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Matter-wave interferometers with trapped strongly interacting Feshbach molecules
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We implement two types of matter-wave interferometers using trapped Bose-condensed Feshbach molecules,
from weak to strong interactions. In each case, we focus on investigating interaction effects and their implications
for the performance. In the Ramsey-type interferometer where interference between the two motional quantum
states in an optical lattice is observed, interparticle interactions are found to induce energy shifts in the states.
Consequently, this results in a reduction of the interferometer frequency and introduces a phase shift during the
lattice pulses used for state manipulation. Furthermore, nonuniformity leads to dephasing and collisional effects
contribute to the degradation of contrast. In the Michelson-type interferometer, where matter waves are spatially
split and recombined in a waveguide, interference is observed in the presence of significant interaction, however
coherence degrades with increasing interaction strength. Notably, coherence is also observed in thermal clouds,
indicating the white-light nature of the implemented Michelson-type interferometer.
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I. INTRODUCTION

Since the first demonstration of Bose-Einstein condensate
(BEC) interference [1], BECs have emerged as an important
source for interferometry [2,3], and many matter-wave in-
terferometers using BECs have been implemented in a large
variety of configurations. Here, we focus on interference with
trapped atoms in different motional states. Examples include
interference in waveguides [4–9], in double wells [10–15],
multiple transverse motional states [16,17], and Talbot ef-
fect [18–21]. Unlike optical interferometers, trapped matter
waves experience particle-particle interactions that on one
hand result in phase shifts, limiting the system’s coherence
time [22–25], but on the other hand allow for the probing
and characterization of many-body systems and their dynam-
ics [26–30]. By suppressing the strength of interaction, long
coherence times have been achieved [31,32]. In addition, these
interactions induce quantum properties such as squeezing
and entanglement, beneficial for precision metrology [13–15].
Controlling the splitting process, squeezing and entanglement
can be enhanced [33,34]. All these experiments are conducted
with weakly interacting systems where the scattering length is
small compared to the unitary limit. In our present work, we
study interference in systems of strongly interacting particles
with large scattering lengths. 6Li2 Feshbach molecules are
particularly well suited for conducting experimental studies
with bosons under strong interaction and observing dynamics,
relaxation processes, and interference over extended peri-
ods. The strong suppression of inelastic collisions due to
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the fermionic nature of the constituent atoms [35,36] enables
having long lifetimes of the samples.

In the experiments presented here, we implement and study
two distinct matter-wave interferometer schemes: Ramsey-
type and Michelson-type interferometers, with strongly in-
teracting 6Li2 Feshbach molecules. We particularly focus
on the effects of interparticle interactions on interferometer
performance—frequency, phase shift, read-out contrast, and
coherence. The measurements are compared with numerical
simulations and calculations based on the experimental pa-
rameters. In addition, we observe interference and coherence
in the Michelson-type interferometer scheme with noncon-
densed, thermal Feshbach molecules.

Both interferometer schemes are implemented in our
6Li experimental apparatus, described with full details
in Ref. [37]. The configurations in both schemes are
highly similar. In both experiments, we start with a BEC
of 6Li2 Feshbach molecules. Each Feshbach molecule
is constituted by two lithium atoms in the lowest hy-
perfine states |I = 1, mI = 1, S = 1/2, ms = −1/2〉 and
|I = 1, mI = 0, S = 1/2, ms = −1/2〉. We set the interpar-
ticle interaction strength over a range by tuning the s-wave
scattering length via the Feshbach resonance [38]. Close to the
Feshbach resonance, the intermolecular scattering length is
approximately 0.6 times the scattering length between the two
constituent atoms in different spin states [35]. The molecular
condensate is confined in a hybrid trap formed by an opti-
cal dipole potential from a red-detuned, focused laser beam
aligned horizontally, and a horizontally confining magnetic
potential arising from field curvature. Along the axial direc-
tion of the trap (the propagation direction of the dipole beam),
the potential is primarily provided by magnetic field curvature
and has a trap frequency ωz � 2π × 18.5 Hz. Radial confine-
ment is dominated by the dipole potential and has a radial trap
frequency ω⊥ � 2π × 80 Hz. The interferometer operations
are realized using an optical lattice formed by a pair of 1064-
nm laser beams crossing at 15◦, resulting in d = 4.1 µm lattice
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FIG. 1. (a) Experimental configuration of the Ramsey interferometer. Initially confined in a harmonic trap, a BEC is transferred to a
superposition of the |s〉 and |d〉 states within an optical lattice using two lattice pulses. Treated as a two-level quantum system, the superposition
state resides on the equator of a Bloch sphere, evolving at a frequency determined by the energy gap between the two motional states.
Subsequently, a π/2 pulse, composed of two lattice pulses, is executed to bring the superposition state to the readout states. Finally, band
mapping is utilized for detecting occupations in the two states. (b) Coherent oscillation in a Ramsey interferometer (a = 487a0, N = 7500).
Band-mapping distributions, revealing interference, are plotted against interference time t . (c) Interference fringes shown with |s〉 state
occupation ηs. Experimental results, depicted by the blue open circles, are fitted with a damped oscillation, represented by the red solid
curve. The green dashed line indicates the decay of the oscillation center.

spacing. The lattice can be pulsed for state preparation, as well
as maintained at a constant intensity to study the evolution of
the superposition state of the Ramsey interferometer in the
lattice [39]. We have verified that the scattering of the mBEC
by lattice pulses remains mostly coherent and the molecules
can be returned to the k = 0 condensate [37]. This observation
indicates that the molecules mostly remain bound throughout
the process.

