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We investigate a tripartite quantum Rabi model (TQRM) wherein a bosonic mode concurrently couples to two
spin-1/2 particles through a spin-spin interaction, resulting in a spin-spin-boson coupling—a departure from
conventional quantum Rabi models featuring bipartite spin-boson couplings. The symmetries of the TQRM
depend on the detuning parameter, representing the energy difference between the spin states. At zero detuning a
parity symmetry renders the TQRM reducible to a quantum Rabi model. A subradiant-to-superradiant transition
in the ground state is predicted as the tripartite coupling strength increases. For nonzero detuning the total spin
emerges as the sole conserved quantity in the TQRM. It is found that superradiance prevails in the ground state
as long as the tripartite coupling remains nonzero. We derive the Braak G function of the TQRM analytically,
with which the eigenspectra are obtained. The TQRM can be realized in a viable trapped Rydberg ion quantum
simulator, where the required tripartite couplings and single-body interactions in the TQRM are naturally present.
Our study opens opportunities to explore and create correlations and entanglement in the spin and motional
degrees of freedoms with the TQRM.
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I. INTRODUCTION

The quantum Rabi model (QRM) consists of a spin-1/2
particle coupled to a bosonic degree of freedom [1]. Despite
its simplicity, the QRM exhibits rich physics [2] and finds
applications in, e.g., benchmarking quantum computers [3],
verifying the existence of supersymmetric quantum mechan-
ics [4,5], investigating PT -symmetry breaking [6,7], and the
generation of nonclassical states [8,9]. An important feature of
the QRM is that the validity of the rotating wave approxima-
tion breaks down as a result of the strong spin-boson coupling
[10–12]. This causes difficulties in obtaining the spectrum
of the QRM analytically. Such a task was not accomplished
until 2011 by Braak [13] through the G-function method,
although the isolated doubly degenerate energies that repre-
sent the exceptional spectrum were analytically determined
decades earlier [14]. After this achievement, many studies
have focused on understanding the mathematical structure and
improving the numerical stability and performance of the G
function [15–20]. When the coupling is strong the ground
state of the QRM exhibits a superradiant-like phase transition,
where the population of the boson becomes sizable when
increasing the coupling above a critical value [21–24]. Mo-
tivated by the rich physics, the QRM has been experimentally
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realized with various physical systems [20], including trapped
ions [25,26], cavity and circuit QED [27–33], cavity op-
tomechanics [34], and quantum dots [35,36]. Furthermore,
superradiant transition has been experimentally demonstrated
with a single trapped ion [26].

Modified QRMs have been extensively explored within the
literature [20]. The first type of extension concerns the mod-
ification of the bosonic operators. For example, two photon
QRMs, where the spin couples to the bosonic mode via a two-
photon process, have attracted a lot of attention [19,37–42].
The symmetry extends from a Z2 group in the QRM to a Z4

group in the two-photon QRM [38]. Despite the change of
symmetry, the spectra of the two photon QRM can still be
found analytically [43,44]. Another way to extend the QRM
is to include more spins in the model, such as two-qubit QRMs
(TQQRMs) [45–56]. Such extension leads to the Dicke model
when the number of spins is large [57]. However, all of these
existing studies have focused on bipartite couplings which
couple individual spins with bosonic modes.

In this article we study an exotic tripartite quantum
Rabi model (TQRM) where two identical spins couple to
a monochromatic bosonic mode simultaneously through an
Ising spin-spin interaction. To the best of our knowledge,
such extension has not been studied before. Three- and multi-
body interactions have attracted a broad interest in the study
of nuclear, atomic, and many-body physics [58]. Recent ex-
perimental and theoretical studies have realized multibody
interactions with trapped ions [59], neutral atoms [60], and
superconducting circuits [61,62]. A key feature of the TQRM
is that the constituents of the TQRM are a bosonic mode
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and two identical spins. We show that the TQRM can be
realized with two trapped ions in their highly excited Ryd-
berg electronic states [63,64]. In a linear Paul trap long-range
dipole-dipole interactions between Rydberg ions couple to
the breathing mode of a two-ion crystal [65], leading to the
tripartite coupling between the two spins and bosonic mode
(crystal phonons). The TQRM is achieved through modulating
the Rydberg excitation and phonon-ion coupling with external
laser fields.

The symmetries of the TQRM are controlled by the Ry-
dberg excitation laser. At vanishing detuning the TQRM has
a well-defined parity symmetry that relies on the total popu-
lation of the spins and phonon. When the detuning is finite,
the parity symmetry disappears. We derive analytically the
G function that defines the eigenspectrum of the TQRM,
and show that these analytical results indeed match those of
numerical calculations. We then investigate the ground-state
properties, focusing on the strong coupling regime. At zero
detuning the TQRM reduces to an effective QRM, which
differs from the QRM insofar as it describes a collective
interaction between the spins and the bosonic mode. In the
superradiant phase the spatial distribution of the phonon splits
into two peaks symmetrically, and its state is captured by
a classical mixture of two coherent states |±α〉 (α > 0). At
finite detuning the superradiance gradually dominates the
ground state. It is found that the phonon spatial distribution
has a single peak, which is shifted from the origin in the
strong coupling regime. A careful examination shows that
the phonon state is approximately described by coherent state
|−α〉.

This article is organized as follows. In Sec. II we present
the trapped ion system used as the quantum simulator and
derive the TQRM Hamiltonian. In Sec. III we discuss the sym-
metries present in the model and how the single-spin detuning
affects the symmetry. The G function is derived analytically
in Sec. IV. In Sec. V we discuss superradiance and the phase
space distribution function of phonons in the ground state of
the TQRM. We conclude in Sec. VI.

