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Light-matter coupling and spin-orbit interaction of polariton modes
in liquid crystal optical microcavities
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In this theoretical study, we explore the dispersion and basic properties of optical microcavities filled with
liquid crystal (LC) media that contain embedded quantum wells. As a result of the strong coupling between
cavity photons and excitons, exciton polariton quasiparticles arise in these structures. LC-filled microcavities
have an advantage of the ability to manipulate the spin (polarization) of the photonic component of the polariton
states by controlling the orientation of LC molecules using an external electric field. This enables the engineering
of controllable synthetic Hamiltonians for the polariton eigenmodes in microcavity structures. The introduction
of synthetic spin-orbit interaction via placing of the quantum wells at particular positions in the LC-filled cavity
enables control over the propagation of exciton polaritons, leading to various spatial effects. Through numerical
calculations, we successfully reproduce the birefringence and zitterbewegung phenomena exhibited by exciton
polaritons propagating within the microcavity plane. We also examine the conditions required for strong coupling
when utilizing perovskite layers as hosts for excitons. While the strong coupling regime can be also achieved in
this material system, the manifestations of the synthetic spin-orbit interaction are suppressed owing to stronger
disorder and nonradiative processes.
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I. INTRODUCTION

Our ability to control a physical system increases with
the number of controllable parameters. This general principle
applies to optical systems in the same extent as to matter
systems. By setting up conditions that allow for the inter-
play between different control variables, one can control one
variable by adjusting another related variable. In the case of
light, the spin-orbit interaction (SOI) couples the internal spin
variable, which determines light polarization, with its spatial
(orbital) variable that governs the spatial distribution of light
within an optical structure [1]. The effects of SOI are particu-
larly prominent in composite multi-interface optical structures
[2] and are further enhanced when optical components possess
optical anisotropy [3–5].
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Specially designed optical microcavities combine all the
necessary conditions for the occurrence of SOI in light [6].
A microcavity comprises an optically transparent dielectric or
semiconductor layer with a thickness on the order of the light
wavelength (λ), sandwiched between two distributed Bragg
reflectors (DBRs). The central cavity layer contains narrow
sublayers that serve as hosts for matter excitations, excitons,
which are in resonance with the cavity modes. These exciton
layers can be semiconductor quantum wells (QWs) [7,8], tran-
sition metal dichalcogenide monolayers [9,10], or perovskites
[11]. When strongly coupled with excitons, the confined cav-
ity photon modes transform into exciton-polariton modes,
inheriting properties of both light and matter. These exciton-
polaritons exhibit distinct dispersion and fast propagation
in the microcavity plane, similar to photons. At the same
time, they can be controlled through external manipulation of
the exciton component. An alternative approach to achieving
strong exciton-photon coupling is through resonant Bragg
mirrors, which differ from conventional Bragg mirrors by in-
corporating QWs within each sublayer of alternating materials
[12–14].

The investigation of synthetic SOI for polaritons has
gained significant attention in recent years, driven by its

2643-1564/2024/6(2)/023220(14) 023220-1 Published by the American Physical Society

https://orcid.org/0000-0001-5684-151X
https://ror.org/05hfa4n20
https://ror.org/023znxa73
https://ror.org/01nxjpd08
https://ror.org/05dkdaa55
https://ror.org/055f7t516
https://ror.org/03f9nc143
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.6.023220&domain=pdf&date_stamp=2024-05-31
https://doi.org/10.1103/PhysRevResearch.6.023220
https://creativecommons.org/licenses/by/4.0/


SEDOV, GLAZOV, LAGOUDAKIS, AND KAVOKIN PHYSICAL REVIEW RESEARCH 6, 023220 (2024)

potential applications in optoelectronics [2,15–18]. The spin
of polaritons is closely related to the polarization of their
photon component. Optical selection rules dictate that left
and right circularly polarized polaritons are formed through
the coupling of photons with corresponding polarizations to
excitons with angular momentum projections (pseudospins)
of ±1 along the growth axis of QW. In microcavity structures,
various mechanisms lead to the splitting of polariton polariza-
tion states, resulting in diverse SOI effects.

In conventional solid-state microcavities, the most promi-
nent mechanism of SOI is the splitting of transverse electric
(TE) and transverse magnetic (TM) photon cavity modes. This
splitting arises from the difference in phase shifts experienced
by the modes upon reflection from interfaces. The TE-TM
splitting serves as the foundation for several effects, includ-
ing the optical spin Hall effect [19,20], the zitterbewegung
[21–23], and the formation of polarization domains in planar
polariton waveguides [24], among other phenomena.

Furthermore, a variety of SOI mechanisms in polariton
microcavity structures are associated with their exciton com-
ponent. These mechanisms arise due to the reduced symmetry
of QWs or their interfaces. Examples of such mechanisms in-
clude exchange-induced anisotropy [25,26], splitting induced
by interface roughness and built-in strain [27–29], and split-
ting induced by external stress [30]. Additionally, Zeeman
splitting in an external magnetic field can also occur, both in
the Faraday [5,31–34] and Voight [7,22,35] geometries.

Usually, in conventional solid-state microcavities, manip-
ulation of polaritons through SOI is achievable by leveraging
their excitonic component, which readily responds to external
influences like electric and magnetic fields. A recent area
of focus involves a new class of optical microcavities that
provide control over pure photonic SOI [36–41]. In these
microcavities, the central cavity layer is filled with a nematic
liquid crystal (LC). By aligning the LC molecules in a specific
direction using an external electric field, it becomes possible
to break the equivalence of different propagation directions
for linear polarizations within the cavity plane, thus introduc-
ing optical anisotropy to the structure.

Previously, in Refs. [36,37], the dispersion properties of
LC-filled microcavities without accounting for exciton res-
onances have been explored. In particular, the synthetic
Rashba-Dresselhaus Hamiltonian ĤRD ∝ σ̂zky, has been de-
rived to describe photonic modes, where σ̂z is the third Pauli
matrix and k = (kx, ky) is the in-plane wave vector. Several
studies [38–40] have investigated strong coupling in LC-
filled microcavities using two-dimensional perovskite layers
as exciton hosts. These perovskite layers enable extremely
strong exciton-photon coupling, resulting in large Rabi split-
ting reaching hundreds of millielectron volts, making the
formation of polaritons feasible at high, up to room tempera-
ture [42–44]. However, the presence of perovskites introduces
significant nonradiative losses in polaritons, leading to decay
rates reaching tens of millielectron volts. Hence, the effects of
synthetic SOI are expected to diminish in the perovskite-based
LC cavities.

