is Gaus-
sian with σ 2 = 7 and momentum k0 = 1.4, in units where the lattice
spacing a = 1 is unity.

Figure 7 shows the evolution of the probability density
|φ f (x, t )|2 + |φc(x, t )|2 of an initial Gaussian wave packet for
two values of J/t = 2 and J/t = 0.9. In the former case the
composite fermion wave packet moves ballistically until it is
scattered by the boundary of the system. In the J/t = 0.9 case,
however, the wave packet undergoes significant dispersion
and decays with distance, appearing to “bounce” long before
reaching the wall. One possible origin of this effect, is the
breakdown of the Kondo effect in the vicinity of the wall, due
to a longer Kondo screening length ξ = vF /TK .

F. Interpretation of single-particle results

One of the most remarkable aspects of the comparison
in Fig. 6 is the qualitative agreement between the spectral
functions derived from the matrix product, strong coupling
and large N expansions. In all three methods, we see that the
description of the spectral function requires a two-band pic-
ture. Our matrix product simulation shows that the composite
fermion propagator gF contains sharp poles at k = ±π/2,
ω = 0, which reflect a formation of composite fermion bound
states, as if the F fields behave as sharp bound states.

The single-particle excitation spectrum exhibits a coherent
two-band fermionic model which continues to low J/tc. This
suggests that the composite F excitations behave as bound
states of conduction electrons and spin flips of the local mo-
ments, forming an emergent Fock space that is effectively
orthogonal to that of the conduction electrons, so that c and
F fermions are effectively independent fields. In effect, the
microscopic Hilbert-space of the spin degrees of freedom has
morphed into the Fock space of the F electrons.

In the large-N limit, the composite fermion F is syn-
onymous with a fractionalization of the local moments into
half-integer spin fermions, moving under the influence of
an emergent U (1) gauge field that imposes the constraints.
From the single-particle excitation spectrum alone, aside from
hybridization with conduction electrons, these emergent F
fermions appear to be free excitations: the comparison with
mean-field theory suggests that the original spin is fractional-
ized to �SF = F † �σ

2 F . As shown in Appendix A, in the strong
coupling regime �SF ∼ 1

3
�S.

How accurate and useful is this picture? If F electrons
are indeed free beyond one-particle level, their higher-order
Green’s functions (including two-point functions of �S) would
factorize into spin-1/2 fermions. We now investigate this
possibility.

FIG. 8. (a,b) The spin susceptibility χS (q, ω) and (c,d) the com-
posite fermion susceptibility 9χF (q, ω) for two values of J/tc = 0.9
and J/tc = 2 case. The two are nearly identical with minor differ-
ences at small momenta and high frequency.

IV. COMPOSITE FERMIONS: TWO-PARTICLE
PROPERTIES AND SPIN SUSCEPTIBILITY

Next, we turn to the two-particle spectrum and focus on the
spin susceptibility

χS (q, ω) =
∑
n,m

∫ ∞

0
dt ei[(ω+iη)t−q(n−m)]χ (xn, xm, t )

χ (x1, x2, t ) = −i〈[S−(x1, t ), S+(x2, 0)]〉, (37)

which can be probed experimentally. This function satisfies
the sum rule

∫
dωχ ′′

S (q, ω) = 2π〈Sz〉 = 0 for any q. Figure 8
shows χ ′′

S (q, ω) for two values of J/tc, computed from the
Fourier transform of χ (x1, x2, t ) and using the same Fourier
transform procedure as in Eq. (H9). A broad incoherent re-
gion and at least one sharp dispersing mode (at low positive
frequency) is visible. The latter is more pronounced at higher
J/tc = 2 compared to J/tc = 0.9. A spin-flip creates a local-
ized triplet. Since only the total magnetization is conserved,
the triplet can move in the lattice forming a coherent magnon
band. However, in this interacting system, the magnon can
decay into many-body states and the reduced weight of the
coherent band is compensated by the incoherent portion of
the spectrum.

In the previous section, based on the behavior of F parti-
cles we conjectured that the spin �S is proportional to �SF =
1
2 F † �σF . The relationship �SF = 1

3
�S is in fact correct in the

strong Kondo coupling limit (Appendix A). To test its validity
beyond this limit, we compare χS (q, ω) with (9 χF (q, ω))
defined in terms of composite fermions as

χF (q, ω) ≡ −i
∑
n,m

∫ ∞

0
dt ei[ω+iη)t−q(n−m)]χF (xn, xm, t ),

(38)
where

χF (xn, xm, t ) = i〈[S−
F (n, t ), S+

F (m, 0)]〉. (39)

and involves four-point functions like

〈F †
n↓(t )Fn↑(t )F †

0↑(0)F0↓(0)〉 . (40)
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FIG. 9. Spin susceptibility χS (q, ω). The first rwo shows tensor
network results for (a) J/tc = 2 and (b) J/tc = 0.9. This is compared
with large-N mean-field theory (MF) results in (c) J/tc = 2 and
(d) J/tc = 0.9, and random-phase approximation (RPA) results in (e)
J/tc = 2 and (f) J/tc = 0.9. The parameters in (e) and (f) are U ′/tc =
−2 and U ′/tc = −0.75 sin(q/2). A generally q-dependent inter-
action between quasi-particles within RPA captures both magnon
branch and the details of the correlation function at q ∼ 0.