II. TRIPARTITE QUANTUM RABI MODEL
WITH A PAIR OF TRAPPED RYDBERG IONS

In this section we provide details on how to realize the
TQRM with a Rydberg ion quantum simulator. We con-
sider trapped ions excited to highly excited electronic states
with principal quantum number n � 1. Trapped Rydberg
ions exhibit exaggerated properties compared to the ground
state [66,67], such as long lifetime [68], strong and control-
lable two-body interactions [64], and strong coupling between
vibrational (phonon) and electronic states [69–74]. As a con-
sequence of the tunable nature of these properties, trapped
Rydberg ions have been proposed as analog and digital quan-
tum computers [64,66,71–73], platforms for investigating
mesoscopic physics [75], exploring topological physics [74],
and vibronic coupling [76]. Recently, Rydberg excitation of
88Sr+ and 40Ca+ ions and entangling gates with trapped Ryd-
berg ions [64] have been achieved experimentally [77–83].

In our setting two ions are trapped in a linear Paul trap,
as depicted in Fig. 1(a). Due to the harmonic trapping po-
tential (axial trapping frequency ν) and Coulomb repulsion,

FIG. 1. (a) Two ions are confined in a linear Paul trap with
trap frequency ν. The ions are coherently laser excited to Rydberg
states. In their Rydberg states the ions interact through dipolar inter-
action depending on their separation l0 = |Z (0)

2 − Z (0)
1 |. A standing

wave laser field (blue arrows) induces a site-dependent Stark shift.
(b) The Rydberg excitation laser excites the ions from the ground
state |↓〉 to the Rydberg state |↑〉 with Rabi frequency � and
detuning 2ε. (c) The dipolar interaction. At l0 = 2.7 µm the interac-
tion Vd(l0) = 0 (marked by the dashed perpendicular line). (d) The
slope V ′

d of the dipolar interaction. V ′
d = −2π × 174.7 MHz/µm

when l0 = 2.7 µm. The dipolar interaction is induced through using
the microwave-dressed Rydberg states [74]. In this example, we
have considered 88Sr+ with principal quantum number n = 80, and
ν = 2π × 2.02 MHz. See text for details.

the two ions form a Wigner crystal along the trap axis
(z axis) at low temperatures, where coordinates of the jth ion
are Xj,Yj , and Zj ( j = 1, 2). The ions vibrate around their
equilibrium positions X (0)

j = Y (0)
j = 0 and Z (0)

2 = −Z (0)
1 =

(N 2e2/16πε0Mν)
1/3

, where N e is the net charge, M the mass
of the ion, and ε0 the permittivity of free space. As we will
show later, the electronic states (spin) will couple to the axial
vibration, while the radial motions will not be involved. Along
the trap axis we obtain a center-of-mass (c.m.) and breathing
modes whose frequencies are ωc.m. = ν and ω = √

3ν, respec-
tively [65]. A Rydberg excitation laser couples the low-energy
metastable state |↓〉 = |4D5/2〉 and a Rydberg state |↑〉 (e.g.,
|nS1/2〉 with n the principal quantum number) coherently [63].
At the same time an off-resonant standing wave laser induces
a state-dependent Stark shift Fj [84,85]. The Hamiltonian of
the system reads (h̄ ≡ 1),

Ht = ωc.m.a
†
c.m.ac.m. + ωa†a +

∑
j=1,2

(
�σ x

j + εσ z
j + Fj

) + Hd,

where a†
c.m. (ac.m.) and a† (a) are the creation (annihila-

tion) operators of the c.m. and breathing mode, respectively.
The operators σ x

j , σ z
j , and n j = 1

2 (1 + σ z
j ) are Pauli and

projection operators of the jth ion. � and ε are the Rabi
frequency and detuning. Fj describes the Stark shift due to
the standing wave laser. In Rydberg states the ions interact
via a dipole-dipole interaction Hd = Vd(Z2 − Z1)n1n2 with the
distance-dependent strength Vd(Z2 − Z1) [64,71].

At low temperatures the characteristic length of the
c.m. and breathing vibrations are lc.m. = 1/

√
2Mν and lb =

1/
√

2Mω, respectively. For typical trap parameters, the length
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is in the order of a few tens of nanometers, while the
distance between the two ions is several micrometers [64,65].
This allows us to expand Vd(Z2 − Z1) around their equilib-
rium positions. To the linear order of Zj , we obtain Vd(Z2 −
Z1) ≈ Vd(l0) + V ′

d (l0)(z2 − z1), where Vd(l0) and V ′
d (l0) are

the potential and its slope at the equilibrium distance l0 =
|Z (0)

2 − Z (0)
1 |. z j is the small deviation from the equilibrium

position Z (0)
j . By modulating the Rydberg states with external

microwave fields we can tune Vd(l0) = 0, i.e., the dipolar
interaction vanishes at the equilibrium distance, as shown in
Refs. [73,74]. See Figs. 1(c) and 1(d) for an example. As a
result, the dipolar interaction couples directly to the breathing
mode through Vd(Z1 − Z2) ≈ G(a† + a), where G = lbV ′

d (l0)
gives the coupling strength. Note that the c.m. mode decouples
with the electronic dynamics. We will exclusively focus on the
coupled dynamics between the spin and breathing mode from
now on.

With the above consideration one obtains Hd ≈ g(σ z
1σ z

2 +
σ z

1 + σ z
2 + 1)(a + a†), with g = G/4. Our aim is to achieve

a spin-spin-phonon coupled interaction ∝ σ z
1σ z

2 (a + a†). To
achieve this, one can turn off the coupling between the indi-
vidual spin and phonon through the spin-dependent Stark shift
[84] with F1 = −g(σ z

1 + 1/2)(a + a†) and F2 = −g(σ 2
2 +

1/2)(a + a†). Details of the implementation can be found in
Appendix. The only remaining term is a collective coupling
between the two spins and phonon, i.e., the breathing mode
couples to the two spins simultaneously, whose strength de-
pends on the slope of the two-body dipolar interaction. This
yields the Hamiltonian

H = ωa†a + �
(
σ x

1 + σ x
2

) + ε
(
σ z

1 + σ z
2

) + g(a† + a)σ z
1σ z

2 .