In this paper, we theoretically investigate the SOI of ex-
citon polaritons in LC-filled microcavities, with a specific
emphasis on spatial properties. To achieve this, we sacri-
fice the strength of the exciton-photon coupling by utilizing
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FIG. 1. (a) Schematic of the structure with the LC-filled mi-
crocavity layer and two embedded QWs. (b) The electric-field
distribution of the orthogonal cavity eigenmodes (σ+ and σ−) in
the structure growth direction z at normal incidence (kx,y = 0). The
broken line to the right of (b) shows schematic of the real part of the
refractive index profile of the structure in the z direction.

conventional semiconductor QWs as the matter component
of the interaction. However, this approach allows for the
manifestation of spatial effects. Importantly, our analysis is
conducted within the linear regime where polariton-polariton
interactions are negligible. This approach, applicable under
conditions of weak incident light intensities, ensures that the
results distinctly reflect the SOI effects, unaffected by non-
linear phenomena. In our study, we explore the dispersion
properties of LC-filled microcavity structures operating under
strong coupling conditions. We construct a synthetic effective
light-matter Hamiltonian to characterize the dispersion and
general properties of the structure based on its eigenmodes.
Additionally, we numerically demonstrate the effects of bire-
fringence and zitterbewegung of polaritons, which can be
induced in the structure in a controlled manner. We identify
the conditions that enable the coupling of two cavity modes,
where only one mode exhibits strong coupling with excitons.
Furthermore, we analyze the strong coupling in LC-filled
microcavities with an embedded two-dimensional perovskite
layer demonstrating suppressed SOI effects.

II. DETAILS OF THE STRUCTURE

We consider a structure based on the microcavity discussed
in [36], as depicted in Fig. 1(a). This particular structure
consists of two DBRs with a layer of LC medium sandwiched
between them. In our modification compared to [36], we have
included two layers capable of hosting excitons within the
central cavity layer. The DBRs are composed of six pairs
of SiO2/TiO2 layers, and their stop bands are centered at
1.515 eV. In each DBR, the layers are arranged such that the
SiO2 layer is adjacent to the central cavity layer. The choice of
the materials of DBRs takes advantage of the high refractive
index contrast (nTiO2 − nSiO2 )/nTiO2 ≈ 0.4, which enables a
strong TE-TM splitting effect. The bottom DBR is grown on
a SiO2 substrate.
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The microcavity layer is filled with a nematic LC medium,
which can be regarded as an optically uniaxial medium. The
optical axis of the LC medium aligns with the orientation
direction of the LC molecules, and this orientation can be
controlled by applying an electric field [41]. When the LC
molecules are aligned along the z axis, the LC dielectric tensor
takes the following form:

ε̂LC,0 =
⎛
⎝ε⊥ 0 0

0 ε⊥ 0
0 0 ε‖

⎞
⎠, (1)

where ε‖ = n2
o and ε⊥ are the LC dielectric constants. The

refractive index of the ordinary wave no is immediately
determined by the longitudinal component ε‖. In further con-
sideration, we treat LC molecules to be oriented in xz plane.
The rotation of the optical axis around y axis by angle θ leads
to the following transformation of the dielectric tensor: ε̂LC =
R̂y(θ )ε̂LC,0R̂−1

y (θ ) where R̂y(θ ) is the corresponding rotation
matrix. Values of the parameters of the materials that compose
the structure used for simulations are given in [45].

As model exciton layers, we use 20-nm-thick GaAs QWs
that adjoin the cavity layer. They are characterized by the
resonant dielectric function

εQW = εb

(
1 + ωLT

ωexc − ω − i�

)
, (2)

where the exciton resonance energy is Eexc = h̄ωexc =
1.515 eV, the background dielectric constant is εb = 3.72, the
LT splitting is h̄ωLT = 0.08 meV, and the nonradiative decay
rate is h̄� = 0.1 meV. Alternative designs with a single QW
or perovskite layer are described in Secs. V and VI.

III. ENERGY SPECTRUM AND BASIC PROPERTIES

A. Calculation approach

To investigate the dispersion properties of the structure,
we employ the generalized 4×4 transfer matrix formalism
(MF) [46,47], which fully considers light polarization and is
capable of handling optical degeneracies that arise in isotropic
embedded layers [4,48,49]. The formalism applied to the lay-
ered structure of a planar microcavity implies the solution
of Maxwell’s equations in each of the homogeneous optical
layers, accompanied by matching the solutions at the layer
interfaces.

In the considered geometry, light is incident from the
side of the top DBR towards the substrate. As a plane wave
propagates through the structure with a frequency ω0 and a
wave vector k = (k, kz ), the in-plane components k = (kx, ky)
remain unchanged when crossing layer interfaces, while the
out-of-plane component kz = ω0κ/c adjusts to the dispersion
properties of the layers. Here, we introduced the dimension-
less propagation constant κ for convenience, and c is the speed
of light in vacuum. In each layer j, the propagation constant κ j

is the solution of the Maxwell’s equations in this layer, which
within the 4×4 MF are reduced to the following eigenvalue
problem:

κ j� j = 	̂� j, (3)

where � j = (Ex, j, Hy, j, Ey, j, Hx, j )T is the vector of the trans-
verse electric (El, j) and magnetic (Hl, j) field amplitudes,

l = x, y, and 	̂ is the 4×4 characteristic matrix, see details
in Appendix and in Refs. [4,47,50].

In the basis of forward (→) and backward (←) propagat-
ing waves, the transverse electric field in the layer j can be
characterized by the four-component vector

E j =

⎛
⎜⎜⎜⎝

E p
→, j

E s
→, j

E p
←, j

E s
←, j

⎞
⎟⎟⎟⎠, (4)

where p and s indicate polarization of the vector components.
Then two adjacent layers with indices j − 1 and j are con-
nected with each other as

E j−1 = Â−1
j−1Â j P̂jE j, (5)

where the 4×4 matrix Â j is used for projection of the field
vector E j onto the eigenvector � j of the layer, while the ma-
trix Â−1

j−1Â j is responsible for the fulfillment of the boundary

conditions at the interface of the layers. P̂j is the propagation
matrix through the layer j. The matrices 	̂, Â j and P̂j are
defined in the Appendix.

The input field E0 to the structure composed of N layers is
linked to the output field EN+1 as

E0 = T̂ EN+1, (6)

where Â0T̂ Â−1
N+1 = ∏N

j=1 Â j P̂j Â
−1
j is the transfer matrix

through the structure. The index N + 1 characterizes the bulk
medium adjacent to the N th layer, which is a substrate in our
case.

To calculate the propagation in the structure of a light
beam of finite-spatial dimensions, one should perform the
Fourier transform of the incident beam and apply MF to each
k component.

The matrix T̂ allows one to calculate the reflection co-
efficients for pure p- and s-polarized incident waves as
following: r(pp,ps) = [T(31,41)T22 − T(32,42)T21]/r0 and r(ss,sp) =
[T(42,32)T11 − T(41,31)T12]/r0, where r0 = T11T22 − T12T21. The
coefficients rpp and rss characterize reflection without chang-
ing its polarization, while rps and rsp characterize the rotation
of the polarization upon reflection due to SOI induced by
optical anisotropy of the LC layer.