The resulting susceptibilities are shown in Fig. 8. We see that
the two are exactly equal, demonstrating the relation �S ∼ 3�SF

at least within the two-particle sector.
However, while this relation seem to hold, fractionaliza-

tion as seen in 1D Heisenberg antiferromagnetics requires
the four-point function χF to be expressible in terms of the
convolution of two single-particle propagators. To examine
this possibility, we compare the spin susceptibility χ ′′

S (q, ω)
with the mean-field spin susceptibility χ ′′

MF (q, ω) computed
from the convolution of two f-electron propagators (Fig. 9).
The mean-field dynamical susceptibility contains a continuum
of excitations bordered by two sharp lines that result from
the indirect gap between the f valence and f-conduction bands
(lower sharp line) and the c valence and c-conduction bands
(upper sharp line) of the fractionalized Kondo insulator. A
particularly marked aspect of the mean-field description in
terms of fractionalized f electrons is the continuum at q ∼ 0
which stretches from the hybridization gap (2V ) out to the
half-band width of the conduction band. At finite q this con-
tinuum evolves into a characteristic inverted triangle-shaped
continuum. At strong coupling, J/tc = 2 χ ′′

S (q, ω) contains
a sharp magnon peak, and the triangle-shaped continuum
is absent. This is clearly different from χ ′′

MF (q, ω). How-
ever, at weaker coupling J/tc = 0.9, the MPS susceptibility
is qualitatively similar to the mean-field theory, displaying
the triangle-shaped continuum around q ∼ 0 and a broadened

FIG. 10. The spin-flip is equivalent to creation of a triplet
doublon-holon pair at the same site. The pair can move together as a
magnon or decay into fractionalized doublon and holon. The former
has lower energy if U ′ = JK + 2U > 0.

low energy feature that we can associate with the indirect
band-gap excitations of the f electrons. It thus appears that
at strong coupling, the f electrons are confined into magnons,
whereas at weak coupling the spins have fractionalized into
heavy fermions.

A. Strong coupling and mean-field perspective

To gain further insight into the dynamical spin suscepti-
bility, we discuss the two-particle sector from both strong
coupling and mean-field perspectives. It is useful to generalize
the Hamiltonian of Eq. (5) by including a Coulomb repulsion
U > 0, i.e.,

Hgeneralized = H + U
∑

j

(c†
j↑c j↑ + c†

j↓c j↓ − 1)2, (41)

which favors one electron per site. We assume U is small
enough so that the ground state is smoothly connected to the
original problem with U = 0.

The starting point is that at the strong coupling, all sites are
singlets, and therefore the relation(

�S + c† �σ
2

c

)
|Kj〉 = 0 (42)

holds. This means that �S can be replaced by − 1
2 c† �σc in χS

defined in Eq. (37), creating the following strong-coupling
picture: A S+ spin-flip can be considered as a creation of a
local doublon-holon spin-triplet T + pair at the same site. Such
a state has energies around E2 = 2E1 as shown in Fig. 10.
Under time evolution, the doublon and holon can move around
and recombine at site n where the T + triplet is annihilated.
Such a T + triplet is described by

|F+〉 =
∑
n1n2

ψ+(n1, n2)c†
n1↑cn2↓|�〉. (43)

Including the U interaction, each holon or doublon costs an
energy E1 + U/2 and E2 → 2E1 + U . By acting on this with
the Hamiltonian H |F+〉 = E |F+〉 and projecting the result to
within the two-particle excitations, we find that the wave func-
tion ψ (n1, n2) obeys the first-quantized Schrödinger equation

t

2

[
ψ (n1 + 1, n2) + ψ (n1 − 1, n2) − ψ (n1, n2 + 1)

−ψ (n1, n2 − 1)] + U ′δn1,n2ψ (n1, n2)

= (E − E2)ψ (n1, n2). (44)

This is a two-particle problem, where the particles interact
via the U ′ = −JK − 2U term. Note that a repulsive/attractive
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interaction among electrons is an attractive/repulsive interac-
tion among doublon and holon.

In the usual regime (U � 0) the interaction U ′ < 0 is
attractive. While a continuum of excited states exists, the
ground state is a stable magnon bound state between doublon
and holon, with a correlation length that diverges as U ′ → 0.
The continuum is essentially a fractionalized magnon into
doublon and holon pairs as can be seen in the U ′ = 0 case.
It is natural to expect that due to interactions not considered,
the doublon-holon pair decay into the ground state. For an
attractive U � −JK/2, the interaction between doublon and
holon U ′ > 0 is repulsive, rendering the bound state highly
excited and unstable.

The eigenstates |F+〉 can be used to compute the spin-
susceptibility χS , as shown in Fig. 12, Appendix D. The result
at the strong coupling J/tc = 2 contains a magnon band in
good agreement with MPS results. This indicates that while
a spin flip has fractionalized into a doublon-holon pair, there
are residual attractive forces in a Kondo insulator that bind the
two.

On the other hand, at the weak coupling J/tc = 0.9 limit,
the strong-coupling analysis is incapable of reproducing MPS
results around q ∼ 0. This suggests that U ′ renormalizes to
zero in the small momentum limit. As seen in Fig. 9(b) in
the weak-coupling limit, the strong magnonlike resonance in
the MPS dynamical spin susceptibility, broadens and merges
with the triangular feature around q ∼ 0, in sharp contrast to
the strong coupling results and more closely resembling the
mean-field theory [Fig. 9(d)].