(1)

Equation 1 represents the TQRM consisting of a monochro-
matic bosonic (phonon) mode of frequency ω and two
identical spins. The unique aspect of the TQRM compared
to the QRM and its variants previously studied is that our
model is characterized by a tripartite coupling, i.e., a spin-
spin-boson coupling. The tripartite coupling is different from
existing models. In conventional multispin QRMs the two-
body interactions between spins are typically not present
(see Refs. [45–54]), or the spin-spin interactions do not di-
rectly couple to the bosonic mode [55,56].

III. SYMMETRIES OF THE TQRM

We begin by examining symmetries in the TQRM and
how the single-body detuning affects the symmetries. It is
convenient to rotate the Hamiltonian (1) around the σ

y
i axes

by π/2, yielding

HR = ωa†a − �
(
σ z

1 + σ z
2

) + ε
(
σ x

1 + σ x
2

) + gσ x
1 σ x

2 (a† + a).
(2)

In the rotated basis the spin-up and spin-down states will be
denoted with | ⇑〉 and | ⇓〉, respectively. After the rotation,
both the detuning and the tripartite coupling term of HR can
induce transitions between spin states. In the following, we
first analyze symmetries in the TQRM when the Rydberg
excitation laser is resonant (ε = 0), where transition between
states is solely driven by the tripartite coupling. Next, we
consider finite detuning (ε = 0), where both terms will be
taken into account.

FIG. 2. Coupling between different spin-phonon states. (a and b)
Coupling with basis {|⇑⇑, n〉, |⇓⇓, n〉, |⇑⇓, n〉, |⇓⇑, n〉} and
{|⇑⇑, n〉, |⇓⇓, n〉, |+, n〉, |−, n〉}, respectively. Solid lines show
transitions between the basis induced solely by the tripartite
coupling. This is the only coupling in the resonant TQRM (i.e.,
ε = 0). When ε = 0, additional transitions are induced by the
single-body coupling, indicated by dashed lines.

A. Resonant TQRM

When ε = 0, the spin states of the two ions are only cou-
pled through the tripartite interaction, i.e., via the σ x

1 σ x
2 term.

The double-spin-down state |⇓⇓〉 can only couple to the |⇑⇑〉
state, i.e., σ x

1 σ x
2 |⇑⇑〉 = |⇓⇓〉, and vice versa. Here, |s1s2〉 =

|s1〉 ⊗ |s2〉 with the spin state |s j〉 (s j = {⇑,⇓}). A similar
transition can be found between states |⇑⇓〉 and |⇓⇑〉. This
shows that the two sectors {|⇑⇑〉, |⇓⇓〉} and {|⇑⇓〉, |⇓⇑〉}
are separable (e.g., block diagonal), and hence can be treated
individually.

As there are two spin states in sector {|⇑⇑〉, |⇓⇓〉}, we
define collective spin operators Sz = |⇑⇑〉〈⇑⇑| − |⇓⇓〉〈⇓⇓|
and Sx = |⇑⇑〉〈⇓⇓| + |⇓⇓〉〈⇑⇑|. Then, we project Hamilto-
nian (2) to this subspace, yielding

Hs = ωa†a − 2�Sz + gSx(a† + a).

Thus, TQRM is equivalent to the conventional QRM in this
sector. However, due to the collective nature the effective
level separation becomes 4�, and the phonon mode couples
electronic states of the two spins. In this regime Hs exhibits
a parity symmetry with parity operator 	p = exp(iπNE) [13],
with the total excitation NE = a†a + Sz. Its eigenvalues are 1
(−1) when NE is an even (odd) integer. It can be shown that
	pHs	

†
p = Hs. Such parity, as depicted in Fig. 2(a), requires

that when spin states change, phonon state |n〉 changes to
|n ± 1〉.

In spin sector {|⇑⇓〉, |⇓⇑〉}, we note that −�(σ z
1 + σ z

2 ) is
removed from Hamiltonian HR as one obtains zero eigenvalue
when applying this term on the spin states {|⇑⇓〉, |⇓⇑〉}.
Hamiltonian HR is simplified to be H ′

R = ωa†a + gσ x
1 σ x

2 (a† +
a). The coupling in this basis is depicted in Fig. 2(a) (lower
panel, solid lines). By defining superposition basis |±〉 =

1√
2
(| ⇓⇑〉 ± | ⇑⇓〉), Hamiltonian H ′

R becomes diagonal in

this basis, leading to H± = ωa†a ± g(a† + a), where + (–)
corresponds to the superposition state |+〉 (|−〉). In each
superposition state |±〉, phonon states |n〉 couple to |n ± 1〉
without affecting the spin state, as depicted in Fig. 2(b).
Hamiltonian H± describes displaced harmonic oscillators,
whose eigenenergies, E±(n) = nω − g2/ω, are double degen-
erate at a given n [86].
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B. Detuned TQRM

For finite detuning, i.e., ε = 0, HR induces transitions
between states |s1s2, n〉 through both the tripartite coupling
and σ x

j operators. These couplings are shown with solid and
dashed lines in Fig. 2(a), respectively. The total spin oper-
ator S = (s1 + s2) is a conserved quantity with s j = σ x

j +
σ

y
j + σ z

j . By defining the triplet manifold {|⇑⇑〉, |+〉, |⇓⇓〉}
and singlet manifold |−〉, one finds that the two manifolds
decouple. This can be seen in Fig. 2(b). The Hamiltonian
of the singlet manifold is H−, whose eigenenergy E−(n) is
independent of the spin degrees of freedom.

IV. ENERGY SPECTRUM

Eigenspectra of many variants of QRMs have been ob-
tained analytically [20], typically through the Braak G
function. The G functions are derived either through a trans-
formation into the Segal-Bargmann space of complex analytic
functions [87], or through the Bogoliubov operator approach
(BOA) introduced by Chen et al. [44]. We will employ the
BOA, as it generates algebraically simpler G functions than
the Segal-Bargmann approach [44,48,51]. When ε = 0, our
model reduces to an effective QRM, whose analytical spec-
trum is known [13]. In the following we will focus on the
spectrum of Hamiltonian (1) in the triplet sector for ε = 0.