It should be noted that in the absence of optical anisotropy
at θ = 0, the basis (4) indeed consists of s and p polarization
waves. The presence of anisotropy, however, leads to a mixing
of these polarizations. In this scenario, it is appropriate to
describe the propagation through the layers in terms of ordi-
nary and extraordinary waves. Nevertheless, to keep the text
concise and avoid introducing new terminology, we continue
to use the s and p indices to differentiate the electric field
components, regardless of whether the anisotropy is present
or not.

B. Dispersion properties

In order to investigate the dispersion of the eigenmodes
in the microcavity, we analyze the minima of its reflectance
spectrum R, which can be calculated directly from the
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FIG. 2. Dispersion of eigenmodes of the LC-filled microcavity without the exciton resonance (a) and with the exciton resonance at h̄ωexc =
1.515 eV (b) in embedded QWs obtained by 4×4 MF. The thickness of the cavity layer is dc = 1430 nm, the rotation angle of LC molecules θ

is about 26.52◦. The side wall plots and the bottom contours show cross sections of the dispersion surfaces in the specified planes. Solid lines
and dots in the side wall plots show dispersions obtained by MF and from the Hamiltonian (19), respectively. Red six-pointed and five-pointed
stars in (b) indicate the excitation conditions for Figs. 5(a)–5(e) and 5(f)–5(j), respectively.

amplitude reflection coefficient as Ri j = |ri j |2, i, j = s, p.
Figure 2 shows the reflectivity dispersions obtained for the
specific parameters of the structure provided in [45]. In
Fig. 2(a), we exclude the exciton resonance while keeping
the background dielectric permittivity and the thickness of the
QW layers. By adjusting the width dc of the cavity layer and
the LC orientation angle θ , we replicate the photon dispersion
observed in an empty LC-filled microcavity studied in [36].
Two split in energy and quasimomentum dispersion branches
are inherent in the microcavity that are nonreciprocal with re-
spect to one of the directions, ω(ky) 	= ω(−ky). The branches
exhibit crossing at ky = 0 while their minima are shifted from
k = 0 by (0, k±

min).
For the dispersion in Fig. 2(b), the exciton resonance at

h̄ωexc = 1.515 eV is taken into account. The resonance sup-
ported by high refractive index contrast in DBRs and by low
nonradiative losses in the model QW enabling strong coupling
between the cavity modes and QW excitons. As a result,
the microcavity exhibits two pairs of dispersion branches
of exciton polaritons that retain the nonreciprocity inherited
from the photonic fraction. Within each pair, the total split-
ting is composed of two distinct splittings. The first is the
TE-TM splitting of polariton modes, inherent to the layered
(multi-interface) structure of the microcavity. This splitting’s
hallmark is its dependence on the wave vector of the polariton
state, vanishing at k = 0. Additionally, in scenarios where
only this type of splitting is present, the dispersion of the
inherent modes remains reciprocal.

The second splitting arises from the anisotropy in the LC-
filled microcavity layer, affecting linearly polarized modes
within the XY plane. Unlike the TE-TM splitting, this
anisotropic splitting introduces a direction where dispersion
reciprocity is broken, which in our geometry aligns with the
y axis. The magnitude of the splitting can be manipulated
through the orientation angle of the LC molecules θ , serv-
ing as the control parameter. Adjusting the magnitude of the

splitting has a significant impact on the shape and arrangement
of the dispersion surfaces.

Figure 3 illustrates how the characteristic points of the dis-
persion surfaces of the lower in energy scale pair of polariton
branches depend on the angle θ . In Fig. 3(a), the red and green
curves illustrate the dependence of the polariton energy at the
center of the dispersion surfaces h̄ω(0, 0) on θ . It is observed
that a gap typically exists between the branches. However,
at a certain θ value, this gap closes, leading to a crossing of
the dispersion surfaces. This particular angle, approximately
26.52◦, was taken for plotting the dispersions depicted in
Fig. 2(b).

When the anisotropic splitting is large (LC molecules ori-
ented closer to the x axis), the dispersion surfaces are far
apart and do not influence each other. Conversely, when the
splitting is small (LC molecules oriented closer to the z axis),
its contribution is negligible compared to TE-TM splitting. In
both scenarios, away from this critical angle, both dispersion
surfaces exhibit a minimum at the point (kx, ky ) = (0, 0).

As the dispersion surfaces approach each other, and the
contributions of the TE-TM splitting and anisotropic splitting
become comparable, mixing of the branches breaks the reci-
procity of the dispersion. This results in the formation of a
pair of minima on the lowest dispersion surface at (0, k±

min)
with k±

min 	= 0, symmetrically displaced along ky. Approach-
ing the critical angle increases the distance between these
minima, 2|kmin| = k+

min − k−
min, reaching a maximum at the

point corresponding to the crossing of the dispersion surfaces,
as depicted in Figs. 3(b) and 3(c). The energy of the min-
ima h̄ωmin = h̄ω(0, k±

min) increases with θ , see blue curve in
Fig. 3(a).

The 4×4 matrix formalism allows one to reveal po-
larization properties of light in the microcavity structure.
Figure 4(a) shows the reflectance dispersion of the struc-
ture at the kx = 0 cross section for the X -polarized incident
light. The four-component incident electric field vector in (6)
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FIG. 3. (a) The dependencies of polariton energies h̄ω(0, 0) at
the center (kx,y = 0) of the two lower dispersion surfaces (green and
red) and the dependence of the energy minima h̄ωmin = h̄ω(0, |kmin|)
on the lowest dispersion surface (blue) on the rotation angle of LC
molecules θ . (b) Parametric dependence of the energy h̄ωmin on the
absolute value of the wave number |kmin| of the minima of the lowest
polariton dispersion branch. (c) The relationship between the wave
number |kmin| and the angle θ . Black dash-dotted lines link the pa-
rameters corresponding to the crossing of the two lowest dispersion
surfaces at (kx, ky ) = 0. Gray dashed lines indicate the edges of the
region with |kmin| 	= 0. The parameters for the simulations are the
same as those for Fig. 2(b).

then takes the form E0 = (1, 0, E p
←,0, Es

←,0)T. Since there is
no reflected light at the output of the structure, the output
field vector reduces to EN+1 = (Es

→,N+1, Es
→,N+1, 0, 0)T. The

circular polarization distribution of the reflected light found
as Sz = −2Im[(E p

←,0)∗Es
←,0]/(|E p

←,0|2 + |Es
←,0|2) is shown in

Fig. 4(b). It is evident that circular polarization is inherent to
the eigenmodes of the system. Herewith, in each pair, different
dispersion branches exhibit orthogonal circular polarizations,
see blue (left) and red (right) distributions in Fig. 4(b). In
the subsequent paragraphs, we will employ symmetry anal-
ysis to elucidate the underlying mechanisms that give rise to
these peculiarities in the polariton dispersion of the considered
structure.