II. RAMSEY-TYPE INTERFEROMETER

A. Experimental implementation

In the Ramsey interferometer scheme, two motional states
within the optical lattice are utilized: the ground state |s〉 and

the second excited state |d〉, conceptualized as a spin-1/2 sys-
tem [17]. The lattice depth, calibrated through Kapitza-Dirac
(KD) scattering, is set at Vlatt = 103Er . Here, Er = h̄2k2

l /2m
denotes the characteristic energy of the lattice, with kl = π/d
the wave vector of the optical lattice and m the molecular
mass. In Fig. 1(a), we depict the Bloch band structure of
our lattice configuration under zero interaction strength. The
bandwidths of |s〉 and |d〉 states are significantly narrower
compared to the energy gap separating them. Therefore, the
broadening of the band transition due to the quasi-momentum
distribution is not considered further.

Initially, a nearly pure condensate with negligible ther-
mal component is prepared, comprising 3500–9500 Feshbach
molecules. The variation in particle numbers results from
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different loss rates, influenced by interparticle interaction.
Using a shortcut loading method [40], as shown in Fig. 1(a),
the BEC in the ground state of a weak harmonic confine-
ment is transformed into the superposition state |ψ〉 = (|s〉 +
|d〉)/

√
2 within the optical lattice using two lattice pulses.

Instead of first loading the BEC into the |s〉 state and then
sequentially executing a π/2 rotation, this combined opera-
tion is found to be more robust and efficient. The lattice pulse
sequence, tailored for maximum operation fidelity under non-
interacting conditions, can achieve up to 98.4% fidelity based
on calculations. For further details on the calculations of pulse
sequence, see our previous work [37]. The superposition state
is maintained in the optical lattice for a variable interference
time t . A subsequent two-pulse π/2 operation then transfers
the state (|s〉 + |d〉)/

√
2 to |s〉 and the (−|s〉 + |d〉)/

√
2 to |d〉.

Immediately afterward, the state occupation is read out using
band mapping [41]. After an adiabatic opening of the lattice
and a time of flight (TOF), particles in different states separate
and are detected via standard absorption imaging.

B. Interaction effects in Ramsey interferometer

We first perform the Ramsey interferometer experiment
with a molecular number N = 7500 and an intermolecular
scattering length a = 487a0. Here, a0 denotes the Bohr radius.
Unless specified otherwise, a refers to the s-wave scattering
length between molecules. Figure 1(b) displays a time carpet
showing the oscillating occupations of the |s〉 and |d〉 states
over the interference time, which evidences the Ramsey in-
terference. Particles in the |s〉 state occupy the central zone
(the first Brillouin zone), while those in the |d〉 state appear
around p = ±2h̄kl . The proportion of particles in the |s〉 state,
denoted as ηs(t ), is determined by the ratio Ns(t )/N (t ), where
Ns(t ) is the number of particles found in the first Brillouin
zone and N (t ) is the total particle number at that time. Fig-
ure 1(c) shows a damped oscillation of ηs as a function of the
interference time t , with its fitting curve by the function

ηs = Ae−λat cos(ωt + φ)/2 + Be−λbt + C. (1)

In the analysis of our experimental data, we focus on the
following key parameters extracted from fitting the observed
interference patterns:

(1) Interference frequency ω: The interference frequency
is determined to be ω = 2π × 9.096(33) kHz. Compared to
the case of zero interaction where the energy gap is calculated
to be ω0 = 2π × 9.27 kHz, the |s〉 and |d〉 states are subject
to different energy shifts due to interactions. Because of the
broader localized wave functions in higher states, the energy
level of the |s〉 state shifts upward to a greater extent than the
|d〉 state, resulting in a reduced energy gap under stronger
interactions. By treating the interactions as mean fields, the
calculated energy gap shifts to 2π × 9.118 kHz, which is in
good agreement with our experimental measurement within
the error margins. The differential energy shift between the
two states can also be interpreted as an effective reduction
of the lattice depth due to the interactions counteracting the
lattice potential, which has been demonstrated in our previ-
ous work by observing the slowing-down effect in the time
evolution of the momentum mode populations under strong
interactions [37]. The variation of interference frequency

FIG. 2. Coherent oscillations in Ramsey interferometers at vary-
ing interaction strengths. (a)–(g) Results spanning from weak to
strong interaction strengths. The scattering length a, total parti-
cle number N , chemical potential μ prior to lattice loading, and
weighted-average particle number per lattice site N̄ are provided
for each data set. h is the Planck constant. Interference frequencies,
phase shifts, and decaying contrasts are extracted from the fit curves
of damped oscillations.

relative to interactions will be further explored in Secs. II C
and II D and summarized in Fig. 3.

