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Dequantizing quantum machine learning models using tensor networks
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Ascertaining whether a classical model can efficiently replace a given quantum model—dequantization—is
crucial in assessing the true potential of quantum algorithms. In this work, we introduced the dequantizability of
the function class of variational quantum-machine-learning (VQML) models by employing the tensor network
formalism, effectively identifying every VQML model as a subclass of matrix product state (MPS) model
characterized by constrained coefficient MPS and tensor product-based feature maps. From this formalism,
we identify the conditions for which a VQML model’s function class is dequantizable or not. Furthermore,
we introduce an efficient quantum kernel-induced classical kernel which is as expressive as given any quantum
kernel, hinting at a possible way to dequantize quantum kernel methods. This presents a thorough analysis
of VQML models and demonstrates the versatility of our tensor-network formalism to properly distinguish
VQML models according to their genuine quantum characteristics, thereby unifying classical and quantum
machine-learning models within a single framework.
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I. INTRODUCTION

Quantum machine learning (QML) garners a huge interest
among various communities and industries in recent years as
a prominent candidate for practical applications on quantum
devices [1,2]. Variational QML (VQML) uses a variational
quantum circuit as a data processor, and the variational pa-
rameters in the quantum circuit are optimized with the help of
classical optimization algorithms in order to learn and predict
data outputs. VQML aims to achieve a more powerful ML
model by exploiting a possible quantum advantage of quan-
tum circuits in noisy intermediate scale quantum (NISQ) era.

While there exist theoretical proofs that demonstrate the
possibility of achieving a quantum advantage in ML tasks in
fully quantum settings [3,4], more effort is required to un-
derstanding whether ML from classical data can also achieve
such a quantum advantage [5–9].

For this purpose, a fair assessment of VQML and classical
ML models is in order, both of which possess inherently
different structures. Moreover, the preprocessing of classi-
cal data always precedes VQML when they are encoded on
NISQ machines. This additional computation might lead to
the “dequantization” argument when comparing a classical
and quantum model [10,11]. Moreover, if one does not have
access to a coherent quantum memory and quantum channel,
then even if the QML uses a “quantum state” as its input,
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one cannot avoid using classical data to “upload” the quantum
state onto the quantum circuit. In this study, we propose a uni-
fied tensor-network (TN) formalism to systematically analyze
VQML models, which permits us to classify all classical-data-
encoded VQML models into a subclass of matrix product state
(MPS) ML models [12]. We introduce the concept of dequan-
tization of the function class of VQML models—the efficient
approximation of all function-class outputs of a VQML model
using a classical model—and find necessary conditions for
(non)dequantizable VQML models by classical MPS models.

More specifically, the TN formalism describes the function
output of a VQML model as a linear MPS model form, subse-
quently separating it into two components: the coefficient part
of the linear model which is in the form of MPS containing all
quantum-circuit training parameters and the basis part (or a
feature map in the ML lingo), which formulates the basis for
the linear model. The number of linearly independent basis
functions can scale exponentially with the number of encod-
ing gates [13,14], challenging classical models to approximate
them. However, by leveraging the knowledge of data prepro-
cessing before implementing VQML, we can simply observe
that the basis part is in an easily manageable tensor-product
form.

Representing coefficients as an MPS allows systematic
analysis of expressivity and approximability of models in
the context of entanglement. Moreover, we discover that the
coefficients of a VQML model are Pauli coefficients of the
circuit-dependent operator when expanded in the Pauli basis.
This observation enables systematic analysis of coefficients
of VQML models using various techniques, of which we shall
provide some hints.

To assess whether a VQML model is dequantizable or
not, we construct a classical MPS model having the same
basis function as (or is basis-equivalent to) the VQML
model and explore the possibility of VQML function-class
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dequantization. With dimensional arguments and borrow-
ing key results concerning MPS approximability [15], we
list some necessary conditions of nondequantizable VQML
models. These include models with dimensions that scale
exponentially with the number of qubits, and coefficient MPSs
that are highly entangled. Numerically we show that a general
polydepth variational quantum circuit with a nontrivial encod-
ing strategy can satisfy this requirement.

Lastly, we introduce the computationally efficient classical
kernel inspired by the basis-equivalent classical MPS model
that is naturally attained by using the equivalent precomputa-
tions as the given quantum kernel. It covers the function space
from the quantum kernel, and we compare the performance
of the classically hard-to-simulate quantum kernel and the
classical counterpart of it.

After a preliminary outline of the theoretical background
and setup of VQML models in Sec. II, the unifying tensor-
network formalism for describing these quantum models is
introduced in Sec. III, followed by a more detailed dis-
cussion of VQML dequantization in Sec. IV. In Sec. V,
upon recognizing that the feature map is, in fact, efficient
to handle classically, we analytically and numerically study
basis-equivalent classical MPS models and identify conditions
for (non)dequantizable VQML models. Then, using our TN
formalism, in Sec. VI, we construct tensor-product classical
kernel models and show that they can efficiently cover the
quantum kernel counterparts. This work shall finally conclude
in Sec. VII.

II. PRELIMINARIES OF VARIATIONAL QUANTUM
MACHINE LEARNING MODEL

Machine learning (ML) can be understood as a function
approximation task, where the target function is unknown and
is to be learned from a training dataset. A function approx-
imator in ML is a computational model, which defines and
generates some function class. The cost function measures
how well our function-approximator model is approximating
the target function. An ML algorithm minimizes this cost
function calculated with the training dataset and ML model
function, by using various numerical or analytical methods.

Variational quantum machine learning (VQML) is ML
that uses a parametrized quantum circuit as a computational
model. The parametrized quantum circuit usually has a fixed
structure (called an ansatz) and is parametrized by variable pa-
rameters. Because VQML models employ quantum circuits,
they take quantum state as input, which inevitably requires
a classical-to-quantum encoding procedure [16]. There ex-
ist various encoding strategies, such as amplitude encoding,
Pauli encoding, data reuploading [17], instantaneous quan-
tum polynomial (IQP) encoding that is conjectured to be
hard to simulate classically [18], and so on. These encoding
strategies, E , consists of preprocessing functions �(i) : Rd →
R22mi −1, mi-qubit encoding gates S(i)(·) : R22mi −1 → C2mi that
map preprocessed data �(i)(x) into an mi-qubit state, and
positions of encoding gates within the quantum circuit. Here
we assumed that the inputs are d-dimensional real vectors
without loss of generality and i is the index for distinguished
encoding gates. For a general E , the corresponding encoding
gates S(i)s can be highly nonlocal.

To the output of the VQML model, we choose some ob-
servable (or POVM) O and measure its expectation value.
Then, the function class of the VQML model is defined as

fQ(x; E,U, θ, O) = 〈0|U †(x; E, θ)OU (x; E, θ)|0〉. (1)

Here, we initiate the n qubits to the state |0〉 ≡ |0〉⊗n,
and U (x; E, θ) represents the quantum circuit using encoding
strategy E and trainable unitaries which are parametrized by θ.

Let us consider the general E , where S(i) are multiqubit
gates. To implement any mi-qubit encoding gate on a real
quantum circuit, we need to compile it using a universal gate
set of the quantum device. Here we assume a universal gate
set comprising an arbitrary single-qubit gate and some un-
parametrized two-qubit gate such as a controlled-not (CNOT)
gate. As arbitrary universal gate sets can be converted to
this single- and CNOT gate set, without loss of generality,
every multi-qubit encoding gate is decomposed with a set
{Sα

1 (φα
1 (x), φα

2 (x), φα
3 (x)),UCNOT}α before running VQML al-

gorithm, where (φα
1 (x), φα

2 (x), φα
3 (x)) are Z-Y -Z Euler angles.

The Y rotation in the middle can be replaced by Z rotation
with diagonalization such as

e
−i

φα
2 (x)

2
Y = F †e

−i
φα

2 (x)

2
Z
F, (2)

where F = 1√
2
(1 1

i −i). Euler angles are obtained when com-
piling multi-qubit encoding gates into the single-qubit gates,
and calculated by preprocessing functions that are denoted as
φs. We denote N as the total number of single-qubit Pauli-Z
rotation gates when all the encoding gates are compiled. For
simplicity, we combine upper and lower indices in φα

k into
one index α ∈ [N], and group all preprocessing functions
φα (E ) : Rd → R and the values {φα (x; E )}N

α=1 [see Fig. 1(a)].

III. THE FUNCTION CLASS OF VQML MODELS

After the Pauli-gate decomposition, all data-dependent en-
coding gates are expressed in terms of Pauli-Z rotations.
Using the result from Ref. [19], it is straightforward to see that
the function class of a general encoding strategy corresponds
to a linear combination of basis functions {Bj (x; E )} j ,

fQ(x; θ, E,U, O) =
K∑

j=1

c j (θ,U, O)e−ib j (x;E )

≡
K∑

j=1

c j (θ,U, O)Bj (x; E )

≡ c(θ,U, O) · B(x; E ), (3)

where

bj (x; E ) ∈
{

N∑
α=1

βαφα (x; E ) | βα = {−1, 0, 1}
}

. (4)

The symbol K refers to the number of linearly independent
basis functions which can be less than 3N . In other words, any
VQML model is a featured linear model (FLM) which is a
linear model in the feature space endowed by a feature map
B : Rd → CK [18,20]. Note that the coefficients c j (θ,U, O)s
from the quantum model are not arbitrary, but constrained as
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FIG. 1. Schematic overview of this work. (a) The procedure for variational quantum machine learning (VQML) with a general encoding
strategy, denoted as E . This strategy includes encoding gates S(i)(·)s, preprocessing functions �(i)(x), and their respective positions within
the quantum circuit (represented by magenta boxes). During the preparation stage, all original encoding gates are compiled into single-qubit
Pauli-Z rotations (represented by orange boxes), with angles φα (x)s and nonparametrized two-qubit gates, all computed classically. This
decomposition may include nonparametrized unitaries, denoted as F . Green boxes represent the trainable circuit with variable parameters θq.
The VQML-model output is given by the expectation value of a specific observable O. This output is estimated via NS runs of the quantum
circuit. (b) The exact value of the VQML model can be represented as a linear model using the feature map T and constrained MPS coefficient
tensor Cq(θq ), constructed from the parametrized circuit. With the preprocessing functions obtained during the preparation stage, we can
efficiently construct T, classically. The classical tensor network (TN) model using T resides in the same function space spanned by the same
basis functions as the VQML model. The TN formalism can then be used to compare the respective MPS parts Cc(θc ) and Cq(θq ) for the
classical and quantum models, which dictates the possibility for dequantization.

they are obtained from a quantum circuit. Calculating the ex-
act form or values of c j (θ,U, O)s is equivalent to simulating a
quantum circuit directly, which is typically inefficient unless
the circuits possess special structures [21]. Rather, we shall
analyze VQML models using a unifying TN framework, to be
introduced in the following section.

A. VQML models as matrix product state models

MPS model is a variational ML model which is a featured
linear model. A feature map is given by a tensor-product
of certain data-dependent vectors and a coefficient part is
given by a variational MPS. The MPS model was originally
introduced in Ref. [12] as a quantum-inspired classical model.
However, here we assert a somewhat “reverse” statement that
a VQML model using classical data is a subclass of the MPS
model.

Throughout this text, we assume all encoding gates are
transformed to single-qubit Pauli-Z rotations. Additionally,
the set of preprocessing functions {φα}N

α=1 are defined as in

Sec II. We omit the encoding strategy E dependency for nota-
tional simplicity.