C. Symmetry analysis of the photon modes

The symmetry analysis allows us to establish the effective
Hamiltonian underlying dispersion and reflectivity calculated
in Sec. III B. It also helps predicting effects discussed below.
The symmetry of the structure in the considered geometry is
described by the C2h point group with the twofold rotation axis
C2 being the y axis and horizontal reflection plane σh ‖ (xz).
This group also has an inversion center, i.e., the structure is
symmetric with respect to r → −r transformation. There are

TABLE I. Irreducible representations of the C2h point group and
examples of the basic functions. All representations are one dimen-
sional. Sign + or − represents the parity of the functions with respect
to the inversion.

Representation Functions

A+ Sy, x2, y2, z2, zx
B+ Sx , Sz, xy, zy
A− y
B− x, z

four (vector) irreducible representations in this point group,
summarized in Table I.

The multiplication rules are as follows:

A ⊗ A = A, B ⊗ B = A, A ⊗ B = B, (7)

with the natural parity multiplication rules: + ⊗ + = + and
+ ⊗ − = −.

To establish the effective Hamiltonian we introduce the
basic states for the electromagnetic field at the in-plane wave
vector k = 0. We consider four relevant states with the po-
larization vectors x̂ and ŷ and the envelope functions of the
field along the growth axis f1(z) and f2(z), where f1(z) is the
even function of z and f2(z) is the odd function. Numerical
calculations of the polariton dispersion in Sec. III B as well
as in Refs. [36,38,41] show that such states are indeed close
in energy. The notations of the basic states and corresponding
irreducible representations are as follows:

|x〉1 = x̂ f1(z), representation B−, (8a)

|y〉1 = ŷ f1(z), representation A−, (8b)

|x〉2 = x̂ f2(z), representation A+, (8c)

|y〉2 = ŷ f2(z), representation B+. (8d)

In the basis (|x〉1, |y〉1, |x〉2, |y〉2) the effective Hamiltonian
takes the form

Hc(k) = H0(k) + H1(k), (9)

where H0(k) is the k2 Hamiltonian, which takes into account
both parabolic dispersion, anisotropic splitting, and TE-TM
splitting of the cavity modes. The latter effect results in the
mixing of states with the same parity. As a result, H0(k) takes
the form

H0(k) =

⎛
⎜⎜⎝

Ex,1(k) Exy,1(k) 0 0
Exy,1(k) Ey,1(k) 0 0

0 0 Ex,2(k) Exy,2(k)
0 0 Exy,2(k) Ey,2(k)

⎞
⎟⎟⎠,

(10)
with

Ea,b(k) = Ea,b + h̄2k2
x

2m(ab)
xx

+ h̄2k2
y

2m(ab)
yy

, (11)

Exy,b(k) = h̄2kxky

2m(b)
xy

, (12)

where the subscripts a = x, y and b = 1, 2, so the pair (a, b)
denotes the basic state in Eq. (8). m(ab)

xx , m(ab)
yy are the effective
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FIG. 4. (a) Reflectance spectrum of the polariton LC cavity structure at kx = 0. (b) Circular polarization degree of the reflected light
at the linear polarization of the incident light. Blue (left) and red (right) dispersion branches exhibit orthogonal circular polarizations. The
parameters for simulations are the same as for Fig. 2(b). The dashed curve and the dash-dotted line indicate the cavity dispersion without the
exciton resonance and the QW exciton energy, respectively.

masses of the photonic modes, and m(b)
xy describes the TE-TM

splitting of the modes. The term H1(k) describes k-linear
mixing of the states and takes the form

H1(k) =

⎛
⎜⎜⎜⎝

0 0 iβxkx iα′ky

0 0 iαky iβykx

−iβxkx −iαky 0 0
−iα′ky −iβykx 0 0

⎞
⎟⎟⎟⎠. (13)

Note that the k-linear mixing of the states of different par-
ity is possible in the centrosymmetric structures. This is in
stark contrast with k-linear spin-dependent terms in electronic
spectrum where the Bloch functions have the same parity (i.e.,
the conduction band is described by a single orbital Bloch
function) and the linear-in-wave-vector terms are allowed
only for the structures lacking an inversion center, i.e., being
noninvariant under r → −r transformation.

In Refs. [36,41] the situation where the states |x〉2 and |y〉1

are close in energy, Ex,2 ≈ Ey,1, while the other states are far
has been studied. In this situation only the inner 2×2 block of
the Hamiltonian H(k) is relevant with the result

Hc,2×2 =
(

Ey,1(k) iαky

−iαky Ex,2(k)

)
. (14)

Equation (14) can be brought to the form of Eq. (1) of
Ref. [36] if we change the basis from |x〉2 and |y〉1 to the “cir-
cular” states (|x〉2 ± i|y〉1)/

√
2 and disregard the differences

of the effective masses for the states 1 and 2,

H̃c,2×2 = h̄2k2
x

2mxx
+ h̄2k2

y

2myy
+ ασ̂zky + Ex,2 − Ey,1

2
σ̂x. (15)

We stress that the 2×2 Hamiltonian describes the mixing
of the states with different parity. Although it resembles the
famous spin-orbit terms of Rashba and Dresselhaus (structure
or bulk inversion asymmetry) in semiconductors [51–55], the
observed polariton behavior in our centrosymmetric micro-
cavity emerges from the distinct interaction dynamics within
the cavity, modulated by the anisotropic properties of the
LC medium, rather than structure’s symmetry reduction or
gyrotropy.

D. Light-matter coupling in the LC-filled optical microcavity

Having addressed the spectrum of an empty cavity, we now
turn to the description of the exciton-polariton modes in the
presence of the active layers. We consider two QWs placed at
the coordinates z1 and z2 in the cavity layer. In each QW we
consider a radiative doublet of excitonic states. The Hamilto-
nian describing each radiative doublet Hexc,i (i = 1, 2) takes a
simple form

Hexc,i =
(

Eexc,x,i + h̄2k2

2mexc,i
0

0 Eexc,y,i + h̄2k2

2mexc,i

)
, (16)

where the difference of the energies Eexc,x,i − Eexc,y,i is related
to the anisotropic splitting of the exciton radiative doublet in
(xy) axes induced by the strain and interface anisotropy, mexc,i

is the exciton effective mass in the ith QW, and k is its in-plane
wave vector.