To capture the doublon-holon interaction and the magnon
band, the mean-field theory be improved by including a
momentum-dependent residual interaction U ′(q) between f-
electron quasiparticles within a random-phase-approximation
(RPA) framework. The resulting susceptibility can be written
as

χRPA
q (ω + iη) = 1[

χMF
q (ω + iη)

]−1 − U ′(q)
. (45)

The RPA results are shown in Figs. 9(e) and 9(f) for a constant
U ′ in the strong coupling J/tc = 2 case and U ′(q) ∼ q in the
weak-coupling J/tc = 0.9 case, both in good agreement with
the MPS results.

Overall, these results indicate that the low-lying spin-1
charge-neutral excitation of the ground state can be regarded
as fractionalized into spin-1/2 charge-e single particle exci-
tations that have some residual attraction in one-dimension,
forming a magnon branch in the dynamical spin susceptibility.
The disappearance of this magnon branch at q → 0 in the
weak-coupling regime and its comparison with RPA suggests
that at long distances the residual interaction disappears, lead-
ing to deconfined quasiparticles.

V. CONCLUSION

By contrasting strong coupling, mean-field theory and
matrix product calculations of the dynamics of the one dimen-
sional Kondo insulator, we gain an important new perspective
into the nature of the excitations in this model. There are a
number of key insights that arise from our results.

Firstly, we have been able to show that the composite
fermion, formed between the conduction electrons and local-
ized moments behaves as an independent fermionic excitation,
giving rise to a two-band spectrum of charge e, spin-1/2
excitations, with hybridization between the electrons and the
independent, composite fermions. Our results are remark-
ably consistent with the mean-field treatment of the Kondo
insulator.

By contrast, our examination of the dynamical spin sus-
ceptibility paints a more nuanced picture of the multi-particle
excitations. At strong coupling, we can explicitly see that
the triplet holon and doublon combination created by a sin-
gle spin flip form a bound magnon, giving rise to a single
magnon state in the measured dynamical susceptibilty. Thus at
strong coupling, the spin excitation spectrum shows no sign of
fractionalization. On the other hand, it can be easily checked
that spin-singlet charge-2e excitations are always deconfined.
Essentially, two dobulons (or two holons) can never occupy
the same site, very much as same-spin electrons avoid each
other due to Pauli exclusion, and thus do not interact.

However, at weaker coupling, the dynamical susceptibility
calculated using MPS methods, displays a dramatic contin-
uum of triplet excitations with an inverted triangle feature at
low momentum, characteristic of the direct band-gap excita-
tions across a hybridized band of conduction and f electrons,
and high momentum feature that resembles the indirect band-
gap excitations of heavy f electrons. These results provide
clear evidence in support of a fractionalization picture of the
1D Kondo insulator at weak coupling. Based on these results,
it is tempting to suggest that there are two limiting phases of
the 1D Kondo insulator: a strong coupling phase in which the
f electrons are confined into magnons, and a deconfined weak-
coupling phase where the local moments have fractionalized
into gapped heavy fermions. The emergence of a continuum
in the spin-excitation spectrum at weak coupling may indicate
that that the confining doublon-holon interaction at strong
coupling, either vanishes, or changes sign at weak coupling,
avoiding the formation of magnons.

A. Further directions

It would be very interesting to extend these results to two
dimensions. The strong-coupling analysis of the composite
fermion Green’s function and the doublon-holon bound states
can be extended to higher dimensions, where it may be possi-
ble to calculate a critical J at which confining doublon-holon
bound-state develops. Further insight might be gained into the
two-dimensional dimensional Kondo insulator using matrix-
product states on Kondo-lattice strips, or alternatively, by
using fully 2D tensor-network approaches or sign-free Monte-
Carlo methods [13].

B. Discussion: Are heavy fermions in the Kondo lattice
fractionalized excitations?

The 1D Kondo lattice is the simplest demonstration of
Oshikawa’s theorem [42]: namely the expansion of a Fermi
surface through spin-entanglement with a conduction electron
sea. Traditionally, the expansion of the Fermi surface in the
Kondo lattice is understood by regarding the Kondo lattice
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as the adiabatic continuation of a noninteracting Anderson
model from small, to large interaction strength [43]. Yet
viewed in their own right, the “f-electron” excitations of the
Kondo lattice are emergent.

Our calculations make it eminently clear that in the
half-filled 1D Kondo lattice, the f electrons created by the
fields

f †
jσ = 1√

Z ( j)
F †

jσ , (46)

form an emergent Fock space of low energy, charge e excita-
tions that expand the Fermi sea from a metal, to an insulator.
Less clear, is the way we should regard these fields from a
field-theoretic perspective. From the large-N expansion it is
tempting to regard heavy fermions as a fractionalization of
the localized moments, �S j → f †

jα ( �σ
2 )β f jβ . Our calculations

provide support for this picture in the weak-coupling limit of
the 1D Kondo lattice, where we see an intrinsic dispersion
of the underlying F electrons, reminiscent of a spin liquid,
and a continuum of S = 1 excitations in the dynamical spin
susceptibility.

Yet the concept of spin fractionalization, when used in the
context of the Kondo lattice requires care, for the excitations
so-formed are self-evidently charged. Field-theoretically, the
spinons transform into heavy fermions, acquiring electric
charge and losing gauge charge via an Anderson-Higgs effect
that pins the internal U(1) and external electromagnetic gauge
fields together [44,45].