First, let us consider the simple parallel VQML model with
n = N where all the encoding gates are placed parallel and in
between trainable unitaries W1(θ1) and W2(θ2):

fQ(x; θ,W1,W2, O) = 〈0|W †
1 (θ1)S†(x)W †

2 (θ2)O

× W2(θ2)S(x)W1(θ1)|0〉, (5)

where S(x) = �N
α=1e−iφα (x)Zα/2, and θ ≡ (θ1, θ2). Then the

following lemma holds, where detailed proof with graphical
description is given in Appendix A.

Lemma 1 (A simple parallel VQML model is an MPS
model). Given a simple parallel VQML model as Eq. (5), one
can represent it as:

fQ(x; θ,W1,W2, O) = Cq(θ) · T(x), (6)

with the coefficient MPS

Cq(θ) = (O′ 
 ρT )(θ) · P̃, (7)

023218-3



SHIN, TEO, AND JEONG PHYSICAL REVIEW RESEARCH 6, 023218 (2024)

and

P̃ =

⎛
⎜⎜⎝

1 0 0
0 1 i
0 1 −i
1 0 0

⎞
⎟⎟⎠

⊗N

. (8)

The feature map is given as

T(x) =
N⊗

α=1

T(α)(x) =
N⊗

α=1

⎛
⎝ 1

cos (φα (x))
sin (φα (x))

⎞
⎠. (9)

We denoted the evolved observable as O′(θ2) :=
W †

2 (θ2)OW2(θ2), pre-encoded state as ρ(θ1) :=
W1(θ1)|0〉〈0|W †

1 (θ1), tensor contraction as ·, and the
Hadamard product as 
. The tensor (O′ 
 ρT )(θ) is a
2N × 2N matrix having 2N indices, where row and column
indices are decomposed into N indices each for the one-qubit
line. See Fig. 9(a). We vectorize this (O′ 
 ρT )(θ) by
gathering the same site indices to make it a tensor of N
indices having a dimension of 4. This enables contraction
between tensor network P̃ and (O′ 
 ρT ).

Next, we consider the general case of a VQML model
using n qubits as given in Eq. (1). We can rewrite any general
encoded VQML as an R-times reuploading model,

fQ(x; θ) = 〈0|W †
0 (θ0)S†

1 (x)W †
1 (θ1)S†

2 (x) · · ·
S†

R(x)W †
R (θR)OWR(θR)SR(x) · · ·

S2(x)W1(θ1)S1(x)W0(θ0)|0〉. (10)

This equation distinguishes layers by their dependencies on
data or variational parameters, aligning with the concept of
a data reuploading model as noted in Ref. [17]. Recall that
all encoding gates are decomposed to single-qubit Pauli-Z
gates and the preprocessing functions {φα}α are given. Equa-
tion (10) includes cases where some Sk contains the trivial
preprocessing function φ(x) = 0. Leveraging lemma 1, we
can now establish a Theorem regarding general VQML mod-
els.

Theorem 1 (Any VQML model can be represented as an
MPS model). Any VQML model employing a general encod-
ing strategy E , and a circuit ansatz U such as Eq. (1) can be
represented as an MPS model:

fQ(x; E,U, θ, O) = Cq(θ) · T(x), (11)

where

Cq(θ) = (
O′

R 
 ρT
R

)
(θ) · P̃ (12)

and

T(x) =
nR⊗

α=1

T(α)(x) =
nR⊗

α=1

⎛
⎝ 1

cos (φα (x))
sin (φα (x))

⎞
⎠. (13)

In this formulation, the circuit ansatz U , O and θ dependent
tensors O′

R and ρR are as specified in Eqs. (A16) and (A17),
respectively.

The proof of Theorem 1 with graphical description can be
found in Appendix A.

The function class of a VQML model is a linear model in
the feature space, with the feature map T. This can also be

viewed as a special MPS model, characterized by a special
coefficient MPS Cq(θ), which is determined by the quantum
circuit’s structure. In the following sections, we delve deeper
into the analysis of both T and Cq(θ). This exploration aims
to reveal the insights and implications that such an analysis
can provide.

B. The feature map T

The feature map T : Rd → R3N
(where N is now the length

of the coefficient MPS that depends on the structure of the
VQML model) is a mapping given by

T(x) =
N⊗

α=1

T(α)(x) =
N⊗

α=1

⎛
⎝ 1

cos (φα (x))
sin (φα (x))

⎞
⎠. (14)

The encoding strategy E determines preprocessing functions
{φα}α , consequently defining the feature map. Output func-
tions of the VQML model are given by the linear sum of basis
functions in {Ti(x)}3N

i=1, which is the set of components of
the feature map T(x). This means the function space, or the
function class, of the VQML model, is spanned by these 3N

functions. It is critical to recognize that these basis functions
may not all be linearly independent, as their independence
hinges on the selected preprocessing functions and, therefore,
E .

As an example of a 1D VQML function, in a naive Pauli
encoding strategy where all φα (x) = x, only 2N + 1 out of 3N

components are linearly independent. On the other hand, for
the exponential encoding strategy [13], where φα (x) = kα−1x,
a set of 3N linearly independent basis functions can be gener-
ated with k � 3.

In terms of computational complexity, T(x) is efficient
to store and generate classically, as it requires only O(N )
memory to store and single call of φαs as the VQML model
does. With this observation, we conclude that exponentially
large feature space, commonly dubbed as a special feature of
QMLs, is not unique to quantum models.

C. The coefficient MPS Cq

The coefficient MPS Cq : � × O → R3N
(For the general

encoding case, O′
R and ρR respectively.) is a mapping from

parameter space � and observable space O to 3N -dimensional
real space. This coefficient MPS of given VQML, calculated
as

Cq(θ) = (O′ 
 ρT )(θ) · P̃, (15)

can be seen as a normal vector of hyperplane on the feature
space.

Unlike coefficients in a simple linear model, we cannot
control all 3N components in Cq freely, as they are obtained
implicitly by the contraction of unitaries in the quantum cir-
cuit. In general, it is not universal, which means that not
all of 3N dimensional vectors can be generated. For Cq to
be universal (besides the normalization condition), one needs
universal ansatz in trainable unitary parts and multiple circuits
as one unitary orbit of the Hermitian matrix cannot cover the
whole space of Hermitian matrix space.
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In Eq. (15), one might wonder what P̃ does. This tensor is
a given by

P̃ =

⎛
⎜⎜⎝

1 0 0
0 1 i
0 1 −i
1 0 0

⎞
⎟⎟⎠

⊗N

= (||I〉〉〈0| + ||X 〉〉〈1| + ||Y 〉〉〈2|)⊗N . (16)

In other words, the coefficient tensor Cq is obtained by pro-
jecting out Z-containing Pauli coefficients of O′ 
 ρT . Here,
λi’s are the Pauli coefficients when O′ 
 ρT is represented
with the Pauli basis as

(O′ 
 ρT )(θ) =
∑

i

λi(θ) σ
(1)
i1

⊗ σ
(2)
i2

⊗ · · · ⊗ σ
(N )
iN

, (17)

where i = {0, 1, 2, 3}⊗N and σik = {I, X,Y, Z}. One can iden-
tify

Cq(θ)ĩ = ((O′ 
 ρT )(θ) · P̃)ĩ = 2Nλĩ, (18)

where now we have truncated indices ĩ ∈ {0, 1, 2}⊗N .
For instance, consider the exponential encoding on 1d

input x, where φα (x) = 3α−1x and N = 3. Then, one of
the basis functions is cos(x) sin(3x) cos(9x), correspond-
ing to ĩ = (1, 2, 1). Therefore the coefficient of T121(x) =
cos(x) sin(3x) cos(9x) is 2N times that of the Pauli string
X ⊗ Y ⊗ X when O′ 
 ρT is represented in the Pauli basis.

This observation clarifies the previously opaque nature of
a VQML model’s coefficients and gives us a new way to
understand the model in the context of operator spreading
[22,23] or non-Cliffordness of the circuit [24]. We refer the
Reader to Appendix B for more detailed discussions. It also
allows for a more comprehensive analysis of noise effects on
VQML models using techniques introduced in Refs. [25,26].
Refer to Appendix F for additional information.

To fully contract the function Cq(θ) · T(x) to get the out-
put from the quantum model, computational resources on
the order of O(3χq(θ)2N ) are required. Here, χq(θ, O) :=
maxk∈[N−1] χ

(k)
q represents the maximum bond dimension

among all bond indices of Cq(θ). This highlights the
significance of the maximum bond dimension in MPS, as it di-
rectly influences the computational complexity of contracting
MPS.

The value of χq depends on the circuit ansatz. However,
for VQML models that include multiple two-qubit entangling
layers, which is a common ansatz for variational circuits, χq

can increase exponentially with the number of layers. To be
more concrete, let us consider the “simple parallel model,”
depicted in Figs. 2(a) and 2(b1). Our trainable ansatz W1(θ1)
(W2(θ2)) is “hardware-efficient” ansatz, which is composed
of L1 (L2) layers of N parametrized single-qubit unitaries and
nearest-neighbor CNOT gates. That is

Wk (θ) = �
Lk
l=1

(
�N−1

i=1 U l,i,i+1
CNOT

× �N
i=1U

(l,i)
(
θ

(l,i)
1 , θ

(l,i)
2 , θ

(l,i)
3

))
. (19)

We expect that this circuit ansatz results in χq ∼ 3L1L2 ,
which is exponential with the depth of the VQML model. In

FIG. 2. The schematic diagrams illustrate the VQML mod-
els used for simulations. (a) The structure of trainable uni-
taries. These consist of L layers of hardware-efficient ansatze.
Each small green box represents a parametrized single-qubit uni-

tary U (θ (1), θ (2), θ (3) ) = ( cos(θ (1)/2) −eiθ (3)
sin(θ (1)/2)

eiθ (2)
sin(θ (1)/2) ei(θ (2)+θ (3) ) cos(θ (1)/2)

), which

contains three free parameters. Though numerous options exist, This
work focuses on results from this specific trainable circuit ansatz,
chosen as an illustrative example for comparing VQML and classical
models within the TN formalism. (b1) The diagrams for the simple
parallel model. In this model, the number of qubits in the circuit, n,
equals the number of single-qubit Pauli-Z encoding gates N . (b2) The
general structure (data reupload) model. For the numerical results in
this work, we consider a model with 3 times reuploading. Hence,
N = 3n.

Appendix C, we numerically confirm that χq for this ansatz
averaged over multiple random initializations of θ, indeed
exhibits an exponential scaling with respect to the circuit
depth. Our numerical observation implies that the typical Cq

of VQML models using polynomially growing computational
resources can possess exponentially large bond dimensions,
which makes function classes of these VQML models hard to
generate classically.

To summarize, every VQML model is an MPS model with
a feature map T : x �→ T(x), but subject to a special kind of
coefficient MPS determined by the circuit ansatz. In the lan-
guage of ML, VQML models are MPS model that possesses
special regularization on coefficient MPS. For classical ML
models, regularization is a process to reduce the complexity of
learned functions and is executed by adding additional terms
in the loss function or by using some heuristics during the
training [27]. Analogously, employing VQML models corre-
sponds to using an implicit “quantum” regularization by using
quantum circuits as coefficient generators. Such a quantum
regularization can be implemented classically by contracting
a 2D unitary network (quantum circuit) as a coefficient tensor,
which is in general hard for classical computers but efficient
for quantum. This is where VQML models differ from classi-
cal MPS models.
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IV. DEQUANTIZATION OF FUNCTION CLASSES
OF VQML MODELS

The study of quantum-algorithm dequantization aims for
developing efficient classical algorithm that are of comparable
performances to the respective quantum algorithms, both of
which utilize the same level of precomputational power. Fol-
lowing the discussions in Sec. II, here we define the notion of
the VQML-model function.