(2) Phase shift φ: We observe the emergence of an addi-
tional phase shift, determined to be φ = −0.20(2)π based
on the fit results. The lattice pulse sequences are designed
to align the two π/2 operations (the first π/2 operation is
implicit in the first two-pulse sequence) under the condition
of vanishing interaction, setting the initial phase to zero.
Nonetheless, interactions occurring during the lattice pulses
can introduce a phase shift in the diffraction processes. The
variation of phase shift relative to interactions will be dis-
cussed in Sec. II C and summarized in Fig. 4(a).
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FIG. 3. The Ramsey interference frequency varies with interac-
tion strength. We plot the interference frequency against the chemical
potential of the molecular condensate prior to lattice loading. The
experimental results, represented by open circles, are extracted from
Fig. 2, with error bars indicating a 95% confidence level in fittings.
The results fall within the shaded area between two lines obtained by
calculations of the energy shift due to interaction under the tight-
binding approximation (TBA). The upper line takes into account
the interaction shifts of the |s〉 and |d〉 states, while the lower line
includes only the energy shift of the |s〉 state. Due to more rapid
decay of the |d〉 state population at higher interaction strength, the
experimental results for higher chemical potential approach the lower
line. A 1D Gross-Pitaevskii equation (GPE) calculation aligns with
the upper line. The inset shows the localized wave functions of the
|s〉 and |d〉 states in the axial direction.

(3) Maximal contrast A: The maximum contrast of the
interference pattern is obtained at t = 0, determined to be
0.44(3). The loss of contrast at this point is attributed to
collisional losses of condensed particles during the lattice
pulses and the subsequent TOF, which in turn attenuates the
readout signal. During the separation stage, molecules with
differing speeds undergo elastic collisions, leading them to

FIG. 4. Interaction effects in the Ramsey interferometer. The
plots illustrate (a) phase shift, (b) maximal contrast, and (c) contrast
decay rate as functions of the chemical potential of the molecular
condensate prior to lattice loading. Experimental results, depicted by
open circles, are extracted from Fig. 2, with error bars indicating a
95% confidence in fittings.

scatter in random directions. This process reduces the pop-
ulation of the coherent condensate. Moreover, imperfections
in the (|s〉 + |d〉)/

√
2 state preparation also contribute to

the reduced contrast, especially at very strong interactions.
These imperfections stem from the fact that the lattice pulse
sequences for state manipulation are designed without consid-
ering interactions. As interaction strength increases, a minor
imbalance between the |s〉 and |d〉 states, along with slight oc-
cupations on higher-momentum modes, are expected. While
the imperfection of state preparation is not remarkable under
the conditions presented in Fig. 1, it presents a certain signif-
icance at stronger interaction strengths. Additionally, during
state manipulation pulse sequences, molecules transiently oc-
cupied the fourth (|g〉) and higher excited states, which are
known to exhibit significantly shorter lifetimes compared to
the |s〉 and |d〉 states used in the interferometer. Inelastic
collisions by the higher-energy molecules during the process
can also contribute to decoherence. The variation of maximal
contrast relative to interactions will be discussed in Sec. II C
and summarized in Fig. 4(b).

(4) Contrast decay rate λa: The interference contrast ex-
periences an exponential decay over time, characterized by
a contrast decay rate λa. This decay primarily arises from
interactions: The inhomogeneous density distribution and the
density fluctuation of particles across lattice sites result in
variations of the interaction energy within the cloud, which
leads to dephasing. Averaging across the entire cloud in the
readout, this dephasing process leads to a gradual reduction
in interference contrast. Furthermore, collisional effects also
contribute to contrast decay, particularly pronounced under
strong interactions. In addition to the collisional losses dis-
cussed in the previous paragraph, the relaxation of particles
from the |d〉 state to the |s〉 state due to inelastic collisions also
becomes more pronounced as interactions become stronger.
The calculated lifetime of the |d〉 state is provided in the
Appendix. Additionally, the radial expansion of the cloud fol-
lowing shortcut loading, although not specifically considered
in the calculations in Sec. II D, may have some impact on the
decay of contrast. The variation of contrast decay rate relative
to interactions will be discussed in Sec. II C and summarized
in Fig. 4(c). Besides the effects arising from interactions,
other mechanisms contributing to contrast decay in weakly
interacting (noninteracting) systems have been explored in
Ref [17], including intensity fluctuations of trapping lasers,
thermal fluctuations, and quantum fluctuations. Compared to
the effects arising from interactions, these mechanisms make
only minor contributions.

(5) Parameters describing the monotonically decreasing
offset: λb, B, and C. The offset occurs because the number
of molecules scattered into a broad incoherent background
increases with time. The scattered molecules overlap more
with the higher states than with the |s〉 state after TOF, leading
to a downward shift of the |s〉 state population curve. The
green dashed curve in Fig. 1(c) depicts this offset decay,
mathematically represented by the expression B e−λbt + C.

C. Ramsey interference at varying interaction strengths

To further explore the interaction effects, we perform ad-
ditional Ramsey interferometric measurements over a range
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of scattering lengths from 330a0 to 3426a0, by adjusting
the magnetic field near a Feshbach resonance. The measured
interference signals are shown in Fig. 2. It is important to
note that the initial conditions differ across data sets due to
changes in the BEC ground-state spatial profiles and particle
loss rates with varying interactions. For each data set, the
interparticle scattering lengths a, the total molecule numbers
N , the calculated chemical potential μ of the molecular con-
densate prior to lattice loading, and the weighted-average
number per lattice site N̄ (N̄ = ∑

j N2
j /

∑
j Nj , where j is

the site index) are provided in the figure. Continuing with
the methodology outlined in Sec. II B, we fit the experimental
data using damped oscillations, shown as red solid curves in
Fig. 2. From these fits, parameters such as ω, φ, λa, and A
are determined. In this study, we primarily focus on exam-
ining how the interference frequency ω varies in response
to changes in the interparticle interaction strengths and com-
paring our measurement results with theoretical calculations.
As for other parameters, we limit ourselves to presenting
measurement results without conducting related calculations.
This is due to the difficulty of modeling collisional losses.
In the following discussion of parameters, the paragraph
numbering for corresponding parameters continues from
Sec. II B.