Why then, can we not regard the f electrons of the Kondo
lattice as both “Higgsed” and fractionalized? This is because
the classical view of confinement [44,46,47] views the con-
fined and Higgs phases of compact U (1) gauge theories as a
single common phase: i.e., the excitations of a Higgs phase are
confined. On the other hand, we can clearly see the one and
two-particle f-electron excitations, born from the localized
moments, not only in the large- N field theory, but importantly,
in the matrix product-state calculations of the 1D Kondo lat-
tice. Moreover, a recent extension of Oshikawa’s theorem to
all SU (N ) Kondo lattices [48], suggests that the large N pic-
ture involving a fractionalization of spins into heavy fermions
is a valid description of the large Fermi surface in the Kondo
lattice. How do we reconcile these alternate viewpoints? Fur-
ther work, bringing computational and analytic techniques
together, extending our work to higher dimensions will help
to clarify these unresolved questions.
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APPENDIX A: COMPOSITE FERMION F OPERATOR
COMMUTATION RELATIONS

The composite fermion operators have the expression

Fα = 2
3
�S · �σαβ ′cβ ′ , and F †

β = 2
3 c†

α′ �σα′β · �S, (A1)

which means

F↑ = 2
3 (Szc↑ + S−c↓), F↓ = 2

3 (−Szc↓ + S+c↑). (A2)

The same factor of 2/3 appears in strong coupling expansion
of multichannel lattices [49]. The anti-commutation relations
are

{Fα, F †
β } = 4

9σ a
αβ ′σ

b
α′β (SaSbcβc†

α′ + SbSac†
α′cβ ′ ). (A3)

We use the identities

c†
α′cβ ′ =

(
c†
↑c↑ c†

↑c↓
c†
↓c↑ c†

↓c↓

)
α′β ′

=
[

n

2
1 + �s · �σ T

]
α′β ′

=
[

n

2
1 + �s · �σ

]
β ′α′

, (A4)

and

cβ ′c†
α′ =

[(
1 − n

2

)
1 − �s · �σ

]
β ′α′

, (A5)

to recast Eq. (A3) as

{Fα, F †
β } = 4

9
(σ aσ b)αβ

[
SaSb n

2
+ SbSa

(
1 − n

2

)]

− 4

9
[[Sa, Sb]sc(σ aσ cσ b)αβ]. (A6)

Using

[Sa, Sb] = iεabd Sd , and σ aσ a = 31, (A7)

we can simplify the anticommutator to

{Fα, F †
β } = 1

3δαβ − 4
9

[
(n̂ − 1)�S · �σαβ

+ iεabd Sd sc(σ aσ cσ b)αβ

]
. (A8)

Now, we have

σ aσ c = δac1 + iεac f σ f (A9)

from which we conclude

σ aσ cσ b = (δacσ b + δbcσ a − δabσ c) + iεacb1. (A10)

When inserted into Eq. (A8), the terms in the parenthesis give
zero (last term vanishes under antisymmetrization and the first
two cancel one another), so that

{Fα, F †
β } = 1

3δαβ − 4
9

[
(n̂ − 1)�S · �σαβ − εabdεacbSd scδαβ

]
.

(A11)

Now since εabdεacb = −2δcd and 2�s = c† �σc we have

{Fα, F †
β } = 1

3δαβ − 4
9 (n̂ − 1)�S · �σαβ − 4

9 (�S · c† �σc)δαβ,

(A12)
which we can write as

{Fα, F †
β } = δαβ − 4

9 [(�S · c† �σc + 3/2)δαβ + (n̂ − 1)�S · �σαβ].

(A13)

In the strong-coupling limit, the first and second term inside
the square brackets vanish, and in this limit the anticommuta-
tor is normalized to unity.
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APPENDIX B: EQUIVALENCE BETWEEN THE F SPIN
AND LOCAL MOMENT AT STRONG COUPLING

The spin operator of the F electrons is

�SF = F † �σ
2

F. (B1)

Using Eq. (A1), we can write the c component of �SF as

Sc
F = 2

9 c†
α′cβ ′ (σ aσ cσ b)α′β ′SaSb. (B2)

Using Eq. (A10) for the terms in parenthesis and Eq. (A7) for
SaSb we find

�SF = 2

9

[
− c† �σ

4
c + �S

]
. (B3)

At the strong Kondo coupling limit (�S + c† �σ
2 c)|�〉 = 0.

Therefore, we conclude that as long as �SF acts on the product-
state ground state

�SF = 1
3
�S. (B4)

APPENDIX C: STRONG COUPLING EXPANSION —
SINGLE-PARTICLE EXCITATIONS

At strong coupling, the ground state is

|φ〉0 =
∏

j

|Kj〉, |Kj〉 = 1√
2
|⇑ j↓ j − ⇓ j↑ j〉, (C1)

where ⇑ and ⇓ refer to the spins (magnetic moments) and ↑
and ↓ refer to conduction electrons. To determine the energy
of this state, note that

HK = 2J
∑

j

�S j · �s j

=
∑

j

⎧⎨
⎩

J/2 S j = 1, n j = 1,

0 S j = 1/2, n j �= 1,

−3J/2 S j = 0, n j = 1.

