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Tailoring bistability in optical tweezers with vortex beams and spherical aberration
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We demonstrate a bistable optical trap by tightly focusing a vortex laser beam. The optical potential has
the form of a Mexican hat with an additional minimum at the center. The bistable trapping corresponds to a
nonequilibrium steady state, where the microsphere continually hops, due to thermal activation, between an
axial equilibrium state and an orbital state driven by the optical torque. We develop a theoretical model for the
optical force field, based entirely on experimentally accessible parameters, combining a Debye-type nonparaxial
description of the focused vortex beam with Mie scattering by the microsphere. The theoretical prediction that the
microsphere and the annular laser focal spot should have comparable sizes is confirmed experimentally by taking
different values for the topological charge of the vortex beam. Spherical aberration introduced by refraction at the
interface between the glass slide and the sample is considered and allows us to finetune between axial, bistable,
and orbital states as the sample is shifted with respect to the objective focal plane. We find overall agreement
between theory and experiment for a rather broad range of topological charges. Our results open the way for
applications in stochastic thermodynamics, as they establish a control parameter—the height of the objective
focal plane with respect to the glass slide—that allows us to shape the optical force field in real time and in a
controllable way.

DOI: 10.1103/PhysRevResearch.6.023226

I. INTRODUCTION

Optical tweezers [1–3] with structured light beams [4]
allow for a vast range of applications in optical micromanip-
ulation [5–10]. Photons in vortex beams carry orbital angular
momentum [11], which can be exchanged with the trapped
particle as an optical torque [12,13]. As a result of spin-orbit
coupling [14–16], strong focusing of a circularly polarized
vortex beam produces an annular focal spot whose properties
depend on the relative sign between the orbital and spin angu-
lar momenta [17–22]. In the standard optical tweezers setup,
such an annular spot provides for two very different trapping
conditions. Particles smaller than the ring of maximum energy
density resolve the spatial energy variation and, as a conse-
quence, move along a circular orbit around the optical axis
[23,24]. On the other hand, larger particles are expected to be
trapped on a stable on-axis position [25,26].
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In this paper, we demonstrate, both theoretically and ex-
perimentally, that bistable trapping is achieved as the orbital
and axial states coexist in the intermediate size range. The
trapping potential has the form of a Mexican hat with an
additional minimum at the center. The onset of bistability as
well as the transition from axial to orbital trapping can be con-
trolled by adjusting the focal height with respect to the glass
slide at the bottom of our sample. Indeed, as the spherical
aberration phase introduced by refraction at the glass-water
interface [27,28] is proportional to the focal height, we can
switch from axial to bistable and then to orbital trapping
by displacing the sample with the help of a piezoelectric
nanopositioning system. By increasing the focal height, we
first drive the Brownian particle from the equilibrium state in a
harmonic potential to the regime with two distinct mesostates
[29] characterized by different conformational free energies
[30]. Then by further increasing the focal height, we imple-
ment a paradigmatic nonequilibrium steady state (NESS) [31],
in which a colloidal particle is driven along a circular orbit
by the nonconservative optical force component associated
with the laser beam angular momentum. Thus, our system
allows one to explore different models of stochastic thermody-
namics [31,32] with a single platform disposing of a tunable
parameter—the focal height.

To explain our experimental results, we extend the
Mie-Debye spherical aberration (MDSA) theory of optical
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FIG. 1. Illustration of the experimental setup. The laser beam
goes through a polarizing beam splitter (PBS) and is directed to
the spatial light modulator (SLM). The first order of diffraction
propagates through a quarter-wave plate (QWP) and, for values of
� up to 5, through a beam expander (lenses L1 and L2) toward
the microscope (dotted frame). Inside the microscope, the beam is
reflected by a dichroic mirror (DM) and then focused by an oil-
immersion objective. The inset shows a magnified view of the sample
region with the glass slide lying at its bottom. The refractive index
mismatch between the glass slide (index ni) and the aqueous medium
filling the sample (index n1) leads to the introduction of a spherical
aberration phase upon refraction at the interface between the slide
and the sample. Such a phase is proportional to the height L of
the objective focal plane with respect to the slide, whose position
is controlled by a piezoelectric nanopositioning stage (not shown).
The resulting nonparaxial focused beam is indicated by the density
plot of the electric energy density for L = 10 µm (red). The inset also
depicts a trapped microsphere of refractive index n2.

tweezers [33–36] by considering a vortex beam at the ob-
jective entrance port. The paraxial approximation is taken
only at the entrance port, and the nonparaxial tightly focused
trapping beam arises as a vector interference of spatial Fourier
components [37]. Such a realistic description allows us to
analyze in detail how the optical force field changes as the
spherical aberration increasingly degrades the focal spot.

This paper is organized as follows. The experimental setup
and the theoretical formalism are presented in Secs. II and
III, respectively. Bistability is first discussed in the simpler
scenario of ideal aberration-free trapping beams in Sec. IV A.
Experimental results and a comparison with the theoretical
description considering spherical aberration are presented in
Secs. IV B and IV C, respectively. Section V is devoted to
concluding remarks.

II. EXPERIMENTAL SETUP

The generation of structured light beams has been exten-
sively discussed [38]. Here, we use a spatial light modulator
(SLM) to synthesize a vortex beam with topological charge
�. Our setup is depicted in Fig. 1. We steer a horizontally
polarized TEM00 laser beam (IPG photonics, model YLR-
5-1064LP) with wavelength λ0 = 1064 nm onto the SLM
(Holoeye Photonics AG Pluto), in which we display an

overlap between the vortex phase and a linear ramp, producing
several orders of diffraction.