(1) The interference frequency ω is found to decrease with
increasing interaction strength. In Fig. 3, the measurements
are presented against the calculated chemical potential μ of
the molecular condensate prior to loading into the lattice.
The observed frequency changes are minimally affected by
collisional losses, directly reflecting the shifts in energy lev-
els within the optical lattice induced by interactions. The
measurements fall within the shaded area, indicating the ex-
pected interference frequencies between two calculations of
energy shift due to interaction. The calculations are detailed
in Sec. II D.

(2) The phase shift φ becomes more pronounced as
the interaction strength increases, as shown in Fig. 4(a).
The sequential pulses, designed to result in zero differ-
ential phase in the absence of interaction, introduce addi-
tional phase shifts due to energy shifts at finite interaction
strengths. This observation is consistent with previous find-
ings [20,42]. When extrapolating the curve along its trend,
we observe an intercept close to zero, aligning with the
intended behavior of the pulse sequence designed for zero
interactions.

(3) The maximum contrast A is observed to decrease as the
interaction strength increases, as shown in Fig. 4(b). This re-
duction is mainly attributed to the increased collisional losses
and imperfections in the initial state under strong interactions.
Interference measurements are significantly constrained under
strong interactions, as particles initially occupying the con-
densate peaks are scattered into the background, resulting in a
reduction of the signal-to-noise ratio.

(4) The contrast decay rates λa are enhanced under strong
interactions for the reasons stated in Sec. II B. The dephas-
ing and collisional effects play much more crucial roles in
the contrast decay under strong interactions, compared to
the mechanisms independent of interactions. Based on the
observed trend of the data points shown in Fig. 4(c), we
anticipate minor contrast decay at zero interaction strength.

D. Numerical calculations

Using the Bloch theorem [43], the single-particle spectrum
and eigenfunctions in a one-dimensional (1D) optical lattice
can be simply calculated. The energy band structure at a lattice
depth of Vlatt = 103Er with an interaction strength of zero is
illustrated in Fig. 1(a). Here, the energy gap between the |s〉
and |d〉 states amounts to ω0 = 2π × 9.27 kHz. The Ramsey
frequency is given by the energy gap between the two states.
To determine the frequency shift incurred by interaction, we
calculate the differential energy shift of the two states induced
by interaction.

In the deep lattice limit, a condensate in a 1D optical lattice
can be described by the 1D discrete nonlinear Schrödinger
equation (DNLS) [44]. Under the tight-binding approxima-
tion (TBA) [45], the system behaviors are described by the
localized wave function in each lattice site,

�(r, t ) =
∑

j

ψ j (t )	 j (r) =
∑

j

√
Nj (t )eiϕ j (t )	 j (r), (2)

where Nj and ϕ j denote the particle number and the phase at
the jth lattice site. The spatial wave function,

	 j (r) � u∗(z)φ j (r⊥), (3)

is factorized into a product of the axial function u∗(z) and
the radial function φ j (r⊥). u∗(z) is obtained from the Bloch
wave function eikzu(z): it represents one period of the pe-
riodic term u(z) and is localized within a single lattice site
(−d/2 < z − z j < d/2, where z j denotes the trap bottom of
the jth lattice site). |u∗(z)|2 is displayed in the inset of Fig. 3,
and

∫ |u∗(z)|2dz is normalized to unity. In the deep lattice
regime we are working with, u∗(z) approaches zero at the
lattice barriers, validating the tight-binding approximation in
our calculations. Additionally, u∗(z) remains independent of
the particle number, interaction strength, and quasimomentum
in our deep optical lattice.

Given that the lattice loading time is significantly shorter
than the time scale associated with the radial trap frequency,
we take φ j (r⊥) to be the cross-sectional profile at z = z j

of the initial condensate wave function prior to lattice load-
ing. This profile is determined by the prelattice potential
geometry, the total particle number N , and the scatter-
ing strength a. By treating the interactions as mean fields,
the interaction chemical potential at the jth lattice site is
calculated as

μint
j = |ψ j |2g0

∫
|	 j (r)|4dr, (4)

and it determines the energy shift of the state due to interac-
tion. Here, g0 = 4π h̄2a/m.

We now extend this calculation framework to determine
the differential energy shift between the |s〉 and |d〉 states.
Due to the finite lifetime of particles in the |d〉 state (as
provided in the Appendix), we examine two boundary cases:
(1) We consider the energy shifts of both the |s〉 and |d〉
states: �E int

j = μs
j − μd

j , with μ
s(d )
j calculated from Eq. (4).