The interaction of an exciton with a given photonic mode
is described by the product Vi f j (zi) where f j is the envelope
function of the field introduced in Eqs. (8) and Vi is the
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TABLE II. Values of the parameters in the Hamiltonian (19) used
for fitting the dispersion of eigenmodes of the LC-filled microcavity
in Figs. 2(b) and 7(b). me is the free electron mass.

Quantity Units Fig. 2(b) Fig. 7(b)

Ey,1 eV 1.5126 1.5111
Ex,2 eV 1.5126 1.5123
V meV 2.4 2.16
α meV µm 5.8 4
m(y1)

xx 10−5me 0.86 0.79

m(y1)
yy 10−5me 1.13 0.71

m(x2)
xx 10−5me 0.78 0.76

m(x2)
yy 10−5me 0.74 1.03

coupling constant depending on the material parameters. As
a result, the total 8×8 Hamiltonian describing two QWs in a
microcavity reads

H =

⎛
⎜⎝Hexc,1 0̂ V (1)

0̂ Hexc,2 V (2)

V (1),† V (2),† Hc

⎞
⎟⎠, (17)

where the 4×2 matrices V (i) describe the light-matter
interaction as

V (i) =
(

Vi f1(zi ) 0 Vi f2(zi ) 0
0 Vi f1(zi ) 0 Vi f2(zi )

)
. (18)

If QWs take symmetric positions with respect to the mi-
crocavity center, then z2 = −z1, f1(z1) = f1(z2) and f2(z1) =
− f2(z2). In particular case where both QWs are in the cavity
center, z1,2 = 0, coupling with the mode 2 vanishes. Similar
situation has been analyzed, within a simplified Hamiltonian
for a cavity, in Ref. [38].

The Hamiltonian (17) for describing the polariton states
characterized by the dispersion in Fig. 2, can be reduced to a
4×4 matrix as following:

HI =
(Hc,2×2 V σ̂0

V σ̂0 Eexcσ̂0

)
, (19)

where V is the exciton-photon interaction constant, which is
equal for both photonic modes. We also neglect anisotropy of
QWs and assume the exciton effective mass infinitely large
taking the exciton energy constant Eexc. Eigenvalues of the
Hamiltonian (19) in comparison with the MF calculations are
shown in the side wall plots in Fig. 2. Very good agreement of
the two approaches is seen. Values of the parameters used for
fitting are given in Table II.

IV. POLARITON PROPAGATION
IN THE LC-FILLED CAVITY

The nonreciprocal dispersion and peculiar polarization
properties of the polariton eigenmodes of the structure give
rise to distinct optical effects. To reveal these effects, we con-
duct a series of numerical experiments simulating the passage
of a cw laser beam through the considered structure. We solve
Maxwell’s equations using the 4×4 MF for the incident beam
of a Gaussian shape E0 ∝ exp[−r2/2w2] exp[i(k0r − ω0t )]p0

of width w, where r = (x, y) is the in-plane coordinate. The
in-plane wave vector k0 and the frequency ω0 of the beam
are chosen with the intention of being close to the polari-
ton dispersion surface (Fig. 2), thereby exciting the polariton
eigenmodes of the structure. The vector p0 is responsible
for the polarization of the incident beam in the XY basis,
p0 = (pX , pY )T, the absolute value of p0 describes the peak
field of the beam.

In the structure under consideration, losses are primarily
due to photonic losses, which occur as photons escape through
the mirrors, and nonradiative losses associated with absorp-
tion in the excitonic layer. The high refractive index contrast
in DBRs effectively minimizes photonic losses. This, coupled
with the low excitonic losses in the selected QW material,
ensures a robust localization of polariton modes within the
microcavity. Consequently, this allows the polariton modes to
occupy extensive areas in the plane of the microcavity, en-
abling them to cover distances ranging from tens to hundreds
of micrometers from the point of injection. This extended
reach enables the manifestation of various spin/polarization
spatial effects. Figures 5 and 6 illustrate several examples
of the effects reproduced by us numerically and discussed
below.

We analyze the intensity distribution I (r) = |Ex, j (r)|2 +
|Ey, j (r)|2 and polarization of the photon field at the boundary
of the top DBR and the LC-filled cavity layer. The Stokes
vector components are used for characterizing the distribution
of the linear, Sx(r) = (|Ex, j (r)|2 − |Ey, j (r)|2)/I (r), diago-
nal/antidiagonal, Sy(r) = 2Re[Ex, j (r)E∗

y, j (r)]/I (r), and cir-
cular, Sz(r) = −2Im[Ex, j (r)E∗

y, j (r)]/I (r), polarizations. The
intensity distribution in k space I (k) is also the focus of our
attention.

A. Birefringence of polaritons

In the first numerical experiment illustrated in Figs. 5(a)–
5(e), we focus on the behavior of a polariton wave packet
excited by a linearly polarized laser beam that is resonant
with both lower polariton dispersion branches at their cross-
ing point (k0,y = 0 and k0,x 	= 0). Specifically, we set k0,x =
0.6 µm−1 and h̄ω0 ≈ 1.512 eV. The excitation conditions are
marked by a red six-pointed star in Fig. 2(b). Also see Fig. 5(e)
to correlate the excitation conditions with the shape of the
polariton dispersion contours. The incident beam has a width
of 10 µm. The density distribution shown in Fig. 5(a) reveals
that the polariton wave packet exhibits birefringence within
the microcavity plane. This birefringence is accompanied by
the spatial separation of polaritons with opposite circular
polarizations, as shown in Fig. 5(d). Linear polarization is
manifested near the entry point of the incident beam, repli-
cating the polarization of the latter, see Fig. 5(b). Away from
the incidence spot, the presence of the linear and diagonal
components [Figs. 5(b) and 5(c)] is significantly diminished
due to the dominance of the circular polarization. This be-
havior is reminiscent of the optical Stern-Gerlach experiment
[56], including a similar phenomenon observed in LC-filled
microcavities without the strong light-matter coupling [37].

In Figs. 5(f)–5(j), we explore a different scenario by
keeping h̄ω0 and setting k0,x = k0,y = 0, which shifts the in-
cident beam away from resonance with the polariton modes
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FIG. 5. Polariton propagation in the LC-filled microcavity with embedded QWs. From left to right: Spatial distribution of the intensity
I (r) and polarization components Sx,y,z(r), as well as distribution in k space I (k) at the boundary of the top DBR and the cavity layer of the
polariton states excited by the inclined Gaussian beams. The parameters of excitation are following: kx = 0.6 µm−1, w = 10 µm, θ ≈ 26.52◦

(a)–(e), kx = 0, w = 2.5 µm, θ ≈ 26.52◦ (f)–(j), and kx = 0.6 µm−1, w = 10 µm, θ = 26.45◦ (k)–(o). For all panels, h̄ω = 1.512 eV and ky = 0.
The other parameters are the same as for Fig. 2(b). White dotted lines in the rightmost panels are guides for the eyes corresponding to the cross
section of the polariton dispersion at h̄ω = 1.512 eV. The polarization of the incident beam is taken linear, p0 = (1, 0)T.