As shown in Fig. 1, we propagate the first order of
diffraction through a quarter-wave plate (QWP) to produce
left-handed circular polarization and expand its beam waist w0

so that the annular vortex beam slightly overfills the objective
entrance port. The overfilling of the objective entrance port
of radius Rp = (2.80 ± 0.05) mm is such that the radius of
maximum intensity

r� = w0

√
|�|
2

(1)

is of the order of Rp. The reasons for selecting such a filling
condition as well as the values of w0 and r� are discussed in
detail in Appendix A. We check the transverse profile of the
vortex beam after expansion with the help of a scanning-slit
beam profiler (ThorLabs BP209-VIS/M).

After reflection by a dichroic mirror, the vortex beam
is strongly focused by the oil-immersion microscope objec-
tive [Nikon PLAN APO, 100×, numerical aperture (NA)
= 1.4]. The sample chamber is contained by an O-ring
on top of the glass slide and filled with a suspension of
polystyrene microspheres (Polysciences, Warrington, PA) in
water. The entire system is displaced vertically by a piezoelec-
tric nanopositioning stage (Digital Piezo Controller E-710,
Physik Instrumente), allowing us to change the distance L
between the glass slide and the objective focal plane as de-
picted in the inset of Fig. 1. Since the spherical aberration
phase introduced by refraction at the interface between the
glass slide and the aqueous medium is proportional to L [27],
we can tailor different trapping regimes by finetuning such a
distance. To provide room for trapping with small and mod-
erate values of L, we displace the diffraction focus upward
with respect to the objective focal plane by allowing the vortex
beam to develop a finite curvature as it propagates toward the
back aperture of the objective. According to the displacement
theorem [39], the resulting curvature of field leads to a global
shift of the laser focal spot without changing the amount of
spherical aberration.

The Köhler illumination by an LED source (wavelength
470 nm) is also depicted in Fig. 1. Light scattered by the
microspheres is collected by the objective and goes through
the dichroic mirror and the microscope tube lens Lt . The re-
sulting images are recorded by a CMOS camera (Hamamatsu
Orca-Flash 2.8 C11440-10C) with acquisition rates of 50 fps
(� = 4, 5) and 30 fps (� = 8, 11). We use digital videomi-
croscopy to determine the microsphere position. We apply a
threshold and then extract the position from the center of mass
of the resulting grayscale image.

III. MDSA THEORY OF OPTICAL TRAPPING
WITH VORTEX BEAMS

The Mie-Debye theory of optical optical tweezers [33,34]
combines a nonparaxial Debye-type model of a strongly
focusing beam [37] with Mie scattering by the trapped mi-
crosphere. An important extension to include the spherical
aberration introduced by focusing through the interface be-
tween the glass slide and the sample was developed in
Refs. [35,36] (MDSA theory). When astigmatism is also

023226-2



TAILORING BISTABILITY IN OPTICAL TWEEZERS … PHYSICAL REVIEW RESEARCH 6, 023226 (2024)

included, good agreement with experimental data for the trap
stiffness [40,41] and the vorticity at the focal point [42] is
found, with no fitting. Here, we further extend MDSA theory
to account for focusing of vortex beams, opening the way
for a quantitative description of optical tweezers experiments
with structured light beams and their several applications
[5–10,12,13].

For simplicity, we neglect astigmatism and model the
paraxial beam entering the objective back aperture as a cir-
cularly polarized Laguerre-Gaussian LG0� mode with radial
order p = 0. In cylindrical coordinates, the corresponding
electric field reads

Ep(ρ, φ, z) = E0

(√
2ρ

w0

)|�|
exp

(
− ρ2

w2
0

)
exp(i�φ)

× exp(ik0z)ε̂σ . (2)

Here, k0 = 2π/λ0 is the laser wave number and ε̂σ = (x̂ +
iσ ŷ)/

√
2 are the unit vectors for left-handed (σ = 1) and

right-handed (σ = −1) circular polarizations. More general
vortex beams and polarizations can also be analyzed by using
the method outlined below.

The strongly focused nonparaxial beam after the objective
(obeying the sine condition) is obtained from Eq. (2) as a
Debye-type (Fourier) superposition of plane waves [37] with
wave vectors k(θ, ϕ) spanning the angular sector defined
by the conditions 0 � ϕ < 2π and 0 � θ � θ0 = sin−1( NA

ni
),

where ni is the refractive index of glass. All Fourier compo-
nents satisfy |k(θ, ϕ)| = nik0.

The focused beam is then further refracted at the interface
between the glass slide and the sample region filled with water
shown in the inset of Fig. 1. In a typical oil-immersion ob-
jective, such refraction has an important effect on the optical
force [28] as it degrades the focal region by the introduction
of spherical aberration [27]. For each Fourier component, the
resulting spherical aberration phase scales with the distance L
between the objective focal plane and the slide [35] shown in
the inset of Fig. 1:


(θ ) = kL

(
−cos θ

Na
+ Na cos θ1

)
, (3)

where θ1 = sin−1(sin θ/Na) is the refraction angle in the sam-
ple filled with water, and Na = n1/ni is the relative refractive
index of water with respect to the glass medium. The resulting
electric field in the sample region is then given by

E(σ )
� (r) =

[−ik f exp(−ik f )

2π

]
E0(−

√
2γ )|�|

×
∫ 2π

0
dϕ exp(i�ϕ)

∫ θ0

0
dθ (sin θ )1+|�|

×
√

cos θ exp(−γ 2 sin2 θ )T (θ ) exp[i
(θ )]

× exp[ik1(θ1, ϕ) · r]ε̂′
σ (θ1, ϕ), (4)

where γ = f /w0 is the ratio between the objective focal
length f and the beam waist at the entrance port, and k1(θ1, ϕ)
is the wave vector in the sample region corresponding to
propagation direction (θ1, ϕ). The unit vector ε̂′

σ (θ1, ϕ) =
(x̂′ + iσ ŷ′)/

√
2 is given in terms of the unit vectors x̂′ and ŷ′

obtained from x̂ and ŷ by rotation with Euler angles
(ϕ, θ1,−ϕ). Additionally, the coefficient

T (θ ) = 2 cos θ

cos θ + Na cos θ1
(5)

is the Fresnel transmission amplitude for the glass-water in-
terface.