The interaction between the two states shifts them by the
same amount, thereby leaving their energy gap unchanged.
The particle numbers in both states are Nj/2, and their radial
wave functions both remain φ j (r⊥). (2) We only account for
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the energy shift of the |s〉 state, �E int
j = μs

j , while neglecting
the |d〉 state due to particle loss and its overexpanded radial
profile resulting from collisions. In both cases, we evaluate
this interaction effect throughout the entire cloud, by calcu-
lating the weighted-average differential interaction energy as

�E int =
∑

j Nj�E int
j∑

j Nj
. (5)

In Fig. 3, we observe that the experimental measurements
fall between the two calculated results. For the data point with
the weakest interaction strength we study (μ/h = 214Hz), the
measurement aligns perfectly with the calculation considering
the energy shifts of both states [TBA(1)]. For this measure-
ment the lifetime of particles in the |d〉 state is calculated to be
21 ms, much longer than the experimental time scale. There-
fore, considering the two states with identical particle number
and radial profile is a good approximation. As the interaction
strength increases, the measurements gradually approach the
other boundary [TBA(2)]. For the data point with the strongest
interaction strength, we study (μ/h = 737 Hz), the lifetime of
particles in the |d〉 state is reduced to 0.6 ms, matching the
observation time scale. The particle number in the |d〉 state
decreases significantly, and its radial profile expands due to
collisions. Consequently, the resulting measurement is closer
to the calculation considering only the energy shift of the
|s〉 state. These calculations effectively capture the interaction
effects on the interference frequency shift and the collisional
decay.

For comparison, we also perform mean-field calculations
using continuous wave functions based on the 1D Gross-
Pitaevskii equation (GPE). Starting with a BEC in the ground
state of a harmonic trap, the optical lattice is implemented
following the experimental protocol. Band occupations are
measured by ramping down the lattice, and the interference
frequency is analyzed in the approach with the experimental
data. The results, presented as diamonds in Fig. 3, are con-
sistent with the upper line of the energy shift calculations
under the tight-binding approximation. This alignment occurs
because the decay of particles in the |d〉 state is not prominent
and the dynamics in the radial directions are constrained in 1D
GPE calculations.

III. MICHELSON-TYPE INTERFEROMETER

A. Experimental implementation

A Michelson-type interferometer in a waveguide is also
implemented, investigating the interference phenomena oc-
curring between spatially separated paths. The splitting and
recombining of a molecular condensate are achieved by
Kapitza-Dirac (KD) scattering pulses. During the process be-
tween splitting and recombination, the two emerging clouds
undergo half an oscillation in the weak harmonic poten-
tial along the waveguide. A differential phase shift between
two separated arms of the interferometer is introduced by a
magnetic field gradient pulse. The operation adheres to the
procedure outlined in pioneering works [4–9], with a key
distinction in our interferometer: the matter waves consist of
Feshbach molecules, exhibiting significant interactions. An

additional feature of the Michelson-type interferometer in
comparison to the Ramsey interferometer is the relative bulk
motion of the wave packets. This strong motion leads to a
more pronounced loss of condensed molecules due to colli-
sions, as the scattering rate scales with the relative velocity of
the colliding molecules, as well as with the number density
and the collisional cross section. With the Michelson-type
scheme, one has the opportunity to look into the collisional
loss during the passage of the wave packets through each
other, and its effect on coherence.

The experimental setup employs an mBEC consisting of
6000 Feshbach molecules, with the scattering length between
molecules ranging from 487a0 to 982a0. The processes of
splitting, phase shifting, recombining, and detecting the mat-
ter waves are illustrated in Fig. 5(a). The interference occurs
within a waveguide potential given by U (r⊥, z) = m(ω2

⊥r2
⊥ +

ω2
z z2)/2. Initially at rest, the condensed molecules are ex-

posed to two sequential KD scattering pulses. The lattice
depth during this process is maintained at 50Er . This pro-
cess, following the Newton’s cradle experiment [46], splits
the molecules into two momentum modes | ± 2h̄kl〉 along the
waveguide. After the splitting, the two matter-wave packets
separate along the waveguide and ascend the axial harmonic
potential.

To demonstrate interference and controllability, a differ-
ential phase shift is introduced between the two arms of the
interferometer when the two matter-wave packets are at their
maximum separation of 130 µm. This phase shift is induced by
a magnetic field gradient pulse, generated by an electrical cur-
rent pulse flowing through a gradient coil, whose central axis
is aligned with the interferometer arms. The coil setup used
in our Michelson-type interferometer experiment is shown in
Fig. 5(b). The gradient coil, in conjunction with a precharged
capacitor, forms an LC resonant circuit. A diode is integrated
into the circuit in series to ensure unidirectional current flow.
Each time the circuit is closed, it produces a pulse of a field
gradient along the waveguide that lasts for half of an LC
oscillation cycle, as shown in Fig. 5(c). The duration of the
pulse, determined by the capacitance and inductance, remains
constant throughout the experiment. The pulse strength, which
is adjusted by varying the charging voltage applied to the
capacitor, determines the differential phase shift. The separa-
tion between the two packets is considerably larger than their
individual sizes, and the duration of the field gradient pulse
is significantly shorter than the propagation time between
the splitting and recombining of the matter-wave packets.
Therefore, we make the assumption in the calculation that
the two wave packets remain stationary during the pulse. The
differential phase shift is given by

�φ =
∫

t

μLi2 [B1(t ) − B2(t )]

h̄
dt . (6)

Here, μLi2 is the magnetic dipole moment of the 6Li2

molecule, and B1 and B2 are the time-dependent magnetic
fields at the two separated locations of the matter-wave
packets.