A. Bogoliubov transformation and the Braak G function

To diagonalize H in the spin triplet manifold, we define two
sets of Bogoliubov operators A = a + g/ω and B = a − g/ω.

They are shifted bosonic operators and fulfill the commutation
relation of bosonic operators, i.e., [ξ, ξ †] = 1 and [ξ, ξ ] =
[ξ †, ξ †] = 0 (ξ = A, B). They act on the Fock states |nA〉 =
(A†)

n|0A〉/√n! and |nB〉 = (B†)
n|0B〉/√n!, respectively. Note

that |0ξ 〉 (ξ = A, B) is a displaced phonon vacuum state |0〉 of
Hamiltonian (1),

|0ξ 〉 = exp

(
−1

2

(
g

ω

)2

∓ ga†

ω

)
|0〉, (3)

i.e., |0ξ 〉 is a coherent state, where the sign is –(+) when ξ = A
(ξ = B). The relation between the coherent states |0ξ 〉 [88]
and |0〉 is important in a later step of our derivation.

Using the Bogoliubov operators A and A†, and in the triplet
manifold, the Hamiltonian H can be written as

HA =

⎡
⎢⎣FA + 2ε

√
2� 0√

2� DA

√
2�

0
√

2� FA − 2ε

⎤
⎥⎦, (4)

where FA = ωA†A − g2/ω and DA = ωA†A − 2g(A† + A) +
3g2/ω. Next, we expand the eigenstate |�A〉 of HA with

|�A〉 =

⎡
⎢⎢⎣

∑∞
n=0

√
n!cn|nA〉∑∞

n=0

√
n!dn|nA〉∑∞

n=0

√
n!en|nA〉

⎤
⎥⎥⎦, (5)

where cn, dn, and en are the expansion coefficients (propor-
tional to probability amplitudes), respectively. Substituting
this expansion into the Schrödinger equation HA|�A〉 =
E |�A〉, we obtain

∞∑
n=0

(
ωn − g2

ω
+ 2ε

)√
n!cn|nA〉 +

√
2�

∞∑
n=0

√
n!dn|nA〉 = E

∞∑
n=0

√
n!cn|nA〉,

∞∑
n=0

dn

[√
n!

(
nω + 3g2

ω

)
|nA〉 − 2g(

√
n2

√
(n − 1)!|(n − 1)A〉 +

√
(n + 1)!|(n + 1)A〉)

]

+
√

2�

∞∑
n=0

√
n!(cn + en)|nA〉 = E

∞∑
n=0

√
n!dn|nA〉,

∞∑
n=0

(
ωn − g2

ω
− 2ε

)√
n!en|nA〉 +

√
2�

∞∑
n=0

√
n!dn|nA〉 = E

∞∑
n=0

√
n!en|nA〉

for eigenenergy E . Multiplying by the state 〈mA| from the left-
hand side, we derive coupled equations of the coefficients,

(
ωm − g2

ω
+ 2ε

)
cm +

√
2�dm = Ecm, (6)(

ωm − 3g2

ω

)
dm − 2g[(m + 1)dm+1 − dm−1]

+
√

2�(cm + em) = Edm, (7)(
ωm − g2

ω
− 2ε

)
em +

√
2�dm = Eem. (8)

From Eqs. (6) and (8) one finds expressions of cm and em with
respect to the common coefficient dm. Substituting these into
Eq. (7) yields a recursion relation for dm,

mdm = Cm−1dm−1 − dm−2,

where the coefficient Cm is defined as

Cm = 1

2g

[
ωm + 3g2

ω
− E + 2�2

(
1

D + 2ε
+ 1

D − 2ε

)]
.

with D = E − ωm + g2/ω. Using the initial coefficients
d0 = 1 and d1 = C0, the coefficients dm can be evaluated it-
eratively when parameters {E , ω, ε,�, g} are specified.
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In a similar way we rewrite the Hamiltonian H using
operators B and B†,

HB =

⎡
⎢⎣FB + 2ε

√
2� 0√

2� DB

√
2�

0
√

2� FB − 2ε

⎤
⎥⎦, (9)

where FB = ωB†B + 2g(B† + B) + 3g2/ω and DB =
ωB†B − g2/ω. The corresponding eigenstate |�B〉 is
expressed as

|�B〉 =

⎡
⎢⎢⎣

∑∞
n=0(−1)n

√
n!c′

n|nB〉∑∞
n=0(−1)n

√
n!d ′

n|nB〉∑∞
n=0(−1)n

√
n!e′

n|nB〉

⎤
⎥⎥⎦,

where the coefficients c′
n, d ′

n, and e′
n satisfy the recursion

relations

mc′
m = �√

2g
d ′

m−1 + C+
m−1c′

m−1 − c′
m−2, (10)

me′
m = �√

2g
d ′

m−1 + C−
m−1e′

m−1 − e′
m−2, (11)

md ′
m =

√
2�

E + g2/ω − ωm
(c′

m + e′
m), (12)

with C±
m = (ωm + 3g2/ω ± 2ε − E )/2g.

In the standard BOA approach the arbitrary expansion
coefficients in both wave functions |�A〉 and |�B〉 are all
defined through the recurrence relation of a single coeffi-
cient [13,44,51,89,90]. To obtain a recurrence relation from
Eqs. (10)–(12), we first derive initial coefficients c′

0 and e′
0

by following the approach presented in Ref. [48]. We left-
multiply wave function |�A〉 by the bra-state 〈0B|, which
yields relations between c′

0 (e′
0) and cn (en),

c′
0 = e−2g2/ω

∞∑
n=0

cn

(
2g

ω

)n

,

e′
0 = e−2g2/ω

∞∑
n=0

en

(
2g

ω

)n

.