For high-NA objectives, the part of the angular spec-
trum corresponding to θ > sin−1(Na) gives rise to evanescent
waves in the sample region. We assume that the trapped
particle is a few wavelengths away from the glass slide at
the bottom of the sample region, allowing us to neglect the
contribution of the evanescent sector as well as the effect of
optical reverberation between particle and glass slide [43]. We
discard the contribution from the evanescent sector by taking
θ0 = sin−1(Na) in Eq. (4) when NA > n1.

We compute the Mie scattered field for each component
of the angular spectrum of the nonparaxial incident field with
the help of the Wigner rotation matrix elements [44] d j

m,m′ (θ1),
allowing us to consider all directions of incidence contained
in the spectrum. Finally, the optical force F is derived from
the Maxwell stress tensor. As the former is proportional to the
laser beam power P at the sample, we define the dimensionless
force [45]:

Q = F
n1P/c

, (6)

where c is the speed of light in vacuum. The resulting optical
force is the sum of two contributions [33]: The extinction term
Qe represents the rate of linear momentum removal from the
incident field. Part of this momentum is carried away by the
scattered field at a rate −Qs. The rate of momentum trans-
ferred to the particle is then Q = Qe + Qs. The cylindrical
components are written as a partial-wave series of the form:

∑
jm

=
∞∑
j=1

j∑
m=− j

.

The axial extinction contribution reads

Qez = 2(2γ 2)|�|+1

|�|!A�Na
Re

∑
jm

(2 j + 1)(a j + b j )(Gj,mG′∗
j,m). (7)

Here, a j and b j are the Mie coefficients for electric and mag-
netic multipoles [46], respectively, and A� is the fraction of
the trapping beam power that fills the objective entrance port
of radius Rp and is refracted into the sample (see Appendix A
for details).

The multipole coefficients appearing in Eq. (7) are given
by

Gjm =
∫ θ0

0
dθ (sin θ )1+|�|√cos θT (θ )

× exp(−γ 2 sin2 θ )d j
m,1(θ1)Jm−1−�(kρ sin θ1)

× exp[i
(θ )] exp(in1k0 cos θ1z), (8)

G′
jm =

∫ θ0

0
dθ (sin θ )1+|�|√cos θ cos θ1T (θ )

× exp(−γ 2 sin2 θ )d j
m,1(θ1)Jm−1−�(kρ sin θ1)

× exp[i
(θ )] exp(in1k0 cos θ1z), (9)

023226-3



ARTHUR L. DA FONSECA et al. PHYSICAL REVIEW RESEARCH 6, 023226 (2024)

where Jm are the cylindrical Bessel functions of integer order
[47].

The remaining cylindrical components of Qe as well as
the components of Qs are written in a similar way. Explicit
expressions can be found in Appendix B.

IV. RESULTS

A. Trapping states for aberration-free systems

For clarity, we first present theoretical results for an
aberration-free focused beam, which in principle can be im-
plemented with a water-immersion objective. We then take
Na = 1 in Eq. (3) leading to a vanishing spherical aberration
phase 
 = 0.

In this case, the electric energy density in the focal region
was discussed in Refs. [17–20]. For any nonzero topological
charge, it has the shape of a ring that depends on the relative
sign between � and σ. On the focal plane, the peak electric
energy density is at a distance r̃� from the axis, which was
shown to scale linearly with � for a fixed waist w0 when � � 1
[20,24], whereas the radius of the paraxial vortex beam r�

scales with
√

� as shown in Eq. (1). The variation of r̃� with �

and r�/Rp (defining how the vortex beam fills the objective en-
trance port of radius Rp) is discussed in detail in Appendix A.
For all numerical results presented in the present subsection,
we take the value r�/Rp = 0.8, which provides a diffraction
limited spot with a relatively small power loss as discussed in
Appendix A. We also take n1 = 1.332 and n2 = 1.576 for the
refractive indexes of water and polystyrene, respectively.

Two trapping regimes are expected depending on the
comparison between the microsphere radius a and the char-
acteristic size r̃� of the focal spot [7,25,26]. When a � r̃�, the
particle is trapped near the ring of maximum energy density
while being driven by the optical torque [23,24]. This is in line
with the simple Rayleigh picture of an optical force propor-
tional to the gradient of the electric energy density, alongside
a nonconservative force component that drives the particle
around the beam axis. In the opposite limit of radius a � r̃�,

the microsphere is trapped on the optical axis as it is too big
to resolve the spatial variation of the annular focal spot.

Our Mie-Debye results presented below confirm the exis-
tence of these two trapping regimes. More importantly, we
find that, at intermediate particle sizes a ∼ r̃�, the two stable
trapping states coexist. In this case, the particle might ran-
domly hop between the on-axis position and the annular focal
spot by thermal activation provided that the laser beam power
is sufficiently low.