Following the application of the phase shift, the two wave
packets reverse their directions of motion and propagate back
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FIG. 5. (a) Experimental configuration of the waveguide
Michelson-type interferometer. A BEC is split into two wave packets
by a pair of lattice pulses, undergoing half an oscillation in the
axial confinement of a waveguide before recombination via another
pair of lattice pulses. A differential phase shift between the two
interferometer arms is introduced with a magnetic field gradient
pulse at the maximum separation of the two wave packets. The
interference patterns are analyzed by examining the occupations in
momentum modes. (b) Coil setup. Currents flowing through a pair
of coils (indicated by two blue circles) produce the Feshbach field
for adjusting interparticle interactions. A slight deviation from the
Helmholtz condition creates a harmonic potential along the waveg-
uide axis. A gradient coil (indicated by a green circle), with its
axis aligned with the waveguide, in conjunction with a precharged
capacitor, constitutes an LC resonant circuit. This setup is used to
apply a magnetic field gradient pulse, inducing a differential phase
shift between the two interferometer arms. (c) An example of the
current pulse flowing through the gradient coil. (d) Coherent oscilla-
tion in a Michelson-type interferometer (a = 487a0 and N = 6000).
Momentum distributions, revealing interference, are plotted against
the applied differential phase shift. (e) Interference fringes are shown
by the oscillating occupation of the |0h̄kl〉 mode, denoted by η0. The
fringe produced with the calculated phase shift and the experimen-
tally measured amplitude is plotted for comparison in a red solid
curve. (f) Discrepancy between the experimentally measured phase
shifts �φexp and the calculated phase shifts �φcal.

toward their origin. Upon reaching the origin, the two wave
packets are recombined using a second pair of KD pulses.

The interference pattern is analyzed by examining the dis-
tribution of particles across various momentum modes as a

function of the differential phase shift. Following the recom-
bination pulses, all optical potentials are abruptly turned off,
allowing the cloud to expand while the magnetic field is main-
tained. During the TOF, the field curvature provides a focusing
potential in the horizontal plane for momentum distribution
measurement [47]. Consequently, the cloud quickly expands
in the radial direction, resulting in a rapid decrease in inter-
particle interactions. After a quarter of the oscillation period,
determined by the horizontal trapping frequency of 18.5 Hz,
the spatial profile of the cloud along the axial direction reflects
the momentum at the moment when the optical potentials are
turned off. Detection is achieved by employing absorption
imaging.

B. Michelson-type interference at varying interaction strengths

We first demonstrate the interferometric results measured
at a = 487a0. Figure 5(d) displays the oscillating occupa-
tions of the |0〉 and | ± 2h̄kl〉 modes as the differential phase
shift increases (via an increase in the magnetic field gradient
strength). In addition, a very small occupation in the | ± 4h̄kl〉
modes is noted, attributed to the imperfect design of the
splitting and recombining processes. The imbalance between
| − 2h̄kl〉 and | + 2h̄kl〉 arises from the disturbance in the
motion of the cloud caused by the magnetic field gradient.

To determine the occupation in each momentum mode,
we fit the momentum distribution at each time point using a
profile comprising five narrow condensate peaks positioned at
p = −4h̄kl , −2h̄kl , 0h̄kl , +2h̄kl , +4h̄kl (with particle num-
bers N−2, N−1, N0, N1, N2) superimposed on a broad Gaussian
peak that represents the scattered particles. We exclude the
scattered particles, and only account for the particles in the
condensate modes to calculate the fractional occupation of
each state. For instance, the population in the |0h̄kl〉 mode is
determined as η0 = N0/

∑+2
m=−2 Nm [illustrated in Fig. 5(e)].

The results in Figs. 5(d)–5(f) are shown as a function of the
calculated differential phase shift between the two interfer-
ometer arms �φcal. The phase shift calculation is conducted
through a numerical integration based on the Biot-Savart law
along our coil wire to determine the magnetic fields at the
locations of the two wave packets. This process takes into
account the precise positioning and dimensions of each coil
turn. In Fig. 5(e), a reference interference signal, produced
from the calculated phase shift and the experimentally mea-
sured amplitude, is presented alongside the measurements for
visual comparison. In Fig. 5(f), we present the discrepancy be-
tween the experimentally measured phase shifts �φexp and the
calculated phase shifts �φcal. The measured phase shift �φexp

is determined by fitting a section of experimental data within
a close range (±3π/2) to a cosine curve. When �φ < 3π/2,
the fitting section remains fixed from 0 to 3π , resulting in a
straight line at the beginning of the result. As �φ increases
beyond 3π/2, the fitting section gradually shifts, scanning
over all experimental measurements step by step.

In the measurements presented in Figs. 5(d)–5(f), we note
that for phase shifts �φ < 3.5π , the calculations closely
match the observations with an error margin of ±0.02π .
However, for larger phase shifts, where stronger magnetic
field gradients are applied, the actual phase shift increases
at a slower rate than calculated. This growing discrepancy is
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FIG. 6. Interferometric results for the Michelson-type configura-
tion at stronger interaction strengths, specifically at scattering lengths
(a) a = 693a0 and (b) a = 982a0.

attributed to the disturbances to the wave-packet trajectories
caused by strong magnetic field gradient pulses.