(C2)

Therefore the state |φ〉0 has energy E0/L = −3JK/2 where L
is the length of the system. The action of Ht on |φ0〉 creates
doublon-holon pairs |Cn,n+1〉 whose corresponding spins are
in a spin-singlet, i.e., (see Fig. 11)

Ht |φ〉0 = −tc
∑

n

|Sn+1,n〉|Cn+1,n〉
∏

j �=n,n+1

|Kj〉, (C3)

where

|Cn+1,n〉 = |2n+10n〉 + |0n+12n〉√
2

, (C4)

|Sn+1,n〉 = |⇑n+1⇓n〉 − |⇓n+1⇑n〉√
2

. (C5)

This excited state has energy Eλ = E0 + 3J , so the second-
order correction to the strong-coupling ground state energy is

�E = −
∑
λ �=0

〈φ0|Ht |λ〉〈λ|Ht |φ0〉
Eλ − E0

= −t2 1

3J
× Ns (C6)

FIG. 11. Graphical illustration of the calculation in Appendix C.
(a) |ψg〉 is the strong coupling ground state. (b) the result of acting
with Ht on |ψg〉. (c) Acting with c jσ or Fjσ creates a holon. (d) The
holon moves due to Ht moving around singlets, but also high-energy
triplets. (f) The final result after projection to low-energy singlet
sector.

leading to the energy Eg/N = −3J/2 − t2
c /3J . The correction

to the wave function is

|φ〉1 = |φ〉0 +
∑

λ

1

E0 − Eλ

|λ〉〈λ|Ht |φ〉0

=
[

1 + tc
3J

∑
n

|Sn,n+1;Cn,n+1〉〈Kn; Kn+1|
]
|φ〉0,

i.e., there will be virtual doublon-holon pairs |Cn+1,n〉 whose
corresponding spins are in a singlet state |Sn+1,n〉. What are
the single quasiparticle excitations of this ground state? We
act on the ground state with

c†
nσ , and F †

nσ = 2
3 [σ̃Sz

nc†
n,σ + Sσ̃

n c†
n,−σ ]. (C7)

Note that {cnσ , F †
nσ } = σ̃Sz

n, where σ̃ = ± for σ = ↑,↓. As-
suming k is a good quantum number we can find

√
2c†

kσ
|φ〉1 =

(
1 − εk

6J

)
|2; k, σ 〉1, (C8)

√
2σ̃ckσ

|φ〉1 =
(

1 − εk

6J

)
|0; k, σ 〉1, (C9)

√
2F †

kσ
|φ〉1 =

(
1 + εk

6J

)
|2; k, σ 〉1, (C10)

√
2σ̃F †

kσ
|φ〉1 =

(
1 + εk

6J

)
|0; k, σ 〉1, (C11)

in terms of single doublon and holon states defined as

|2; k, σ 〉 =
√

2c†
kσ

|φ0〉 =
∑

m

ϕk (m)|2; m, σ 〉, (C12)

|0; k, σ 〉 =
√

2ckσ
|φ0〉 =

∑
m

ϕk (m)|0; m, σ 〉, (C13)
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with energy

〈2/0; k, σ |(H0 + Ht )|2/0; k, σ 〉 = E0 + 3J

2
+ 1

2
εk . (C14)

Using these and the spectral representation

Gαβ (z; k) = 〈φ|ψα|2; k, σ 〉〈2; k, σ |ψ†
β |φ〉

z − [E2(k) − Eφ]

+〈0; k, σ |ψα (k)|φ〉〈φ|ψ†
β |0; k, σ 〉

z + [E0(k) − Eφ]
, (C15)

we find the Green’s function(
Gcc Gc f

G f c G f f

)
(k,z)

= 1

z − (V + εk/2)

(
1 + εk

2V 1
1 1 − εk

2V

)

+ 1

z + (V − εk/2)

(
1 − εk

V −1
−1 1 + εk

V

)
,

where V ≡ 3J/2. This can be written as

G(k, z) = 1

(z − εk/2)2 − V 2

(
z V
V z − εk

)
. (C16)

So to lowest order in t we get

G−1(k, z) = z1 − H, H =
(

εk V
V 0

)
, (C17)

and we can interpret V as a hybridization between the conduc-
tion and composite f electron. The real-space Green’s function
can be computed from G(z, k) via

Gαβ (z; x1, x2) =
∑

k

ϕk (x1)ϕ∗
k (x2)Gαβ (z; k). (C18)

APPENDIX D: STRONG COUPLING EXPANSION —
TWO-PARTICLE EXCITATIONS

Single particle excitations are holons and doublons. The
corresponding wave functions are

|D〉σ =
∑

n

ψd (n)c†
nσ |�〉, |H〉σ =

∑
n

ψh(n)cnσ |�〉,

and these have the energies Ed/h(k) = E1 ± ε(k) where
ε(k) = −tc cos(k) and E1 = E0 + 3JK/2 + U .