When deriving the above expressions, we have used the
relation 〈0B|nA〉 = 1√

n!
( 2g

ω
)
n
e−2g2/ω2

. With these initial coef-
ficients c′

0 and e′
0 the first iterations are obtained,

c′
1 = �√

2g
d ′

0 + C+
0 c′

0 and e′
1 = �√

2g
d ′

0 + C−
0 e′

0,

which allow us to solve all expansion coefficients iteratively
through Eqs. (10)–(12).

If E is a nondegenerate eigenenergy of H , the states |�A〉
and |�B〉 must differ only by a complex coefficient K , i.e.,
|�A〉 = K|�B〉. Left-multiplying by the vacuum bra-state 〈0|
on both sides, we obtain

∞∑
n=0

cne−g2/2ω2

(
g

ω

)n

= K
∞∑

n=0

c′
ne−g2/2ω2

(
g

ω

)n

, (13a)

∞∑
n=0

ene−g2/2ω2

(
g

ω

)n

= K
∞∑

n=0

e′
ne−g2/2ω2

(
g

ω

)n

, (13b)

FIG. 3. (a) Braak G(E ) function and (b) energy spectra of the
TQRM for ε/ω = 0.2. (c) Function G(E ) and (d) eigenspectra for
ε/ω = 0.4. In (b) and (d) the triplet and singlet eigenenergies are
denoted with solid blue lines and dashed red lines, respectively. Pur-
ple dots and triangles denote analytical results from the G function
and E±(n), respectively. In (a) and (c), we have set �/ω = 0.4 and
g/ω = 0.5.

where we have used relation
√

n!〈0|nA〉 = (−1)n
√

n!〈0|nB〉 =
e−g2/2ω2

(g/ω)n [44]. Cross-multiplying to eliminate the arbi-
trary constant K , an analytical expression for the Braak G
function is found,

G(E ) =
∞∑

n=0

cn

(
g

ω

)n ∞∑
n=0

e′
n

(
g

ω

)n

−
∞∑

n=0

c′
n

(
g

ω

)n ∞∑
n=0

en

(
g

ω

)n

. (14)

The roots of the G function are used to evaluate eigenenergies
of Hamiltonian (1).

Examples of the function G(E ) are plotted in Figs. 3(a)
and 3(c). Unlike the TQQRM [48,51], there are no regular
pole structures in our model. This results exclusively from
the detuning term that breaks the symmetry in the QRM
[13,91]. Roots of the G(E ) function are evaluated numerically.
In Fig. 3(b) eigenvalues of H as a function g/ω are shown. The
eigenenergy obtained from the G(E ) function agrees with the
numerical diagonalization of the Hamiltonian. Anticrossings
of the spectra are found at finite g. However, the ground
state energy clearly separates from the first excited state. The
energy gap between the ground and first excited state remains
finite when g/ω > 1. Increasing ε increases the gap too, as
can be seen in Figs. 3(b) and 3(d).

V. SUBRADIANT AND SUPERRADIANT PHASES
IN THE GROUND STATE

In this section we investigate properties of the ground state
of the TQRM. Through mean-field calculations and numerical
diagonalization of the full Hamiltonian we will show that a
subradiant-to-superradiant transition can be induced by in-
creasing g in the resonant TQRM. Phase space densities of
the phonon state are symmetric but highly delocalized in the
superradiant regime. The phonon state can be described by
a classical mixture of coherent states |±α〉. In the detuned
TQRM we will show that the phonon state is a displaced
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FIG. 4. (a) Mean-field energy functional EG for g/gc = 0.0 (solid
blue), 1.1 (dashed red), and 2.0 (dash-dotted purple). The ground-
state energy is obtained at the minima of the curves. (b) The
ground-state energy, (c) its first and (d) second derivatives, as well
as (e) the population of the bosonic mode 〈a†a〉 = α2 with respect to
the coupling. Solid (dashed) lines represent the mean-field (quantum)
results. In the following calculations, we scale the Hamiltonian with
respect to ω and set � = ω.

oscillator. The subradiance disappears, as the mean phonon
number is nonzero as long as g > 0 in the detuned TQRM.

A. Delocalized superradiant phase of the resonant TQRM

The ground state exhibits a subradiant-to-superradiant
phase transition when g is larger than a critical value. We first
determine the critical value within the mean-field approach.
This is done by replacing operators a (a†) with their mean
value α (α∗) in Hamiltonian Eq. (1). By assuming that α is
real we diagonalize the Hamiltonian, and the lowest energy
EG = ωα2 − 2

√
g2α2 + �2 is obtained as a function of α. In

the ground state ∂EG/∂α = 0, which allows the definition of
a critical coupling gc = √

ω�. When g � gc, we find α = 0.
The ground state is subradiant with zero phonon occupation.
When g > gc, two nonzero solutions, α = ±α0 with α0 =√

g2/ω2 − �2/g2, are obtained, indicating superradiance with
a finite phonon occupation. As shown in Fig. 4(a), EG is an
even function of α. Two minima are found when g > gc,
consistent with the above analysis.

At the mean-field level this superradiant transition is char-
acteristic of a spontaneous symmetry breaking occurring
related to a second-order transition [21,92]. Here, the energy
[Fig. 4(b)] and its first derivative [Fig. 4(c)] are continuous
when varying g. However, the second derivative of the ground-
state energy shows a discontinuity at the critical coupling,
as seen in Fig. 4(d). Both the mean-field and the exact di-
agonalization calculation agree well in the subradiant and

FIG. 5. (a) Density distribution ρb(x) for couplings g/gc = 0.8
(solid), g/gc = 1.2 (dashed), g/gc = 1.6 (dash-dotted), and g/gc =
2.0 (dotted). Delocalization of the spatial density is found in the
superradiant phase. The Wigner distribution W (x, p) for (b) g/gc =
0.8, (c) g/gc = 1.2, (d) g/gc = 1.6, and (e) g/gc = 3.5. The Wigner
distribution is stretched along the x axis when increasing g. In the
superradiant regime, negative values are found, see regions marked
by the ellipses in (d). In the strong coupling regime, the negative
region is negligible.

superradiant phases. Around the critical point g = gc, the full
quantum model shows a crossover, which is different from the
sharp transition in the mean-field calculation.