In Refs. [6,48], it has been demonstrated that under weak
interactions, the main limitations on the coherence time of
guided-wave atom interferometry arise from phase gradients
caused by axial confinement and interparticle interactions.
The dephasing of wave packets due to phase gradients could
be suppressed by ensuring sufficient separation between the
two wave packets in space and allowing them to undergo
symmetric motion in the waveguide, such as completing a full
oscillation. However, as the interparticle interaction becomes
stronger, collisional loss emerges as the predominant factor in
decoherence processes. Since collisional loss is not dependent
on position, it cannot be suppressed through a symmetric
trajectory design. In our experiments, it is confirmed that
applying the recombining pulses upon the completion of one
full oscillation results in a further reduction in fringe contrast,
dropping to as low as 20%. This indicates a more pronounced
decrease compared to the scenario of a half-period oscillation.
This observation underscores the collisional loss as a key lim-
iting factor in the performance of interferometry with strong
interaction.

This reduction in contrast due to collisional losses be-
comes particularly pronounced as we continue to increase the
interaction strength. In Fig. 6, we present additional mea-
surements performed at stronger interactions, specifically at
scattering lengths of a = 693a0 and 982a0. These results in-
dicate that stronger interactions lead to increased condensate
loss, significantly diminishing interference contrasts [49]. Our
observations highlight the challenges in achieving extended
coherence times under strong interaction conditions.

C. Interference in thermal clouds

Interference phenomena are not exclusive to BECs, but
are also present in thermal clouds [7,50]. To investigate
the white-light characteristics of the implemented guided
Michelson-type geometry, we make a modification to the ex-
perimental scheme used in Secs. III A and III B. Interference
is alternatively observed in the absence of a differential phase
shift by varying the propagation time in the waveguide. We
apply the recombining pulses at various times, (i) ranging
from immediately after the splitting pulses to 4 ms later,
and (ii) within a time window of 8 ms centered around the
moment when the two packets are maximally overlapped
upon their first return to the origin. The experimental se-
quences for these two groups of measurements are depicted

at the top of Fig. 7, with the labels (i) and (ii) used to
indicate the respective experimental results. As shown in
Fig. 7(a), the measurements are performed on a nearly pure
condensate with a scattering length of 487a0 and a particle
number of N = 6000. The interference is demonstrated by the
oscillating occupation of particles in different momentum
modes. The occupation in the modes |0h̄kl〉 and | ± 2h̄kl〉
oscillates at a frequency of 4Er/h=1.0 kHz. Additionally, a
minimal occupation is observed in the | ± 4h̄kl〉 modes, which
results from imperfections in the KD pulse sequence, oscillat-
ing at a fourfold-higher frequency of 16Er/h. The variations in
the interference contrast over time are mainly due to the axial
displacement of the two wave packets. The contrast reaches
its (local) maximum when the two packets overlap at t = 0 ms
and again at half an oscillation (t ≈ 27 ms), and diminishes as
the packets gradually separate.

Next, we perform measurements with clouds contain-
ing varying thermal populations by terminating evaporative
cooling at various stages. We ensure that most atoms bind
into molecules by evaporating them to temperatures signif-
icantly lower than their binding energy. The same lattice
pulse sequences are applied for the interferometer operation.
Figures 7(b)–7(d) illustrate the coherence properties of these
thermal clouds, with each figure showing clouds at gradu-
ally increasing temperatures. The cloud shown in Fig. 7(d)
contains 95% of molecules in the thermal component, with a
temperature of 90 nK. To better visualize the interference pat-
terns, the deviation of the momentum distribution at each time
from the time-averaged distribution, δnp(pz, t ) = np(pz, t ) −
〈np(pz, t )〉t , is presented. The time carpet of δnp(pz, t ) is
placed below each set of corresponding results.

From these figures, we observe the presence of finer inter-
ference fringes in the cases of thermal clouds, superimposed
on the interference signals from the condensates. With ris-
ing temperatures, the thermal clouds span a wider range of
momentum modes, thereby extending the coherent fringe to
a large momentum range of ±10h̄kl . This observation illus-
trates the coherence imprinted by the beam splitter (optical
lattice pulses). The emergence of these fringes results from the
differential response of particles to lattice pulses across var-
ious momentum modes. During evolution, each momentum
mode accumulates phase relative to its momentum. Notably,
the presence of these coherent signals from thermal atoms
remains distinctly visible even after half a period of oscillatory
evolution in the waveguide, as demonstrated in Group (ii)
in Fig. 7. Our potential along the waveguide is very close
to harmonic. From the design of the coils, we can calculate
that the time difference in oscillation periods between the
fastest and slowest particles in a thermal cloud is significantly
smaller than the fringe width. This ensures the refocusing
of all momentum modes at the precise time, which enables
the observation of interference patterns after half an oscil-
lation. The observation of interference fringes with thermal
clouds signifies the white-light nature of the implemented
Michelson-type interferometer and demonstrates the excellent
robustness of our interferometric system.