[indicated by red five-pointed stars in Fig. 2(b)]. In order
to still excite polaritons under these conditions, we signif-
icantly broaden the spectrum of the beam by reducing its
width to w = 2.5 µm. As a result, we observe a symmetric
butterfly-like pattern in the polariton density distribution, as
shown in Fig. 5(f). This pattern arises from the occupation of
orthogonally polarized polariton dispersions around the cross-
ing region [Fig. 5(i)]. In such excitation conditions, linear
[Fig. 5(g)] and diagonal [Fig. 5(h)] polarization components
are also weakly expressed. The polariton density distribu-
tion in k space highlights the cross section of the polariton
dispersion in Fig. 5(j).

In the numerical experiment illustrated in Figs. 5(k)–5(o),
we slightly change the angle θ of the LC molecules to
avoid crossing of the polariton dispersion branches. The other
parameters are taken the same as for the first numerical exper-
iment. This action results in the emergence of the jellyfish-like
polariton density pattern, Fig. 5(k). The gap between the

dispersion branches in k space [cf. the guides for the eye in
Figs. 5(e) and 5(o)] results in the emergence of the polariton
density and polarization domains in the microcavity plane,
see Figs. 5(k) and 5(l)–5(n), respectively. It is noteworthy that
within the domains, the magnitudes of the diagonal |Sy(r)| and
circular |Sz(r)| polarization degrees are shifted in the cavity
plane with respect to each other such that the maximum of the
former coincides with the minimum of the latter, cf. Figs. 5(m)
and 5(n).

The emergence of density and polarization domains in our
system is fundamentally attributed to the interplay between
the anisotropic splitting, induced in the LC-filled layer, and
the spatial distribution of the exciton-polariton modes within
the microcavity. When the dispersion branches exhibit a gap
in k space, indicative of an energy separation for polaritons
with orthogonal polarizations, it leads to distinct propagation
characteristics for these modes. This energy disparity, and
the consequent difference in effective masses for polaritons

023220-8



LIGHT-MATTER COUPLING AND SPIN-ORBIT … PHYSICAL REVIEW RESEARCH 6, 023220 (2024)

80°
82°

Sx(r)I(r)

Sy(r) Sz(r)
50 μm

(a) (b)

(c) (d)

0 1 -1 1

x

y

kx (μm-1)
85° 90° 95° 100°

0

20

40

60

θ

L 
(μ

m
)

0.0 0.5 1.0 1.5

1.508

1.510

1.512

1.514

ħω
 (e

V)

Y-polarized

X-polarized

84°
86°
88°
90°

(e) (f)

FIG. 6. Zitterbewegung of exciton polaritons. Distribution of the
intensity I (r) (a) and polarization components Sx,y,z(r) (b)–(d) of the
polariton wave packet under cw pump. White curve in (a) shows
the center-of-mass trajectory of polaritons. The orientation angle
of the LC molecules θ is taken 88◦. (e) Dispersion of the X- and
Y-polarized cavity modes at different orientation of the LC molecules
θ . (f) The change of the period of the zitterbewegung with changing
angle θ . The energy and wave vector of the excitation beam used for
simulations in (a)–(d) are indicated by the cyan star marker in (e).
The excitation is taken resonant to the X-polarized mode at θ = 90◦.
All parameter of the structure except the angle θ are the same as for
Fig. 5.

with orthogonal polarizations, results in variations in group
velocity and diffusion rates across k space. Consequently,
when a polariton wave packet is generated within the cavity
and partially overlaps in momentum space with both disper-
sion branches, it spatially evolves into distinct regions where
polaritons of one polarization are more concentrated than
those of the other. This separation effectively manifests as the
observed density domains.

B. Zitterbewegung

When the LC molecules are aligned along the direction
of structure growth (θ = 90◦), the microcavity is isotropic
in the xy plane. The dominating polarization optical effect
in this case is the TE-TM splitting, which mixes polariton
modes of the same parity [57]. In the case of the cw resonant
incident light beam, the TE-TM splitting is known to cause
the zitterbewegung of polaritons [21–23]. The zitterbeweging
is known for systems characterized by split kinetic energy dis-
persion branches and consisting of oscillations of the polariton
trajectory in the direction normal to the propagation direction.

The photonic contribution to the TE-TM splitting is dom-
inant and is characterized by the off-diagonal terms Exy,b(k)
in (10). The period of the zitterbewegung is determined by
the total splitting of the modes, which can be controlled.
To enhance or reduce the magnitude of the zitterbewegung,
the TE-TM splitting can be supplemented with additional
anisotropic splitting in linear polarizations. In a previous study
[22], the anisotropy was introduced via the excitonic fraction

by applying an external magnetic field in the Voigt geometry
to split the QW exciton states. In contrast, here additional
anisotropy can be introduced through the photonic compo-
nent by rotating the LC molecules relative to the microcavity
plane. By slightly changing θ with respect to the structure
growth axis, we can modify the magnitude of the total splitting
while maintaining the TE-TM splitting as the dominant effect.
Figures 6(a)–6(d) depict the spatial distribution of the density
and polarization components of the polariton wave packet
in the presence of the zitterbewegung. It is notable that the
trembling motion of the center of mass of the polariton wave
packet is accompanied by oscillations of the circular polar-
ization degree, cf. Ref. [58] for similar effect in electronic
systems. This phenomenon can be understood by considering
the wave packet as a superposition of TE and TM polarized
states with slightly different wave vectors. As the wave packet
evolves within the microcavity, the phase difference between
these components changes, leading to oscillations in the over-
all polarization state.

Figure 6(e) illustrates the dispersions of the split polariton
branches at different angles θ . It can be observed that the
dispersion of the Y -polarized mode remains unchanged as θ

varies, while the dispersion of the X -polarized mode shifts
to lower energy as the LC molecule axis deviates from the
structure growth axis. Consequently, as θ deviates from 90◦,
the splitting of the polariton modes increases.

Figure 6(f) shows the variation of the period of the zitterbe-
wegung, denoted as L, with changing angle θ , while keeping
the wave number k0,x constant. The maximum period occurs
at θ = 90◦ when only the TE-TM splitting is present. As the
deviation of θ increases, the period decreases. It is important
to note that the increase in the splitting magnitude leads to
a decrease in the amplitude of the zitterbewegung and con-
tributes to the damping of the oscillations, ultimately reducing
the observability of the effect.