For on-axis trapping, it is required that the radial trap
stiffness satisfies κρ = −(n1P/c)(∂Qρ/∂ρ)|ρ=0 > 0. We first
compute the stable axial position zeq by solving Qz(ρ =
0, zeq ) = 0 and then calculate the numerical derivative of the
function Qρ (ρ, zeq ) at ρ = 0. In Fig. 2, we show the varia-
tion of κρ/P with microsphere radius for different values of
�. For any positive value of �, we find that κρ changes its
sign from negative to positive at a critical sphere radius Ron

that increases with �. Thus, on-axis trapping is excluded for
sphere radii smaller than Ron. Particles in this size range are
trapped on the annular region and are driven by the optical
torque. In line with the previous qualitative discussion, Ron is

FIG. 2. Transverse trap stiffness per unit power κρ/P as a func-
tion of the sphere radius for topological charges � = 1 (blue), 5 (red),
and 10 (green). We consider an aberration-free trapping beam. As the
particle size increases, κρ changes sign from negative to positive at
the critical radius Ron.

comparable with the focal spot annular radius r̃�. Indeed, we
plot Ron (green) and r̃� (circles) as functions of � in Fig. 3,
showing that Ron is slightly smaller than r̃�. In the region
below the line defined by Ron in Fig. 3, trapping occurs on
the annular region only.

The condition for off-axis trapping defines a second critical
radius Roff . When a > Roff , off-axis trapping is excluded as
the only root of Qρ (ρ, z = 0) = 0 is at ρ = 0, with Qρ (ρ, z =
0) < 0 for any ρ > 0. In Fig. 3, we plot the variation of Roff

with � (blue). Here, Roff is very close to r̃� for small values of
� and then becomes increasingly larger than r̃� as � increases.

On- and off-axis stable equilibria coexist between the two
exclusion zones shown in Fig. 3, corresponding to micro-
sphere radii in the (colored) stripe defined by Ron < a < Roff .

Depending on the optical potential landscape, which scales
with the laser beam power, a bistable trap might be demon-
strated in this case by measuring the thermally activated
hopping between the two mesostates.

As an illustration of the different trapping regimes, we plot
Qρ (ρ, z = 0) vs ρ in Fig. 4 for three different microsphere
radii: a = 1.5 µm (blue), 2.25 µm (red), and 3.5 µm (green).
In all cases, we take � = 11, for which we find Ron = 2.0 µm
and Roff = 2.3 µm. Thus, the three radii considered in Fig. 4
illustrate the three trapping regimes defined by the parameter
space shown in Fig. 3. For the smallest size, Fig. 4 shows
that the axial equilibrium position is unstable, in agreement
with the results shown in Fig. 2, whereas the positive root of
Qρ (ρ) = 0 corresponds to stable equilibrium. For the largest
particle, the only (stable) equilibrium position is at ρ = 0,

whereas for the intermediate size two stable equilibria are
shown.

For further insight, we also show in Fig. 4 the electric
energy density as a function of ρ (fill plot). The edge of a
microsphere with a = 1.5 µm is located near the inner tail
of the electric energy density distribution when its center is
aligned along the axis. As it would sit almost entirely on the
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FIG. 3. For an aberration-free trapping beam, the parameter
space spanned by the microsphere radius and the topological charge
� is divided into three different regions. For radii smaller than the
critical radius Ron(�) (green), on-axis trapping is excluded, and the
particle rotates around the optical axis along a circular trajectory. For
radii larger than the critical radius Roff (�) (blue), orbital trapping is
excluded, and the particle is trapped at a position along the optical
axis. On-axis and orbital states coexist in the (colored) bistable stripe
bounded by the plots of Ron(�) and Roff (�). Such a region corresponds
to radii close to the maximum of electric energy density r̃� (circle).
When an oil-immersion objective is employed, the spherical aber-
ration introduced by refraction at the glass slide opens the way to
switch between trapping regimes by changing the height L of the
objective focal plane. However, experimental bistability is possible
only for radii and topological charges (red stars) close to or within
the orange colored stripe.

dark central part of the annular spot, stable on-axis equilib-
rium is indeed not possible in this case. On the other hand,
a microsphere with a = 3.5 µm encompasses the entire bright
annulus when placed on axis, which is consistent with stable
on-axis trapping. Finally, the intermediate size microsphere
(a = 2.25 µm), for which a bistable behavior is predicted, is
such that its edge nearly coincides with the energy density

FIG. 4. Radial optical force component Qρ as a function of radial
position ρ for � = 11 and radii a = 1.5 µm (blue), a = 2.25 µm (red),
and a = 3.5 µm (green). The fill plot indicates the electric energy
density variation with distance to the optical axis. Its maximum is
located at r̃� = 2.1 µm

TABLE I. Experimental values for the radius ρexp and period Texp

of the orbit when the microsphere is off-axis [see Figs. 5(b) and 5(c)]
in the bistable regime for given values of the topological charge �,

particle radius a, and power at the entrance port Pport . The theoretical
values for the radius of the orbit ρtheo are in good agreement with
the experimental data for � = 5 and 8, but for � = 4, only on-axis
trapping is predicted by the model.

� a ( µm) Pport (mW) ρtheo ( µm) ρexp ( µm) Texp (s)

4 1.0 56 ± 1 — 0.6 ± 0.1 0.24 ± 0.02
5 1.0 56 ± 1 0.69 ± 0.01 0.7 ± 0.2 0.20 ± 0.01
8 1.5 65 ± 1 1.07 ± 0.01 1.0 ± 0.2 0.55 ± 0.03
11 2.25 62 ± 1 1.2 ± 0.1 1.9 ± 0.3 5 ± 1

peak at ρ = r̃�. Such a discussion indicates that the width
of the bistable stripe in the parameter space of Fig. 3 scales
with the width of the focal spot annular region. As the latter
increases with �, we expect the bistable stripe to become
wider as � increases, which is indeed in agreement with the
results shown in Fig. 3.