Definition 1 (Dequantization of VQML’s function
class). For a given function class of the VQML model
FQ(x; �, {φα}α ) utilizing n-qubits, a set of parameters �,
and preprocessing functions {φα}α obtained prior to VQML,
the function class of the VQML model is dequantized by a
classical computational model FC if there exists such a FC that
requires O(poly(n, 1/δ, 1/ε)) computational resources and
fC ∈ FC such that

P
θ∼μ(�)

[D( fQ(x; θ), fC (x)) � ε] � 1 − δ. (20)

Here, μ(�) represents the uniform measure over the train-
able parameters set. This definition depends on the choice
of distance function D. Henceforth, terms like “dequanti-
zation of VQML” or “dequantizable VQML models” refer
to the dequantization of their function classes. Additionally,
throughout this paper, we only consider efficient VQML mod-
els that utilize N = O(poly(n)) encoding gates. Therefore n
and N can be used interchangeably without altering a compu-
tational complexities.

Several points are worth highlighting here. First, it is im-
portant to understand that dequantized VQML models may
still offer quantum advantages. This is because even if two
models belong to the same function class, their performances
such as sample efficiency or generalizability can differ largely
due to their differences in training landscape. Second, the
definition provided above should be considered as a “weak”
form. There are scenarios where a trained quantum model
generates a non ε-approximable function, which resides in
a δ fraction of the function class. Hence, even if a VQML
model is δ-dequantized, it may not be possible to classically
approximate its other practically relevant output functions.

Nevertheless, the criteria for function class dequantization
is a necessary condition for classical surrogates [28] of VQML
models or shadow models of VQML models [29], the recently
investigated. These surrogates or shadow models are classical
counterparts designed to efficiently learn from quantum ML
models, which can be used to replace the original, trained
quantum models in later applications. For efficient learning
and usage, it is crucial that classical models approximate the
quantum model accurately while maintaining efficiency. This
is the essential objective of VQML-model dequantization: it
ensures that classical models can efficiently approximate their
quantum counterparts.

This dequantization criterion can be extended to general
variational quantum algorithms (VQA) beyond just QML sce-
narios by treating x as variational parameters alongside θ. We
can determine how “quantum” the functions generated by a
given variational quantum circuit family are. This perspective
is instrumental in determining the potential of replacing VQA
with classical algorithms as a whole. In this context, dequan-
tization of the quantum-circuit function class (Definition 1) is

a necessary condition for the overall dequantizability of the
VQA itself. In contrast, if a quantum model is not dequanti-
zable, then this means it can produce classically inefficient
functions and therefore can be a prominent candidate for
exhibiting quantum advantage.

We remark that Definition 1 is different with efficient
simulatability of quantum circuits. Consider, for instance,
the univariate naive Pauli encoded model. This model uses
scalar inputs and all N preprocessing functions are identity
functions, φα (x) = x. Regardless of the circuit’s complexity,
one can dequantize this model’s function class with degree-N
Fourier series [19,28], due to its small dimension of function
space. Meanwhile, using exponential encoding [13], results in
an exponential (3N/2 − 1)-degree Fourier series, challenging
dequantization with a simple strategy that just exploits a finite
Fourier series. However, we can cope with this problem in
Sec. V, by exploiting classical MPS models.

V. DEQUANTIZATION USING CLASSICAL MPS MODELS

We learned that the feature map is always expressible in
a tensor-product form, and can thus be efficiently generated,
given the set of preprocessing functions {φα}α . Using this
and the fact that VQML models are MPS models, we take
a classical MPS (CMPS)model that is basis-equivalent to the
VQML model we would like to dequantize,

fC (x; θ) ≡ Cc(θ) · T(x), (21)

where Cc(θ) is its coefficient part and T(x) is the feature
map of the VQML model. The maximum bond dimension of
Cc(θ), denoted as χc, may be set arbitrarily. If χc scales ex-
ponentially in N—which is the number of tensors in T—then
fC can surely approximate all VQML functions but it is not
efficient as contraction complexity for the CMPS model scales
O(χ2

c N ). Therefore we only focus on χc ∼ O(poly(N )).
For distance measure between functions D( fQ, fC ), we

shall adopt the two-norm squared distance,

D2( fQ, fC ) := 1

|�|
∫

�

| fQ(x) − fC (x)|2dx. (22)

This is a natural choice if one considers mean squared error,
which is a finite approximate version of the two-norm dis-
tance, as a performance measure for function regression tasks.
Next, we can bound D2( fQ, fC ) using the two-norm distance
of Cq and Cc from above as follows:

D2( fQ, fC ) = 1

|�|
∫

�

{(Cq − Cc ) · T(x)}2dx

= 〈�| 1

|�|
∫

�

|T(x)〉〈T(x)|dx|�〉

� ‖|�〉‖2
2‖G‖F , (23)

where |�〉 := Cq − Cc, G is the Gram matrix of Ti(x)s,
Gi j := 1

|�|
∫
�

Ti(x)T j (x)dx, and � is the domain encom-
passes all possible inputs, not just the training data. We
omitted the trainable parameter, θ , dependence for Cc and Cq,
and one should be aware that they are parametrized indepen-
dently. From the above inequality, we see that

‖|�〉‖2
2 � ε/‖G‖F , (24)
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which guarantees the approximation within the error toler-
ance. In other words, good approximability for coefficient
tensors in terms of two-norm can be translated to good ap-
proximability for functions. Especially, when T(x) contains
an orthonormal basis set in a given �, such as the Fourier
function basis and � = [−π, π ], we have the equality

1

|�|
∫

�

( fQ(x) − fC (x))2dx = ‖Cq − Cc‖2
2 = ‖|�〉‖2

2. (25)

A. Conditions for not dequantizable VQML models
with CMPS models

From Eqs. (24) and (25), to permit dequantization, an
accurate coefficient MPS approximation becomes important.
When approximating an MPS Cq having a maximum bond di-
mension χq with a restricted MPS Cc(D) that has a maximum
bond dimension χc = D, the approximation error in terms of
the two-norm is bounded from above by [15]

‖Cq − Cc(D)‖2
2 � 2

N−1∑
k=1

χq∑
i=D+1

(
sk

i

)2 ≡ 2η(D). (26)

Here, {(sk
i )2}χq

i=0 is the set of singular values obtained
from the singular value decomposition of ρk

Q :=
Tr[k+1,k+2,...,N]|Cq〉〈Cq|, which is a reduced matrix for
sites 1, 2, . . . , k, and η(D) is a truncation error of Cq which
is a sum of discarded singular values when only D largest
values are kept.

The magnitude of η(D) is dictated by the Renyi-α entropy
of Cq’s singular values. Note, also, that Cq is not a gen-
uine “state,” as tr|Cq〉〈Cq| �= 1. By properly normalizing the
|Cq〉〈Cq|, one can obtain the Renyi-α entropy for the kth “cut”
of Cq,

S(k)
α := 1

1 − α
log2 tr

(
ρk

Q

)α
. (27)

We focus on the α = 2 case as this serves as a criterion for
efficient approximability of Cq.

First, we propose a condition for VQML models with all
orthonormal basis that are nondequantizable by CMPS mod-
els by virtue of S(k)

2 .
Proposition 1 (Highly entangled coefficient generating

models are nondequantizable by CMPS models). VQML mod-
els satisfying G = I , such that

P
θ∼μ(�)

(
S(k)

2 (θ) ∈ O(ckβ )
)
� 1 − δ (28)

for some constants c, and 0 < β < 1, cannot be dequantized
by CMPS models with D2 distance and any precision ε.

Proof. We use the result from Ref. [30],

ln D � S(k)
2 + 2 ln (1 − εtr ), (29)

where D is the maximum bond dimension of approximating
classical MPS Cc, and εtr is the trace distance between density
operators |Cq〉〈Cq| and |Cc〉〈Cc|. G = I implies that all basis
functions in {Ti(x)}i are orthonormal, from Eq. (25), we have

D2( fQ, fC ) = ‖�‖2
2 � 2η(D) � 2(N − 1)εtr, (30)

where the second inequality comes from the fact that η(D)
is bounded by the trace distance. Setting εtr = ε

2(N−1) , we see

that

D � 2S(k)
2 +2 ln (1− ε

2(N−1) ), (31)

for D2( fQ, fC ) � ε. This states that if S(k)
2 of Cq exhibits a

growth rate faster than logarithmic in relation to its size (N or
k = cN for 0 < c � 1), approximating it with efficient CMPS
(having D = χc = O(poly(N )) model is impossible for any
specified error tolerance ε �.

Proposition 1 highlights that the “quantum” nature—
classical infeasibility for an approximate generation—of a
VQML output function is due to a highly entangled coefficient
in an exponentially large dimensional space.

Besides the scaling of S(k)
2 , we may also look at Smax

2 :=
max

k
S(k)

2 . This stems from the reasoning that when an χc �
2Smax

2 , the CMPS model is expected to provide a suitable ap-
proximation [31]. Consequently, we regard a VQML model
having a larger Smax

2 as a harder model to dequantize com-
pared to one with a smaller Smax

2 . We provide numerical
evidence indicating that Smax

2 can be a good estimator for
efficient approximability of Cq in Appendix E.

From Sec. III C and Appendix C, kth bond dimension χ (k)
q

of Cq can grow exponentially with respect to N . As S(k)
2 �

log2χ
(k)
q , S(k)

2 can also scale linearly with the site index k,
and Smax

2 . Therefore we expect typical VQML models that are
sufficiently deep to be hard to dequantize. In the following,
we numerically confirm when highly entangled Cq is gener-
ated, thereby finding numerical evidence of nondequantizable
VQML models.

1. Noiseless VQML models

Firstly we investigate the scaling behavior of S2 of typical
Cqs from simple parallel models [Fig. 2(b1)] by varying the
number of qubits N and number of layers L per trainable
unitary (W1 to W2). Here, we set L = L1 = L2, because when
L1 + L2 is fixed, setting L1 = L2 gives us the largest entangle-
ment. (See Appendix D.)

The result is given in Fig. 3. It is observed that the S(k)
2

curve approaches the Page curve for the Renyi-2 entropy [32]
as L increases, where saturation occurs when L ≈ N . The
Page curve exhibits an almost linear scaling with respect to
the subsystem size k, and its maximum value (at k = �N/2�)
exhibits a faster-than-logarithmic scaling with respect to N .
Specifically, Smax

2 (L) ∼ 0.79N upon saturation. Consequently,
these simulation results indicate that for polynomial-depth
VQML models, typical Cq can possess high entanglement
efficiently with a small number of parameters, so they are not
likely to be dequantizable. Meanwhile, we can observe that
shallow circuit depths generally lead to a sufficiently small
Smax

2 , so that opens a possibility for dequantization by CMPS
models.

Secondly, we study the data reuploading model [17], where
the data encoding part is distributed across the trainable parts
[Fig. 2(b2)]. As we argued in Sec. III A, general encoded
VQML models can be rephrased as reuploading models so
that their analysis results are a representative example for
general encoded models. We follow Appendix A to construct
the Cqs for these cases. Especially we compare the basis-
equivalent simple parallel and data reuploading models.
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FIG. 3. Simulation results for the noiseless simple parallel model case. (a) The Renyi-2 entropy scaling of the coefficient tensors Cq of
the randomly parametrized models is plotted against the subsystem size (k). Each average is taken over 30 different parameter sets (24 for
N � 10). The Page curve (blue dotted line) represents the Haar-averaged values for N-qutrit quantum states and the volume curve signifies the
potential maximum value (the entropy curves for quantum states satisfying the volume law). The S(k)

2 curves approach the Page curve when
the number of layers is sufficiently large (L ≈ N). (b) The maximum Renyi-2 entropy across all subsystem sizes, Smax

2 , increases with L in the
simple parallel model, and saturates at L ≈ N .