We now investigate the phonon states in the subradiant
and superradiant phase. We are particularly interested in the
phonon properties in the position representation. The po-
sition and momentum are given through phonon operators
x = lb(a† + a) and p = i

lb
(a† − a), respectively. We first nu-

merically evaluate the reduced density matrix of the phonon
ρb = tr[ρt], by tracing the spin degree of freedom from the
total density matrix ρt = |ψG〉〈ψG|. This allows us to obtain
spatial density distribution ρb(x) = 〈x|ρb|x〉 in the position
representation. As shown in Fig. 5(a), the spatial density has
a Gaussian profile centered at x = 0 in the subradiant phase.
When g � gc, the density deviates from the Gaussian. It first
becomes non-Gaussian around the critical value, and then
splits into two separated Gaussian shapes.

The Wigner quasiprobability distribution W (x, p) [93], on
the other hand, exhibits distinctive features in both phases.
As shown in Figs. 5(b) and 5(c), the Wigner distribution is
stretched along the x axis when g ∼ gc. Two separate peaks
are observed when g > gc, depicted in Figs. 5(d) and 5(e).
These peaks are centered around x ≈ ±2lbα0, similar to the
spatial density shown in Fig. 5(a). The Wigner distribution is
stretched horizontally (i.e., along the x axis) in the superra-
diant state. In certain regions, the Wigner function becomes
negative, indicating the phonon cannot be described by a
Gaussian state.
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FIG. 6. (a) The Uhlmann-Jozsa fidelity F and (b) purity of the
reduced density matrix ρb. In (a) fidelities F of ρb and the pure states
|±α0〉 (solid blue), |C+〉 (dashed red), and |C−〉 (dash-dotted purple)
are considered for g > gc. When g < gc, the projection to the vacuum
state is examined. In (c) the fidelity between ρb and ρc is shown.
(d) and (e) show the quadrature variances obtained by the mean-field
(solid red) and full numerical calculations (dashed blue).

To understand the nature of the phonon state, we project
ρb to well-defined reference states characterized by density
matrix ρr. Their overlap is quantified by the Uhlmann-Jozsa
fidelity F = (Tr

√√
ρrρb

√
ρr )2 between density matrix ρb and

ρr [94,95]. When g < gc, the fidelity is high when ρr = |0〉〈0|,
as shown in Fig. 6(a). This is a direct manifestation of the
subradiance in this regime. When g ∼ gc, however, the fi-
delity becomes low in general when projecting ρb to |±α0〉
or their superpositions |C±〉 = A±(| + α0〉 ± | − α0〉), where
A± = 1/

√
2(1 ± e−2α2

0 ) is the normalization constant. This is
consistent with our numerical calculation shown in Fig. 5(c),
where the Wigner function exhibits negative values. In this
regime, the phonon state is a non-Gaussian state, and hence
cannot be accurately described by coherent states.

On the other hand, the purity of the phonon density ma-
trix decreases rapidly with increasing g when g � gc, as
shown in Fig. 6(b). It turns out that the ρb becomes a clas-
sical mixture ρc = 1

2 (| + α0〉〈+α0| + | − α0〉〈−α0|). When
g � gc, the corresponding fidelity F approaches unity, as
shown in Fig. 6(c). Using ρc, we can evaluate the uncertainty
of x and p analytically, (�x)2 = (4α2 + 1)/2ω2 and (�p)2 =
ω2[1 − (α − α∗)2]/2. As α is a real number in the mean-
field calculation, this leads to (�p)2 = ω2/2. The uncertainty
(�p)2 is therefore the same as that of the coherent state |±α0〉.
In other words, the phonon state is strongly stretched along
the x axis, while the uncertainty along the p axis remains a
constant. Numerical diagonalization of the full Hamiltonian
shows that (�p)2 only deviates from ω2/2 around g ∼ gc, as
can be seen in Fig. 6(d).

B. Displaced superradiant phase in the detuned TQRM

We first investigate the ground state of the detuned TQRM
with the mean-field approach. In Fig. 7(a) the parameter α as a
function of g is shown. When increasing g > 0 and restricting
ε > 0, we find α is always negative and its magnitude |α|

FIG. 7. (a) Mean-field α and (b) phonon population 〈a†a〉 (|α|2)
of the resonant TQRM. In (b) the quantum and mean-field results are
denoted by lines and lines with symbols, correspondingly. Energy
functionals EG for (c) g/gc = 0.95 and (d) g/gc = 1.4 are shown. In
both the subradiant and superradiant regime, minima of the energy
functional locate at negative α. We have considered ε > 0 in the
calculation, where ε/� = 0.2 (solid blue), ε/� = 0.5 (dashed red),
and ε/� = 1.0 (dash-dotted purple) in all the panels.

increases monotonically. This is different from the resonant
TQRM, where both positive and negative branch of α are
found. Another important difference is that the sharp change
of α at the subradiant-superradiant transition disappears when
ε > 0. Instead, a smooth crossover emerges around g ∼ gc.
We then calculate the mean phonon population, shown in
Fig. 7(b). It is found that the crossover at g ∼ gc persists.
The numerical diagonalization and mean-field results deviate
apparently when ε is small. This trend changes when ε is
large, where the mean-field result agrees with the numerical
calculation and are largely independent of ε. Another feature
is that when ε is large the phonon number is nonzero as long
as g > 0, indicating that subradiance does not exist any more.
In other words, the subradiant-to-superradiant transition is
removed by finite ε.