B. Experimental demonstration of bistability by tuning
the spherical aberration

For a typical optical tweezers setup employing an oil-
immersion objective, the spherical aberration phase in Eq. (3)
introduced by refraction of the trapping beam at the glass-
water interface brings in the height L of the focal plane (see
Fig. 1) as a third parameter that adds to the microsphere radius
and topological charge to form a richer parameter space. Ex-
perimentally, L can be finetuned by displacing the sample with
the help of a piezoelectric nanopositioning stage as discussed
in Sec. II. In the present subsection, we show that spherical
aberration provides indeed a useful tool for demonstrating
a bistable trap and, more generally, for switching between
different trapping states for fixed values of particle size and
topological charge.

Although the results of Fig. 3 do not consider spherical
aberration, they still provide a useful guide for achieving
bistability with our experimental setup employing an oil-
immersion objective. Indeed, we can experimentally demon-
strate a thermally activated bistable trapping by finetuning the
height L and employing moderate laser powers when taking
particles of radius a illuminated by vortex beams of charge �

close to the bistable stripe shown in Fig. 3 but not otherwise.
The stars in Fig. 3 indicate the experimental implementations
of bistability. The corresponding values of �, a, and the laser
beam power Pport at the objective entrance port allowing for
bistability are shown in Table I. In all of those cases, we
start by trapping the microsphere on the axis with the focal
plane close to the glass slide and then increase the height L
by displacing the sample downwards. As L increases, we first
switch from axial to bistable trapping and then from bistable
to off-axis orbital motion (see the Supplemental Material
[48]).

A typical bistable trapping is obtained for � = 8 and a =
1.5 µm by displacing the sample downward by d = 2 µm with
respect to the initial position, leading to axial trapping. Then
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FIG. 5. Experimental realization of bistability with a polystyrene
microsphere of radius a = 1.5 µm and a vortex beam with � = 8. (a)–
(d) show frames of the trapped microsphere at times t(a) = 85 s, t(b) =
90 s, t(c) = 95 s, and t(d) = 100 s. The outline (dash) of the trapped
microsphere of diameter a = 3 µm is superimposed on each image
to represent the scale. When the microsphere hops to an off-axis
location (b) and (c), it circulates around the axis. The black arrows in-
dicate the direction of motion in (b) and (c). The difference between
the image patterns in (a) and (d) and in (c) and (d) indicates that
the trapping height changes when hoping from axial equilibrium to
orbital motion. (e) Time series for the radial coordinate. The vertical
green lines indicate the times corresponding to the frames shown in
(a)–(d). The horizontal dashed line represents the mean radial coor-
dinate ρexp = (1.04 ± 0.05) µm for the orbital state. (f) Color map of
the energy distribution U (x, y)/(kBT ) across the xy plane as derived
from the position distribution density p(x, y). (g) Power spectrum
density (PSD) of the x coordinate showing a peak at f = 1.82 Hz,
which corresponds to an orbital period Texp = (0.55 ± 0.03) s.

a second displacement by the same amount leads to off-axis
orbital trapping.

The experimental results for the intermediate configuration
leading to bistability are summarized in Fig. 5. Panels (a)–
(d) show frames of the trapped particle as it hops from the
axial position (a) to the off-axis orbit (b) and (c) and back
(d). Note that the orbital motion blurs the diffraction rings
along the direction of displacement (black arrow) in the image
patterns shown in panels (b) and (c). The clear difference
between image patterns in (a) and (d) for on-axis trapping
and in (b) and (c) for orbital motion indicates [49] that the
these two mesostates correspond to different heights, which is
confirmed by the theoretical discussion presented in the next
subsection.

The alternation between on- and off-axis states over time is
presented in more detail in Fig. 5(e), where we plot the micro-
sphere radial position ρ vs time. We determine the radius of
the orbit ρexp from the average (horizontal dashed line) and the
standard error of ρ in the orbital state. The resulting figures for
� = 8 as well as for the other values of � are indicated in

Table I. The instants of time corresponding to panels (a)–(d)
are indicated in panel (e) as vertical dashed lines. The com-
plete trajectory is captured by 4000 frames, corresponding
to a total time 133 s, from which we determine the position
probability distribution p(x, y) on the xy plane by taking
bins of area �x�y = 1.35 × 10−3 µm2. Subsequently, p(x, y)
defines the energy distribution U (x, y)/(kBT ) = ln p(0, 0) −
ln p(x, y) depicted in panel (f).

In addition to the probability distribution, we also analyze
the power spectrum density (PSD) for the x coordinate of the
microsphere position [Fig. 5(g)]. A very similar result for the y
coordinate is obtained (not shown). The PSD has the form of a
superposition of squared sinc functions centered at the orbital
frequency fexp = 1/Texp (Texp = period of the orbit) and with
different widths as determined by the total time elapsed in
each orbital motion before hopping back to the axial trapping
position. The period Texp is then obtained from the peak of the
PSD as indicated in Fig. 5(g). The resulting values are shown
in Table I, with the errors bars derived from the half width at
half maximum.

As a final remark concerning our experimental results,
we note that we find, in all cases, that the sense of rotation
coincides with the sign of �. This is also the case of a previ-
ous experiment with a vortex beam focused into an aqueous
solution [24], but a negative optical torque was predicted for
the orbital motion in air [50]. A negative torque was also
demonstrated for a particle trapped on axis by a circularly
polarized Gaussian beam [42]. Our theoretical description of
the experiment with vortex beams also confirms that the sense
of rotation coincides with the sign of the topological charge.
A detailed theory-experiment comparison is presented in the
next subsection.