Figure 4 shows the simulation results. The reuploading
model saturates to a lower Smax

2 compared to the correspond-
ing basis-equivalent parallel model. This indicates that when
using the same number of data-encoding gates with enough
trainable layers, it is harder to dequantize parallel models.
One may also compare two basis-equivalent models that share
similar quantum resources such as the total number of train-
able layers or the total number of free parameters. Simulation
results show that when the parallel model is shallow (L = 2
for our case), the reuploading model is harder to dequantize,
but as L increases, the parallel model is always harder to
dequantize for the same amount of quantum resources. There-
fore, if one desires a VQML model that is not dequantizable,
using a parallel model is the more plausible option.

This conclusion is also a consequence of structural differ-
ences between parallel and reuploading models. When both
are basis-equivalent models using N encoding gates, the data
reuploading model uses an n-qubit circuit that is smaller than
N . Therefore, despite employing universal trainable ansatze—
which can generate any U ∈ U (2n)—for all trainable unitary
blocks in the data reuploading model, it is clear that the ef-
fective 2N -dimensional unitary lies only in a subset of U (2N )
when the reuploading model is transformed into simple par-
allel form using wire-bending techniques (see Fig. 10). On
the other hand, the simple parallel model can generate any
2N -dimensional unitary in U (2N ) with any universal ansatz.
This result is consistent with the study in Ref. [33].

2. Noisy VQML models

For NISQ devices, every bit of noise counts. Finite noise
levels, however small, would destroy coherence, and weaken

the entangling power of the circuit, making them easy to
simulate with classical computers [31,34–36]. Similarly, noise
effectively reduces the entanglement in the Cq of NISQ
VQML models, possibly allowing for a dequantization with
CMPS models.

We shall now study the effects of noise by considering
noisy two-qubit gates, each of which results in the two-qubit
depolarizing error channel

E (ρ) = (1 − γ )ρ + γ

4
I ⊗ I, (32)

where γ is the error rate. The noisy quantum circuit layer in-
troduces (1 − γ ) factors to the Pauli coefficients of O′ and ρ.
As a consequence, after a sufficient number of noisy layers, O′
and ρ� ultimately become proportional to the identity matrix,
so that Cq converges to a product MPS. We conduct numerical
simulations demonstrate the rate at which the entanglement of
Cq decreases while noise is present. Details concerning the
simulation and analysis of noisy VQML models can be found
in Appendix F

In Fig. 5(a), we observe that noise can significantly wash
away the entanglement of Cq. For sufficiently large γ , the
influence of noise overwhelms the entangling power of the
circuit, resulting in a decrease in Smax

2 after a relatively small
L. By comparing the N = 6 and N = 9 cases in Fig. 5(a)
and comparing models of different sizes with fixed γ in
Fig. 5(b), we observe that larger N experiences more severe
noise effects, with significantly large entropy differences. For
instance, when N = 6, the decrease in Smax

2 is not particularly
significant until L = 24, whereas when N = 11, Smax

2 quickly
tends to 1 quickly as L approaches 24. This finding suggests
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FIG. 4. Comparison between basis-equivalent simple parallel
and data reuploading (general encoded) models. We tested n = 3, 4
data reuploading models having 4 trainable and 3 encoding blocks.
These models [(b) and (d)] utilize 3n = N = 9, 12 Pauli-Z encoding
gates, rendering them basis-equivalent to the n = N = 9, 12 simple
parallel models [(a) and (c)], respectively. The same color lines
indicating the same total number of trainable layers, and identical
markers denoting the same number of free parameters.

that, in situations where considerable noise is anticipated, em-
ploying a reuploading model would generate a larger variety
of Cq. Figure 5(c) supports the aforementioned claim through
a comparison between the basis-equivalent (n = 3), three-
round reuploading model and N = 9 parallel model. In the
absence of noise, the parallel model is harder to dequantize.
Still, when noise is present (with γ = 0.1 in this instance),
the reuploading model becomes harder to dequantize as the
total number of layers in trainable circuits increases.

B. Dequantizable VQML models

Thus far, we proposed a sufficient criterion for nondequan-
tizable VQML models by CMPS models, namely that when
their coefficient MPS Cq possess sufficiently high entangle-
ment. Here we claim a more general and stronger statement
regarding dequantizable VQML models.

Proposition 2. VQML models that have O(poly(N )) lin-
early independent functions in the basis set can be dequantized
by CMPS models.

Proof. The basis functions of VQML models are compo-
nents of the feature vector T(x). Suppose the set {Ti(x)}i

contains K linearly independent functions, indexed by i′ ∈ I .
Then, every function in the VQML model’s function class can
be represented as ∑

i′∈I

Ci′Ti′ (x), (33)

for some vector C = ∑
i′∈I Ci′ |i′〉. Each computational basis

ket |i′〉 is a product vector as it contains only one nonzero

element. Summing MPSs results in a linear increase in bond
dimension at most [37]. Consequently, C has a bond dimen-
sion of at most K . This demonstrates that all functions in a
VQML model with K linearly independent basis functions
can be constructed using a CMPS model with Cc of bond
dimension at most K . The computational complexity of this
model is O(K2N ), which proves the proposition. �

Proposition 2 is “strong” in the sense that it applies to all
functions (all θ in �) in the function class. Moreover, this
dequantizability only comes from the property of the feature
map, not depending on how complex or hard Cqs from the
VQML models are. In other words, VQML models having
polynomial-dimensional function class can be dequantized
with δ = 0, irrespective of the specific choice of the distance
function D in definition 1, and regardless of the circuit ansatz
employed. Proposition 2 shows that it is necessary to have an
exponential dimension for a genuine nondequantizable model.
We have presented the naive Pauli-encoded model as a repre-
sentative example of a dequantizable model, and now we can
confirm this fact by treating it as a special case of the above
proposition.

To demonstrate Proposition 2 more extensively, we con-
duct function regression tasks using CMPS models with
fQ(x) = Cq · T(x)s as the target function. The target coeffi-
cient Cq is generated by a noiseless N = 6, 8, L = 10 simple
parallel model. We normalize Cq so that ‖Cq‖2 = 1. Such
models result in a high Smax

2 = 3.61 and 5.29, suggesting
the need for a CMPS having χc � 2Smax

2 for small ‖�‖2
2.

We choose two different encoding strategies, naive encoding
[φα (x) = x], and exponential encoding [φα (x) = 3α−1x].

The number of linearly independent functions in the com-
ponents of T(x)—the dimension of the function space—is
equal to the rank of the Gram matrix G. Therefore one can
say that VQML models can be dequantized by rank(G) CMPS
models [if rank(G) is polynomial to N]. It is important to note
that the rank of G is also affected by the total input domain �

which encompasses all possible inputs including training and
test datasets. If � is a discrete set having M elements, then
rank(G) � M, which says the effective dimension of the func-
tion class is limited to M. This is because every component
in T(x) can now be represented by an M-dimensional vector.
In other words, if we have limited access to only poly(N )
input points (note that we are not only considering training
points but also all possible test inputs), then VQML models
are dequantizable by CMPS models.

Since rank(G) ∝ ‖G‖F , one can also infer from Eq. (23)
that a lower rank of G allows a large variation in the coeffi-
cients, suggesting that VQML models with a smaller rank of
G are more susceptible to dequantization, as they allow for
larger coefficient discrepancies.

Figure 6(a) depicts the approximation performances using
small bond-dimensional CMPS models. The target functions
are from N = 8 naively encoded VQML models, resulting
in rank(G) being polynomial in N (K = 2N + 1). In this
scenario, it is expected that a χc = K = 17 would perfectly
express the VQML target functions. However, in this case,
even a CMPS model with χc = 4 would have been sufficient
to closely approximate the target function.

Figure 6(b) represents the scenario where we employ expo-
nential encoding to generate functions of exponentially large
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FIG. 5. (a) The impact of noise on Smax
2 for N= 6 and 9 simple parallel models with varying error rates (γ ). (b) The effect of noise on Smax

2

for the γ = 0.1 case with different numbers of qubits. The dashed lines denote the maximum values for noiseless scenarios. (c) A comparison
of the n = N = 9 parallel model and the basis-equivalent n = 3 reuploading models when γ = 0.1. The dashed lines correspond to noiseless
scenarios. As the two models possess different numbers of trainable blocks, the x axis is set to the total number of layers rather than L, which
indicates the number of layers for a single trainable block. All lines in this figure represent averages over 30 distinct parameter initializations,
and the shaded regions indicate the 0.95 confidence level.

dimensions. However, M = 500 � K = 38, so rank(G) �
500 is significantly lower than the maximum possible value.

We note high similarity between Cc and Cq is not re-
quired for a close approximation of the function in these
cases. One can also observe the unproportionate relationship
between ‖|�〉‖2

2 and D2 in certain situations. These simula-
tion results tell us that CMPS models with very large bond
dimensions are not necessary for VQML dequantization when
rank(G) is small—CMPS models can approximate functions
from VQML models well despite the hard-to-approximate
Cqs (high Smax

2 ) when rank(G) � O(exp(N )). As a side note,
in Fig. 6(c), we use sufficiently many sample points to achieve
full-rank G. In this case, one witnesses the proportionate re-
lationship between function and coefficient distances, which
requires small ‖�‖2

2 for small D2 as expected form the in-
equality in Eq. (24).

In summary, in this section, we identified conditions for
which VQML function classes are (likely) dequantizable or
not by CMPS models.

(i) VQML models with rank(G) = O(poly(N )) (where
the dimension of the function space is O(poly(N )) are dequan-
tizable.

(ii) Noiseless shallow-depth (logarithmic in N) circuit
models are likely dequantizable, while polydepth circuits are
not.

(iii) Noisy VQML models possessing large widths and
depths are likely dequantizable.

Note that while the first statement is rigorous, the second
and third are based on numerical evidence corresponding to
Figs. 3–5. So informally, a nondequantizable VQML function
requires a function space of an exponentially large dimen-
sion and a highly entangled coefficient on this function
space.

VI. EFFICIENT CLASSICAL KERNEL INDUCED
FROM A QUANTUM KERNEL

The kernel method plays a crucial role in the context of
FLM [38]. Every feature map F : Rd → RK in FLM in-
troduces a kernel K(xi, x j ) = 〈F (xi )|F (x j )〉, which is the
inner-product evaluation between feature-mapped data. Quan-
tum kernel methods utilize quantum circuits to generate
elements of kernel matrices. Analogously, a quantum kernel
is defined as

Kq(xi, x j ) = Tr[σ (xi )σ (x j )], (34)

where σ (x) = Senc(x)|0〉〈0|S†
enc(x) is the data-encoded quan-

tum state [39]. For any given quantum kernel, we have
preprocessing functions that were precomputed before im-
plementing Senc, and this naturally induces (normalized) a
basis-equivalent product kernel

Kc(xi, x j ) = 1

2N
〈T(xi )|T(x j )〉

= 1

2N

N∏
α=1

[1 + cos(φα (xi ) − φα (x j ))], (35)

where T is constructed from the preprocessing functions of
the given quantum model. Note that it takes O(N ) time steps
to calculate Eq. (35) as it simply involves an inner product
between two tensor-product MPSs.