V. PHOTON-POLARITON MIXING

Let us now turn our attention to the structure depicted
schematically in Fig. 7(a). In contrast to the structure shown
in Fig. 1(a), this configuration includes a single QW located
at the center of the cavity layer. To prevent direct contact be-
tween the QW and the LC, we have introduced two protective
SiO2 layers on both sides of the QW. As shown in panel (b)
of Fig. 7, the coupling with the exciton layer only occurs for
the even cavity mode, while the odd mode remains purely
photonic. Thus, the structural anisotropy induced by the LC-
filled cavity layer leads to the mixing between photonic and
polaritonic modes. The dispersion of the three eigenmodes of
the structure, calculated using MF, is presented in Fig. 7(c).
For the specific parameters employed (including the angle
θ ), the dispersions of the two lower modes exhibit crossing
around (kx, ky) = (0, 0) and their dependence on kx is linear.
This region of interest is magnified in Fig. 8(a).

Amending the angle θ , we obtain two tilted Dirac cones
at (kx, ky) = (0, ky,D), see Fig. 8(b). The Hamiltonian for the
system reduces, in agreement with Ref. [38] to

HII =
(Hc,2×2 Ṽ †

Ṽ Eexc

)
, (20)

023220-9



SEDOV, GLAZOV, LAGOUDAKIS, AND KAVOKIN PHYSICAL REVIEW RESEARCH 6, 023220 (2024)

FIG. 7. Same as in Fig. 1 (a), (b) and in Fig. 2 (c) but for the LC-filled microcavity with a single QW. The angle θ is taken 16.59◦. The
thickness of each LC-filled cavity sublayer is d/2 = 0.7 µm.

where Ṽ = (V, 0). Eigenvalues of the Hamiltonian (20) in
comparison with the MF calculations are shown in the side
wall plots in Fig. 7(c). Values of the parameters used for fitting
are given in Table II.

The dependencies of the characteristic points of the two
lower dispersion surfaces on the orientation of the LC
molecules characterized by the angle θ are illustrated in Fig. 9.
Similar to the scenario depicted in Fig. 3, anisotropic splitting
acts as the mechanism for the mixing of dispersion branches.
This mixing is particularly noticeable near a certain angle θ

(estimated as approximately 16.59◦ for the considered geom-
etry), at which the splitting is significant enough to stand out
against TE-TM splitting, yet sufficiently modest to allow for
the mutual influence of the split resonant modes. The mixing
results in the formation of two symmetrically positioned min-
ima along ky on the lowest dispersion surface at (0, k±

min), see
blue curves in Fig. 9.

The key distinction from the previously discussed case
lies in the fact that the two lower dispersion branches un-
dergo crossing not only at the critical angle θ and not just at
(kx, ky) = (0, 0). As one moves away from the critical angle,
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FIG. 8. Magnified dispersion regions around the positions of
crossing of the two lowest dispersion branches. Around (kx, ky ) =
(0, 0) at θ ≈ 16.59◦ (a) and around (kx, ky ) = (0, ky,D ) ≈ (0, ±0.8)
at θ ≈ 16.1◦ (b).

the positions of the crossing points h̄ωD = h̄ω(k±
D , 0) diverge

from the center of the dispersion surface, symmetrically along
the kx axis. At these crossing points also referred to as
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FIG. 9. (a) The dependencies of polariton energies h̄ω(0, 0) at
the center (kx,y = 0) of the two lower dispersion surfaces (green and
red), the dependence of the energy h̄ωD = h̄ω(|kD|, 0) of crossing
of the dispersion surfaces (black), and the dependence of the energy
minima h̄ωmin = h̄ω(0, |kmin|) on the lowest dispersion surface (blue)
on the rotation angle of LC molecules θ . (b) Parametric dependence
of the energies h̄ωmin and h̄ωD on |kmin| and |kD|, respectively. (c) The
relationships between the wave numbers |kmin, D| and the angle θ .
Black dash-dotted lines link the parameters corresponding to the
crossing of the two lowest dispersion surfaces at (kx, ky ) = 0. Gray-
dashed lines indicate the edges of the region with |kmin| 	= 0. The
parameters for the simulations are the same as those for Fig. 7(c).
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FIG. 10. LC-filled microcavity with an embedded perovskite layer. (a) Schematic of the structure. (b) Reflectance spectrum at kx = 0. The
dashed curve and the dash-dotted line indicate the cavity dispersion without the exciton resonance and the exciton energy, respectively.

diabolical points, the anticipated tilted Dirac cones are ob-
served, as introduced in Fig. 8(b) and depicted by the black
curves in Fig. 9. It is noteworthy that diabolic points are only
observed at angles θ that do not exceed the critical angle. This
is due to the fact that further increasing the angle causes the
initially converging split branches to start diverging.

VI. STRUCTURE WITH A PEROVSKITE LAYER

Considerable attention has been given to structures incor-
porating a two-dimensional perovskite layer into a micro-
cavity layer due to the large binding energy of perovskite
excitons, which enables strong exciton-photon coupling even
at room temperature [11,39]. In this context, we now exam-
ine a microcavity structure where QWs are replaced with
a perovskite layer, as illustrated in Fig. 10(a). Following
the approach in [39], we consider a polycrystalline two-
dimensional (2D) phenylethylammonium iodide perovskite
(C6H5C2H4NH3)2PbI4 (PEPI) characterized by the dielectric
function

εPEPI = ε0 + f

E2
exc − (h̄ω)2 − ih̄2γω

, (21)

where ε0 = 4.107, f = 0.712 eV2, h̄γ = 40.4 meV, and
Eexc = 2.395 eV. Note that by contrast to (2), here we use
the dielectric function with nonresonant contributions, but
their account does not change the results significantly since
h̄γ � Eexc. We use only one layer of thickness of 20 nm
adjacent to the bottom mirror and covered by PMMA layer
of thickness of 30 nm, see Fig. 10(a).

Figure 10(b) shows the reflectivity spectrum of the struc-
ture at the resonance of the perovskite excitons with both
cavity modes at k = 0. The following peculiarities of the
dispersion of the structure eigenmodes can be seen. First, the
strong light-matter coupling still takes place in the structure
resulting in the avoided crossing of the polariton dispersion
branches. Second, the splitting between the upper and lower

polariton branches is large compared to Fig. 4 and is estimated
as about 65 meV. Third, cavity modes that extend from the
exciton resonance contribute to the exciton-photon coupling
in the structure. In Fig. 10(b), the dispersions of such modes
are pronounced at |ky| > 5 µm−1. This becomes possible since
the Rabi splitting approaches the splitting of the cavity modes.
Thus the Hamiltonian for the structure cannot be reduced to
the 4×4 matrix form. Last, but not least, despite the strong
coupling, the polariton line turns out to be extremely broad
due to high losses in the perovskite layer. This limits the
spread of polaritons in the microcavity plane to a few microns
and hampers observation of any propagation-related spin and
polarization effects in such structures.