C. Theoretical results with spherical aberration
and comparison with experiment

In the present subsection, we derive theoretical results
within the MDSA approach developed in Sec. III, taking
parameters corresponding to the experiment discussed above.
In contrast with Sec. IV A, we now consider the effect of
spherical aberration introduced by the glass slide interface,
as required for comparison with our experimental results.
Indeed, when focusing a laser beam through the glass-water
interface, the optical force field is considerably modified by
spherical aberration, as shown in the case of a Gaussian beam,
for which multiple equilibria were found [28,35]. Note that a
focused Gaussian beam contains paraxial Fourier components
for which the spherical aberration effect is weaker. Thus, a
stronger modification of trapping conditions is expected when
focusing a vortex beam overfilling a high-NA objective since
the entire angular spectrum is nonparaxial in this case. Here,
our primary goal is to understand how spherical aberration
controls the onset of bistability.

In Fig. 6(a), we plot the electric energy density and optical
force components for different values of L, taking � = 8 and
a = 1.5 µm. The columns correspond to the three positions
of the objective focal plane with respect to the glass slide
employed in the experiment, with the leftmost one depicting
trapping closer to the slide. From left to right, we dis-
place the focal plane by steps of �L = Nad = 1.75 µm, thus
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L = 0

FIG. 6. Theoretical results for the variation of the optical force
field with spherical aberration. The distance L between the objective
focal plane (for paraxial rays) and the glass slide is increased from
left to right, thus enhancing the spherical aberration introduced by
refraction at the interface between the slide and the sample. We
consider a vortex beam with � = 8 and left-handed circular polar-
ization (σ = +1) at the objective entrance port and a polystyrene
microsphere with radius a = 1.5 µm. (a) From top to bottom, density
plots representing the electric energy density E 2 and the axial and
radial force components Qz and Qρ, respectively, on a meridional
plane. The force components are normalized by Eq. (6) and their
values are indicated by the color bar. The roots of Qz = 0 (blue line)
and Qρ = 0 (green line) as well as the positions of axial (brown dot)
and orbital (magenta dot) stable equilibria are also indicated. Optical
potential (in units of the thermal energy kBT ) vs radial distance ρ for
(b) L = 0 µm, (c) L = 1.75 µm, and (d) L = 3.5 µm.

mimicking the experimental procedure outlined in the previ-
ous subsection. The density plots represent the electric energy
density E2 and the axial (Qz) and radial (Qρ) optical force
components as functions of the microsphere position in cylin-
drical coordinates. The plane z = 0 corresponds to the laser
paraxial focal plane. By symmetry, E2, Qz, and Qρ are inde-
pendent of φ.

The electric energy density depicted in the first line of
Fig. 6(a) spreads out radially and into the region below
the laser paraxial focal plane as a result of the increase

of the spherical aberration phase in Eq. (3). The density
plots of the optical force components allow us to identify
the roots of Qρ = 0 and Qz = 0 leading to stable trapping.
They are indicated as green and blue lines, respectively. The
equilibrium configurations are obtained as the intersections
between the two lines in Fig. 6(a), which are indicated as
brown and magenta dots for axial and orbital trapping states,
respectively.

In the absence of spherical aberration (L = 0), the green
and blue lines intersect at an axial position as well as off
axis, in line with the result of Fig. 3 since the parameters
(� = 8, a = 1.5 µm) lie within the bistable colored region.
To understand why the microsphere stays on the axis in this
case, we plot in Fig. 6(b) the corresponding optical potential
U (ρ) ≡ − ∫ ρ

0 Fρ[ρ, z̄(ρ)]dρ, where z̄(ρ) is the axial coordi-
nate leading to a vanishing axial force at ρ: Qz[ρ, z̄(ρ)] = 0
[the function z̄(ρ) corresponds to the blue lines in Fig. 6(a)].
To calculate the radial force component Fρ, we consider the
expressions for Qρ given in Appendix B and determine the
power at the sample P = 3.8 mW from the period of ro-
tation (see Appendix C for details). Since the conservative
component of the optical force field is given as the negative
gradient of the optical potential, the latter contains all the
information required for the discussion of the relative stabil-
ity between different trapping states. On the other hand, the
nonconservative component brings crucial information about
the nature of the different states. The azimuthal force com-
ponent drives the microsphere along the NESS orbit for the
off-axis state.

Figure 6(b) indicates that the well at ρ = 0 is much deeper
than the one corresponding to off-axis orbital motion, which
explains the experimental observation of stable axial trapping
in the absence of spherical aberration (L = 0). As L increases,
the off-axis well gets deeper, leading to the bistable trap-
ping near L = 1.75 µm [Fig. 6(c)]. When compared with the
experimental energy distribution shown in Fig. 5(f), theory
overestimates the difference between the local minima by a
factor ∼2. Note that the energy difference between the two
minima shown in Fig. 6(c) is proportional to the power Pport

at the entrance port. We observe, experimentally, that the
bistable behavior disappears as the power increases, with the
sphere remaining on axis, in agreement with the theoretical
result that the potential energy minimum at ρ = 0 is lower
than the off-axis one in Fig. 6(c). On the other hand, off-axis
orbital trapping is favored by further increasing L. Indeed, the
theoretical potential for L = 3.5 µm shown in Fig. 6(d) shows
that the axial equilibrium position eventually disappears as the
focal spot continues to spread out by increasing L, which is
in line with experimental observation and with the absence
of intersection between the green and red lines shown in
Fig. 6(a).