Spin-excitations belong to the two-particle excitation spec-
trum. A T + spin-triplet excitation has the wave function

|F+〉 =
∑
n1n2

ψ (n1, n2)c†
n1↑cn2↓|�〉. (D1)

Such a state has energies around E2 = E0 + 3JK + 2U . By
acting on this with the Hamiltonian H |F+〉 = E |F+〉 and pro-
jecting to stay within two-particle excitations, we find that the
wave function ψ (n1, n2) obeys the first-quantized Schrödinger
equation

tc
2

[
ψ (n1 + 1, n2) + ψ (n1 − 1, n2) − ψ (n1, n2 + 1)

−ψ (n1, n2 − 1)] + U ′δn1,n2ψ (n1, n2)

= (E − E2)ψ (n1, n2). (D2)

We solve this equation using the following ansatz:

ψk1k2 (n1, n2) = θ (n1 < n2)[Aeik1n1−ik2n2 + A′eik′
1n1−ik′

2n2 ]

+ θ (n2 < n1)[Beik1n1−ik2n2 + B′eik′
1n1−ik′

2n2 ]

+ δn1n2Cei(k1−k2 )n1 . (D3)

This wave function is labeled by quantum numbers k1 and
k2 for doublon and holon, respectively. However, note that
in a typical scattering event k′

i = π − ki. By plugging this
wave function into the Schrödinger equation, we find that the
doublon-holon pair state has energy

Edh(k1, k2) = E2 − tc cos(k1) + tc cos(k2). (D4)

Furthermore, C = A + A′ = B + B′ and(
B
B′

)
=

(
1 + u u
−u 1 − u

)(
A
A′

)
, (D5)

where

uk1k2 ≡ U ′/2itc
sin k2 − sin k1

. (D6)

The right-hand side has to be this form, because after L shifts
to the right n1 + L > n2. So, we find

Ae−ik1L = B, and A′eik2L(−1)L = B′. (D7)

But we could also go left with the holon. It follows that

Ae−ik2L = B, and A′eik1L(−1)L = B′. (D8)

Combining these equations we see that

ei(k1−k2 )L = 1. (D9)

Comparing this and the action of the translation operator on
wave function, this is nothing but (P̂)L = 1. Using these, the
Schrödinger equation becomes

M =
(

1 + u u
−u 1 − u

)
−

(
e−ik1L

eik2L(−1)L

)
, (D10)

M(
A
A′ ) = 0. The det M = 0 gives

2 − (e−ik1L + eik2L ) = −uk1k2 (e−ik1L − eik2L ). (D11)

We can also find the corresponding eigenvector:

A′ = −1 − e−ik1L

1 − eik2L
A = e−ik1LA, (D12)

where we have used ei(k1−k2 )L = 1. This can be used to find
that A′ = B and B′ = A. We also have

C = A + A′ = A(1 + e−ik1L ). (D13)

This fixes the wave function up to a normalization factor
which is easily determined. So, we choose A = 1/

√
2L. In

the following, we label the doublon-holon state with center
of mass and relative momenta k̄ and p, respectively:

k1 = k̄ + p/2, k2 = −k̄ + p/2. (D14)
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FIG. 12. Showing the continuum of dynamical spin excitations,
with bound-state magnons (red) and anti-bound state magnons
(green), calculated from the strong coupling expansion. (a) U = 0
(b) U/JK = −0.4 (c) U/JK = −0.5 (d) U/JK = −0.6.

Spin-susceptibility

We are interesting in computing the zero-temperature dy-
namic spin susceptibility defined by

χS (n, τ ) ≡ −〈Tτ S+
n (τ )S−

0 〉, (D15)

= −〈�|c†
n↑(τ )cn↓(τ )c†

0↓c0↑|�〉. (D16)

In the second line we have used the identity(
�Sn + c†

n
�σ
2

cn

)
|�〉 = 0. (D17)

By inserting the completeness relation,

1 =
∑
k̄,p

|Fk̄,p〉〈Fk̄,p|, (D18)

we find

χS (n, τ ) =
∑

k̄,p>0

e−τ�E2p(k̄)〈�|c†
n↑cn↓|Fk̄,p〉〈Fk̄,p|c†

0↓c0↑|�〉

= 1

4

∑
k̄,p>0

e−τ�E2p(k̄)ψ
k̄,p

(n, n)ψ ∗̄
k,p(0, 0)

= 1

4

∑
k̄,p>0

e−τ�E2p(k̄)e2ik̄n|Ck̄,p|2, (D19)

where

�E2p(k̄) ≡ Edh(k̄ + p/2,−k̄ + p/2) − E0

= E2 − E0 + 2tc sin(k̄) sin(p/2), (D20)

where Edh(k̄ + p/2,−k̄ + p/2) is the doublon-holon energy
defined in Eq. (D4). After taking the Fourier transform

χS (q, iνp) =
∑

n

e−iqn
∫ β

0
dτeiνpτ Gn(iνp), (D21)

noting that 2k̄ = k1 − k2 = q, this expression becomes (the
positive frequency part only)

χS (q, z) =
∑
p>0

|Ap(−q/2)|2 cos2(k1L/2)

z − �E2p(−q/2)
, (D22)

where we have analytically continued into the complex plane.
The results of this calculation are shown in Fig. 12.

APPENDIX E: MEAN-FIELD THEORY

Representing the spin in Eq. (1) with fermionis Sαβ =
f †
α fβ along with a constraint f †

α fα = Q f = 1 and decoupling
the resulting four-fermion interaction using a Hubbard-
Stratonovitch transformation, we arrive at

H =
∑
kσ

(
c†

kσ
f †
kσ

)(εc V
V ε f

)(
ckσ

fkσ

)
+ V 2

JK
+ λQ f ,

(E1)

where εc = −2tc cos k and ε f = 0 and the Lagrange multiplier
λ imposes the constraint on average. At p-h symmetry, consid-
ered here, λ = 0. The Hamiltonian (E1) can be diagonalized
using a SO(2) rotation(

ckσ

fkσ

)
=

(
cos αk − sin αk

sin αk cos αk

)(
lkσ

hkσ

)
, (E2)

and the eigenenergies are

El/h
k = εc

k + ε
f
k

2
±

√(
εc

k − ε
f
k

2

)2

+ V 2. (E3)