The representer Theorem [27] states that any optimal func-
tion f opt that minimizes a given empirical regularized loss
functional L : ( f , {xi, yi}Mt

i , λ) → R can be represented as

f opt (·) =
Mt∑
i=1

γiK(·, xi ). (36)
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FIG. 6. The VQML function regression with CMPS models. The target functions (blue lines), fQ(x), are generated by randomly parameter-
ized L = 10 VQML models in noiseless settings. The variable K represents the number of linearly independent basis functions of the models.
The training set is composed of {x j, fQ(x j )}M

j=1, where x j values are linearly spaced numbers ranging from −π to π . The optimization of Ccs
was carried out with all M data points serving as training data. The orange lines depict the values from the denoted χc-CMPS models after
500 training epochs. Each graph provides the 2-norm distance of coefficients after training, ‖|�〉‖2

2, and function distance D2 between the
target and approximating functions. The naive Pauli encoding was used in (a) to generate poly(N ) dimensional function, while in (b) and (c),
exponential encoding is employed. Target functions of (a) and (b) share the same coefficient tensor Cq, which have the same Smax

2 values.

The optimal weights γ = (γ1, γ2, . . . , γMt )
� admit analytical

solution when we know the whole kernel matrix elements
evaluated with the training dataset {xi, yi}Mt

i . The function
f opt resides in the so-called reproducing kernel Hilbert space
(RKHS) [27], which is the function space that is spanned by
the kernel functions K(·, xi )s.

From the observation that every function generated from
a quantum circuit encoded with classical data can be repre-
sented as an FLM with feature map T, we have the following
proposition.

Proposition 3. The RKHS from any quantum kernel
Kq(xi, x j ) = Tr[σ (xi )σ (x j )] using N preprocessing functions
{φα}α is included in the RKHS of efficient basis-equivalent
product kernel

Kc(xi, x j ) = 〈T(xi )|T(x j )〉. (37)

Proof. Let a function from the RKHS of Kq be

fq(x) =
∑

i

aiTr[σ (xi )σ (x)] = Tr[Oσ (x)], (38)
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FIG. 7. The relationship between the function spaces of basis-equivalent CMPS models, VQML models, and the corresponding RKHSs.
All models reside within the MPS model with the feature map T, where the maximum bond dimension is 3�N/2�. The blue wavy stars denote
the function spaces of VQMLs, and the green rectangles indicate the space of CMPS models with designated χc. Noise can reduce the
entanglement of Cq, thereby enabling dequantization and reducing the size of the function space. The f opt

c/q are optimal functions derived from
the corresponding kernel methods. Furthermore, f opt

c trained with Mt data is strictly contained within the CMPS model space of χc = Mt .

where O = ∑
i aiσ (xi ). Noting that σ (x) is generated by

utilizing data-encoding gates and some nonparametrized
quantum gates, this is simply a linear sum of basis functions
in {Ti(x)}3N

i=1, just like a VQML model using the same data-
encoding gates. Considering the functions in the RKHS of Kc

are given by

fc(x) = C · T(x), (39)

we conclude the proof. �
It is important to note that Proposition 3 is not about the

dequantization of RKHS of quantum kernels in the sense
of Definition 1, but rather about the inclusion between two
RKHSs of different kernels. Now let us denote the RKHS
from quantum/classical kernel as RKHSq/c. The optimal
function f opt from the quantum kernel method indeed belongs
to RKHSq ⊆ RKHSc. However, the existence of the analytical
solution γ of f opt posits the absence of any constraint on the
coefficients of the model. That is when f opt is represented
in the MPS form, f opt (x) = copt (γ ) · T(x), the optimal coef-
ficient vector copt (γ ) can be any 3N -dimensional vector that
has a large bond dimension when represented as an MPS.
In other words, some functions in RKHSq might not allow
for an efficient classical description using a poly-χc CMPS
model, and is thus nondequantizable in general (unless it is
O(poly(N ))-dimensional such that Proposition 2 holds).

As discussed above, RKHS includes parametrized function
classes, so that constrained Cqs also belong to RKHSq. More-
over, upon noticing that

f opt
c =

Mt∑
i=1

γiKc(x, xi ) = 1

2N

Mt∑
i

γi〈T(xi )|T(x)〉, (40)

according to the representer Theorem, we find that
1

2N

∑Mt
i γi〈T(xi )| = Cc

opt is an MPS with bond dimension
at most Mt , which is the number of training data. Equiv-
alently, f opt

c resides in the function class of CMPS models

having χc = Mt . The relationships among the function classes
of VQML, CMPS, and RKHSs are illustrated in Fig. 7.
The reader may consult Ref. [40] for more discussion about
the difference between the variational model and the kernel
method.

Kernel methods sharing the same RKHS do not necessar-
ily exhibit the same performances such as generalizability.
Here, we compare the quantum kernel method based on IQP
encoding using two repetitions of encoding gates, which is
conjectured to be hard to simulate classically [18], and the
corresponding basis-equivalent product kernel method. We
again consider the function regression task from the relabeled
f-MNIST dataset as in Appendix G 2, but now following
Refs. [40,41], target values are generated by the randomly
parametrized n-qubit quantum circuits. The IQP encoding of
repetition two contains 2n2 φαs when transformed to a parallel
model via the procedure in Appendix A. These 2n2 pre-
processing functions include the trivial function φα (x) = 0,
and the basis-equivalent CMPS model has a length of 2n2.
However, as φα (x) = 0 does not affect the number of linearly
independent basis functions, there are only 4n − 2 nontrivial
preprocessing functions. We order them as

φα (x) =

⎧⎪⎪⎨
⎪⎪⎩

xα, α ∈ [1, n]
xα−nxα−(n−1), α ∈ [n + 1, 2n − 1]
xα−(2n−1), α ∈ [2n, 3n − 1]
xα−(3n−1)xα−(3n−2), α ∈ [3n, 4n − 2]

, (41)

and create the T(x) with N = 4n − 2 to evaluate Kc. We fit
models with a sample of 500 training data using kernel ridge
regression which exploits regularized loss Eq. (G1) with λ =
0.01, and test losses are computed with 100 unseen data.

Figure 8 presents the mean squared error (MSE) value from
training and test datasets after training. It is evident that the
training loss incurred using the kernel method using Kc is
comparable to that of Kq; both are of the order 10−4. This
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FIG. 8. Training and test losses derived from the kernel methods,
which are trained using the VQML generated relabeled f-MNIST
dataset. The figure panel offers a magnified view of the training
losses.

indicates that f opt
c fits the training data almost flawlessly, re-

flecting its good expressivity on VQML-generated functions.
The training loss from Kc is lower than any other classical
methods explored in the study by Ref. [40]. However, the
test loss is higher than the quantum kernel for smaller system
sizes, though the two become comparably worse as the system
size expanded.

Poor generalizability of the quantum kernel with in-
creasing quantum-circuit size is expected as explained in
Appendix H. in Ref. [41]. The key point is that the kernel
matrix approaches the identity as the Hilbert-space dimen-
sion grows exponentially in the qubit number so that good
generalizability demands an exponentially growing data sam-
ple size. The same thing happens in basis-equivalent kernel
Kc as it inherits an exponentially large dimensional feature
map. We note that adjusting preprocessing functions can help
improve generalization in quantum kernel [42], and this is also
applicable to basis-equivalent product kernel if the VQML
model is a simple parallel model, as two kernels are the same.

VII. CONCLUSIONS AND DISCUSSIONS

In this work, by using the tensor network (TN) formal-
ism, we reveal that any variational quantum machine learning
(VQML) model using classical data as its input is a linear
model in the featured space, but has constrained coefficients
and a feature map of tensor-product form. This general struc-
ture enables us to treat VQML models as a subclass of
matrix product state (MPS) machine learning models, and
offers a nuanced understanding of their characteristics in
order to distinguish classically accessible components from
genuinely quantum aspects. In QML applications we intro-
duced a definition for dequantizing VQML model function

classes, establishing it as a necessary condition for substi-
tuting VQML algorithms with classical ML algorithms as
a whole. Employing classical MPS models for dequantiza-
tion, we identified conditions under which VQML models are
(or are not) dequantizable. Our numerical analysis provides
evidence illustrating these conditions. In carrying out ker-
nel learning methods, we propose a basis-equivalent product
kernel, that is efficient and comparable in expressiveness to
quantum kernels, opening new possible pathways for their
dequantization.

The premise of a fair comparison between a quantum
algorithm of interest and its classical counterpart is the con-
sideration of equivalent levels of precomputations as free
operations. Therefore, comparing all models of a common
feature map, or that are equivalent in the feature basis is not
only a viable approach but also concretely separates what clas-
sical models can/cannot perform resource efficiently. Under
this basis-equivalent comparison framework, the dequantizing
classical model can take any tensor-network structure that
could resemble the common multi-scale entanglement renor-
malization ansatz (MERA), the projected entangled-pair state
(PEPS), or even a neural-network structure that possesses the
VQML model’s preprocessing functions as its activation func-
tions. An interesting direction for a follow-up study would
be to explore the approximation capabilities of these different
classical models.

Based on our findings of this work, we see that the core
difference between classical and QML models lies in the
entanglement content of their coefficient parts, not in the
exponentially large feature space as the latter can always be
efficiently computed classically. A genuine “quantum” func-
tion, which is inefficient to generate with classical models,
is one that has a highly entangled coefficient with a small
number of parameters in an exponentially large dimensional
function space. We suggest looking for data that are attributed
to this kind of functions for a quantum advantage with VQML.
Recent studies on TN structured QML [43–47] is in line
with this perspective: they utilize quantum circuits instead of
the dense classical tensor blocks to construct the TN model,
resulting in a highly entangled yet sparsely parametrized
network. These kinds of procedures may be understood as
an implicit “quantum” regularization of variational models,
which, incidentally, is also carried out as soon as one chooses
VQML models over classical MPS ones. Indeed the efficiency
in implementing quantum regularization is the advantage of
quantum devices. We conducted performance comparisons in
Appendix G between VQML and CMPS models, highlighting
the better generalizability of quantum regularization on MPS
models.

We again emphasize that the dequantization concept
discussed in this work relates to the expressivity of machine-
learning function classes and does not directly correlate with
other aspects of dequantization, such as generalizability or
sample complexity during training (trainability). While this
study only focuses on the expressivity of VQML models, we
recognize the significance of generalizability or trainability
issues as well. We believe that the analysis we have developed
provides a foundation for further exploration into these crucial
aspects of QML. For example, the generalization error bound
of ML models is related to the capacity of function classes
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[27,48], and several capacity measures have been proposed
[49–51]. Our work could provide an alternative route to access
the capacity of the function space through MPS expressivity
or operator spreading [52] which relates to the model coeffi-
cients.

Regarding the trainability issue, recent research [53] has
established a link between the trainability and classical sim-
ulatability of variational quantum algorithm (VQA) models.
They introduced the concept of classical simulation (CSIM)
of VQA models, which bears resemblance to our definition
of dequantization 1. While our dequantization only neces-
sitates the existence of approximating classical functions in
the dequantizing classical model, CSIM demands the ap-
proximation of the VQA model’s output, given θ and its
description. According to Proposition 2, any model with a
polydimensional function class can be dequantized. However,
if Cq(θ) is derived via a deep quantum circuit, it might
be hard to approximate the model’s output, based solely on
the quantum circuit’s description. This scenario highlights a
potential divergence between CSIM and dequantization as
discussed in this work. Bridging the concepts presented in
Ref. [53], which employs the language of operator space, with
those of our study—articulated in the language of function
space—could yield deeper insights for resolving trainability
issues.