The negativity of α can be understood through the mean-
field analysis. When ε � g and ε � �, the ground state
energy functional is well approximated by

EG ≈ ωα2 + 2gα − 2ε.

When plotting EG as a function of α [see Figs. 7(c) and
7(d)] it is apparent that the minima locate at α < 0. The
value of α can be determined through solving ∂EG/∂α = 0.
One finds ground-state energy EG ≈ −g2/ω − 2ε when α1 =
−g/ω. This explains qualitatively why α becomes negative in
the ground state.

The c.m. of the phonon density is shifted from x = 0 (when
ε = 0) toward x < 0 (when ε = 0). Our numerical simula-
tions show that the center of the spatial density [Fig. 8(a)] and
Wigner distribution [Figs. 8(b) and 8(c)] are around x ≈ lbα1.
In addition, the center of the density shifts even further when
we increase coupling |g| due to x ∝ −g. This trend can be
seen in Figs. 8(d)–8(f). In this regime the reduced density
matrix of the phonon is well represented by the coherent state
|α1〉. The Uhlmann-Jozsa fidelity between ρb and coherent
state |α1〉 is shown in Fig. 9(a). The corresponding fidelity
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FIG. 8. Ground-state density and Wigner distribution of the de-
tuned TQRM. When g/gc = 1.2, densities for ε/� = 0.2 (solid)
and 0.4 (dashed) are shown in (a). We show corresponding Wigner
distribution W (x, p) in (b) and (c). In (d), g/gc = 1.6, and we show
the corresponding distributions in (e) and (f). The density is localized
when ε/� = 0.1 (solid) and ε/� = 0.2 (dashed). The corresponding
Wigner distribution is shown in (e) and (f).

increases when increasing ε. As a result the phonon state
population is well approximated by α2

1 , which is nonnegligible
even when g < gc. This means that subradiance becomes im-
possible when ε = 0, which is consistent with the numerical
data shown in Fig. 7(b). The fidelity becomes relatively low
around g ∼ gc. Importantly, the fidelity already approaches
unity when g/gc ≈ 2 for all ε shown in the figure. Due to
the high fidelity, we find that the purity of the phonon density
matrix approaches unity, as shown in Fig. 9(b). As a result,
ρb approaches a pure state when ε = 0 and g > gc. This is in
sharp contrast to the resonant TQRM, where ρb is a mixed
state in the superradiant regime.

VI. DISCUSSION AND CONCLUSION

In this work, we have shown that the TQRM can be re-
alized with a pair of trapped Rydberg ions, in conjunction
with laser-induced spin-dependent force. In this setting the
single-body terms in the Hamiltonian can be controlled by
tuning the laser and Paul trap electric field. In typical exper-
iments the detuning, Rabi frequency, and trap frequency can
be varied flexibly from kHz to MHz. The challenging part is
to control the tripartite coupling strength g, e.g., to probe sub-
radiant and superradiant phases. In the Rydberg ion system,

FIG. 9. (a) Uhlmann-Jozsa fidelity between ρb and coherent state
|α1〉 (b) purity of ρp. In both panels, ε/� = 0.1 (solid), ε/� = 0.2
(dashed), and ε/� = 0.4 (dash-dotted).

g/gc = V ′
d (l0)/4

√
2M�, which depends on the trap frequency

implicitly through the equilibrium positions. The dipolar in-
teraction profile is realized by using the microwave dressing
scheme discussed in Ref. [74]. In this method, coherent cou-
pling of multiple Rydberg states of different parities can
shift the dipolar interaction globally, such that the interaction
strength is zero at the two-ion equilibrium distance, leading
to strong potential gradients that couple the two ionic spins
and the phonon mode. For example, we can use the same
parameters given in Ref. [74] to couple states |50S〉 and |50P〉
of 88Sr+ ions. Considering trap frequency ν = 2π × 1 MHz,
and � = 2π × 25 kHz, we obtain g/gc ≈ 0.13, which falls in
the weak coupling (subradiant) regime. To access the strong
coupling (superradiant) regime one can choose higher Ry-
dberg states with n = 80, and tighter trap with ν = 2π ×
2.02 MHz, which leads to g/gc ≈ 1.04. Hence, the tunable
laser and trap parameters allows us to explore the physics of
TQRM, as well as strong and collective spin-phonon coupled
dynamics.

In conclusion, we have studied a TQRM where the phonon
interacts with two spins simultaneously through the tripar-
tite coupling. The Braak G function is derived analytically
for the TQRM, which determines the regular eigenspectra
of the model. We have analyzed ground-state properties of
the TQRM by varying the detuning ε. In the resonant case
(ε = 0), the TQRM can be reduced to the conventional QRM.
In the subradiant-to-superradiant transition region, the phonon
becomes a non-Gaussian state whose Wigner function ex-
hibits negative values. In the strong coupling (superradiant)
regime, it is found that the reduced density matrix of the
phonon is a classical mixture of two coherent states | ± α0〉
with equal probability. In the detuned TQRM (ε = 0), the
subradiance disappears for finite g > 0. When g � gc, we
find that ρb becomes a pure state |α1〉. This work opens a
different way to explore exotic physics through multipartite
couplings between spins and bosons. One can extend the
setting to a longer ion chain, where multiple spins can cou-
ple to multiple phonon modes through the tripartite coupling
[76]. Such tripartite coupling permits to create, e.g., hyper-
entanglement in the spin and phonon degrees of freedom
simultaneously, which finds quantum information processing
applications [96–102].
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APPENDIX: SITE- AND SPIN-DEPENDENT STARK SHIFT

The site- and state-dependent Stark shift can be realized
through applying standing wave laser light, which has been
extensively studied in the quantum simulation of spin models
with trapped ions. We will provide details of the realization
based on the scheme in Ref. [84]. In the main text, the gradient
of the dipolar interaction induces coupling between the two
spins and the motion Hd = g(σ z

1σ z
1 + σ z

1 + σ z
2 + 1)(a + a†).