Due to π periodicity of the tan 2αk , we are free to choose
either the period 2αk ∈ (0, π ) or 2αk ∈ (−π/2, π/2). We
choose the former interval, because the angle evolves more
continuously in the Brillion zone. Therefore,

sin 2αk = 2V

El
k − Eh

k

, cos 2αk = εc
k − ε

f
k

E l
k − Eh

k

, (E4)

The relation between Kondo coupling and the dynamic hy-
bridization is given by

1

J
= −∂V 2

∑
k

Eh
k = 1

L

∑
k

1√(
εc

k − ε
f
k

)2 + 4V 2
. (E5)

Assuming ε f = 0, εc = −2tc cos k, in the continuum limit,

J/tc = π

√
(V/tc)2 + 1

K (1/
√

(V/tc)2 + 1)
, (E6)

where K (k) is the complete elliptic integral of the first kind.
The strong-coupling (large V ) limit of this integral is V →
J/2. We can use this mean-field theory to compute the re-
tarded Green’s function

G f (k, ω + iη) = sin2 αk

ω + iη − El (k)
+ cos2 αk

ω + iη − Eh(k)
, (E7)

023227-14



MATRIX PRODUCT STUDY OF SPIN … PHYSICAL REVIEW RESEARCH 6, 023227 (2024)

as well as (anti-)time-ordered Green’s functions

GT
f (n, n′; t > 0) = 〈−i f (n, t ) f †(n′)〉

= −i

L

∑
k

φk (n)φ∗
k (n′) sin2 αke−iE l

k t ,

GT̃
f (n, n′; t > 0) = 〈i f †(n′) f (n, t )〉

= i

L

∑
k

φk (n)φ∗
k (n′) cos2 αke−iEh

k t , (E8)

with

φk (n) =
√

2

N
sin(nk). (E9)

These together with GR = θ (t )(GT − GT̃ ) can give the spec-
tral function.

APPENDIX F: TWO-PARTICLE EXCITATIONS —
RANDOM PHASE APPROXIMATION

In this section, we discuss how the RPA approach can
be combined with the noninteracting results. In the non-
interacting limit, the only contribution to Eq. (D16) is the
disconnected part coming from Wick’s contraction

χS (q, τ ) = 〈−Tτ cn↓(τ )c†
0↓〉〈Tτ c†

n↑(τ )c0↑〉. (F1)

For noninteracting systems, we get the usual result

χ0
S (q, ω + iη) =

∑
k

f (εk+q) − f (εk )

ω + iη + εk+q − εk
. (F2)

Therefore, we could assume that this is just the noninteracting
G0

q(τ ) but multiplied by the factor e−(3JK +2U )τ . Furthermore,
the hopping of holons and doublons is exactly the same. So,
we propose

χdis.
S (q, ω + iη) =

∑
k

1

ω + iη − (
Ed

k+q + Eh
k

) , (F3)

where

Ed
k = 3J

2
+ U − tc cos k, Eh

k = 3J

2
+ U + tc cos k. (F4)

The attractive interaction between doublon and holon can be
taken into account using RPA approximation:

χRPA
S (q, ω + iη) = 1[

χdis
S (q, ω + iη)

]−1 − U ′
. (F5)

The result agrees qualitatively with the strong coupling. How-
ever, for a better quantitative agreement with the strong
coupling and the tensor network data, the RPA scheme has
to be applied to the mean-field susceptibility, computed in
Eq. (G5).

APPENDIX G: DYNAMICAL SPIN-SUSCEPTIBILITY
WITHIN MEAN-FIELD THEORY

We have

χ+−
f f (n, τ ) = −〈Tτ S+

n (τ )S−
0 (0)〉

= −〈Tτ f †
n↑(τ ) fn↓(τ ) f †

0↓ f0↑〉
= −〈Tτ fn↓(τ ) f †

0↓〉〈Tτ f †
n↑(τ ) f0↑〉. (G1)

So that

χ+−
f f (q, τ ) =

∑
k

G f (k + q, τ )G f (k,−τ ). (G2)

Switching to the real frequency domain, the retarded dynami-
cal spin susceptibility is

χ (q, ω + iη) = −
∑

k

∫
dx

π
f (x)G′′(k, x)

× {G f (x + ω + iη, k + q)

+ G f (x − ω − iη, k − q)}. (G3)

For the mean-field calculations, we employ the notation of
Wugalter et al. introduced in Appendix F. The G f within
mean-field is given by

G f (k, ω + iη) = sin2 αk

ω + iη − E+(k)
+ cos2 αk

ω + iη − E−(k)
,

(G4)

where αk , E±(k) are defined in Appendix E. Inserting Eq. (G4)
into Eq. (G3), we find

χ+−
f f (q, ω + iη)

=
∑

k

cos2 αk

[
sin2 αk+q

ω + iη + E−(k) − E+(k + q)

− sin2 αk−q

ω + iη − E−(k) + E+(k + q)

]
. (G5)

For ω > 0 only the first term contributes to the imaginary part
of the dynamical susceptibility

χ ′′
f f (q, ω > 0) = π

∑
k

cos2 αk sin2 αk+q

× δ
(
ω + E−(k) − E+(k − q)

)
. (G6)

APPENDIX H: MPS METHODS FOR COMPUTING
GREEN FUNCTIONS

In order to calculate the Green’s function G(q, ω), spin
susceptibility χS (q, ω), and χF (q, ω), we first calculate the
ground state by the DMRG method [37]. The ground state
is represented by a 2N site MPS. The spin sites of dimension
2 are located on the odd sites with the remaining conduction
electron sites of dimension 4 located on the even sites. The
bond dimensions are automatically adjusted, depending on
truncation error threshold, i.e., cutoff of ε = 10−12 in the
ground state calculation. The maximum bond dimension χ

used in the ground-state calculations ranged between χ = 300
and χ = 600 depending on different Hamiltonian parameters
J/tc.