We note that in Ref. [54], extensive results on the scaling
and growth of entanglement entropy in VQML models us-
ing the MPS formalism are discussed. While their findings
may appear to be similar to our simulations in Sec. V A,
our objects of analysis are different. Reference [54] focuses
on the entanglement entropies of quantum states in VQML
circuits, whereas we investigate the entanglement entropies
of coefficient MPSs describing the featured linear models.
This distinction is crucial, as entanglement at the function
level can significantly differ from circuit-level entanglement.
Our approach not only relates circuit-level entanglement to
function but also identifies noncritical entanglement in states,
as discussed in Appendix B. Moreover, we note that ML
models utilizing TN structures have been extensively studied
in the literature but without any direct connection to QML
[12,55–60], the latter of which is now uncovered by the main
results of this work. The fruits of labor for such a connec-
tion are a unified TN perspective on VQML models and
the concept of function-class dequantization, which enables
a deeper understanding of hardness in variational quantum
models.
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APPENDIX A: VQML MODELS ARE MPS MODELS

1. Simple parallel case

The simple parallel models are written as

fQ(x; θ,W1,W2, O) = 〈0|W †
1 (θ1)S†(x)W †

2 (θ2)O · · ·
W2(θ2)S(x)W1(θ1)|0〉, (A1)

where S(x) = �N
α=1e−iφα (x)Zα/2, and θ ≡ (θ1, θ2). We start

from rewriting Eq. (A1) as

fQ(x; θ,W1,W2, O) = TrS†(x)O′(θ2)S(x)ρ(θ1), (A2)

where we denoted the evolved observable as O′(θ2) :=
W †

2 (θ2)OW2(θ2) and preencoded state as ρ(θ1) :=
W1(θ1)|0〉〈0|W †

1 (θ1). Observe that S(x) is diagonal, so
we use the property of the Hadamard product (denoted by 
)
[61]

TrD†
1AD2B = 〈D1|(A 
 BT )|D2〉, (A3)

where D1(D2) is a diagonal matrix and |D1〉(|D2〉) corre-
sponds to the ket constructed from elements of matrix D1(D2).
Using this, we have

fQ(x; θ,W1,W2, O) = 〈S(x)|(O′ 
 ρT )(θ1, θ2)|S(x)〉, (A4)

where

|S(x)〉 =
N⊗

α=1

|S(α)(x)〉 =
N⊗

α=1

(
e−iφα (x)/2

eiφα (x)/2

)
. (A5)

We are considering N-qubit circuit, so O′ 
 ρT is a 2N × 2N

matrix having 2N indices. We vectorize this (O′ 
 ρT )(θ1, θ2)
by gathering the same site indices, thereby obtaining

fQ(x; θ,W1,W2, O) = 〈(O′ 
 ρT )(θ1, θ2)|(|S∗(x)〉 ⊗ |S(x)〉).
(A6)

See Fig. 9(a) for the graphical description.
As a result, we see that the VQML model is decomposed

into the basis part which only depends on the input data and
preprocessing functions φαs, and the coefficient part which
depends on the rest. For a further analysis of the coefficient
part, we represent 〈(O′ 
 ρT )(θ)| in the MPS form

〈(O′ 
 ρT )(θ)| =
∑

k1k2···kN−1

M (1)
l1 j1k1

M (2)
l2 j2k1k2

· · · M (N )
lN jN kN−1

,

(A7)

where all matrices M (α)s are parametrized by θ, and an upper
index α denotes the “site” of MPS. The index α ranges from
1 to the number of encoding gates N . One should understand
lα jα as a physical index of αth site of the MPS. The number
of qubits in the circuit n equals N for simple parallel models
we consider here, but N �= n for a general structured model as
explained in Appendix A.

Note that the feature kets |S∗(α)(x)〉 ⊗ |S(α)(x)〉 have redun-
dant elements, 1s. To remove this redundancy, we adopt local
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FIG. 9. Graphical description of transforming a simple parallel VQML model to MPS model form. (a) The model, fQ(x; θ), into an FLM
form. For the sake of simplicity, we have omitted the θ dependence in both O′ and ρT . (b) The coefficient part, denoted as O′ 
 ρT , is morphed
into an MPS form. This process involves transforming it into a Matrix Product Operator (MPO), vectorizing it, and applying additional tensors.
The resulting MPS model form incorporates the feature map B. (c) The final result has the feature map that is

⊗N
α=1 T(α)(x). The coefficient

component becomes the MPS Cq(θ1, θ2 ), representing the contracted form of (O′ 
 ρT ) · R · Q = (O′ 
 ρT ) · P̃. At this stage, all the tensors
become real-valued. (d) A detailed description of each block is provided. The index for the site is denoted as α.

tensors:

P(α)
l jb =

(
δb0δl1δ j0 + 1

2
δb1(δl0δ j0 + δl1δ j1) + δb2δl0δ j1

)

=
⎛
⎝ 0 0 1 0

1/2 0 0 1/2
0 1 0 0

⎞
⎠ (b × l j matrix form),

(A8)

and

R(α)
l jb = (δb0δl1δ j0 + δb1(δl0δ j0 + δl1δ j1) + δkbδl0δ j1)

=

⎛
⎜⎜⎝

0 1 0
0 0 1
1 0 0
0 1 0

⎞
⎟⎟⎠ (l j × b matrix form). (A9)

Using these tensors, we have

∑
l, j

M (α)
l j S∗(α)(x)l S

(α)(x) j

=
∑

l, j,l ′, j′,b

M (α)
l j R(α)

l jbP(α)
bl ′ j′S

∗(α)(x)l ′S
(α)(x) j′

=
∑
l, j,b

M (α)
l j R(α)

l jbB(α)
b , (A10)

where B(x) is defined in Eqs. (3) and (4). This leads to an
FLM representation that is compatible with Eq. (3),

fQ(x; θ,W1,W2, O) = (O′ 
 ρT )(θ) · R · B(x)

:= c(θ) · B(x). (A11)

We shall drop the α index when dealing with the N tensor
product of α-indexed tensors, and · indicates the tensor con-
traction. See Fig. 9(b).

Lastly, as fQ is a real-valued function, we can switch to real
tensors using the identity

B(α) = Q(α)T(α) ≡
⎛
⎝0 1 −i

1 0 0
0 1 i

⎞
⎠

⎛
⎝ 1

cos (φα (x))
sin (φα (x))

⎞
⎠. (A12)

By contracting Q to MPS part, we get MPS model using a
trigonometric basis,

fQ(x; θ, O) =
∑
k,b

M̃ (1)
b1k1

M̃ (2)
b2k1k2

· · · M̃ (N )
bN kN−1

T(1)
b1

· · · T(N )
bN

:=
∑

b

Cq
b1b2···bN T(1)

b1
· · · T(N )

bN

:= Cq(θ) · T(x), (A13)

where M̃ (α)
b = ∑

i, j,b′ M (α)
i j R(α)

i jb′Q
(α)
b′b := M (α)

i j P̃(α)
i jb , and revived

the θ dependence on Cq. This proves the lemma 1. Indices k j

are called “bond indices” and range from 1 to some maximum
numbers, which are called “bond dimensions.”
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FIG. 10. Graphical description of changing the general structure model to MPS form. Orange squares are Pauli-Z rotations that are
dependent on preprocessed input data, and the others are the coefficient part that does not depend on the input data. For simplicity, we omitted
the data dependence and parameter dependence. (a) A quantum circuit with a general structure is segregated into an alternating encoding
part and the coefficient part. As the diagram indicates, the coefficient parts Wks can contain nontrainable unitaries. (b) After adopting an
unnormalized maximally entangled state |�〉〈�|, we can transform it as if it were a simple parallel model. By replacing O′ and ρ in the main
text.

2. General case

A general encoding strategy can have data-encoding gates
throughout the quantum circuit. We decompose all the encod-
ing gates and discriminate the encoding part and trainable part
as different layers, resulting in a data reuploading model that

has an alternating structure of encoding parts Sks and trainable
coefficient parts Wks. Let our encoding gates be all decom-
posed and changed to Pauli-Z rotations so that it becomes R
parallel encoding parts as Fig. 10(a). Then quantumly gener-
ated function fQ(x; θ) of general model is

fQ(x; θ) = 〈0|W †
0 (θ0)S†

1 (x)W †
1 (θ1)S†

2 (x) · · · S†
R(x)W †

R (θR)OWR(θR)SR(x) · · ·S2(x)W1(θ1)S1(x)W0(θ0)|0〉. (A14)

Note that this model is general enough to encompass any VQML model that uses an encoding strategy. By bending wires, we
can transform it into the simple parallel VQML model which we have treated in the main text. The graphical description is given
in Fig. 10(b). For general encoding strategy, encoding block Sk can contain the identity operator, and this can be simply thought
of as φ(k)

α (x) = 0. Now the function becomes the same form with Eq. (A5) in the main text,

fQ(x; θ ) = 〈S (x)|(O′
R 
 ρT

R

)
(θ)|S (x)〉, (A15)

where O′
R and ρR is newly defined as

O′
R =

{⊗(R−1)/2
k=1 (W †

2k−1 ⊗ I )|�〉〈�|(W2k−1 ⊗ I ) ⊗ W †
R OWR, if R is odd⊗R/2

k=1(W †
2k−1 ⊗ I )|�〉〈�|(W2k−1 ⊗ I ) ⊗ O, if R is even

, (A16)

ρR =
{

W0|0〉〈0|W †
0 ⊗ ⊗(R−1)/2

k=1 (I ⊗ W †
2k )|�〉〈�|(I ⊗ W2k ), if R is odd

W †
0 |0〉〈0|W0 ⊗ ⊗R/2

k=1(I ⊗ W †
2k )|�〉〈�|(I ⊗ W2k ), if R is even

, (A17)

|S (x)〉 =
R⊗

k=1

n⊗
α=1

(
e−iφR

α (x)/2

eiφR
α (x)/2

)
. (A18)
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Here |�〉 = ∑2n

i=1 |ii〉, unnormalized maximally entangled
state. Note that now O′ and ρ are not real observable nor real
state. Figure 10(b) only depicts when R is even, but one can
picture an odd case analogously.

Although the general-structure model can be represented
as a parallel model, there is a significant difference in terms
of coefficients. In the general-structure model, the operators
O′ and ρ become 2n(R+1)-dimensional operators (2nR for odd
R cases). However, they cannot fully exploit the entire space
of the given dimensional operator space, as the available
free parameters are significantly fewer than what is required
for a 2n(R+1) (2nR for odd R) dimensional operator space,
even if universal unitary ansatze are used for all {Wk}k . Con-
sequently, the general-structure model possesses a smaller
function space compared to the parallel model when they are
basis-equivalent.

APPENDIX B: COMMENTS ON COEFFICIENTS

In the main text, we adopted tensors

P̃ =
N⊗

α=1

⎛
⎜⎜⎝

1 0 0
0 1 i
0 1 −i
1 0 0

⎞
⎟⎟⎠, (B1)

which is a product of R and Q, to generate MPS from the
circuit ansatz. This might look a little odd at first sight, but
when you write down the 2 × 2 Hermitian matrix M with the
Pauli matrix basis as M (α) = λ

(α)
0 I + λ

(α)
1 X + λ

(α)
2 Y + λ

(α)
3 Z ,

then

M (α)R(α)Q(α) = M (α)P̃(α) = M̃ (α) = 2

⎛
⎜⎜⎝

λ
(α)
0

λ
(α)
1

λ
(α)
2

⎞
⎟⎟⎠. (B2)

Therefore P̃ discards the Pauli-Z coefficients of M (α)s, and
multiply 2 to rest of coefficients. Let us represent O′ 
 ρT

with Pauli string basis

O′ 
 ρT =
∑

i

λi σ
(1)
i1

⊗ σ
(2)
i2

⊗ · · · ⊗ σ
(N )
iN

, (B3)

where i ∈ {0, 1, 2, 3}⊗N . From the observation above,

(O′ 
 ρT ) · P̃ = 2Nλĩ, ĩ ∈ {0, 1, 2}⊗N . (B4)

We see that the coefficient on feature map components Tĩ(x)
corresponds to the 2Nλĩ, which are the Pauli string coefficients
of O′ 
 ρT except the Z containing components.