VII. CONCLUSIONS

In conclusion, here we presented the results of the theo-
retical investigation of optical microcavities filled with liquid
crystal media containing embedded quantum wells. What
sets liquid crystal filled microcavities apart is their excep-
tional ability to manipulate the polarization characteristics of
the photonic fraction of polariton states through the external
influence on liquid crystal molecule orientation. This remark-
able control opens up possibilities for realizing controllable
synthetic Hamiltonians tailored to the microcavity polariton
eigenmodes, exemplified by those incorporating Rashba and
Dresselhaus spin-orbit terms. The tailored Hamiltonians po-
tentially facilitate the study of complex quantum phenomena
like the anomalous Hall effect and topological insulators in a
simplified, controllable environment. They provide a stream-
lined yet effective platform for delving into complex quantum
states and behaviors, enabling advancements in optoelec-
tronic, and spintronic device applications.

The controllability of the polarization characteristics can
be further extended to the controllability of the orbital variable
of exciton polaritons through the mechanisms of the spin-orbit
interaction, resulting in various spin-dependent propagation
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effects. Through our numerical experiments, we have suc-
cessfully reproduced and investigated phenomena such as
birefringence and zitterbewegung of exciton polaritons. These
findings highlight the potential of liquid crystal filled mi-
crocavities as platforms for the manipulation and study of
polariton states with unique spatial characteristics.

We have introduced a distinct microcavity geometry
designed to facilitate spin-orbit coupling between purely pho-
tonic and polaritonic modes within the cavity. This geometry
relies on leveraging liquid crystal induced optical anisotropy
to ensure resonance between orthogonally polarized even and
odd cavity modes, while placing the exciton layer at the center
of the cavity layer maximizes the coupling with the former
and minimizes it with the latter. In this geometry, we success-
fully demonstrated the formation of tilted Dirac cones in a
dispersion of bosonic system. This achievement is noteworthy
for its implications in directional photon manipulation and the
dynamic tuning of photonic states, enabled by the adjustable
liquid crystal environment. The ability to control these fea-
tures not only broadens the understanding of Dirac materials
but also opens up practical avenues for designing photonic
devices with customizable dispersion properties. Specifically,
this includes the development of directional light propagation
devices and systems exhibiting directional nonlinearity.

Finally, we investigated the effects of the incorporation
of a two-dimensional perovskite layer into the microcavity
structure. Although the strong light-matter coupling still takes
place in such structure, the significant linewidth of the po-
laritons due to high losses in the perovskite layer limits their
spread in the microcavity plane, making the observation of
spin-dependent propagation effects more challenging.
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APPENDIX: DETERMINATION OF PROPAGATION
CONSTANTS WITHIN THE 4×4 MATRIX FORMALISM

The 4×4 MF is used for revealing propagation of elec-
tromagnetic waves in stratified media composed of homoge-
neous layers with different optical properties. The formalism
is based on solving the Maxwell’s equations in each layer
and matching the solutions at the boundaries of the layers. To
apply MF to our problem, we follow Refs. [4,49].

For monochromatic waves of frequency ω0, the Maxwell’s
equations can be written in the matrix form as

Ĝ� = iω0M̂�, (A1)

for the generalized vector � = [Ex(r), Ey(r), Ez(r), Hx(r),
Hy(r), Hz(r)]T combining the electric El (r) and magnetic
Hl (r) field components, where r = (x, y, z) and l = x, y, z.
In (A1), Ĝ is the 6×6 matrix given as

Ĝ =
(

0̂ ĝ
−ĝ 0̂

)
with ĝ =

⎛
⎝ 0 −∂z ∂y

∂z 0 −∂x

−∂y ∂x 0

⎞
⎠, (A2)

and 0̂ being the 3×3 zero matrix.
The material contribution is accounted with use of the

matrix M̂, which in the general case takes the form

M̂ =
(

ε̂ ρ̂1

ρ̂2 μ̂

)
, (A3)

where ε̂ and μ̂ are the dielectric permittivity and permeability
tensors, the tensors ρ̂1,2 are responsible for optical rotation [4].
For nonmagnetic non-optically active media, μ̂ = μ01̂, and
ρ̂1,2 = 0̂, where 1̂ is the identity matrix and μ0 is the vacuum
permeability.

Assuming a plane wave solution of Eq. (A1), i.e.,
taking �(r) = exp[−i(ω0/c)(qxx + qyy)]�(z), where � =
El , Hl with l = x, y, z, and qx,y are the dimensionless in-plane
wave vector components, we can reduce (A1) to the following
form:

∂z�(z) = i(ω0/c)	̂�(z) (A4)

for the vector �(z) = [Ex(z), Hy(z), Ey(z), Hx(z)]T, where the
4×4 characteristic matrix [49]

	̂ = 1

εzz

⎛
⎜⎜⎝

qxεzx q2
x − εzz qxεzy −qxqy

εxzεzx − εxxεzz qxεxz εxzεzy − εxyεzz −qyεxz

0 0 0 1
εyxεzz − εyzεzx + qxqyεzz −qxεyz εyyεzz − εyzεzy − q2

xεzz −qyεyz

⎞
⎟⎟⎠ (A5)

is obtained after eliminating the longitudinal components
Ez(r) and Hz(r). The characteristic matrix does not contain the
dependence of the longitudinal coordinate z. Thus presenting
the vector �(z) in a layer j as

� j (z) = exp[ iω0κ j z/c]� j, (A6)

where � j characterizes the electromagnetic field at the en-
trance to the layer j, we arrive at the eigenproblem (3) in the
main text with the longitudinal (dimensionless) wave vector

components κ jm as the eigenvalues and the eigenvector of
the transverse field components � jm, where m = 1, 2, 3, 4
indicates the number of the solution with four solutions in
total.

Among the four eigenvalues κ jm, two correspond to for-
ward propagating waves (κ j1 and κ j2) in a layer j while
the other two correspond to backward propagating waves
(κ j3 and κ j4). Herewith each pair contains components re-
sponsible for different wave polarizations: s- and p-polarized
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waves in the absence of the external magnetic field, and
ordinary and extraordinary waves in the presence of the mag-
netic field. See Ref. [4] for the appropriate sorting of the
eigenvalues.

For operating in the basis of forward and backward prop-
agating waves (4), the interaction matrix Â should be used,
which projects the electric field vector E j in a layer j onto

the eigenmodes of the layer [4,49]. Â represents a 4×4 ma-
trix, which columns are eigenvectors of the characteristic
matrix 	̂. For linking the input and output boundaries of
the layer, one should use the 4×4 propagation matrix, which
elements are found as Pj,mm′ = δmm′ exp[i(ω0/c)κ jmd j], where
δmm′ is the Kronecker delta, and d j is the thickness of the jth
layer.
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