In the following we show how to achieve site- and spin-
dependent force Fj = −g(σ z

j + 1
2 )(a + a†) to leave only the

tripartite coupling.
Besides the Rydberg excitation laser, we apply another

group of standing wave lasers which drive the ions from the
ground state | ↓〉 = |g〉 to the Rydberg state | ↑〉 = |r〉 via an
intermediate state |e〉 by probe and coupling fields. The level
scheme is depicted in Fig. 10(a). In the case of Sr+ ions, the
wave length of the probe and coupling light are λp = 243 nm
and λc = 309 nm. For concreteness, we assume the coupling
light propagates along the trap z axis (or a small angle with
respect to the trap axis). The propagation direction of probe
light has an angle θ = arccos(kc/kp) with kp = 2π/λp and
kc = 2π/λc, as shown in Fig. 10(b). This will ensure that the
wave vectors of both fields along the trap axis are identical to
k = kc. The probe and coupling fields (along the trap axis) of
the jth ion are given by

�( j)
p = �p(eikz j + e−ikz j+iϕ j )

�( j)
c = �c(eikz j + e−ikz j+iβ j ),

where �p and �c are amplitudes of the Rabi frequency ap-
plied on the jth ion, ϕ j and β j are the relative phase of the

FIG. 10. (a) Level scheme. A probe light and coupling light
couple the ground state to the Rydberg state resonantly via an
intermediate state. (b) The relative angle between the propagation
direction of the probe and coupling light. (c) Both the coupling and
probe light are standing waves. The Stark shift will lead to phonon-
spin coupling. By tuning the relative phase of the probe light, the
spin-dependent force is realized in the Lamb-Dicke regime.

probe and coupling light, and z j is the small deviation from
the equilibrium position. The Hamiltonian that describes this
interaction reads

H ( j) = �σ ( j)
ee + (

�( j)
c σ ( j)

er + �( j)
p σ ( j)

ge + H.c.
)
, (A1)

with σ
( j)
ab = |a〉〈b| for the jth ion. Assuming both fields are

weak and � � �
( j)
c ,�

( j)
p , state |e〉 is adiabatically eliminated.

We obtain an effective Hamiltonian between state |g〉 and |r〉,

H ( j)
e = −

∣∣�( j)
c

∣∣2

�
σ ( j)

rr −
∣∣�( j)

p

∣∣2

�
σ ( j)

gg

−
(

�
( j)
p �

( j)
c

�
σ ( j)

rg + H.c.

)
. (A2)

Following the scheme in Ref. [84], we now show how to
realize the site-dependent force. In our setting, the relative
phase of the standing wave fields will be different for the first
and second ion, while other parameters are the same. We will
set the phase of the first ion to be ϕ1 = −β1 = −π

2 . The Rabi
frequencies are given by

�(1)
p = �p(eikz1 − ie−ikz1 ),

�(1)
c = �c(eikz1 + i e−ikz1 ).

In the Lamb-Dicke regime, we Taylor expand the ionic coor-
dinate around the equilibrium position. The state-dependent
Stark shifts are obtained,∣∣�(1)

p

∣∣2

�
2
p

= 2 − 2 sin (2kz1)

≈ 2 − 2
√

2η(a + a+) − 2
√

2ηc.m.(ac.m. + a+
c.m.),∣∣�(1)

c

∣∣2

�
2
c

= 2 + 2 sin (2kz1)

≈ 2 + 2
√

2η(a + a+) + 2
√

2ηc.m.(ac.m. + a+
c.m.),

�(1)
p �(1)

c

�p�c
= 2 cos (2kz1) ≈ 2,

where η and ηc.m. are the Lamb-Dicke parameter of the
breathing and c.m. modes. In the above equations, we have
considered the linear order terms as allowed in the Lamb-
Dicke regime.

In this regime, the site-dependent Stark shift F1 considered

in the main text is realized when the Rabi frequencies �
2
p =

�

4
√

2η
g, and �

2
c = 3�

4
√

2η
g. The effective Hamiltonian of the first

ion becomes

H (1)
e = −g(a + a+)

(
σ z

1 + 1

2

)
− gσ x

1 − g

2
√

2η

(
σ z

1 + 2
)

−g 4
√

3(ac.m. + a+
c.m.)

(
σ z

1 + 1

2

)
. (A3)

The phases of the second ion are ϕ1 = −β1 = π
2 . This

choice of the phase is necessary as the breathing mode vector
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has opposite signs for the two ions. With this phase, one carries out same calculations and obtains the Hamiltonian of the
second ion,

H (2)
e = − g(a + a+)

(
σ z

2 + 1

2

)
− gσ x

2 − g

2
√

2η

(
σ z

2 + 2
) + g 4

√
3(ac.m. + a†

c.m.)

(
σ z

2 + 1

2

)
. (A4)

Combining Eqs. (A3) and (A4), the total Hamiltonian becomes

He = − g(a + a+)
(
σ

z

1 + σ z
2 + 1

) − g
(
σ x

1 + σ
x

2

) − g

2
√

2η

(
σ z

1 + σ
z
2 + 4

) + g 4
√

3(ac.m. + a+
c.m.)

(
σ

z

2 − σ z
1

)
. (A5)

On the right-hand side of the Hamiltonian (A5), the first term gives the required tripartite coupling. The second and third term
will contribute to the overall single-spin terms in Hamiltonian (1), where the constant term will not affect the dynamics. The last
term, on the other hand, should be eliminated, as it could mix different symmetry sectors. This can be achieved by cooling the
c.m. mode in the zero-phonon state |0〉c.m. [104], (or other Fock state |n〉c.m.) such that 〈0|(ac.m. + a†

c.m.)|0〉c.m. = 0. Alternatively,
one could apply the dynamical decoupling scheme [105] to decouple the c.m. mode from the dynamics. As a result, tripartite
coupling can be achieved.
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