For instance, let us use exponential encoding on 1d input
x, where φα (x) = 3α−1x and N = 3 simple parallel model.
One of the basis functions is cos(x) sin(3x) cos(9x). This is
chosen by ĩ = (1, 2, 1). Therefore the coefficient in the basis
function cos(x) sin(3x) cos(9x) is the 2N times coefficient on
Pauli string X ⊗ Y ⊗ X when O′ 
 ρT is represented in Pauli
string basis. One might expect high-frequency terms to de-
pend on Pauli strings which have many nonidentity elements.
However, this is not true in general. Again in the same setting,
sin(x) sin(3x) depends on Y ⊗ Y ⊗ I which has 2 nonidentity
elements. On the other hand, cos(9x) depends on I ⊗ I ⊗ X
which has 1 nonidentity element but has a higher frequency.

This sheds light on the nature of the coefficients of VQML
models, which have been somewhat opaque thus far. It al-
lows us to understand the coefficients via knowledge about
the operator spreading capability of trainable circuits in the
context of Pauli string basis. To see how trainable ansatz
choice affects the coefficient set, let us look at an example
of a simple parallel model, using W1(θ1) = ⊗N

α=1 H . Then
O′ 
 ρT becomes just 1

2N O′, where O′ = W †
2 (θ2)OW2(θ2) is

evolved operator. Next, we set O = ZN−1 which is a local
Pauli-Z operator, and consider two different cases of W2(θ2)s
having L = 1. One is hardware-efficient ansatz, which we
used throughout the main text [Fig. 11(a)] and the other is
reversed-CNOT ansatz where the ordering of CNOT gates
are reversed [Fig. 11(b)]. As CNOT gates spread the Z op-
erator in the target qubit to the control qubit and arbitrary
unitary changes Z into an arbitrary superposition of other
Pauli matrices (except I that has nonzero trace), O′ for the first
case possibly possess nonzero λis for all i ∈ {1, 2, 3}⊗N . In
Eq. (B2), we saw that Pauli-Z coefficients do not play the role,
so it can exploit at most 2N components in {Ti(x)}i∈{1,2}⊗N .
However, the second case cannot spread the local Z operator
to full qubit space so one gets only 9 nonzero λis in O′.
Consequently, the VQML model using the second circuit can
only use at most 4 components out of 3N Tis.

Our Cq constructions, which utilize Pauli coefficients, cap-
ture the easiness of Clifford circuits. Clifford circuits are
known to be efficiently simulable by classical computers.
Therefore one might expect that the VQML model which
consists of only Clifford gates cannot show any quantum
advantage. Once again, let us set W1(θ1) = ⊗N

α=1 H , but this
time, we compose W2 with Clifford gates and set

O = P ∈
N⊗

j=1

σ j, σ j ∈ I, X,Y, Z . (B5)

Clifford circuits merely permute the Pauli coefficients of a
given operator, therefore O′ simply becomes another Pauli
string P ′, which contains only one nonzero element in its
coefficient. This implies that our Clifford model uses just one
basis function. If O had K nonzero Pauli coefficients, then O′
could be expressed as the sum of K Pauli strings. This sum
would generate an MPO, and consequently, a Cq with a bond
dimension at most K . As a result, the function class from this
Clifford model can be reproduced by a CMPS model with a
bond dimension of at most K , which is efficient if K scales
polynomially. Although the Clifford circuit, consisting of a
finite gate set, doesn’t fit into the VQML model, its analysis
and the discussion of the previous paragraph hint at how we
can link the magic of quantum circuits or operator spreading
to the capabilities of VQML models.

APPENDIX C: MAXIMUM BOND DIMENSION SCALING
OF SIMPLE PARALLEL MODELS

Two-qubit entangling gates such as CNOT gates can be
represented by a matrix product operator (MPO) of bond
dimension equal to 2. Contracting two MPOs of bond di-
mensions χ1 and χ2 results in an MPO of bond dimension
at most χ1χ2. Therefore the maximum bond dimension for
O′ and ρT scales at most exponentially with the number
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FIG. 11. Operator spreading of different ansatze. (a) Hadware-efficient ansatz used in the main text. This ansatz spread local Z operator on
the last qubit to all N-qubit space with 1 layer. (b) Hadware-efficient ansatz but with the reversed ordering of CNOT gates. This ansatz cannot
spread local operators to the whole space using only 1 layer. Resulting in only 9 Pauli string coefficients being nonzero.

of layers L1 and L2. Due to the inequality, rank(A 
 B) �
rank(A)rank(B), maximum bond dimension for O′ 
 ρT is
bounded by min(4�N/2�, 4L1L2 ). The VQML coefficient vector
Cq is obtained by contracting P̃ to the O′ 
 ρT , which shrinks
the physical dimension from 4 to 3. Therefore χq can possibly
scale as ∼3L1L2 , which is exponential with the depth of the
VQML model.

To see how bond dimension scales with real circuit, we
have used the circuit ansatz of Fig. 2(b). After the construction
of Cqs, we canonicalized them and extracted the number
of nonzero elements in every bond indices. The maximum
number of nonzero elements is then taken. Results are in
Table I, all averaged over 24 different parameter sets. We set
L1 = L2 = L. The average values of χqs scale with L as 4L,
and quickly saturate to the possible maximum value, 3�N/2�.
This shows that bond dimensions scale maximally in general,
thereby coefficient sets of polydepth VQML models cannot be
generated efficiently by the classical MPS, even on average.

APPENDIX D: DIFFERENT NUMBER OF LAYERS FOR
TRAINABLE BLOCKS IN THE PARALLEL MODEL

In Fig. 12, we present a simulation result from the N = 8
parallel model. When the total number of layers L1 + L2 is
the same, Smax

2 is the largest around when L1 = L2. Here Smax
2

is the largest Renyi-2 entanglement entropy of Cq = (O′ 

ρT ) · P̃. For this reason, we stick to setting all the number of
trainable layers to be the same when there is no additional
mention.

This is expected because

rank(A 
 B) � rank(A)rank(B), (D1)

TABLE I. Maximum bond dimension for Cq : χq

�
��N
L

1 2 3 4 5 6 7 8 9 10

6 4 27 27 27 27 27 27 27 27 27
7 4 27 27 27 27 27 27 27 27 27
8 4 59 81 81 81 81 81 81 81 81
9 4 59 81 81 81 81 81 81 81 81
10 4 64 243 243 243 243 243 243 243 243
11 4 64 243 243 243 243 243 243 243 243

so when one of the operators (O′ or ρT ) exhibits low rank—
low entanglement entropy—Hadamard product of them can-
not possess high entanglement entropy. A small number of
layers implies low entanglement, thus one can expect that
large Smax

2 can be achievable when both numbers of layers are
high enough.

APPENDIX E: TRUNCATION ERRORS FOR Cqs

Let us understand how truncation error η(D)—which gives
us the upper bound of approximation error using χc = D
CMPS model—changes with the system size for a given bond
dimension bound χC = D. Noiseless, L = 10 parallel VQML
models are chosen as “hard” models which generate high and
linearly scaling Smax

2 . For “easy” VQML models, we chose
γ = 0.15, L = 10 noisy parallel models, and noiseless L = 3
models. After generating Cqs respectively for each model,
we truncated their singular values by leaving only D largest
values, with D = {4, 8, 16, 32, 64} and obtained truncation
error η(D).

As in Fig. 13, the noiseless model requires an exponen-
tial increase in D to achieve a fixed truncation error while
increasing the model size. Therefore this simulation result
indicates that to achieve a fixed approximation error bound
using a CMPS while increasing the circuit size, one needs
to increase χc exponentially. The noiseless shallow model
exhibits a similar trend as the deep model, albeit with

FIG. 12. Smax
2 for N = 8 parallel VQML model. L1 (L2) is the

number of layers in W1(θ ) (W2(θ )).
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FIG. 13. The truncation errors for Cqs when the maximum bond dimension is D, alongside the averaged Smax
2 of original Cqs (represented

by red dashed lines), are presented. All values are averaged over 30 different randomly chosen parameter sets.

considerably smaller absolute values. For noisy cases, the
truncation error decreases as the system size increases, and
when N = 10 and 11, their χq = 243 was exponentially large.
However, D = 25 = 32 � χq = 243 was sufficient for almost
zero error bound.

These average truncation errors—and hence the approxi-
mation error bound—scalings align with the scaling of Smax

2 ,
as evidenced by the plotted Smax

2 values. Moreover, note that
for nearly zero error bound, D = 32 � 22.56 ∼ 5.9 for the
noisy case and D = 64 � 23.63 ∼ 12.3 for the shallow case
were enough, where 2.56 (3.63) is the maximum Smax

2 for
the noisy (shallow) case. These numerical results demonstrate
that Smax

2 can serve as a reasonable measure for evaluating the
ease of approximating the Cqs of VQML models.

APPENDIX F: NOISY CASE ANALYSIS

For the noisy case, we considered depolarizing error after
every two-qubit gate operation. Kraus operators for this error
model are given by

K (l ) ∈ {
√

1−γ 15/16I ⊗ I,
√

γ /16I ⊗ X, · · ·,
√

γ /16Z ⊗ Z}.
(F1)

For our simulations, we used CNOT gates for two-qubit oper-
ations. Let us denote the state before applying one CNOT gate
as σ . Then after applying CNOT gate and noise channel state
becomes

σ ′ =
15∑

l=0

KlUCNOTσU †
CNOT(Kl )†. (F2)

Kraus operator can be understood as a rank-5 tensor where
index l is for Kraus sum. We contracted Kraus tensor with
UCNOT tensor to construct a rank-5 noisy CNOT tensor. By
replacing all the UCNOTs in the circuit with a noisy version,
and connecting all Kraus indices 1 to their corresponding
conjugated part we could get the noisy version of Cqs. See
Fig. 14.

With understanding of coefficients of VQML models as
Pauli coefficient, We can analyze how noise affects the coef-
ficients of VQML using the Pauli path integral technique that

is introduced in [25,26]. First, we observe that∑
l

Kl (σi ⊗ σ j )(K
l )† =

{
(1 − γ )(σi ⊗ σ j ), if i, j �= 0
I ⊗ I, if i = j = 0 .

(F3)

In other words, after the depolarizing channel E , all two-
qubit Pauli operators attain (1 − γ ) factor except the Identity.
Let us denote observable after applying j (noisy) hardware-
efficient ansatze as

O( j) =
∑

i1i2,...,iN

λ
( j)
i1i2,...,iN

σi1 ⊗ · · · ⊗ σiN . (F4)

Applying single-qubit unitary U
⊗

N (σi1 ⊗ · · · ⊗ σiN )(U †)
⊗

N

mixes nonidentity Pauli matrices while leaving the identity
unchanged. Therefore, after applying single-qubit unitaries in
( j + 1)’th layer, we get

λ
′( j)
i = U ′

ii′λ
( j)
i′ , (F5)

where i ≡ i1i2, . . . , iN , and U ′ is the representation of
U

⊗
N (·)(U †)

⊗
N in the Pauli basis or Pauli transfer matrix

(PTM) (we have omitted the θ dependence for simplic-
ity). Note that U ′ can be block-diagonalized by simply
permuting the order of indices. Next, we apply a CNOT
gate. As CNOT gate is an inverse of itself, a CNOT gate
on ik, ik+1-site qubits exchanges two coefficients in the
set {λ′( j)

i1,...,ik ,ik+1,...,iN
|il �=k,k+1 are same}. Here index-exchanging

follows CNOT change rule which is depicted in Fig. 15(b). As
a result, we get

λ
( j+1)
i = UCNOT,il ′U ′

l ′i′λ
′( j)
i′ ≡ Uii′λ

( j)
i′ , (F6)

where U denotes the PTM of noiseless one layer of hardware-
efficient ansatz.