Figure 6(a) clearly indicates that the two mesostates in
the bistable regime (L = 1.75 µm) correspond to different
heights. Indeed, the vertical distance between the brown and
magenta dots in the corresponding pannel of Fig. 6(a) gives
�z = zaxis − zorb0.3 µm, which is consistent with the image
patterns shown in Figs. 5(a)–5(d).

Figure 5(f) shows that the distribution p(x, y) near the axis
is elongated along the direction bisecting the first and third
quadrants of the xy plane, while the orbit is extended along the
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orthogonal direction. Similar shapes are found for the other
values of � shown in Table I. Those properties are consistent
with astigmatism of the trapping beam [41,51], with the plane
of least confusion located between the planes of the orbital
motion and of the on-axis equilibrium discussed in the pre-
vious paragraph. Figure 5(f) also indicates that astigmatism
plays an important role in the transitions between axial and
orbital states. Indeed, the position distribution shows that the
particle preferably hops to and from orbital microstates closer
to the axial state. Such bias is not captured by our stigmatic
model, which requires unbiased thermal fluctuations to break
the rotational symmetry when hopping from the axial state
to a given microstate along the circular orbit. When com-
pared with the potential landscape calculated for our axially
symmetric stigmatic model shown in Fig. 6(c), the potential
barrier between the axial state and the orbital microstates
closer to the axis should be reduced by astigmatism, thus facil-
itating thermally activated hops along both ways as observed
in the experiment.

The theoretical results for the orbital radii are organized
in Table I, with the errors arising from the uncertainty of L.

Although our model does not consider astigmatism, we still
find good agreement with the experimental data for � = 5 and
8. Indeed, it is generally expected that particles with radii
a > λ0 average out the imperfections arising from astigma-
tism [41]. However, λ0 is replaced by the radius of the annular
spot r̃� > λ0 as the characteristic size of the diffraction-limited
focal spot when employing vortex beams. Thus, we attribute
the agreement mostly to time averaging the radial distance
over several periods of revolution, which effectively averages
out the elongation of the orbit shown in Fig. 5(f).

For � = 4, our theoretical model predicts axial trapping
only, regardless of the amount of spherical aberration. In other
words, in this case, the prediction of stable axial trapping with
an aplanatic focused beam [note that a = 1.0 µm > Roff (� =
4) as indicated in Fig. 3] is not modified by the introduction
of spherical aberration.

V. CONCLUSION

In conclusion, we have demonstrated bistable optical trap-
ping by employing a vortex beam at the objective back
aperture. The NESS corresponding to orbital motion driven
by the optical torque coexists with stable axial trapping.
The corresponding bistable optical potential has the form
of a Mexican hat with an additional minimum at its center.
To achieve such bistable trapping, the microsphere diameter
should be comparable with the diameter of the laser focal spot,
which has an annular shape in the case of circular polarization.

Our experimental results are compared with an extension
of MDSA theory of optical tweezers considering a circularly
polarized vortex beam at the objective back aperture. The
ideal case of an aplanatic focused beam provides a useful
guide in the search for bistable behavior. It shows that the
range of particle sizes yielding bistability becomes wider as
the topological charge increases. However, spherical aber-
ration is essential for a full description of our experiment
employing an oil-immersion objective. More importantly,
spherical aberration allows us to tailor different trapping
regimes. Indeed, since the focal height can be precisely

FIG. 7. Radius r̃� of the focal annular spot (solid, left axis) and
filling factor A� representing the fraction of total power transmitted
to the sample chamber (dot, right axis) as functions of the radius r�

of the paraxial vortex beam (in units of the objective entrance radius
Rp = 2.8 mm). The topological charges are � = 1, 5, 10, and 15. We
consider an oil-immersion objective lens with numerical aperture
NA = 1.4.

controlled with the help of a piezoelectric nanopositioning
system, our system allows us to manipulate the transition
from a single state, either on the optical axis or in a well-
defined orbit, to a metastable state. The cyclic hops between
the two mesostates, each with a significantly distinct set of
microstates, open the way for investigating the energetics of
cyclic symmetry breaking and restoration [30]. The possibility
of employing a time-dependent focal height could also find
applications in shortcuts to equilibration [52–54] connecting
mesostates with different symmetries.
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APPENDIX A: OBJECTIVE FILLING

Objective filling conditions are particularly important
when using a vortex beam, as we need to optimize the energy
density gradient (by reducing the size of the focal spot) while
keeping most of the annular section of the incoming beam
inside the objective entrance port. Filling is controlled by the
ratio r�/Rp between the radius of the vortex beam r�, given by
Eq. (1), and the radius of the objective entrance port Rp.
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TABLE II. Vortex beam waist w0 and ratio between the radii of
the beam (at the objective entrance port) and of the objective entrance
port Rp = (2.80 ± 0.05) mm.

� a ( µm) w0 (mm) r�/Rp

4 1.0 1.78 ± 0.02 0.90 ± 0.01
5 1.0 1.83 ± 0.02 1.03 ± 0.01
8 1.5 0.95 ± 0.01 0.68 ± 0.01
11 2.25 0.89 ± 0.01 0.74 ± 0.01

In Fig. 7, we plot the radius r̃� of the focal annular spot
(solid) and the filling factor A� (dot), with

A� = 8(2γ 2)|�|+1

|�|!
∫ sin θ0

0
ds s2|�|+1 exp[−2(γ s)2]

×
√

(1 − s2)
(
N2

a − s2
)

(√
1 − s2 + √

N2
a − s2

)2 , (A1)

as functions of r�/Rp for different values of �. We consider the
oil-immersion objective used in the experiment (see Sec. II for
details).