The Green’s functions are defined in Eq. (13). To obtain the
retarded GR(x, t ) and χ (x, t ), we need to calculate different
components of the Green’s function, such as G>

cc, G>
cF , G<

cc,
etc. These terms account for the presence of both F and c de-
grees of freedom, and also we need to both greater and lesser
Green’s function to compute the retarded Green’s function.
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Without loss of generality, we take G>
cF as an example. The

other components are calculated by a similar approach.

G>
cF = −i〈cx1 (t )F †

x2
(0)〉 (H1)

= −i〈cx1 (t/2)F †
x2

(−t/2)〉 (H2)

= −i
〈
eiHt/2cx1 e−iHt/2e−iHt/2F †

x2
eiHt/2

〉
(H3)

= −ieiE0t 〈0|cx1 e−iHt/2e−iHt/2F †
x2
|0〉, (H4)

where E0 is the ground state energy. The second equals sign
holds because of the time translation invariance. From the
third line, we choose the Heisenberg picture. The expression
for G> can then written into the overlap of two time evolved
MPS as

G>
cF = −ieiE0t

(
eiHt/2c†

x1
|0〉)†(

e−iHt/2F †
x2
|0〉). (H5)

To calculate the expression above, we first apply one on-
site operator (either c†

x1
or F †

x2
) to the ground state. Two groups

of MPS are obtained depending on x1 and x2, then we use the
TEBD [38,40] algorithm to time evolve for + t

2 and − t
2 . Thus

in our calculation, instead of time evolving the right ket for t ,
we evolve the bra for −t/2 and ket for t/2. Recalling that the
bond dimension of an MPS generically grows exponentially
under real-time evolution, splitting the time and equally dis-
tributing gates onto the bra and ket allows us to work with two
MPS with significantly smaller bond dimension rather than
one MPS with a large bond dimension. We obtain u(x, t

2 ) and
v(x, t

2 ), which are defined as

|u(x, t/2)〉 = eiHt/2c†
x1
|0〉, (H6)

|v(x, t/2)〉 = e−iHt/2F †
x2
|0〉. (H7)

The total time t/2 we wish to evolve each state is split into
many time slices of size τ . For every time step τ , we compute
the Green’s function by calculating the overlap between MPS.
In our calculation, we took τ = 0.05.

The time evolution reaches a certain time Tmax. The res-
olution in frequency domain depends on Tmax, namely �ω =
1/Tmax. The longer time we run, we can resolve finer details as
a function of ω. In our calculation, we checked the measure-
ment results for different Tmax up to Tmax = 500 and confirmed
our results converged when Tmax > 100.

The MPS bond dimension grows so the MPS bond dimen-
sion requires truncation. During the time evolution, we tried

different MPS (or SVD) cutoff errors ranging from ε = 10−4

to 10−8. We found the Green’s function converged once the
cutoff typically reached ε = 10−5. The maximum bond di-
mension used in these calculations was χ = 2000.

Having obtained G> and G<, the retarded Green’s function
can be derived by

GR(x1, x2, t ) = �(t )(G>(x1, x2, t ) − G<(x1, x2, t )). (H8)

We can calculate the retarded Green’s function GR(q, ω) in
the (q, ω) domain by Fourier transform

GR(q, ω) =
∫

dt
∑
x1,x2

eiq(x1−x2 )−iωt GR(x1, x2, t ). (H9)

APPENDIX I: PARALLELIZATION
OF MPS CALCULATIONS

The Green’s function at a given time is a matrix defined
in the (x1, x2) domain. The calculation of each entry (x1, x2)
involves independent time-evolution calculations and overlaps
of different wave functions |u(x, t )〉s and |u(x, t )〉s. These
wave functions originate with creation and annihilation op-
erators acting on different sites x). So we can parallelize these
calculations and significantly reduce the time to solution. For
each time slice or value of t , the computation contains two
parts, the time evolution and measurement.

The time evolution of |u(x, t )〉s and |u(x, t )〉s are indepen-
dent of each other and consume approximately same amount
of time, which can run in different threads with minor data
exchange. In total, there are O(N ) number of wave functions,
which can be parallelized with no overhead cost, and scale
well with increasing number of threads.

The measurement of the Green’s functions matrix involves
calculating the overlap of |u(x, t )〉s at different sites x1 and x2.
Both x1 and x2 run from 1 to N . And the computation of these
overlaps are independent, which can be computed with O(N2)
threads.

The time evolution step takes the dominant amount of time,
because each time evolution requires application of series
of gates and repeating singular value decomposition to keep
bond dimension increasing, which contributes to a large pref-
actor before O(N ). Though the measurement scales as O(N2),
the overlap operation is much faster.
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