We apply the noisy channel E on ikik+1-site qubits which
introduces (1 − γ ) factor if ikik+1 �= 00. We do this start from
1,2-site qubits to N − 1, N-site qubits resulting in

(1 − γ )wi × λ
( j+1)
i . (F7)

Here wi is the number of non-00 (non-II) sequences in index-
vector i, or we call it second-order Hamming weight, which
can range from 0 to N − 1. For example, if i = 002300, then
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FIG. 14. Depolarizing noise acts on after every CNOT gate is applied. UCNOT and Kraus tensor are contracted to create noisy CNOT tensors,
denoted as red tensors. The full tensor diagram for the noisy quantum model has additional contraction lines for Kraus sum.

wi = 3. Applying noisy layers from the beginning, the Pauli
coefficient λ

(L)
i after L-noisy layers is∑

i0i1i2...iL−1

(1 − γ )wi1 +wi2 +...+wiL−1 +w
(L)
i f (i0i1, . . . , iL−1; i)

≡
∑
�i0:L−1

(1 − γ )|w|�i1:L−1
+wi f (�i0:L−1; i), (F8)

where

f (i0i1 . . . iL−1; i) = UiiL−1 · · ·Ui2i1Ui1i0λ
(0)
i0

. (F9)

We call the sequence of index-vectors �i0:L−1 ≡ (i0, . . . , iL−1)s
as Pauli path as named in Ref. [25], and |w|�i1:L−1

≡ wi1 +
· · · + wiL−1 as total second-order Hamming weight of the

Pauli path �i1:L−1. Finally, coefficients on basis functions are
obtained after the Hadamard product between noisy evolved
O′ and ρT . Hadamard product has a mixed product property
which is (A ⊗ B) 
 (C ⊗ D) = (A 
 C) ⊗ (B 
 D) and the
following product table for Pauli matrices.

I 
 IT = Z 
 ZT = I,

X 
 X T = Y 
 Y T = X,

− X 
 Y T = Y 
 X T = Y, (F10)

I 
 ZT = Z 
 IT = Z,

otherwise = 0.

FIG. 15. (a) Applying one layer of noisy hardware-efficient ansatz. (b) This is a graphical depiction of the two-qubit case Pauli transfer
matrix (PTM) for a (noisy) hardware-efficient ansatz. We reordered the Pauli coefficients, depicted as columns of λis, to expose the block-
diagonal structure of the PTM for the single-qubit unitaries layer. The PTM of the CNOT gate permutes the order of rows. Permuted rows are
denoted in the same color and nonpermuted rows are colored in green. Lastly, the multiplied noise factors are indicated. Note that λ00 is not
affected by operations.
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Therefore k’th Pauli coefficient of O′ 
 ρT is

λ
O′
ρT

k =
∑

i
 j=k

∑
�i0:L−1,�j0:L−1

(1 − γ )|w|�i1:L−1
+wi f (�iL−1; i)

× (1 − γ )|w|�j1:L−1
+w j f (�jL−1; j), (F11)

where
∑

i
 j=k denotes that summation over i and j satisfying
the condition i 
 j = k, which has 2N combinations.

All Pauli paths except the (0, 0, . . . , 0) attain noise fac-
tors that depend on each paths. As a consequence, O′ 
 ρT

converges to the identity, which becomes product MPS when
converted to Cq. We leave a more comprehensive analysis of
the noisy case as future research.

APPENDIX G: PERFORMANCE OF VQML MODELS
AND CMPS MODELS

We have seen that highly entangled coefficiennts make
VQML models hard to dequantize. In other words, the unique
power of VQML models comes from the ability to efficiently
generate high-entangled coefficient MPS models using a small
number of parameters. In this section, we compare the VQML
models and CMPS models in the context of machine learning
to explore the performance differences between two models.

All VQML models are simulated and generated classically
using PYTHON PENNNYLANE package [62]. Tensor contrac-
tions and generation of CMPS models are done with the
QUIMB package [63]. Optimization of all variational models
is done by Adam optimizer with a learning rate 0.01 and 500
training epochs.

1. Property of coefficients and comparison
on function regression

The number of trainable parameters is a crucial character-
istic in machine learning models. Generally, the number of
parameters is considered as a measure of the size of the model.
More importantly, both models’ computational complexities
(contraction complexity for CMPS models and gate number
complexity for VQML models) are polynomially related to
it, thereby setting the same number of parameters enables
the comparison between models that share similar computa-
tional complexity. Let us set the number of parameters be P,
then a fundamental difference arises between the two mod-
els. In the CMPS model, Smax

2 = O(ln χc) = O(ln
√

P/N ). On
the other hand, for a noiseless VQML model with L ≈ N ,
we have Smax

2 = O(N ) = O(
√

P) as observed in numerical
simulations. Consequently, the CMPS model generates a co-
efficient set characterized by low entanglement and dense
parameters, while the VQML model’s coefficient set, Cq,
exhibits high entanglement and sparse parameters. A dense
Cc can generate any coefficient tensor with maximum bond
dimension χc, while a sparse Cq cannot create the majority of
coefficient tensors possessing a maximum bond dimension of
χq. We interpret this as an implicit “quantum” regularization,
which is an efficient process for quantum machines but not for
classical MPS models.

To see the performance of implicit “quantum” regulariza-
tion in MPS models, we conduct a series of regression tasks
to compare the performances of basis-equivalent CMPS and

FIG. 16. The test and training losses (mean squared error) of the
trained models with the MPS-generated labeled f-MNIST dataset are
depicted. For the CMPS model, the regularization constant λ = 0
yields the best performance, and therefore, only results from this
case are plotted. The results, which have been averaged over 10
different target coefficient instances, are accompanied by shaded
regions representing a 0.95 confidence level.

VQML models, each equipped with comparable parameter
numbers. We set all conditions such as training data, training
epoch, optimizer setting, etc., to be the same unless otherwise
specified. For the CMPS model, we invoke regularized loss

L = 1

Mt

∑
i

( fc(xi; θ) − yi )
2 + λ‖Cc(θ)‖2

2, (G1)

with regularization constants λ ∈ {10−3, 10−4, 10−5, 10−6,

0}.

2. Fashion-MNIST with MPS generated label

We choose the function regression task from the re-labeled
f-MNIST dataset as done in Refs. [40,41]. Input data are the
preprocessed fashion-MNIST data that have dimensions of
n ∈ [3, 9]. Unlike the previous works, the target values are
generated (re-labeled) with the χ = 3 MPS model, so that

yi = 1

K

3∑
b

3∑
i

M (1)
b1,i1

M (1)
b2,i1,i2

, · · · M (n)
bn,in−1

× T(1)(xi )b1 · · · T(n)(xi )bn . (G2)

K is the max {|yi|}i, normalization factor to set the target
values lie within the [−1, 1]. Unlike the quantum circuit-
generated case we used simple encoding φα (x) = xα . That is,
every element in the vector is encoded once by one Pauli-
Z rotation. For the training CMPS model, we employ the
same structure CMPS model as the target MPS model, which
has χc = 3. For CMPS models, all had χc = 3, resulting
in [45, 72, 99, 126, 153, 180, 207] free parameters. In paral-
lel, VQML models have L ∈ [2, 3, 3, 3, 4, 4, 4, ] resulting in
[36, 72, 90, 108, 168, 192, 216] free parameters. For CMPS
model, Smax

2 = ln2 3 ∼ 1.7, whereas the VQML model can
have Smax

2 > 2.
Losses after training are plotted in Fig. 16. Interestingly,

while this task is expected to be favored by CMPS mod-
els due to their structures being exactly the same as the
target-generating MPSs, VQML models show slightly better
performance than CMPS models.
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FIG. 17. A comparison on 1-D step function regression task. The preprocessing functions are given as φα (x) : kα−1x. For the CMPS models,
we only plot the functions exhibiting the lowest test loss (mean squared error) across all regularizing constants, denoted as λ. Grouped models
illustrate those with a comparable number of free parameters for coefficients.

3. Step function regression

The step function,

fstep(x) =
{

1/2, if x > 0
−1/2, if x � 0 , (G3)

is an important function class as it can represent the target
function of a classification task. We trained models with 400
randomly picked data and tested with 100 unseen data points.
For preprocessing functions, we chose

φα (x) = kα−1x, (G4)

where k ∈ {1, 3}. We compared CMPS models of N = 8
and parallel VQML models. The CMPS models have χc =
4 (8), resulting in 282 (930) free parameters, whereas the
VQML models have L = 6 (19) and 288 (912) free param-
eters. Outputs from trained models are shown in Fig. 17. The
optimization settings are the same as the variational ridge
regression of the re-labeled f-MNIST dataset.

First, when we use naive encoding (k = 1), both models
show comparable performances. However, when the number
of basis functions becomes large (k = 3), we can observe
slight differences between them. It appears that CMPS models
exhibit a stronger tendency to overfit, as indicated by highly
spiky graphs. This overfitting behavior becomes more pro-
nounced when χc increases. In our numerical study, the test
loss of CMPS model increases from approximately 0.010 to
0.016, while that for VQML models decreases from about
0.013 to 0.009 as we increase the number of free parameters.

From above regressions, CMPS models seem to suffer
overfitting problems more than VQML models, and this might
come from the high expressivity of dense MPSs. These show
primitive evidence of the advantage of using quantum regu-
larization. We leave comparisons on more different tasks and
analytic studies about the generalization ability of quantum
regularization as a further research topic.

4. Comments on computational resources

We compared the models sharing a similar number of free
parameters, so that they have similar computational com-
plexity. However, in practice, real VQML models always
accompany statistical error δq and require O(1/δ2

q ) number
of shots, resulting in additional computational resources. Re-
garding this, we can allow more bond dimensions to CMPS
models. To be concrete, an N-qubit, polydepth parallel VQML
model uses O(poly(N )/δ2

q ) quantum gates while the basis-
equivalent CMPS model uses O(Nχ2

c ). Therefore χc can be
O(poly(N )/δq) for polydepth quantum models with similar
scaling of computational resources. If δq is exponentially
small, then an exponentially large bond-dimensional CMPS
model is allowed. In this case, VQML loses its advantage in
expressivity.

5. Kernel ridge regression

For the dataset, we follow the same data preprocessing in
Ref. [40]. Original fashion MNIST data is a 28 × 28-pixel
image where pixel values range from 0 to 255. Images are
associated with 10 labels. We normalized the pixel values to
lie in [0,1] and rescaled them to have 0 mean values. Next,
we did principal component analysis (PCA) to reduce the
28 × 28-dimensional vector to n ∈ [3, 9]-dimensional vector.

For the case of kernel method simulation in the main text,
we generated the target values yis using an IQP-encoding first
circuit,

yi = 〈0|S†
IQPW †(θtarget )(xi )Z1W (θtarget )SIQP(xi )|0〉, (G5)

where θtarget is randomly generated and W (θtarget ) is consists of
hardware-efficient ansatz with L layers. k is the normalization
factor, which is a standard deviation of the training set of
yis. The number of layers L ∈ [10, 7, 6, 5, 4, 4, 3], so that the
free parameters in the target quantum circuit are about 90
parameters.

Quantum kernels are calculated using PYTHON PENNNY-
LANE package [62]. We use PYTHON package KERNELRIDGE

regression in the SCIKIT-LEARN package for kernel ridge re-
gression. The regularization constant is set to be 0.01.
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