As expected, the fraction of the total power that en-
ters the objective entrance port decreases as the radius of

the vortex beam r� increases. The focal spot radius r̃� also
decreases with r�/Rp, reaching diffraction-limited values
(which scale linearly with � [20,24]) at r�/Rp

>∼ 0.8. To sim-
ulate a diffraction-limited spot with the minimal power loss,
we take r�/Rp = 0.8 for the aberration-free calculations pre-
sented in Sec. IV A. The values of r�/Rp corresponding to
the experiment, shown in Table II, are employed for the cal-
culation of the MDSA results which are compared with the
experimental data.

To stay close to the optimal filling condition, we produce
vortex beams with increasingly smaller values of the waist
w0 as � increases, as indicated in Table II. Such a condition
also allows the vortex beam to develop a finite curvature as it
propagates toward the objective back aperture. The resulting
curvature of field shifts the whole laser focal spot upward
without changing the amount of spherical aberration [39], thus
making room for trapping above the glass slide despite the
small values of the objective focal height L employed in the
experiment.

APPENDIX B: PARTIAL-WAVE (MULTIPOLE) SERIES
FOR THE OPTICAL FORCE CYLINDRICAL

COMPONENTS

The radial and azimuthal components of the extinction
contribution to the optical force are given by

Qeρ = (2γ 2)|�|+1

|�|!A�Na
Im

∑
jm

{(2 j + 1)(a j + b j )Gj,m[G(−)
j,m+1 − G(+)

j,m−1]∗}, (B1)

Qeφ = −(2γ 2)|�|+1

|�|!A�Na
Re

∑
jm

{(2 j + 1)(a j + b j )Gj,m[G(−)
j,m+1 + G(+)

j,m−1]∗}. (B2)

Here, we have defined the additional coefficients:

G±
jm =

∫ θ0

0
dθ (sin θ )1+|�|√cos θ sin θ1 exp(−γ 2 sin2 θ )T (θ )d j

m±1,1(θ1)Jm−1−�(kρ sin θ1) exp[i
(θ )] exp(in1k0 cos θ1z). (B3)

Finally, the scattering contribution to the optical force is written in terms of cylindrical components as follows:

Qsρ = 2(2γ 2)|�|+1

|�|!A�Na

∑
jm

{√
j( j + 2)( j + m + 1)( j + m + 2)

( j + 1)
Im[(a ja

∗
j+1 + b jb

∗
j+1)(Gj,mG∗

j+1,m+1 + Gj,−mG∗
j+1,−m−1)]

− 2
(2 j + 1)

j( j + 1)

√
( j − m)( j + m + 1)Re(ajb

∗
j )Im(Gj,mG∗

j,m+1)

}
, (B4)

Qsφ = −2(2γ 2)|�|+1

|�|!A�Na

∑
jm

{√
j( j + 2)( j + m + 1)( j + m + 2)

( j + 1)
Re[(a ja

∗
j+1 + b jb

∗
j+1)(Gj,mG∗

j+1,m+1 − Gj,−mG∗
j+1,−m−1)]

− 2
(2 j + 1)

j( j + 1)

√
( j − m)( j + m + 1)Re(ajb

∗
j )Re(Gj,mG∗

j,m+1)

}
, (B5)

Qsz = −4(2γ 2)|�|+1

|�|!A�Na

∑
jm

{√
j( j + 2)( j − m + 1)( j + m + 1)

( j + 1)

× Re

[
(aja

∗
j+1 + b jb

∗
j+1)(Gj,mG∗

j+1,m ) + (2 j + 1)

j( j + 1)
m(a jb

∗
j )(Gj,mG∗

j,m)

]}
. (B6)

023226-9



ARTHUR L. DA FONSECA et al. PHYSICAL REVIEW RESEARCH 6, 023226 (2024)

APPENDIX C: LASER POWER IN THE SAMPLE REGION

Due to the nonuniform transmittance [55] of our high-
NA objective, we were not able to estimate the laser power
P delivered to the sample from the power at the objective
entrance port. Instead, we determine P from the period of
rotation Texp by taking the Stokes friction force along the or-
bital motion to match the azimuthal component of the optical
force: βvφ = n1PQφ/c, where vφ = 2πρexp/Texp is the veloc-
ity along the orbit. The MDSA multipole expansion for Qφ is
given by Eqs. (B2) and (B5). We take Faxén’s correction aris-
ing from the glass slide when evaluating the drag coefficient β

[56,57]:

β = 6πηa

1 − 9
16

(
a
h

) + 1
8

(
a
h

)3 − 45
256

(
a
h

)4 − 1
16

(
a
h

)5 , (C1)

where h is the height of the microsphere center with respect
to the glass slide and η = (0.91 ± 0.02) mPa s is the viscosity
of water at room temperature (298 K).

To estimate h, we start each experimental run with a
reference configuration such that the trapped microsphere is
barely touching the glass slide. We then displace the sample
downward by a distance d = 2 µm. Neglecting the variation
of the axial trapping position with respect to the laser focal
plane, we have h = a + Nad. For � = 8 and a = 1.5 µm, we
find β = (30 ± 1) µg/s from Eq. (C1). The azimuthal opti-
cal force is given by Qφ = 0.0212, and then the resulting
power is P = 3.8 mW. When compared with the power Pport

at the objective entrance port given in Table I, we note that
the objective transmittance for the vortex beam overfilling
the objective is indeed much smaller than typical values for
Gaussian beams, in agreement with the results of Ref. [55].
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