To support our interpretation of the fringes observed in
the thermal clouds, we conduct a schematic numerical cal-
culation to reproduce the interference pattern observed in
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FIG. 7. Interference patterns observed in Michelson-type interferometers, transitioning from condensates to thermal clouds, are shown in
(a)–(d). The temperatures are estimated to be (a) 20 nK, (b) 40 nK, (c) 65 nK, and (d) 90 nK. Each data set captures interference at two
propagation times: (i) shortly after splitting and (ii) around half an oscillation later. To enhance fringe visibility, we calculate δnp(pz, t ) =
np(pz, t ) − 〈np(pz, t )〉t , where 〈·〉t denotes time average. The corresponding results are displayed below each absorption imaging carpet.

Fig. 7(d.i). We begin with a thermal cloud characterized by
a Gaussian momentum distribution, with a 1/e2 width of
6h̄kl , and segment it into discrete momentum modes based
on the resolution of the experimental imaging. These modes
are assumed to be mutually incoherent, with each treated as
a plane wave denoted by |h̄ki〉, where i is the mode index.
We calculate the state of the system following a sequence
of lattice pulses [as given in Fig. 5(a)], comprising four
lattice pulses and three time intervals, totaling seven steps.
This calculation is done using |ψi,t 〉 = ∏1

j=7 Û j |h̄ki〉. Here,

Û j = e−i[p̂2
z /(2m)+Uj cos2(kl z)]t j/h̄ is the evolution operator in the

jth step. t denotes the interference time, also referred to as
t4 in the calculations. Uj equals zero during the intervals be-
tween pulses. The interaction term is neglected. By executing

the evolution calculations individually across all momentum
modes |h̄ki〉 and then superimposing the outcomes, we ob-
tain the interference fringes of thermal clouds. Varying the
interference time t in the calculations allows us to observe
the interference pattern that emerges after the recombining
pulses. The time step for the calculations is set to 20 µs,
five times shorter than that used in the experiments (100 µs).
In Fig. 8, we compare the experimental observations with
the calculation results. This modeling approach replicates
certain features of the experimental fringe patterns and cap-
tures the basic principles of the interferometer. Although
these calculations do not encompass the full complexity
of the experimentally measured patterns, they nonetheless
provide valuable insights into the formation of the fringes,
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FIG. 8. Calculations on interference patterns for thermal
clouds in Michelson-type interferometers. (a) replicates data from
Fig. 7(d.i), for comparison with numerical simulations demonstrated
in (b). The calculations capture the principal characteristics observed
in the experimental data.

enhancing our understanding of the underlying physical
processes.

IV. CONCLUSIONS

Our studies investigated the performance of matter-wave
interferometers using Feshbach molecules across a range of
interaction strengths, extending into the very strongly inter-
acting regime. Our experiments demonstrated controllability
and readout of our molecular interferometers and provided
an examination of the effects of interaction on signal proper-
ties. We observed and analyzed the influences on interference
frequency, phase shift, and contrast, including its decay. Ad-
ditionally, we explored particle loss due to scattering and the
coherence of thermal particles. Where possible, we compared
our findings with theoretical calculations, thereby establishing

a quantitative and theoretical understanding of the results.
Our work with extreme cases aims to be a further step to-
ward understanding and potentially harnessing interactions
for sensing and quantum mechanical devices.
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APPENDIX: INTERFEROMETER PARAMETERS

In Table I, we provide an overview of the relevant
quantities corresponding to the interferometers presented in
Figs. 2(a)–2(g), 5(d), 6(a), and 6(b). These include the scatter-
ing length a between molecules, total number of molecules N ,
and trap frequencies in the axial ωz and radial ω⊥ directions.
Additionally, we provide the chemical potential μ, tempera-
ture T , binding energy EB [51], and mean-free path λ, which
are calculated for the molecular condensate prior to the ap-
plication of lattice pulses. The optical lattice is characterized
by the lattice spacing d and characteristic energy Er . In the
Ramsey-type interferometer experiments, the molecules are
loaded into the optical lattice. The distribution of molecules
across lattice sites results in a weighted-average molecule
number per site N̄ . Furthermore, the collision-induced lifetime
of molecules in |d〉 state τd is calculated for a cloud containing
50% of molecules prepared in the |d〉 state [52]. The tunneling
time between the |s〉 states in neighboring lattice sites h̄/J
is provided, and it is much longer than the time scale of our
experiments.

TABLE I. Relevant quantities to the interferometers as presented in Figs. 2(a)–2(g), 5(d), 6(a), and 6(b).

Fig. 2(a) 2(b) 2(c) 2(d) 2(e) 2(f) 2(g) 5(d) 6(a) 6(b)

a (a0) 333 487 693 982 1412 2109 3426 487 693 982
N 3500 7500 8500 9500 9500 9000 7500 6000 6000 6000
Trap frequencies ωz/2π � 18.5 Hz, ω⊥/2π � 80 Hz

μ/h (Hz) 214 338 409 491 568 653 737 309 356 409
kBT/h (Hz) 350 453 471 488 488 480 453 419 419 419
EB/h (kHz) 1946 910 449 224 108 49 18 910 449 224
λ (µm) 223 97 56 33 20 12 6.3 106 64 40
d 4.1 µm

Er/h 249 Hz

N̄ 320 516 556 556 509 451 358 N/A

τd (ms) 21 9.4 5.2 3.2 1.9 1.1 0.6 N/A

h̄/J 6600 s (|s〉 state) N/A
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